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Efficient Estimation With Panel Data When
Instruments Are Predetermined: An Empirical
Comparison of Moment-Condition Estimators

James P. ZILIAK

Department of Economics, University of Oregon, Eugene, OR 97403-1285

I examine the empirical performance of instrumental variables estimators with predetermined in-
struments in an application to life-cycle labor supply under uncertainty. The estimators studied
are two-stage least squares, generalized method-of-moments (GMM), forward filter, independently
weighted GMM, and split-sample instrumental variables. I compare the bias/efficiency trade-off
for the estimators using bootstrap algorithms suggested by Freedman and by Brown and Newey.
Results indicate that the downward bias in GMM is quite severe as the number of moment condi-
tions expands, outweighing the gains in efficiency. The forward-filter estimator, however, has lower
bias and is more efficient than two-stage least squares.

KEY WORDS: Bootstrap; Life-cycle labor supply; Overidentifying restrictions; Split samples.

The panel-data literature offers little guidance on the rel-
ative empirical performance of instrumental variables (IV)
estimators when applied to samples of the size typically
encountered in practice. For example, when the number of
observations is large (say, greater than 500), are the small-
sample concerns of a bias/efficiency trade-off in general-
ized method-of-moments (GMM) raised by Tauchen (1986)
and Altonji and Segal (1994) binding? Moreover, if bias
is present, is it due to a correlation between the sample
moments and the sample weight matrix (Altonji and Se-
gal 1994) or to instruments weakly correlated with the en-
dogenous regressor as recently discussed by Bound, Jaeger,
and Baker (1995) and Angrist and Krueger (1995)? The
latter issue is crucial for efficiency considerations because
the optimal number of moments may contain instruments
dated far into the past, possibly weakening the correlation
between the instruments and the endogenous regressor(s).
In this article, I examine the sample properties of several
panel-data IV estimators first by applying them to a well-
known life-cycle labor-supply model and then comparing
the estimators in terms of the bias/efficiency trade-off via
a bootstrap Monte Carlo.

For many panel-data applications, GMM is the obvious
estimator of choice: It does not require a full specification
of the stochastic process (Hansen and Singleton 1982), it
is consistent asymptotically under a variety of situations
including when the only instruments available are predeter-
mined rather than strictly exogenous (Anderson and Hsiao
1982; Arellano and Bond 1991), and it attains the effi-
ciency bound in the class of IV estimators (Chamberlain
1987; Ahn and Schmidt 1995; Arellano and Bover 1995).
Tauchen (1986) demonstrated, however, that in samples typ-
ically encountered in time series applications (N = 50 or
75) GMM is biased as the number of moment conditions
expands, leading to a bias/efficiency trade-off, and thus he
recommended the use of “suboptimal” instrument sets.

Altonji and Segal (1994) extended the small-sample anal-
ysis of Tauchen to least squares optimal minimum-distance
(OMD) estimation of covariance structures. They demon-

strated via Monte Carlo simulation that the bias in OMD is
quite severe, the source of which, like feasible general least
squares, is due to a correlation between the sample moments
and the estimated weight matrix used in optimally mini-
mizing the distance between population and sample mo-
ments. They attempted to correct for the bias by develop-
ing a split-sample estimator, called independently weighted
OMD (IW-OMD) but found that both OMD and IW-OMD
are dominated in terms of lower bias and root mean squared
error (RMSE) by equally weighted minimum distance. Al-
though the findings of bias in GMM by Tauchen and by Al-
tonji and Segal seem conclusive, they are for small samples,
and there is no a priori expectation that comparable results
exist in a large panel-data setting. If comparable negative
results against GMM do exist, then a case could be made
for less efficient estimators such as two-stage least squares
(2SLS) or Keane and Runkle’s (1992) forward-filter (FF)
estimator.

Parallel to the time series research on IV estimators of
Altonji and Segal (1994), Nelson and Startz (1990), and
Tauchen (1986) is cross-sectional research on the proper-
ties of IV estimators when the correlation between the in-
struments and the endogenous regressor is weak (Bekker
1994; Staiger and Stock 1994; Angrist and Krueger 1995;
Bound et al. 1995). As pointed out by Bound et al., a weak
correlation between the instruments and the endogenous re-
gressor can lead to (1) a large standard error, (2) a bias in
IV even if a weak correlation exists between the instru-
ments and the structural error, and (3) a bias in IV toward
ordinary least squares (OLS) as the explanatory power of
the instruments approaches 0. They demonstrated that the
returns-to-schooling results from the overidentified models
reported by Angrist and Krueger (1991) are biased toward
OLS due to weakly correlated instruments and, worse still,
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that similar I'V results are found by using instruments from
a uniform random-number generator.

Addressing the criticisms of Bound et al., Angrist and
Krueger (1995) developed a computationally convenient
split-sample IV (SSIV) estimator as an alternative to 2SLS.
SSIV is not biased toward OLS; however, the estimator is
biased toward 0, so they proposed to “inflate” the SSIV es-
timates with a bias-correction factor, giving unbiased SSIV
(USSIV). They concluded that USSIV gives results compa-
rable to 2SLS but at a substantial loss of efficiency due to
the smaller samples used in estimation. Because panel data
with a long time series present the opportunity for many
(possibly weakly correlated) instruments, SSIV and USSIV
may be viable alternatives to standard 2SLS or GMM.

In this article, I focus on panel-data IV estimators that
are consistent asymptotically when only predetermined
instruments are available. Applications that fall within
this class of estimators include dynamic models, rational-
expectations models, and simultaneous-equations models.
Predetermined instruments complicate the estimation of
such models because certain transformations that eliminate
the model’s temporally persistent latent heterogeneity, such
as deviations from time-means (the “within” estimator), are
inconsistent when instruments are predetermined (Keane
and Runkle 1992). The estimators considered here include
2SLS, GMM, FF, SSIV, USSIV, and an IV analog to IW-
OMD that I refer to as IW-GMM.

I study the sample properties of the estimators in a
realistic setting using data from the Panel Study of In-
come Dynamics (PSID). The empirical model employed
is MaCurdy’s (1985) life-cycle labor-supply model un-
der uncertainty. MaCurdy’s model is pertinent to the is-
sues studied here because uncertainty suggests a rational-
expectations solution to the consumer’s problem, thereby
making the instrument set predetermined. In addition, the

model produces estimates of the intertemporal substitution .

elasticity, a key parameter used in understanding the co-
movements in earnings and hours over the business cycle.
For each estimator, I sequentially build up the moment ma-
trix by adding extra years as instruments, and I test the
specification with Sargan’s test of the overidentifying re-
strictions (Godfrey 1988).

I complement the empirical investigation with a bootstrap
Monte Carlo as developed by Efron (1979) and extended to
IV by Freedman (1984) and Freedman and Peters (1984).
The bootstrap is used to compare the estimators in terms
of bias, efficiency, RMSE, median absolute error (MAE),
and asymptotic coverage rates. The strength of the boot-
strap over standard Monte Carlo analysis lies in the fact
that, like the IV estimators themselves, the researcher sim-
ply approximates the empirical distribution of the estimator
with a nonparametric estimate of the underlying error dis-
tribution. Although Freedman’s method is asymptotically
valid for bootstrapping estimators from overidentified mod-
els (Hahn in press), Brown and Newey (1995) and Hall and
Horowitz (in press) showed that the Freedman algorithm
does not yield an improvement in terms of coverage rates
over asymptotic theory, and more importantly, it gives the
wrong size asymptotically for the overidentifying restric-
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tions test. Because each algorithm is asymptotically valid
for the estimator, I compare bootstrap results from the ap-
proaches of both Freedman and Brown and Newey.

From a 10-year balanced panel of men, I find the fol-
lowing results of note. The downward bias in GMM is
quite severe as the number of moment conditions expands,
outweighing the gains in efficiency. The bias is due to a |
correlation between the sample moments used in estima-
tion and the estimated weight matrix. The IW-GMM es-
timator is generally successful at eliminating the bias in
GMM parameter estimates using Freedman’s bootstrap al-
gorithm; however, the standard errors from asymptotic the-
ory seem to understate the true sampling variation, and the
overidentifying-restrictions test tends to overreject. The lev-
els distortion in the overidentifying-restrictions test persists
in models with many moments, even after recentering the
distribution using Brown and Newey’s (1995) algorithm. Fi-
nally, the bias in FF parameter estimates is less than GMM
and 2SLS, and it is more efficient than 2SLS.

1. ESTIMATION AND PREDETERMINED
INSTRUMENTS

I begin with a brief overview of the IV estimators used
in the empirical application and bootstrap simulations. Con-
sider the linear regression for individual 7 (: = 1,...,N) in
timet(t=1,...,7)

Yit = o + Tt + €4z, (1

where «; represents fixed latent heterogeneity, z;; is a (1 x
K) vector of predetermined explanatory variables, 3 is a
(K x1) vector of parameters to estimate, and ;; is a random
error that varies over ¢ and ¢ and is assumed distributed iid
(0,02). Under the assumption of fixed effects, the latent
heterogeneity is correlated with the explanatory variables
for all periods; that is, E|a;|z;;] # 0 for all .

A common practice in panel data is to eliminate the
fixed effect by taking deviations from the individual’s time
series means, known as the within transformation. In IV
estimation with predetermined instruments, however, the
within transformation is inconsistent. In particular, for the
within transformation to be consistent it is necessary for
the instrument set to be strictly exogenous to the model’s
error term for all periods, Ele;s|W;;] = 0 forall s,¢;
however, predetermined instruments only guarantee weak
exogeneity, Ele;s|W;;] = 0forall s > ¢t. This inconsis-
tency carries over into the class of endogenous random-
effects estimators studied by Hausman and Taylor (1981).
The first-difference (Anderson and Hsiao 1982; Keane and
Runkle 1992; Schmidt, Ahn, and Wyhowski 1992) and
orthogonal-deviations (Arellano and Bover 1995) transfor-
mations are consistent when applied with lagged levels of
predetermined (or endogenous) regressors as instruments.
Orthogonal deviations may offer efficiency gains over first
differences because differencing exacerbates measurement
errors-in-variables (Maeshiro and Vali 1988). Each trans-
formation will be applied to the estimators.
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1.1 Method-of-Moments Estimators

The first estimator I consider is 2SLS, which minimizes
the distance between the sample moments and the popula-
tion moments, giving equal weight to each observation. The
2SLS estimator produces consistent parameter estimates for
either the first-difference or orthogonal-deviations transfor-
mations and is given as

BasLs = (X'P(W)X) 1 (X' P(W)y), )

where W is an (N(T — 1) x L) matrix of instruments,
P(W) =W (W'W)~'W' is the projection matrix of instru-
ments, ¢ is the stacked (N (T — 1) x 1) vector of residuals,
X is the stacked (N (T —1) x K) matrix of regressors, and y
is the stacked (N (T —1) x 1) dependent variable. Under the
assumption of conditional homoscedasticity, E[%|W] = 0,
inference for the estimated 2SLS parameters is conducted
with the variance—covariance matrix

var(BasLs) = 62(X' P(W)X)™!

. 1 3

62 = (m) (y— XBasrs)®. (3)
As noted by White (1982), 2SLS standard errors are incon-
sistent when the conditional homoscedasticity assumption
is violated; thus, he proposed a robust covariance matrix

estimated as
var(fasts) = (X'P(W)X) ™ X' P(W)
x QPW)X(X'P(W)X)™, (4)

where  is a diagonal matrix of squared residuals.

Because the number of instruments typically exceeds
the number of parameters estimated (L > K), one can
test the overidentifying restrictions with the Sargan test
as e(fasLs)' P(W)e(BasLs) /62, which is asymptotically dis-
tributed x? with L — K df (Godfrey 1988). In the case of
conditional heteroscedasticity, Hansen’s (1982) robust vari-
ant of the overidentifying-restrictions test given later is nec-
essary for consistent inference.

1.1.1 Generalized Method-of-Moments. Hansen (1982)
and White (1982) showed that improvements in efficiency
over 2SLS are possible by optimally weighting the dis-
tance between the sample and population moments, with
the weight being the inverse of the covariance matrix of
sample moments. The ensuing GMM estimator typically
relies on residuals from the 2SLS estimator for an initial
consistent estimate of the covariance matrix. The GMM
estimator is

Bgmm = (X' P(W(S))X) (X' PW(S))y), )
where P(W(S)) = W(S)~!W"’ is the projection matrix of
instruments and S = W/QW is the optimal weight ma-
trix that permits both conditional heteroscedasticity and
autocorrelation in the covariance matrix ). The variance—
covariance matrix for the GMM estimator is

var(Begmm) = (X' P(W(8))X)™1, (6)
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and Hansen’s version of the overidentifying-restrictions test
is E(Bgmm)’P(W(S’))s(ﬂgmm), which is distributed asymp-
totically x? with (L — K) df.

1.1.2 Forward Filtering. As an alternative to 2SLS and
GMM, Keane and Runkle (1992) proposed an estimator
called the forward-filter (FF) estimator. The FF estimator
eliminates all forms of serial correlation while still main-
taining orthogonality between the initial instrument set,
which contains lagged values of predetermined/endogenous
variables, and the structural error. There is a similarity be-
tween forward-filtering and the orthogonal-deviations trans-
formation developed by Arellano and Bover (1995) in that
both methods demean the variables with only current and
future values; however, filtering is likely to be superior be-
cause it eliminates all forms of serial correlation. Although
Schmidt et al. (1992) argued that filtering is irrelevant if
one exploits all sample moments during estimation, filter-
ing may be a desirable alternative to GMM in practice. First,
because the dimension of the GMM moment matrix grows
exponentially as the number of time periods and regressors
expands, it can be computationally intractable and the over-
identifying restrictions are less likely to be satisfied, possi-
bly due to a weak correlation between instruments and en-
dogenous regressors. Second, if the small-sample evidence
from Tauchen (1986) and Altonji and Segal (1994) carries
over to the panel-data setting, a bias/efficiency trade-off
will arise with the optimal GMM estimator.

Similar to GMM the FF estimator is a two-step estimator.
In the first step, the first-differenced equation is estimated
by 2SLS. The ((T — 1) x 1) vector of first-difference resid-
uals for individual i from the 2SLS regression, é; o515, are
used in constructing a (T'— 1) x (T'— 1) covariance matrix,
Spp = + vazl €i,25Ls€; og1,5- The inverse of the covari-
ance matrix is then filtered by a Cholesky decomposition,
Crr = Chol(Egll)), that eliminates serial correlation in the
differenced errors. The second step involves transforming
the original stacked N (T — 1) first-difference observations
by Qrr = Iy ® Crr, leading to the FF estimator

Brr = (X'QreP(W)Qrr X) ™ H(X'Qrr P(W)Qrry), (7)

with variance—covariance matrix var(BFF) = 62(X ’QFF
PW)QrrX)~!. As noted by Hayashi (1992), infer-
ence with the FF estimator is inconsistent if the condi-
tional homoscedasticity assumption is violated; however,
heteroscedasticity-robust variants of the variance and the
overidentifying restrictions test are easy to compute.

1.1.3 Independently Weighted Generalized Method-of-
Moments. In an attempt to mitigate the finite-sample bias
in OMD, Altonji and Segal (1994) developed a new estima-
tor called independently weighted OMD. I extend their idea
to the case of IV with panel data. The motivation behind
IW-GMM is to break the correlation between the sample
moments used in estimation, (1/N)[W’e], and the estimated
weight matrix, $ = W’QW, that is constructed with the
same data. The procedure is to randomly split the sample
into independent groups (g), say two (g = 1, 2), with group
1 used in constructing the weight matrix, S; = W], W1,
and group 2 used in constructing the sample moments to



422

estimate, (1/N)[Wje2]. The sample split must occur on the
cross-sectional dimension of the data because each cross-
sectional unit retains its own time series for instruments.
Each group is used alternately in constructing the weight
matrix and the sample moments so that the resulting IW-
GMM estimator is the average of the independent estima-
tions:

G
; 1 . B B
Brw-cMm = el E (X Wo(W. Q_gW_g) "' W, X))
g=1

X (X We(W. Q_gW_g) ' W/y,), (8)

where —g refers to the excluded group. Because the sam-
pling errors of the population moments and weight ma-
trix are independent, the average is a consistent estima-
tor. The variance of the estimated average is constructed as
var(Grw-cmm) = (1/G?)[var(61) + -+ + var(3g)], where
the covariance between ith and jth sample split is O by con-
struction. The IW-GMM estimator is expected to be less ef-
ficient than GMM because of the loss in degrees of freedom.
In the application to follow, I fix G = 2 for the IW-GMM
estimator.

1.1.4 Split-Sample Instrumental Variables. Angrist
and Krueger (1995) confronted the problem of a weak cor-
relation between the instruments and regressors in their
earlier work by developing the split-sample IV (SSIV) es-
timator. Recall that if the instruments and the endoge-
nous regressor(s) are weakly correlated and there exists a
(weak) correlation between the error from the first-stage fit-
ted value and the structural error, then IV is biased. SSIV
breaks the correlation between the two errors by randomly
splitting the sample in half and using one-half to estimate
the first-stage equation and the other half to estimate the
structural parameters. Let sample 2 estimate the first-stage
equation and combine that with W, to form the fitted value
for Xy, which is then regressed on y;, yielding the SSIV
estimator '

Basty = (XoWa(WiWa) " WIW (WWa) " Wi Xa) ™!
x XSWa(WiWa) "' Wiy, (9)

which under conditional homoscedasticity has an asymp-
totic covariance matrix of var(Bssry) = 62(X4Wa (W}
Wa)"1WhX,)~1. A loss of efficiency relative to 2SLS is
expected with SSIV because only one-half of the observa-
tions are used in estimation. This divergence in efficiency
may be exacerbated when heteroscedasticity-robust covari-
ance matrices of Equation (4) are employed.

Because SSIV is biased toward 0, Angrist and Krueger
(1995) inflated the SSIV estimator with a bias-correction
factor, resulting in a just-identified 2SLS estimator in sam-
ple 1. USSIV is consistent under group asymptotics and is
given by the formula

Bussty = (X{Way (Wg, War) ™' W Xq) ™

x X{ Wiy (W3 War) ™ 'Waryr, (10)
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where W, = W (WiW2)~1W} X,. The asymptotic covari-
ance matrix takes the usual form as 2SLS under conditional
homoscedasticity as 62 (X]Way (W3, Wa1) " W), X;1)~! and
the robust covariance matrix is the same as in Equation (4)
with Wy, replacing W. For obvious reasons, there is no test
of the overidentifying restrictions in this case.

1.2 Choice of Instrument Set

To this point, little attention has been given to the specifi-
cation of the instrument set other than the overidentifying-
restrictions test. When the matrix of explanatory vari-
ables is predetermined, the first-difference and orthogonal-
deviations transformations make instruments dated ¢ — 1
and earlier valid for estimation. In the standard IV estima-
tor, choosing one-period lagged instruments, W = X;_),
leaves the system just identified (L = K), whereas choos-
ing instruments dated ¢t — 1 and ¢ — 2 imposes p = 2K — K
overidentifying restrictions but sacrifices an extra period of
data for each observation.

Schmidt et al. (1992) argued that efficiency gains are pos-
sible if, instead of the usual instrument set, one exploits all
of the linear moments available as implied by the orthogo-
nality conditions E[W/e; 4] = 0, where W; is the matrix of
instruments for individual ¢ and ¢, 4 is the vector of first-
difference or orthogonal deviations residuals. The Schmidt
et al. approach uses levels of instruments from different -
time periods for different observations. The instrument set
for individual ¢ when all the regressors are predetermined
is constructed as

z 0 O O . - 0 0 -0 0
0 r1 X2 o - - 0 0 -0 0
Wi — 0 0 o - - . . .o . ,
Ty X2 -1

1

which has dimension (T'—1) x (T')(T'—1)(K)/2 and where
z4(t =1,...,T—1) are the lagged levels of the explanatory
variables. For example, in period 2 variables from period 1
are valid instruments, in period 3 variables from both pe-
riods 1 and 2 are valid, and so on until period 7', where
variables from periods 1 to 7" — 1 are valid instruments.
When T and K are both large, say 7' = 15 and K = 10,
there are 1,040 overidentifying restrictions, highlighting the
computational burden of the Schmidt et al. approach. In the
application to follow, I compare the efficiency of the stan-
dard instrument set to the stacked instrument set in Equa-
tion (11).

2. AN APPLICATION TO LIFE-CYCLE LABOR
SUPPLY UNDER UNCERTAINTY

A focal point of interest in the labor-supply literature is
consistent and efficient estimation of the intertemporal sub-
stitution elasticity (ISE). The ISE measures intertemporal
changes in hours of work due to an anticipated change in
the real wage and aids in understanding comovements in
earnings and hours over the business cycle. Consequently,
reliable estimates of the ISE are of import to public policy
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in labor markets. The life-cycle labor-supply model devel-
oped by MaCurdy (1985) and Altonji (1986) forms the basis
of the empirical exercise.

Based on a utility function that is additively separable
between consumption and leisure, the double-log life-cycle
labor-supply function for individual ¢ (¢ = 1,..., N) in time
tt=1,...,T)is

Inhie = Ao + 6 Inwie + ziy + €4, (12)

where In is the natural log operator; h;; is annual hours

of work; Ao is the marginal utility of initial wealth that

is a function of all future wages, assets, prices, and tastes
and is correlated with the explanatory variables; z;; is a
vector of time-varying demographics; and § is the ISE pa-
rameter. The assumptions between the regressors and struc-
tural random error are Ele;s|lnw;] = 0 for all s > ¢ and
Eleis|zit) = 0 for all s > ¢t. Wages are assumed to be en-
dogenous rather than predetermined to account for the pos-
sible presence of nonlinear income taxes and/or human cap-
ital considerations, or possibly measurement error.

Estimation proceeds by taking first differences or orthog-
onal deviations on Equation (12) to eliminate the unob-
served marginal utility of wealth and then using the es-
timators outlined in Section 1. Because of the endogene-
ity of wages and the desire to use lagged values of wages
as instruments, an extra year of data is lost; consequently,
there are a maximum of (T — 2) x (T — 2)[(K — 1)(T
+ 1) 4+ T]/2 linear moment conditions to exploit in esti-
mation. The stacked instrument matrix in Equation (11) for
the labor-supply model contains, in period 3, wages from
period 1 along with demographics in periods 1 and 2 as
instruments, wages from periods 1 and 2 along with demo-
graphics from periods 1 to 3 are instruments in period 4,
and so on until period 7' when there are (7' — 2) lagged
wages and (K —1)(T — 1) lagged demographic variables as
instruments.

2.1 Data

The data used to estimate the life-cycle labor-supply pa-
rameters come from Waves XII-XXI (calendar years 1978—
1987) of the PSID. The sample is selected on many dimen-
sions and is similar to other research studying life-cycle
models of labor supply. The sample is restricted to continu-
ously married, continuously working, prime-age men aged
22-51 in 1978 from the Survey Research Center random
subsample of the PSID. In addition the individual must ei-
ther be paid an hourly wage rate or must be salaried, and
he cannot be a piece-rate worker or self-employed. This
selection process resulted in a balanced panel of 532 men
over 10 years or 5,320 observations. The real wage rate, w;,
is the hourly wage reported by the panel participant rather
than the average wage (annual earnings over annual hours)
to minimize division bias (Borjas 1981). The predetermined
time-varying taste shifters, z;;, include a quadratic in age,
the number of children in the household, and a dummy vari-
able for bad health.

2.2 Results

In Table 1 I report the results from 101 regressions, 55
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based on the first-difference transformation and 46 based
on the orthogonal-deviations transformation. The FF esti-
mator is not included under orthogonal deviations because
filtering would be redundant in this case. I begin with the
standard instrument set with z;;’s from ¢t —1 and ¢ -2, along
with lagged wages from t — 2. I then sequentially build up
the stacked instrument set from Equation (11). Because the
ISE is the parameter of primary interest, I only present re-
sults for the ISE in Table 1. The efficiency pattern in the
demographic variables with changes in moment conditions
is similar to the pattern in the ISE. The weighting matrix
for the first-difference GMM estimator that corrected for a
first-order moving average error failed to be positive def-
inite in the stacked-moment models, even with modified
Bartlett weights; hence, the results reported only correct
for conditional heteroscedasticity. As a point of departure,
I present OLS estimates at the bottom of Table 1. The OLS
first-difference ISE is .111 with a heteroscedasticity-robust
standard error of .079, and the orthogonal-deviations ISE is
.176 with a heteroscedasticity-robust standard error of .074.

2.2.1 Base-Case Results. In the base case with demo-
graphic variables from ¢ —1 and ¢ — 2 and wages from ¢ — 2
as instruments for the contemporaneous period, the first-
difference 2SLS and GMM estimates of the ISE are .21
and .52, respectively; however, neither estimate is signifi-
cant even at the 10% level. As a benchmark to judge the
first-difference base-case results, Altonji (1986) estimated a
range of values from .01 to .45, most of which are impre-
cisely estimated. The orthogonal-deviations 2SLS estimates
are more efficient than their first-difference counterparts,
possibly due to reduced measurement error relative to dif-
ferencing; however, there is no general pattern of efficiency
gains across the other orthogonal-deviations estimators. The
IW-GMM estimates vary across the first-difference and
orthogonal-deviations transformations in that the former in-
flate the corresponding GMM estimate by about 40% and
the latter deflate it by about 40%. Of course, the objective
of IW-GMM is to correct for bias in GMM, whether it be
positive or negative bias. On the contrary, SSIV and US-
SIV uniformly inflate their 2SLS counterparts across spec-

ifications, although there is a substantial loss in efficiency

due to smaller sample sizes. Interestingly, under conditional
homoscedasticity, the FF estimator performs best on effi-
ciency grounds in the base case, even surpassing GMM;
however, once one accounts for heteroscedasticity, GMM
and IW-GMM improve on the FF estimates.

The results from the Sargan overidentifying-restrictions
tests are mixed across the models. The conditionally homo-
scedastic p values of .02 and .01 from the first-difference
2SLS and FF estimators do not lend much support to the
choice of instruments; however, the GMM and orthogonal-
deviations versions do not reject the overidentifying
restrictions. The test rejects the IW-GMM specifications un-
der first differences but does not reject SSIV models. Two
important findings that emerge in the base case and are
magnified in the stacked-moment results to follow are that
(1) once the Sargan test is modified for the presence of het-
eroscedasticity, the overidentifying restrictions are not re-
Jjected in any of the 2SLS or FF specifications and (2) as
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Table 1. Intertemporal Substitution Elasticities Under Alternative Moment-Condition Estimators

First difference ) Orthogonal deviations
Moments 25LS GMM FF IW-GMM SSiv Ussiv 28LS GMM IW-GMM SSiv uUssiv
Base case:
T—-1,T-2 .2091 5192 1350 7161 .7158 1.7491 .2552 4506 .2603 .8931 1.1224
(.4155) (.3638) (.3163) (.3498) (.6183) (2.0709) (.3773) (.4011) (.4044) (.6427) (.7987)
(.4231) [.4482] (.3857) [.0059] (.7109) (1.8272) (.4488) [.6431] [.0392] (.8237) (.8270)
{9} [-0234] [-0138] [.3447] [.1361] [.5862]
[.3147] [.1925] [.4356] [.5744] [.8326]
Stacked cases:
T—1toT- 2 5428 .3942 5422 3971 6752 6.0887 .7130 .6158 5069 .4289 8.2390
(.1808) (.1504) (.1525) (.0846) (.2120) (7.3626) (.1719) (.1586) (.0908) (.1764) (19.205)
(.2259) [.4248] (.2007) [-0000] (.4878) (7.1342) (.2119) [.2040] [.0000] (.4880) (18.444)
{72} [.0700] [.0284] [.0000] [.0697] [.8188]
[.3837] [.2778] [.0002] [.1185] [.9315]
T—1t0T -3 5620 3916 .5093 .2868 .3768 —3.4139 .5885 .3768 3724 .1070 —2.4665
(.1436) (.1158) (.1225) (.0584) (.1609) (3.6721)  (.1353) (.1156) (.0626) (.1342) (6.1924)
(.1817)  [4560] (.1779) [.0000] (.3564) (4.2839) (.1792) [.2209] [.0000] (.3406) (7.2017)
{107} [.0632] [.0089] [.0017] [-0109] [.3946]
[.3932] [.2096] [.0065] [.0959] [.4759]
T—1t0T -4 3774 .1933 4568 .1832 .0881 6702 .5432 2778 .2819 —.0489 3272
(.1279) (.1013) (.1118) (.0462) (.1168) (.8119) (.1242) (.1031) (.0497) (.1064) (.9251)
(.1780) [.3192] (.1711) [.0000] (.2886) (1.2464) (.1733) [.2363] [.0000] (.3007) (1.4420)
{137} [.0000] [.0003] [.0000] [.0002] [-0000]
[.2211] [2715] [.0002] [.0772] [-0000]
T—1toT -5 3123 .1186 .3108 3170 .0218 —.1169 4006 1714 .2838 —.0898 .5920
(.1179) (.0878) (.1008) (.0346) (.1044) (.5247) (.1133) (.0898) (.0412) (.0972) (.7368)
(.1742) [.1393] (.1829) [.0000] (.2389) (.7319)  (.2000) [.0480] [.0000] (.2779) (1.1203)
{162} [.0000] [-0927] [.0000] [.0000] [.0000]
[.0705] [.0824] [.0000] [.0125] [.0000]
T—1toT -6 .3502 1524 3517 3615 .0299 —.2473 .4051 .1448 .4031 —.0754 .7449
(.1084) (.0802) (.0927) (.0311) (.0940) (.6665) (.1044) (.0799) (.0346) (.0910) (.9966)
(.1772)  [.3509] (.1778) [.0000] (.2242) (.9609) (.1860) [.1303] [.0000] (.2550) (1.4588)
{182} [.0000] [.0000] [.0000] [.0000] [.0000]
[.1927] [.1383] [.0000] [.0253] [.0000]
T—1toT -7 .2763 1017 .3069 3444 .0158 —.2577 .3650 1413 .3082 —.0654 7629
(.1028) (.0741) (.0893) (.0247) (.0849) (.7653) (.1005) (.0743) (.0287) (.0850) (1.1336)
(.1758) [.3510] (.1677) [.0000] (.2109) (1.0709) (.1799) [.1849] [.0000] (.2331) (1.6145)
{197} [.0000] : [.0000] [.0000] [.0000] [-0000]
[-2051] [-2126] [.0000] [.0505] [.0000]
T—-1toT -8 .2653 .0659 .2781 3479  .0017 —.1355 .3408 .1051 .2781 —.0800 .8239
(.1003) (.0691) (.0869) (.0237) (.0834) (.7492) (.0984) (.0679) (.0262) (.0825) (.9977)
(.1686) [.3562] (.1592) [.0000] (.2035) (.9927) (.1738) [.1709] [.0000] (.2270) (1.3779)
{207} [.0000] [.0000] [.0000] [-0000] [.0000]
[.1663] [.1593] [.0000] [.0364] [.0000]
T—-1t0T -9 .2814 .0931 .2961 3173 .0046 —.1808 3512 1227 .2544 —.0824 .7825
‘ (.0987) (.0674) (.0856) (.0228) (.0827) (.7238) (.0971) (.0661) (.0255) (.0822) (.9308)
(.1623) [.3787] (.1540) [.0000] (.1949) (.9267) (.1694) [.1926] [.0000] (.2207) (1.2813)
{212} [-0000] [-0000] [.0000] [.0000] [.0000]
[.1875] [.1793] [.0000] [.0431] [.0000]
oLsS 1115 1755
(.0247) (.0224)
(.0791) (.0743)

NOTE: Standard errors are in parentheses and p values for the null hypothesis of correct overidentifying restrictions are in square brackets. The second values in parentheses and square brackets
for the 2SLS, FF, SSIV, and USSIV estimators refer to heteroscedasticity-robust standard errors and p values. N = 532 and 7 = 8. The numbers between { } are the number of instruments

used in estimation.

the ratio of instruments to cross-sectional sample size rises,
Hansen’s test seems to overreject. This will become evident
in Subsection 2.2.2 when one compares GMM to IW-GMM
and 2SLS to SSIV.

2.2.2 Stacked Moment Results. Turning now to the
stacked moment-condition results reveals a striking change
in the efficiency of the ISE. With 72 moment conditions
in the stacked t — 1 and ¢ — 2 case, significant efficiency

gains are achieved for all the estimators, with the average
reduction in standard errors around 50%. The FF estima-
tor outperforms 2SLS in efficiency in all cases, but GMM
is more efficient than FF in all of the stacked-moment
specifications. No clear efficiency pattern emerges between
orthogonal deviations and first-difference GMM, nor with
heteroscedasticity-robust 2SLS across the transformations.
Quite remarkably, IW-GMM outperforms GMM across the
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Table 2. First-Stage F and Wald Tests for Wage Changes

First-difference Orthogonal-deviations

Moments Ftest ~ Wald Test  F test Wald Test
Base case:
T—-—1,T-2 2.541 20.095 3.979 30.293
{9} [.007] [.017] [.000] - [-000]
Stacked cases:
T—1toT - 2 1.182 92.589 1.382 104.331
{72} [.141] [.052] [.o19] [.008]
T—1toT - 3 1.197 129.862 1.303 150.497
{107} [.084] [.066] [.021] [.004]
T—1toT - 4 1.098 160.540 1.154 187.569
{137} [.208] [.083] [.109] [.003]
T—1toT -5 1.074 210.043 1.092 245.218
{162} [.251] [.007] [.205] [.000]
T—1toT - 6 1.138 241.216 1.120 286.980
{182} [.104] [.002] [134] [.000]
T—1toT - 7 1.149 271.128 1.097 309.148
{197} [.080] [.000] [175] [.000]
T—1toT - 8 1.146 291.226 1.079 326.667
{207} [.079] [.000] [214] [.000]
T—1toT -9 1.160 325.604 1.080 362.342
{212} [.061] [.000] [.210] [.000]

NOTE: The null hypothesis is that the instruments jointly explain none of the variation in the
wage changes. P values are given in brackets. For the F test, the numerator degrees of freedom
are (# of moments — 1) and the denominator degrees of freedom are NT — N — #moments,
where N = 532 and T = 8. The degrees of freedom for the Wald test are the number of moment
conditions.

board on efficiency grounds. This result is surprising given
that IW-GMM only uses half of the sample for each es-
timation and may point to some small-sample advantages
of IW-GMM over GMM. Likewise, SSIV standard errors
under homoscedasticity dominate 2SLS and FF; however,
2SLS and FF are far superior once one controls for het-
eroscedasticity. Proceeding down the columns, note that,
as additional moments are added to the instrument set, the
ISE is estimated more precisely as predicted. For example,
exploiting all moments (212) reduces the 2SLS and FF stan-
dard errors by at least 45% and the GMM standard errors
by at least 55% compared to the suboptimal matrix with 72
moments. _

The efficiency gains of extra instruments, nonetheless,
come at a cost. A clear pattern of downward bias in the
first-difference and orthogonal-deviations GMM and SSIV
estimators emerges in the stacked-moment results of Table
1. With 72 moments imposed, the first-difference 2SLS and
GMM ISE parameters differ by 27%, but the difference is
67% with 212 moments. The bias is even more severe under
orthogonal deviations. Unlike GMM, the finding that the
SSIV parameter estimates converge toward 0 as the num-
ber of overidentifying restrictions expands is an expected
property of the estimator (Angrist and Krueger 1995). What
is not expected is the erratic and puzzling behavior of the
USSIV estimator. The estimated ISE ranges from 8.239 in
the 72-moment orthogonal-deviations case to —3.414 in the
107-moment first-difference case. No obvious explanation
emerges for the disappointing USSIV results, but the find-
ings indicate that “forcing” exact identification through the
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bias-correction factor may be undesirable with many over-
identifying restrictions. The FF estimator from Keane and
Runkle (1992) does not appear to suffer from the same bias
as in GMM and yet is more efficient than 2SLS.

2.2.3 Tests for Weak Instruments. An obvious question
arises: Is the bias in GMM due to instruments weakly cor-
related with the wage or due to a correlation between the
sample moments and the estimated weight matrix? Several
corroborating facts suggest that a correlation between the
sample moments and the estimated weight matrix is the
source of the bias. In Table 2 I report first-stage F tests and
Wald tests with their associated p values for the endogenous
wage regressor. I present the Wald test because the F' test
is inconsistent when there is heteroscedasticity. As seen in
Table 2, the F' test frequently leads to the incorrect con-
clusion that there are weakly correlated instruments when
the Wald test does not, suggesting that when heteroscedas-
ticity is present the Wald test is the more appropriate test
for the correlation between instruments and regressors. The
conclusion that the instruments are not weak is strength-
ened by noting that the overidentifying-restrictions test does
not reject the model under heteroscedasticity-robust GMM,
28LS, or FF.

Potentially the strongest piece of evidence that the bias
comes from the estimated weight matrix is the IW-GMM
parameter estimates. Beginning with 162 moments, the ITW-
GMM estimates are at least twice as large as GMM on
average and are comparable to 2SLS and FF estimates, a
result that would not arise if there were no correlation be-
tween the GMM sample moments and estimated weight ma-
trix or if the instruments are weak. Unfortunately, Hansen’s
overidentifying-restrictions test rejects all of the IW-GMM
specifications (and all SSIV models beginning with 137 mo-
ments). This “overrejection” as the ratio of moments to
cross-sectional sample size increases, which reaches a max-
imum of 212/266 under IW-GMM compared to 212/532
under GMM, may indicate a weakness in the test.

'2.2.4 Summary. The results of Tables 1 and 2 suggest
that GMM is biased downward relative to 2SLS and FF
as the number of moment conditions expands because of
a correlation between the estimated weight matrix and the
sample moments. Moreover, IW-GMM is successful in cor-
recting the bias in GMM; however, the IW-GMM parame-
ter estimates are more variable than 2SLS and FF and the
overidentifying restrictions are rejected in each specifica-
tion. SSIV is biased toward O as the number of instruments
expands and USSIV performs poorly. Finally, inference,
whether it be standard errors, overidentifying restrictions,
or first-stage F' tests, can be quite misleading when the as-
sumption of conditional homoscedasticity is incorrect.

3. BOOTSTRAPPING OVERIDENTIFIED MODELS

To investigate the sample properties of the estimators
such as the potential bias/efficiency trade-off in GMM,
more deeply, I now turn to the bootstrap. The bootstrap, re-
cently surveyed by Efron and Tibshirani (1993) and Jeong
and Maddala (1993), is a powerful statistical technique for
the computation of measures of variability, confidence inter-



426

vals, and bias of an estimator. In the current application, the
bootstrap is a natural alternative to standard Monte Carlo
analysis because it is based on a nonparametric estimate of
the underlying error distribution. Recall that a strength of
each of the IV estimators considered in Section 2 emanates
from their lack of dependence on an a priori specified small-
sample distribution. Moreover, the parametric Monte Carlo
is difficult to implement because the labor-supply literature
offers little help in the way of the joint small-sample distri-
bution of wages and hours, making the choice of a distribu-
tion a dubious exercise at best. Consequently, the bootstrap
maintains the semiparametric, empirical-based spirit of the
article.

The typical regression-based bootstrap is a multistep pro-
cedure whereby the researcher resamples with replacement
the estimated residuals, constructs a new dependent variable
as the sum of the fitted value from the regression plus the
bootstrapped residual, reestimates the model, and repeats
the exercise B times (b = 1,..., B). There are then B ob-
servations from which to compute measures of bias, vari-
ability, or confidence intervals. This approach is consistent
- only under the assumptions of conditional homoscedastic-
ity, no serial dependence, and nonstochastic regressors.

When the regressors are stochastic or there is conditional
heteroscedasticity as is typical in IV estimation, Freedman
(1984) and Freedman and Peters (1984) suggested an al-
ternative procedure. Instead of resampling the residuals,
one resamples simultaneously the estimated residuals along
with the regressors and instruments. More specifically, one
resamples with replacement from (£, X, W), where € is the
vector of estimated first-difference or orthogonal-deviations
residuals, X is the matrix of first-difference or orthogonal-
deviations regressors, and W is the matrix of instruments.
Call the constructed “pseudodata” (£*, X*, W*). The new
dependent variable is §* = X* B + &*, which is regressed
on X* with W* as instruments to generate a new (3*, and
the procedure is repeated B times. This approach, in which
each observation has equal probability weight 1/N of be-
ing drawn from the discrete empirical distribution function,
is an asymptotically valid method of bootstrapping an IV
estimator, even when the model is overidentified, and pro-
vides asymptotic coverage rates equal to their nominal rates
(Hahn in press).

Brown and Newey (1995) and Hall and Horowitz (in
press), however, showed that the Freedman method does
not yield an improvement in terms of coverage rates over
first-order asymptotic theory, and more importantly, it gives
the wrong size, even asymptotically, for the overidentifying-
restrictions test. The problem lies in the fact that when the
model is overidentified the sample moments are typically
not 0, and thus one bootstraps from an empirical distri-
bution that is a poor approximation to the true underlying
distribution. Hall and Horowitz attempted to mitigate this
problem by recentering the moments at their sample values,
and Brown and Newey suggested recentering the empirical
distribution by imposing the moment conditions on the data.

Because Brown and Newey showed that their approach
is efficient in the class of bootstrap methods, I use their re-
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sampling algorithm as an alternative to Freedman’s method.
The idea is to resample from the multinomial distribution
in which each observation receives a different probability
weight, p;, such that the sample moments, §; = g(&, X, W),
are satisfied by construction, Zfi 1Pig:; = 0. In general, p;
is solved numerically from a linear programming problem;
however, Brown and Newey suggested a closed-form so-
lution for the probability given as p; = (1 — gV ~'g)/
[N (1 — §V~1g)], where § = l/NZfil g and V =
1/N ZZN=1 G:9;. The estimated probabilities are expected to
satisfy the usual regularity conditions such as p; > 0 and
Sisipi=1

For each experiment, I compute the bias as (1/B) 21?:1
‘Eb — 5, where 3,, is the bth bootstrap estimate of the ISE and
6 is the pseudotrue value of the ISE defined later, the aver-
age heteroscedasticity-consistent standard error constructed
from the asymptotic formulas in Section 1 (SE-A), the boot-
strap standard error as [(Yr, (8 — Y0, &/B)?)/(B —
1)]'/2/v/B (SE-B), the RMSE defined as the square root
of the sum of bias squared and the average variance con-
structed from asymptotic formulas (RMSE-A), the RMSE
defined as the square root of the sum of bias squared and
boot SE squared (RMSE-B), and the MAE. In addition, I
report a measure of reliability of asymptotic inference by
constructing the coverage rates on a 95% two-tailed confi-
dence interval as the fraction of times the pseudotrue value
of the ISE falls within the interval based on asymptotic
standard-error formulas and asymptotic critical values.

Because the ¢ distribution does not adjust confidence
intervals for the presence of skewness in the underlying
population, I also construct bootstrap-t critical values that
have the ability to account for skewness (Efron and Tib-
shirani 1993, pp. 159-162). The idea is to approximate
the asymptotic pivotal ¢ statistic from the bootstrap as
t(b) = (6 — 6)/se(b), where se(b) is the bth estimated
asymptotic standard error. The o and 1 — « critical val-
ues are found by ordering the #(b)’s for the entire bootstrap
sample and are then used in constructing bootstrap-t con-
fidence intervals. The bootstrap-t may offer asymptotic re-
finements over critical values from first-order asymptotic
theory (Brown and Newey 1995; Hall and Horowitz in
press). Finally, to gauge the potential gains in the Brown and
Newey algorithm over Freedman’s for correcting the size of
the overidentifying-restrictions test, I report the fraction of
times the bootstrap value of the overidentifying-restrictions
test exceeds the asymptotic critical x? value at the .05 level
(Boot-J).

3.1 Results

To make relative comparisons of bias, RMSE, and MAE
across the estimators I need to “prime” the bootstrap (i.e.,
construct £) with a common vector of parameters. This ap-
proach of choosing a common set of starting values mim-
ics the parametric Monte Carlo and has been applied to
the bootstrap by Freedman and Peters (1984). Because the
focus is on the ISE, I use the estimated ISE most often
encountered in male labor-supply studies as the pseudotrue
value of 6. Pencavel (1986) noted that the ISE has a cen-
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Table 3. Bootstrap Comparisons of First-Difference Moment-Condition Estimators Where Observations Are Drawn With Probability 1/N
95% 95% boot-t Boot-J
asym-t critical rejection
Estimators Bias SE-A SE-B RMSE-A RMSE-B MAE coverage values rate: 5%
9 moments
2SLS —.108 .485 474 497 486 .263 .99 —1.59, 1.71 .29
GMM 174 .360 .330 .400 373 .280 .95 —1.35, 2.15 13
FF —.097 .351 .309 .365 .324 .183 .98 —1.93, 1.29 44
IW-GMM .189 459 .565 497 .596 .336 .88 —1.48, 3.99 .66
SSivV .208 .854 .909 .879 .932 .451 1.00 —1.63, 1.67 .29
ussiv .828 15.621 6.082 15.643 6.138 1.683 .99 —1.04, 1.53 —
72 moments
2SLS .128 169 199 212 .236 .145 .85 —1.53, 3.27 .99
GMM —.093 .097 .108 134 142 .108 .81 —3.34, .98 .99
FF .055 142 156 152 .168 136 .87 —1.79, 2.63 .99
IW-GMM .013 .070 .337 .071 .337 149 .47 —7.28, 8.06 1.00
SSiv 137 .310 .273 .339 .306 160 .95 —2.13,1.95 .63
USSIv —-1.107 3.4E2 42.527 3.4E2 42.541 4.965 1.00 —-1.19, 1.69 —_
162 moments
2SLS .022 131 .219 132 .220 147 74 —3.73, 4.05 .99
GMM —.169 .055 .077 178 .186 179 .21 -5.62, —.2 1.00
FF —.046 119 .128 128 136 .090 .87 —3.74, 1.49 1.00
IW-GMM —.020 .029 .229 .035 .230 .156 19 —15.1, 19.1 1.00
SSIvV —.216 .188 124 .286 .249 211 .84 —-3.07, .31 90
ussiv —.932 11.598 5.707 11.636 5.782 927 .96 —2.26, 1.79 —
212 moments
2SLS —.014 124 .166 125 .166 .084 .79 —4.50, 3.12 1.00
GMM —.175 .043 .047 .180 .181 172 .04 —6.0, —1.74 1.00
FF —.037 .100 .106 107 112 .069 .85 —3.69, 1.84 1.00
IW-GMM .044 .018 219 .047 224 144 14 —27.4, 32.5 1.00
SSIV —.209 175 .096 273 231 192 .83 —2.86, —.31 .95
ussiv -.372 13.467 5.783 13.472 5.794 1.099 .99 —1.58, 1.41 —

NOTE: All calculations are based on 100 bootstrap replications. The pseudotrue value of the ISE is fixed at .21 for all calculations. Bias is computed as the difference between the average bootstrap
estimate and the pseudotrue ISE, SE-A is the average standard error computed from asymptotic theory, SE-B is the average standard error constructed from the bootstrap, RMSE-A is the root
mean squared error computed with the variance from asymptotic theory, RMSE-B is the root mean squared error computed with the variance from the bootstrap, MAE is the median absolute error,
95% asym-t coverage is the fraction of times the pseudotrue value of the ISE falls within the 95% confidence interval based on standard errors and critical values from asymptotic theory, 95%
boot-t critical values are the .025 and .975 values from the bootstrap ¢ statistic, and boot-J rejection rate is the fraction of times the bootstrap value of the overidentifying restrictions test exceeds

the critical X2 value at the .05 level.

tral tendency of .20, which, coincidentally, is consistent
with the 2SLS 9-moment model of Table 1; thus, the 2SLS
9-moment parameters form the starting values. I present
100 bootstrap replications for the 9-, 72-, 162-, and 212-
moment cases for both the first-difference and orthogonal-
deviations transformations. The small number of bootstrap
Monte Carlo draws is sufficient for measures of bias and
variability for most sample sizes but is sufficient for confi-
dence intervals only in larger samples (Hall 1986; Efron and
Tibshirani 1993, p. 161). All experiments were conducted
in Gauss with a Pentium-90, where the models with 212
moments took at least 48 hours to compute. I present the
results from the Freedman algorithm in Tables 3 and 4 and
from Brown and Newey’s algorithm in Tables 5 and 6. I fo-
cus on the first-difference results because the implications
from orthogonal deviations are largely the same.

3.1.1 Results From Freedman Algorithm. Beginning
with the base case of 9 moments in Table 3, 2SLS and
FF tend to be biased toward OLS (dors = .11), which is
consistent with the presence of a finite-sample bias in IV
estimators. The absolute value of bias in GMM exceeds
both 2SLS and FF, whereas GMM dominates all three of
the split-sample estimators in terms of lower bias. Com-

paring the average asymptotic standard error (SE-A) to the
bootstrap standard error (SE-B) suggests that there is little
difference for 2SLS, FF, and GMM standard errors, but the
asymptotic and bootstrap standard errors diverge for IW-
GMM, SSI1V, and USSIV. FF dominates all of the estimators
in terms of lower RMSE and MAE, but GMM does better
than 2SLS in terms of RMSE but not for MAE. Moreover,
GMM dominates all of the split-sample estimators for lower
RMSE and MAE. In terms of asym-¢ coverage rates, GMM
performs best, 2SLS, FF, SSIV, and USSIV tend to under-
reject, and IW-GMM overrejects. The bootstrap-¢ critical
values suggest that there is a slight departure from sym-
metry for each of the estimators and that asymptotic crit-
ical values are too large. The boot-J rejection rates, how-
ever, reveal that there is a serious level distortion in the
overidentifying-restrictions test computed with Freedman’s
algorithm. Overall, Keane and Runkle’s FF estimator per-
forms best in the base case.

The most obvious trend arising in the stacked-moment
cases is the increasing bias in GMM as the number of mo-
ment conditions expands. The bias in the GMM ISE rises
(i.e., becomes more negative) from —.093 under 72 mo-
ments to —.175 with 212 moments. This finding, reenforc-
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Table 4. Bootstrap Comparisons of Orthogonal-Deviations Moment-Condition Estimators Where Observations Are Drawn With Probability 1/N

95% 95% boot-t Boot-J
asym-t critical rejection
Estimators Bias SE-A SE-B RMSE-A RMSE-B MAE coverage values rate: 5%
9 moments

2SLS .099 432 .440 .443 452 .259 .96 —1.85, 2.16 .30

GMM .303 .370 .366 478 475 317 .87 —1.68, 2.67 16

IW-GMM .068 444 451 450 457 .285 .90 —1.72,2.63 73

SSIvV 419 .753 647 .862 77 494 .99 —1.61, 1.69 12

UssIiv 312 5.992 3.793 5.999 3.806 1.079 97 —1.05, 2.11 —
72 moments

2SLS .280 165 219 .325 .356 - .270 62 —.80, 4.40 1.00

GMM .011 .096 113 .097 114 .080 .88 —2.36, 2.62 1.00

IW-GMM 124 .069 .264 142 292 160 .45 —8.95, 115 1.00

SSIiv .058 292 .168 .298 178 130 .99 —1.78, 1.39 42

Ussiv .355 31.512 12.082 31512 12.087 3.825 1.00 —-1.17,1.28 —
162 moments

2SLS 112 41 .209 .180 .238 160 77 —2.24, 7.36 1.00

GMM —.141 .053 .074 150 159 140 27 —-521, .12 1.00

IW-GMM .042 .031 248 .052 252 184 .20 -17.3,17.3 1.00

SSIv —-.252 222 134 .336 286 255 .83 -3.11, .07 .85

ussiv —1.458 83.064 10.147 83.077 10.252 1.220 91 —2.23,2.32 —
212 moments

2SLS .087 123 175 151 196 121 .84 —2.49, 7.62 1.00

GMM —.154 .041 .056 .159 164 150 .07 —6.62, —1.21 1.00

IW-GMM .009 .019 .251 .021 .251 155 13 —-23.7, 40.5 1.00

SSIvV —.239 .186 .101 302 .259 243 71 —2.81, —.01 90

ussiv —.039 17.758 6.229 17.759 6.230 1.274 .98 —1.49, 2.32 —

NOTE: See note to Table 3.

ing the results of Table 1, extends Tauchen’s (1986) and
Altonji and Segal’s (1994) finding of bias in GMM in small
samples to the large-sample case of panel data. The 2SLS
and FF estimators are not biased toward OLS as in the base
case, while IW-GMM has negligible bias in each of the
stacked-moment simulations. Consistent with the results of
Table 1 is the bias toward O in SSIV and USSIV as the
number of moment conditions increases. The USSIV esti-
mator does not succeed in its primary function to “inflate”
the SSIV estimates.

In terms of statistical inference, there appears to be lit-
tle difference between the bootstrap standard error and the
average asymptotic standard error for the FF and GMM es-
timators. On the contrary, the standard errors do diverge for
the other estimators, especially IW-GMM and USSIV. This
suggests that the small IW-GMM standard errors in Table
1 may understate the true sampling variability in the esti-
mator, making the bootstrap useful for correctly estimating
IW-GMM standard errors. Examining the 95% asym-¢ cov-
erage rates indicates that all of the estimators except USSIV
tend to overreject the event that the pseudotrue ISE lies in
the confidence region, with the overrejection being partic-
ularly acute for both GMM and IW-GMM. In GMM, the
asymptotic confidence region is distorted because of the
bias in the parameter estimates toward O, coupled with a
tight standard error. IW-GMM, on the other hand, has little
bias in the estimated ISE’s relative to GMM, but because the
asymptotic standard errors are estimated tightly, the confi-
dence interval is short, excluding the pseudotrue ISE too

frequently. Moreover, inspecting the boot-¢ critical values
reveals that GMM does not even include O in the critical re-
gion in the 162- and 212-moment cases. This suggests that
the bootstrap-t confidence interval is useful for GMM and
IW-GMM to capture the skewness in the underlying distri-
bution. The FF estimator continues to outperform 2SLS in
coverage rates; meanwhile, given the bias in the estimated
ISE, the SSIV and USSIV estimators give relatively good
coverage.

Comparing the omnibus measures of estimator perfor-
mance (RMSE and MAE) for the stacked-moment bootstrap
simulations reveals that FF dominates 2SLS in all cases and
both FF and 2SLS always dominate GMM except with 72
moments. Highlighting the problems noted by Brown and
Newey (1995) and Hall and Horowitz (in press), however,
the overidentifying-restrictions test is distorted severely, re-
sulting in 100% rejection rates when the nominal rejection
rate is 5%. It must be stressed that, as established by Hahn
(in press), overrejection of the overidentifying. restrictions
does not invalidate the other bias/efficiency results in Ta-
bles 3 and 4—the estimators and overidentifying restric-
tions are separate.

3.1.2 Results From Brown and Newey Algorithm. Ta-
bles 5 and 6 contain the bootstrap results for the first-
difference and orthogonal-deviations transformations using
Brown and Newey’s (1995) algorithm. The USSIV esti-
mator is not presented because the motivation for Brown
and Newey’s method is to get a correct overidentifying-
restrictions test, which by definition does not exist for the
USSIV. Compared to Table 3, the most striking result in



Ziliak: Efficient Estimation With Panel Data 429
Table 5. Bootstrap Comparisons of First-Difference Moment-Condition Estimators Where Observations Are Drawn With Probability p;
95% 95% boot-t Boot-J
asym-t critical rejection
Estimators Bias SE-A SE-B RMSE-A RMSE-B MAE coverage values rate: 5%
9 moments
2SLS —.045 .383 .306 .385 .309 197 .99 —1.86, 1.09 .03
GMM —.034 .316 .268 317 .270 161 .96 —2.07, 1.42 .00
FF —.034 316 .323 316 .325 210 .95 —2.06, 2.03 12
IW-GMM —.041 .251 .264 .254 .267 .143 .96 -1.99, 217 .03
SSIiv —.043 .460 .351 .462 .353 220 97 —2.35, .99 .00
72 moments
2SLS —.086 117 123 145 .150 121 .84 —2.96, 1.61 .45
GMM —-.120 .074 .093 141 151 130 .57 —3.65, 1.08 31
FF -.115 101 105 153 156 118 .73 —3.83, .84 .58
IW-GMM —.141 .034 .188 145 .235 116 .24 —22.4,2.95 .96
SSiv —.081 .078 .082 112 115 .088 .81 -3.37,1.12 .00
162 moments
25LS —.099 . .061 .082 116 128 .099 .58 —4.99, .84 45
GMM —.108 .039 .049 115 119 11 .25 —5.565, —.4 71
FF —-.103 .051 .061 115 120 11 .43 —-4.91, .50 .84
IW-GMM —_ — -— —_ — — — — —
SSiv -.127 .056 .054 .138 138 120 .33 —4.79, .29 .00
212 moments
2SLS —.134 .051 .068 143 .150 142 .30 —5.39, .36 .93
GMM —-.131 .031 .040 135 137 136 .03 —6.6, —1.83 74
FF -.125 .045 .049 133 134 129 .23 —5.45, —.16 .96
IW-GMM — — —_ —_ — — — —_— —
SSIvV —.144 .046 .035 152 149 144 .08 —5.35, —1.33 .03

NOTE: See note to Table 3.

the base case of 9 moments is the dramatic improvement
in boot-J rejection rates. This is exemplified by 2SLS in
which the boot-J rejection rate falls from .29 to .03. The
test still overrejects with the FF estimator but 70% fewer
times than under the Freedman method. In addition, the

Brown and Newey algorithm improves on the efficiency
of the bootstrap estimates, especially for 2SLS, IW-GMM,
and SSIV. In terms of bias, FF and GMM are identical, but
GMM dominates 2SLS and FF in terms of lower MAE and
RMSE-B. IW-GMM, however, performs best overall in the

Table 6. Bootstrap Comparisons of Orthogonal-Deviations Moment-Condition Estimators Where Observations Are Drawn With Probability p;

95% 95% boot-t Boot-J
asym-t critical rejection
Estimators Bias SE-A SE-B RMSE-A RMSE-B MAE coverage values rate: 5%
9 moments
28LS -.009 .396 454 .396 .454 319 .92 -2.11, 2.21 10
GMM —.044 .341 .338 .344 .341 .240 .96 —-2.27, 1.68 .02
IW-GMM —.081 291 .390 .302 .399 .230 .86 —2.74, 2.45 .03
SSIvV .011 .438 424 .438 425 .254 .98 —1.94,1.25 .00
72 moments
2SLS -.101 .096 112 .140 151 109 .76 —3.74, 1.46 32
GMM —.108 .071 .072 129 .130 .109 .62 —-3.72, .38 .20
IW-GMM —.090 .032 .138 .095 .138 .089 .33 —9.86, 3.71 77
SSIvV -.119 .098 101 .155 .156 142 .56 —4.16, 1.33 .03
162 moments
2SLS —.130 .053 .068 140 147 126 41 -5.82, —.11 .32
GMM —-.122 .037 .042 127 129 119 13 —6.01, —.99 75
IW-GMM — - — — —_ — — —_ —
SSIvV —.142 .046 .041 149 147 .140 12 —6.75, —.67 .00
) 212 moments
2SLS —-.138 .049 .058 147 149 136 .30 ~5.52, -.37 .94
GMM —.136 .030 .037 .140 A41 139 .05 ~7.15, —1.56 .85
IW-GMM — — — — — — — — —
SSIvV —.167 .048 .029 174 170 A7 .04 —6.38, —1.86 .03

NOTE: See note to Table 3.
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base case in terms of lower RMSE and MAE. Because of
the gains in efficiency and in levels of the boot-J test, the
Brown and Newey method seems to be preferable to the
Freedman method with few moments. '

On the other hand, problems arise with the Brown and
Newey algorithm, especially in the many-moment models.
First, some of the bootstrap probabilities (p;), although
summing to one overall, are negative. This problem in-
creased with the number of moment conditions, ranging
from a low of .5% of the observations with 9 moments
in 2SLS and GMM to over 40% with IW-GMM with 212
moments. I considered several methods to deal with this,
and the method I chose was to redistribute a fraction of the
negative probabilities to each observation and then assign a
small positive probability (1/100th of the smallest positive
probability) to those observations with negative probabil-
ities, making sure the probabilities sum to 1. The results
are not sensitive to the method used. Second, because so
much weight (i.e., a “high” probability) is given to a sub-
set of the observations for the IW-GMM estimators with
162 and 212 moments, the estimators are singular. Recall
that in sampling with replacement an observation can be
drawn more than once, which can occur with greater prob-
ability under the Brown and Newey algorithm. This singu-
larity problem persisted with every bootstrap sample over
a four-day period and with different random sample splits
of the original data as well. Consequently, I am unable to
report on the IW-GMM estimator for these cases. Brown
and Newey also reported difficulties due to a singularity
problem in their empirical application.

With the exception of SSIV, the boot-J test overrejects in
the stacked-moment cases just as in Tables 3 and 4. The dis-
tortion in levels, although less than the Freedman method,
becomes more severe as additional moments are appended
to the instrument set. It is important to note that both Hall
and Horowitz, with their Monte Carlo, and Brown and
Newey, with their empirical application, found that level
distortions persist in the test even after recentering the dis-
tribution. In terms of bias, the estimators do not distinguish
themselves as in the Freedman method, and each tends to
center on the OLS estimate. However, 2SLS and FF con-
tinue to dominate GMM in terms of lower bias. Moreover,
asym-t coverage is worse for each estimator, suggesting that
boot-t critical values may improve on coverage over first-
order asymptotics. The central conclusion from the previous
bootstrap results remains the same though; namely, in com-
paring the estimators across all criteria, the FF estimator
continues to be preferred in this application.

4. SUMMARY AND CONCLUSIONS

In this article I compared several IV estimators for panel-
data models with predetermined instruments. The empirical
results from the life-cycle labor-supply model, in conjunc-
tion with results from two separate bootstrap Monte Carlo
experiments, are summarized as follows. First, and most
important, the GMM estimator is biased downward relative
to the 2SLS and FF estimators as the number of moment
conditions approaches the optimal number of moments be-
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cause of a correlation between the estimated weight matrix
and the sample moments. This leads to poor coverage rates
for confidence intervals based on asymptotic critical val-
ues but provides a clear role for the bootstrap-¢ confidence
interval as a basis of inference under GMM. GMM per-
forms reasonably well with suboptimal instruments but is
not recommended for panel-data applications when all of
the moments are exploited for estimation.

Second, the IW-GMM estimator is generally successful
at eliminating the bias in GMM parameter estimates us-
ing Freedman’s bootstrap algorithm; however, the standard
errors from asymptotic theory seem to understate the true
sampling variation and the overidentifying-restrictions test
is biased toward rejection, possibly due to the high ratio of
moments to cross-section sample size. Further research on
both the asymptotic and small-sample properties of this es-
timator is needed. In the meantime, the bootstrap is likely to
be useful in IW-GMM for the construction of both standard
errors and confidence intervals. Third, the USSIV estimator
tends to be highly unstable and inefficient, in contrast to the
SSIV estimator which works fairly well in models with few
overidentifying restrictions.

Fourth, caution is warranted when conducting inference
under the assumption of conditional homoscedasticity. On
several occasions, incorrectly assuming homoscedasticity
led to the rejection of the overidentifying restrictions and
to the conclusion of weakly correlated instruments. When
heteroscedasticity is present, one should use robust variants
of the test of overidentifying restrictions and the Wald test
for first-stage tests of correlation between instruments and
regressors. In addition, after adjusting for conditional het-
eroscedasticity, there is no obvious efficiency gain of using
orthogonal deviations rather than first-differences.

Fifth, further research is needed on improving methods of
bootstrapping estimators from overidentified models. The
levels distortion in the overidentifying-restrictions test per-
sisted in models with many moments, even after recenter-
ing the distribution using Brown and Newey’s (1995) algo-
rithm. Moreover, complications arose in the implementation
of their algorithm, notably negative probabilities and singu-
larity problems. Hence, if the model has numerous moment
restrictions and the focus is solely on the estimator and con-
sistent confidence intervals and not on the overidentifying-
restrictions test, then Freedman’s (1984) method of giving
equal weight to each observation is recommended.

Finally, although 2SLS is still a reliable method of es-
timation, the FF estimator performs best in terms of the
bias/efficiency trade-off. It offers more efficient estimation
than 2SLS but does not have the problem of excess bias
found in GMM parameter estimates. Consequently, the FF
estimator is attractive relative to the other estimators con-
sidered here.
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