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Abstract

We show that the relationship between aggregate investment and Tobin’s q

has become remarkably tight in recent years, contrasting with earlier eras. We

attribute this change to the growing empirical dispersion in Tobin’s q, which we

document in both in the cross-section and the time-series. To study the source

of this dispersion, we augment a standard investment model with learning.

Information acquisition endogenously amplifies volatility in the firm’s value

function. Perhaps counterintuitively, the investment-q regression works better

for research-intensive industries, a growing segment of the economy, despite

their lower level of tangible capital. We confirm the model’s predictions in the

data.
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1 Introduction

The q theory of investment predicts a strong relationship between corporations’

market values and their investment rates. Hayashi (1982) provides justification for

measuring Tobin’s marginal q with a valuation ratio, average q, so that a simple re-

gression of investment on q should have a strong fit. Researchers have found that

this regression in fact performs quite poorly. While the Hayashi model assumptions

may not exactly hold in the data, a stark disconnect between investment and valu-

ation is deeply puzzling to financial economists. A large literature investigates the

reasons why Tobin’s q does not work well in the data, pointing to the existence of

financial constraints, decreasing returns to scale, inefficient equity-market valuations,

and measurement problems, among other things.1

Curiously, even as this literature has continued to grow, the stylized fact has

changed. Using data from the NIPA tables combined with the Fed Flow of Funds,

we document that the aggregate investment-q regression has worked remarkably well

in recent years. The simple regression achieves an R2 of 70% during 2000–2015,

comparable to the empirical performances of the bond price q regression proposed in

Philippon (2009) and the total tangible and intangible asset q regression in Peters

and Taylor (2016). If one were to test the simple theory using data from recent years,

one would conclude that the q theory of investment is in fact an empirical success.

Yet this recent development only deepens the puzzle, as problems with q theory

highlighted by the literature seem to have worsened in recent years. For example,

Peters and Taylor (2016) focuses on the failure to measure intangible assets, which

have grown substantially in the aggregate, and Philippon (2009) focuses on excess

volatility in equity market valuations. We show that, counterintuitively, it is precisely

this higher volatility in valuations, especially in intangibles-intensive industries, that

has revived the empirical performance of the classic regression. To explain the puzzle,

we develop a learning-based model of corporate investment. The model endogenously

produces more variation in marginal q. Intuitively, the investment-q regression works

better when there is more endogenous variation in the regressor q. This provides a

simple, yet previously unexplored, explanation behind the poor fit of the regression.

The culprit is the historically low variation in Tobin’s q relative to residual factors

1 For examples, see Fazzari, Hubbard, and Petersen (1988), Kaplan and Zingales (1997), Erickson
and Whited (2000), Gomes (2001), Cooper and Ejarque (2003) Philippon (2009), and Peters and
Taylor (2016), among many others.
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affecting investment.

To motivate the intuition empirically, we establish several stylized facts. First,

the volatility of aggregate q in the data is higher during precisely the years when the

aggregate investment-q regression performs better. Second, the between- and within-

firm variation of Tobin’s q in Compustat have both risen steeply since the late 1990s.

Third, the within-firm variation in Tobin’s q varies by orders of magnitude over the

time series, reflecting a changing composition of firms in Compustat. Finally, the

panel version of the investment-q regression also fits much better when Tobin’s q is

more volatile. These stylized facts support our intuition: the empirical performance

of the theory hinges critically on the amount of endogenous variation that one finds

in Tobin’s q.

Turning to the model, we study a standard q-theoretic investment framework,

most closely resembling the model of Abel (2017). Our main innovation is to em-

bed learning about uncertain cash flows. We allow the firm to acquire, at a cost,

informative signals about the time-varying cash flow mean. These features provide

a theoretical foundation for the stochastic variation in marginal q, which is typically

considered exogenous in prior papers. We show that learning endogenously ampli-

fies the volatility of marginal q, thereby also improving the fit of the investment-q

regression.

The empirical implication is that firms investing more in learning—in the form

of research—should feature a tighter fit between investment and Tobin’s q. At first

glance, this prediction seems counterintuitive because research creates an intangible

asset, and therefore a measurement error when accounting only for tangible capital

in Tobin’s q as discussed in Peters and Taylor (2016). Our model abstracts from this

measurement error, and our empirical findings point to a large offsetting effect.

In the cross-section of firms in Compustat, industries featuring greater investment

in research and development, higher rates of patenting, and greater intangibility fea-

ture noticeably higher R2 values compared to the average industry in the simple

investment-q panel regression. Although this stylized fact is documented in Peters

and Taylor (2016) Section 5.2, it is earmarked as a puzzle. Our model provides an

explanation, by predicting that research-intensive firms exhibit greater volatility in

Tobin’s q. We confirm that the better fit in high-tech industries was present even

before the aggregate regression fit began to improve, so it is not driven simply by

the fact that these firms are more common later in the sample. As high-tech firms
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have become a larger segment of the economy, their greater endogenous volatility in

Tobin’s q has caused the aggregate regression to improve.

We investigate other predictions of the learning model. The model predicts that

the investment-q regression works better in settings where Tobin’s q is less correlated

with cash flow. With learning, q becomes less responsive to cash flow because the

firm chooses to pay more attention to other signals. The learning mechanism works in

the opposite direction as misspecification issues, which have been the focus in much

of the prior research. Consider a misspecified regression by omitting cash flow when

an alternative theory (e.g., based on financial constraints) would predict that cash

flow is an important variable. With such an omitted variable bias, the investment-q

regression should work better in settings where Tobin’s q is more, not less, correlated

with cash flow, as the bias shrinks when q and cash flow are more highly correlated.

We test the relative importance of the learning mechanism against potential mis-

specification. To implement this test, we sort industries into quartiles based on their

estimated correlations of Tobin’s q with cash flow in Compustat data, and compare

across these quartiles the R2 from the investment-q regression. The pattern strongly

supports the learning mechanism. The lowest quartile of correlation between q and

cash flow features an R2 of 18%, compared to 10% for the highest quartile. While this

does not indicate that there is no misspecification in our model, it does suggest that

the empirical effects of this misspecification are outweighed by the learning mecha-

nism. Intuitively, when q is more volatile, it is highly correlated with investment but

not with cash flow.

In another prediction of the model, we investigate the effect of decreasing inter-

est rates over time on the empirical performance of q theory. In a low-interest-rate

environment, firm valuations become more volatile relative to the model’s residuals,

suggesting a better empirical performance for the investment-q regression. The ag-

gregate data support this prediction. The high-yield era of 1975-1995 coincides with

the worst empirical performance of the aggregate investment-q regression.

The most closely related empirical paper to ours is Peters and Taylor (2016),

who augment the simple investment-q regression by adjusting for intangible capital.

Another related empirical paper is Gutiérrez and Philippon (2016), who highlight that

aggregate investment has trended downward while aggregate Tobin’s q has trended

upward, a divergence they attribute to weakened competition and governance in the

US. Our analysis is mostly silent on the levels of investment and q, and focuses

3



instead on their correlations, which have improved in recent years. Finally, our paper

builds on a long theoretical literature investigating the q theory of investment. The

most closely related theory paper to ours is Abel (2017), from which we add a learning

mechanism. Related papers that analyze learning in corporate investment frameworks

are Alti (2003) and Moyen and Platikanov (2012).

The rest of the paper is organized as follows: Section 2 establishes the motivating

empirical facts related to the empirical dispersion in Tobin’s q and the fit of the

investment-q regression. Section 3 builds an investment model with learning that

endogenizes volatility in q and derives testable implications. Section 4 returns to the

data and investigates the implications of the model. Section 5 concludes.

2 Stylized empirical facts

2.1 Improved fit of the aggregate regression

We first document that the aggregate investment-q regression has performed much

better in recent years than in the past. Figure 1 plots and compares aggregate

investment and lagged aggregate Tobin’s q from 1955 to 2015. To construct the

series, we use quarterly data from the Fed Flow of Funds and from NIPA tables,

following Hall (2001) and Philippon (2009). See the Appendix for details.

[Figure 1 here]

The figure is divided into 20-year intervals. At the bottom of each section is the

R2 value that would be obtained from the simple regression of the investment rate

on lagged q. If one had performed the aggregate investment-q regression using the

data available from 1955–1975, one would conclude that the theory has moderate

explanatory power, achieving an R2 value of 32%, though much is left unexplained.

In the second interval, 1975-1995, the performance of the regression deteriorated

dramatically, with an R2 of only 8%. This fact has been widely confirmed, e.g., see

Philippon (2009), Table III, top panel, second column. Recent papers often describe

the investment-q regression as an empirical failure, and attempt to “fix” it in various

ways, as discussed above.

In the third interval, 1995-2015, the investment-q regression has begun to work

much better. Over the last twenty years, the R2 of the basic regression has been nearly
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70%. Looking only at this interval, one would conclude that the simple regression

implementation of q theory is in fact a resounding success.

Figure 2 performs a similar analysis in differences. The blue and red series are

the year-over-year differences of the series from Figure 1. The R2 values from the

regression within each 20-year period are listed at the bottom of the figure, and they

yield largely the same conclusion as in Figure 1: The R2 of the investment-q regression

fell from 16% in 1955-1975 to less than 1% in 1975-1995, but then rose to over 48% in

1995-2015. (These values can be compared with Philippon (2009) Table III, bottom

panel, second column, where he finds an R2 of 10.2% from this regression, again using

data from 1953–2007.)

[Figure 2 here]

Also listed at the bottom of each period are the volatilities of the explanatory

variable in the regression, differenced Tobin’s q, within each sub-period. These fig-

ures provide motivating evidence for the core mechanism on which we focus in the

remaining analysis: The volatility of Tobin’s q was lowest during the 20-year period

in which the investment-q regression performed the worst, and the volatility was the

highest during the 20-year period in which the regression performed the best. In the

next section, we turn to a closer examination of trends in the dispersion of q.

2.2 Increased dispersion in Tobin’s q

Under the null hypothesis that the model is true, the investment-q regression should

yield a higher R2 when there is more empirical dispersion in the key explanatory

variable, Tobin’s q. One possible explanation for the improved fit of the aggregate

regression is that the theory has always been “true,” but that Tobin’s q has become

more volatile relative to the model’s residuals. In this section, we confirm that this

conjecture holds in the data. We decompose the volatility of investment and Tobin’s q

along two dimensions: first between-firm, and then within-firm. These two dimensions

are summarized in Figures 3 and 4, respectively.

In Figure 3 we plot, for each year, the cross-sectional standard deviation of in-

vestment and Tobin’s q in Compustat, then we smooth it by simple averaging over a

rolling five-year lag in order to focus on trends. Both of the cross-sectional dispersion

measures have trended upward over time, with investment dispersion reaching about

twice its 1960 level and q dispersion reaching about four times its 1960 level.
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[Figure 3 here]

In Figure 4, we investigate how Compustat firms have changed over time by

examining the within-firm volatility. This dimension is more relevant to both the

standard panel regressions (which include a firm fixed effect), and also to the aggregate

regressions (which sum across firms and thus does not account for the cross-sectional

dispersion).

[Figure 4 here]

To create this figure, we proceed in two steps. First, we calculate for each Compu-

stat firm the within-firm volatilities of its investment and Tobin’s q during its entire

lifetime in Compustat. This creates measures of investment and valuation volatility

that are fixed at the firm level. Next, for each year, we average these fixed volatility

numbers across all firms that are present in Compustat that year. Figure 4 reveals

that within-firm volatilities of investment and Tobin’s q have reached about two and

three times their 1960 values, respectively. The increase in Tobin’s q volatility (red

line) is especially noticeable in the late 1990s and early 2000s. The resulting series

thus show that the composition of Compustat has shifted towards firms that exhibit

higher volatilities on both dimensions.

2.3 Better performance for firms with more volatile q

Motivated by the Compustat evidence above, which shows that firms exhibit greater

volatility of q in recent years, we next show that the investment-q regression works

better for these firms.

The first point to make is that the within-firm volatility of Tobin’s q varies by

orders of magnitude across firms. We sort Compustat firms into four bins of within-

firm q volatility, and find that the average volatility in the lowest bin is 0.26, while in

the highest bin it is 11.29.2 Under the q theory of investment, the greater variation

in q in the latter settings will be able to trace out a much tighter connection between

valuation and investment. Intuitively, there is more opportunity for the investment-q

regression to work in those settings.

2 Related, Erickson and Whited (2000) observe that Tobin’s q is highly skewed in the data, which
intuitively aids the identification of their strategy based on higher-order moments.
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Indeed, we find that the high-volatility firms are where the regression works the

best. To show this, we run standard panel regressions of investment on lagged Tobin’s

q. The specification is

Ii,t+1

Kit

= αi + β
Vit
Kit

+ εit, (1)

where i indexes firms, t indexes years, I is capital expenditures, K is gross property,

plant, and equipment, and V is defined as the market value of equity plus book value

of debt minus current assets. All of these definitions follow Peters and Taylor (2016).

Results are qualitatively unchanged if we do not subtract out current assets.

Table 1 performs this regression separately across the four bins of within-firm

volatility in Tobin’s q, with bin 1 as the lowest volatility and bin 4 as the highest

volatility. The table confirms that the quality of the fit improves when Tobin’s q is

more volatile.

[Table 1 here]

Figure 5 illustrates visually the variation in the data that gives rise to these

results: It samples 100 observations randomly from each of the four bins, and plots

the investment rate against the value of Tobin’s q for each observation, along with

regression lines with slopes that correspond to the coefficients in Table 1. The left-

most bin shows no particular relationship between q and the investment rate, while

the right-most bin illustrates a fairly tight relationship. Note that investment is not

much more dispersed in the highest bin than the others; the important effect is that

q becomes more dispersed relative to the residuals of the regression.

[Figure 5 here]

Again, these results should not obtain if the q theory is severely misspecified, or if

the large volatility in q is meaningless for investment. Greater variation in q provides

the opportunity for the investment-q regression to work, but does not force it to

do so. Instead, our findings suggest that the information reflected in equity market

valuations is tightly connected to investment policies, and this relationship becomes

the clearest when valuations move the most.

For robustness, Table 2 repeats the analysis of Table 1, after winsorizing q at the

1st and 99th percentiles, as is standard in the literature. The average volatility of
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q in the highest-volatility bin falls to about 7 instead of 11, but the results of the

regression are intuitively the same as in the previous table.

[Table 2 here]

Unreported results show that the effect is even more dramatic when we winsorize

investment as well. Under this approach, the R2 of the fourth regression is over 20%.

However, inspecting Figure 5, one can see that winsorizing the outcome variable at

the same cutoffs across the whole sample has unpredictable effects on a comparison

of R2 values across bins of variation in the explanatory variable, and thus we do not

necessarily view this approach as our strongest evidence.

In sum, this section has demonstrated that the investment-q regression works

better in settings with more dispersion in Tobin’s q, both in the cross-section and in

the time series. In Section 3, we explain these facts with a learning model that shows

why the types of firms appearing in the data in recent years are likely to exhibit a

tighter relationship between their investments and their valuations.

3 Model

We develop a model of firm investment and learning. The model extends the setup

analyzed by Abel (2017) to account for cash flow uncertainty and learning about the

expected long-term growth in cash flows.

3.1 Setup

Consider a competitive firm with capital Kt at time t, which accumulates according

to

dKt = (It − δKt)dt, (2)

where It denotes the firm’s investment decision.

Similar to Erickson and Whited (2000), adjustments to the capital stock are linear

homogenous in I and K

ψ(It, Kt, νt) =
a

2

(
It
Kt

)2

Kt + νtIt, (3)
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where a is a positive constant so that the adjustment cost function is strictly convex.

The term νt represents a shock to the purchase price of capital. It follows a stochastic

process with zero mean

dνt = −κνtdt+ σνdW
ν
t . (4)

While the firm knows the current value of νt, the econometrician does not. For the

econometrician, νt is noise.

The firm produces cash flows according to a technology with constant returns to

scale:

Π(Kt, θt) = θtKt, (5)

where we use the output price as numéraire. Without loss of generality, we abstract

from describing the flexible labor decision.3

The cash flow per unit of capital θt follows a mean reverting process:

dθt = λ(µt − θt)dt+ σθdW
θ
t . (6)

While the instantaneous cash flow θt is observable, its long-term mean, µt, is not.

The firm forms expectations over its future stream of cash flows, but cannot perfectly

infer the process driving cash flows from past realizations because the long-term mean

µt evolves stochastically as described below.

3.2 Learning

The long-term mean around which θt evolves, µt, is not observable. It is assumed to

follow a mean-reverting process

dµt = η(µ̄− µt)dt+ σµdW
µ
t . (7)

For simplicity of exposition, we fix µ̄ = µ0. In the special case without volatility

3We can equivalently write the firm’s problem to include a labor decision. In this case, the
firm produces according to a Cobb-Douglas production function AtL

α
t K

1−α
t , where 0 < α < 1 and

At > 0. It pays a constant wage rate w per unit of labor, set to 1 for simplicity. The instantaneous

cash flow of the firm is maxLt
[
AtL

α
t K

1−α
t − Lt

]
= α

α
1−αA

1
1−α
t︸ ︷︷ ︸

≡θt

Kt ≡ Π(Kt, θt).
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σµ = 0, the long-term mean would be observable. The firm could choose how much

to invest at each point in time knowing all the necessary information. However, as

soon as there is some volatility σµ > 0, the firm will need to continuously update its

beliefs about µ.

The firm learns about the long-term mean from two sources. The first source is

free. The firm uses information from past cash flow realizations in order to infer the

long term mean µt in the process (6). The second source is costly. The firm may

purchase a signal st that is informative about changes in the long-term mean dW µ
t :

dst = dW µ
t +

1√
Φ
dW s

t , (8)

All Brownian motions (W ν
t , W θ

t , W µ
t , and W s

t ) are independent. The parameter

Φ ≥ 0 dictates the informativeness of the signal. For now, one may consider Φ as

exogenously given, and subsection 3.5 below discusses how the signal informativeness

Φ is optimally chosen ex ante at a cost by the firm.

The following proposition and its corollary follow from filtering theory (Liptser

and Shiryayev, 1977), with the proof provided in Appendix C.1.

Proposition 1 (Learning) The filtered variable µ̂t evolves according to:

dµ̂t = η(µ̄− µ̂t)dt+
σθ
λ

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
dŴ θ

t + σµ

√
Φ

1 + Φ
dŴ s

t , (9)

where dŴ θ
t ≡ dW θ

t + λ
σθ

(µt− µ̂t)dt represents the “surprise” component of the change

in cash flows per unit of capital and dŴ s
t ≡

√
Φ

1+Φ
dst is a scaled version of the signal

(8), such that Ŵ s
t is a standard Brownian motion.

The standard Brownian motion dŴ θ
t arises as follows. The firm expects a change

in cash-flows per unit of capital of λ(µ̂t − θt)dt, but instead observes the realization

dθt. The difference, dθt − λ(µ̂t − θt)dt, represents the unexpected change, i.e., the

“surprise.” Dividing this difference by σθ yields the standard Brownian motion dŴ θ
t .

This Brownian motion is distinct from the true cash-flow shock dW θ
t which is unob-

servable by the firm, because it incorporates firm’s expectations of future cash-flow

growth (see Appendix C.1).
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Corollary 1.1 The conditional variance of the filter µ̂,

Vart[µ̂t] = σ2
µ −

2ησ2
θ

λ2

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
. (10)

is strictly increasing in both σµ and Φ.

According to Corollary 1.1, the conditional variance of the filter is lower than the

conditional variance of the unobserved process (which equals σ2
µ). With learning, the

filtered long-term mean µ̂t is a projection of µt on the observation filtration of the

firm and thus it remains a conservative estimate of µt. As such, learning dampens

the fluctuations of the filter µ̂t relative to the truth µt.

For the rest of the paper, we refer to dŴ θ
t as “cash-flow shocks” and to dŴ s

t as

“information shocks.” Two key results arise from Proposition 1 and its Corollary,

reflecting the two sources of information from which firms learn. First, learning

from cash flow realizations induces a positive correlation between the filter µ̂t and

cash-flows θt, through cash-flow shocks dŴ θ
t . This extrapolative feature of learning

(Brennan, 1998) amplifies the impact of cash-flow shocks.

Second, learning from the signal st causes the firm’s estimate of the long-term cash

flow mean µ̂t to respond to information shocks dŴ s
t . This increases the conditional

volatility of µ̂t. We note that the learning that takes place does not change the

conditional volatility of the process (6), which remains constant at σθ for any level of

σµ. Learning, however, does change the volatility of the filter through the continuous

updating of the long-term cash flow mean µ̂t.

3.3 The investment decision

The firm’s objective is to maximize the expected discounted sum of future cash flows,

net of investment costs,

V (Kt, θt, µ̂t, νt) = max
I

Et
[∫ ∞

t

e−r(s−t) {θsKs − Is − ψ(Is, Ks, νs)} dt
]
, (11)

subject to Equations (2) and (3), where r is the interest rate.
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The Hamilton-Jacobi-Bellman equation associated with problem (11) is

rV = max
I
{θK − I − ψ(I,K, ν) +DV (K, θ, µ̂, ν)} , (12)

where D is the differential operator. This leads to the first order condition for invest-

ment,

0 = VK(K, θ, µ̂, ν)− 1− ψI(I,K, ν). (13)

In our model, as in Hayashi (1982), the shadow cost of capital, marginal q is equal to

average q = V
K

:

V (K, θ, µ̂, ν) = q(θ, µ̂, ν)K. (14)

Replacing the adjustment cost function (3) yields the following relationship be-

tween the rate of investment and q:

It
Kt

= −1

a
+

1

a
q(θt, µ̂t, νt)−

1

a
νt. (15)

Using equation (14) and solving for the optimal investment, we obtain the follow-

ing partial differential equation for q:

0 = θt +
(1 + νt)

2

2a
− 1 + a(r + δ) + νt

a
q +

1

2a
q2

+ λ(µ̂t − θt)qθ + η(µ̄− µ̂t)qµ̂ − κνtqν

+
σ2
θ

2
qθθ +

[
σ2
µ

2
− ησ2

θ

λ2

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)]
qµ̂µ̂ +

σ2
ν

2
qνν

+
σ2
θ

λ2

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
qθµ̂.

(16)

We solve this equation numerically by approximating q(θ, µ̂, ν) with Chebyshev

polynomials.4

4Since θ, µ̂, and ν are all mean-reverting, we define a grid that is centered on {µ̄, µ̄, 0}. The
algorithm yields a very accurate solution, with an approximation error of magnitude 10−23 obtained
with four polynomials in each dimension. For a similar approach, see Alti (2003).
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3.4 Learning and the relationship between investment and q

Without ν, the econometrician would observe a deterministic relationship between

investment and q in equation (15) and, counterfactually, this relationship would al-

ways have a R2 of one. The shock to the capital purchase price causes the R2 to be

below one:

R2 =
Var[q(θt, µ̂t, νt)]

(
1− Cov[q(θt,µ̂t,νt),νt]

Var[q(θt,µ̂t,νt)]

)2

Var[q(θt, µ̂t, νt)] + Var[νt]− 2 Cov[q(θt, µ̂t, νt), νt]
. (17)

Equation (17) has two important implications. First, the econometrician obtains

a R2 lower than one. Second, if the covariance between q and ν is negligible, the R2

coefficient increases with the variance of q.5 Notice also that a stronger regression

coefficient for q in Equation (15) does not mechanically improve the R2, since the

parameter a simplifies away from (17).

The firm’s learning affects the econometrician’s coefficient of determination. This

can be seen from an application of Itô’s lemma on q(θt, µ̂t, νt):

dq = ξtdt+

[
qθσθ + qµ̂

σθ
λ

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)]
dŴ θ

t + qµ̂σµ

√
Φ

1 + Φ
dŴ s

t ,

(18)

where the drift ξt is a function whose explicit form is not necessary for the argu-

ments made here. When the firm learns about the unobservable productivity growth

µt, q becomes more sensitive to cash-flow shocks dŴ θ
t (through the second term in

square brackets above), but also to information shocks dŴ s
t (through the last term

above). Both these effects increase the volatility of q(θt, µ̂t, νt) and, according to

Equation (17), the R2 of the q regression.

We illustrate by means of simulations the impact of learning on econometrician’s

relationship between investment and q. To this aim, we implement a discretization

of continuous-time processes at quarterly frequency (see Appendix C.2). We then

solve for the partial differential equation (16) for each simulated point {θt, µ̂t, νt}.
5In our numerical calibration, we ensure that the covariance between qt and νt is virtually zero (in

other words, qt does not depend on νt). This occurs for large values of κ, i.e., when the persistence
of νt is close to zero. When the persistence of νt is non-negligible, it creates temporal dependence
through which qt depends on νt. Even in this case, the covariance term in (17) is of small magnitude,
and does not impact the intuition discussed here. See also Erickson and Whited (2000, page 1036).
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The resulting value for qt can then be replaced in Equation (15), yielding the invest-

ment to capital ratio It/Kt. This completes the dataset necessary for implementing

investment-q regressions.

Figure 6 shows results from one simulation of 100 years of quarterly data. The

horizontal axis in each panel is the marginal q. The vertical axis represents the

optimal investment to capital ratio It/Kt. The calibration used is provided in the

caption of the plot.

[Figure 6 here]

The left panel corresponds to the case of an unobservable µ without learning, that

is, the firm sets µt = µ̄,∀t. In the middle panel, the firm learns about µt, but only

using the observable process for θt, i.e., Φ = 0. In the right panel, the firm also

learns through the signal (8), with Φ = 100. Changes in µt are not yet perfectly

observed, but with Φ = 100 the signal (8) is much more informative relative to the

cash-flow signal (6). The three panels show that learning improves the fit of the

regression. As elaborated above, this occurs through an increase in the volatility of

the regressor q. The R2 coefficients typically obtained with this particular calibration

are of magnitudes of about 10% for the left panel, 40% for the middle panel, and 55%

for the right panel.

3.5 Endogenous learning

In this section, we endogenize the information acquisition problem. Specifically, the

firm can purchase a more informative signal (higher Φ) and learn more about µt,

but the more informative signal is costlier (Detemple and Kihlstrom, 1987). The

cost can be viewed as a research expense that firms incur. We consider here a static

information acquisition decision, in which the firm makes a choice of Φ at time 0 and

maintains this capacity of information acquisition over its lifetime.

The firm value immediately after the choice of informativeness Φ is defined as Ṽ (·),
and its associated cost, c(Φ), is a strictly increasing and convex function with c′(0) =

0. With Φ as a parameter in Ṽ (·), the problem is equivalent to the earlier model

without an endogenous Φ. The optimal Φ∗ is defined by the first-order condition

ṼΦ(·) = c′(Φ∗), and there is an interior solution if and only if ṼΦΦ(·)− c′′(Φ∗) < 0.
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Differentiating the first-order condition with respect to σµ and rearranging, we get

dΦ∗

dσµ
=

ṼΦσµ(·)
c′′(Φ∗)− ṼΦΦ(·)

. (19)

The denominator is positive if the problem has an interior solution. The optimal

amount of information acquisition, i.e., the optimal choice of Φ, increases in σµ if

and only if the cross-derivative ṼΦσµ(·) > 0. Intuitively, the optimal purchase of

information increases with the uncertainty about µt, if and only if an increase in σµ

increases the marginal benefit of purchasing information.

The problem reduces to evaluating Ṽ (·), which is just the value function from the

problem without an endogenous signal informativeness choice Φ, and then demon-

strating that ṼΦσµ(·) > 0. While there is no closed-form proof of this result, it can be

easily checked numerically. Figure 7 shows that this is indeed the case. The left panel

plots the function q(θt, µ̂t, νt) when Φ varies from 0 to 1 on the x-axis. Each line in

the plot corresponds to a different value of σµ: for the bottom line σµ is equal to 0.01,

whereas for the top line σµ is equal to 0.2. For these plots, the state variables are

fixed at θt = µ̂t = µ̄ and νt = 0, but qualitative results do not change with different

parameter values. The second derivative qΦσµ is approximated using finite difference.

The right panel of Figure 7 computes this derivative and shows that it is positive at

all times, suggesting that the optimal information acquisition level Φ∗ increases in σµ.

[Figure 7 here]

This implies that firms that operate in more uncertain environments (e.g., high-

tech firms) choose optimally to invest more in research. Considering then the result of

the previous section that more learning increases the R2 of the q regression, this gen-

erates a cross-sectional implication: the investment-q regression performs better for

firms that spend more on gathering information through research and development.

4 Empirical analysis of the model

The model in the previous section demonstrated that the investment-q regression

performs better in settings with greater learning, and that this effect will be even

stronger among firms that endogenously acquire more information. In this section,

we turn back to the data to assess other testable implications of the model.
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4.1 Better performance in high-tech industries

The most important result from the model was in Section 3.5, which showed that

the investment-q regression performs better among firms that endogenously choose

to expend greater resources on information acquisition.

Empirically, we interpret this decision as manifesting itself in spending on research.

A firm that invests heavily in R&D is by definition attempting to learn, more so than

a firm that only invests in physical capital to exploit existing technology. Therefore,

our proposed learning mechanism should cause the investment-q regression to work

better in industries featuring high investment in research. This insight provides both

testable cross-sectional implications of the model, and broader insights about the

future of the q theory of investment.

For an operational definition of a research-intensive industry, we select the follow-

ing seven SIC codes: 283 (drugs); 357 (office and computing equipment); 366 (com-

munications equipment); 367 (electronic components); 382 (scientific instruments);

384 (medical instruments); and 737 (software). We will refer to these as “research-

intensive” or “high-tech” industries for the remainder of this paper. Our industry

classification follows Brown, Fazzari, and Petersen (2009), who show that these seven

industries account for nearly all the growth in aggregate R&D during the 1990s. Our

interpretation of the model in terms of research expenditures makes this industry

classification a natural proxy for the mechanism we have in mind. However, many

other reasonable proxies are highly correlated with this classification: For example,

the same industries feature high rates of patenting and low tangibility.

Turning to the data, we build up our analysis of research-intensive industries in

several layers. First, we examine the empirical distribution of Tobin’s q for these

industries compared to the average Compustat firm, following our general intuition

that focuses on the empirical variation in q. Figure 8 displays the empirical density

of Tobin’s q for firm-years in the high-tech and other industries in the sample.

[Figure 8 here]

Figure 9 calculates the within-firm volatility of Tobin’s q (which is more relevant

for panel regressions), retains one observation per firm, and plots the empirical density

of this volatility, again separating out the high-tech and other industries.

[Figure 9 here]
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As predicted by the model, for firms that spend more on research, the empirical

distribution of Tobin’s q is much higher, more dispersed, and more skewed. Intuitively,

in these industries, the firm’s value at any point in time is much more sensitive to

the arrival of signals about future profitability.

On some level, it is not surprising that equity-market valuations of high-tech com-

panies are particularly volatile. Assigning a valuation to these companies is difficult,

and their gross PP&E (the denominator of Tobin’s q) is smaller. However, this in-

tuition suggests that the fluctuations in equity value are simply “noise” with respect

to the firm’s investment policy. In contrast, we now show that those fluctuations

are highly predictive of investment, which is the core implication of the q theory of

investment.

Tables 3 and 4 repeat the panel regressions of investment on lagged q with fixed

effects, as specified earlier in equation (1) and implemented in Tables 1 and 2. The

various columns separate out the high-tech from the other industries to demonstrate

how the performance of the regression differs across these subsamples.

[Tables 3 and 4 here]

Columns 1 and 2 of Table 3 show that the standard investment-q panel regression

fares much better among high-tech than other industries: The R2 value from the

regression more than doubles from 10.4% to 21.7% when we move from the non- to

the high-tech subsample. One may object that, since we already have shown that the

investment-q regression works better in recent years, this comparison simply captures

the increasing importance of high-tech firms towards the end of the sample. To check

this, in Columns 3 and 4 we restrict to the years before 2000. The same discrepancy

holds across the subsamples: The R2 of the panel regression is over 17% for the

high-tech industries, and only 8.3% for the other industries. We conclude that the

investment-q regression works better for high-tech than for other industries. In fact,

we argue that the growth of these industries may therefore explain the improved fit

of the aggregate regression.

Table 4 checks robustness to some alternative approaches. Column 1 shows that

firm fixed effects are not critical to the performance of the regression in high-tech

industries, as the (overall) R2 from the pooled regression is similar to the (within) R2

that was reported in Table 3. Column 2 shows that the fit of the regression improves

even more when we add time fixed effects, as is done in some other papers. Columns
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3 and 4 return to our main panel specification, with firm fixed effects and no time

fixed effects, and adds in annual R&D expenditures as an “investment” in intangible

assets. We find that the coefficient on lagged q increases greatly, especially in high-

tech industries where it rises from 0.0119 (in Column 2 of Table 3) to 0.0245 (in

Column 3 of Table 4). The R2 values from these regressions also increase somewhat

compared to the regressions ignoring R&D, but the primary conclusion is the same

as before: The regression works better in high-tech industries (R2 = 27%) than in

other industries (R2 = 12%).

The stylized fact that the investment-q regression works better in high-tech in-

dustries was already established in Peters and Taylor (2016) (see their Section 5.1).

They move beyond our industry-based classification and use several different proxies

for intangibility. They explore a few different explanations, but ultimately reject all

of them, and simply conclude as follows: “Why the classic q-theory fits the data better

in high-intangible settings is also an interesting open question.” Our model suggests

that this finding is not so puzzling.

In fact, the growth of high-tech industries is likely critical to understanding the

improved fit of the aggregate investment-q relationship in recent years, and by exten-

sion the future empirical performance of the q theory of investment. Figure 10 shows

that the firms in our high-tech industry classification represent a growing fraction of

firms, of book assets, and of market value in Compustat. Similarly, Peters and Taylor

(2016) show that their measure of intangible capital, which capitalizes past intangible

investments such as R&D and SG&A, has also increased in both Compustat and in

aggregate figures from the Fed Flow of Funds.

In conjunction with our cross-sectional findings, these trends suggest that the q

theory of investment may have been the right theory at the wrong time. While the

theory has traditionally not fared well for the capital-intensive firms that dominated

the economy when the theory was first developed, it turns out to be well-suited for

the new research-intensive economy that features wider swings in both valuation and

investment.

4.2 Better performance with low cash flow-q correlation

We next explore a subtler implication of the model. The model predicts that the

investment-q regression works better in settings where Tobin’s q is less correlated
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with cash flow. With learning, q becomes less responsive to cash flow because the

firm chooses to pay more attention to other signals.

The learning mechanism works in the opposite direction as misspecification issues,

which have been the focus in much of the prior research. Consider a misspecified

regression by omitting cash flow when an alternative theory (e.g., based on financial

constraints) would predict that cash flow is an important variable. With such an

omitted variable bias, the investment-q regression should work better in settings where

Tobin’s q is more, not less, correlated with cash flow, as the bias shrinks when q and

cash flow are more highly correlated.

We test the relative importance of the learning mechanism against potential mis-

specification. To implement this test, we sort industries into quartiles based on their

estimated correlations of Tobin’s q with cash flow in Compustat data, and compare

across these quartiles the R2 from the investment-q regression. Figure 11 illustrates

the results.

[Figure 11 here]

The pattern strongly supports the learning mechanism. The lowest quartile of

correlation between q and cash flow features an R2 of 18%, compared to 10% for

the highest quartile. While this does not indicate that there is no misspecification

in our model, it does suggest that the empirical effects of this misspecification are

outweighed by the learning mechanism. Intuitively, when q is more volatile, it is

highly correlated with investment but not with cash flow.

4.3 Better performance in low-interest-rate environments

Another natural implication of our model is that the performance of the investment-q

regression should be sensitive to the level of interest rates. Fluctuations in the interest

rate imply fluctuations in the firm’s value function, relative to any component of the

model residuals ν that does not scale with the interest rate. This increased volatility

should again cause the standard regression to perform better.

Indeed, Figures 1 and 2 demonstrated exactly this result in the data: The middle

era in the figure contained the highest nominal interest rates of the post-war era,

and this coincides with the era of worst performance of the aggregate investment-q

regression. In both the earlier and later eras, by constrast, interest rates were lower
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and the regression performed better. We take this stylized fact, which appears not

to have been noticed in prior literature, as suggestive evidence that the performance

of q theory can be understood by seeking out settings where Tobin’s q varies more.

However, note that nominal interest rates in the last third of the figure were

roughly the same as in the first third, yet the aggregate regression performs noticeably

better in the last third than in the first third. This signals that interest rates alone

cannot explain the time-series variation in the performance of the regression, leaving

room for our model’s mechanism based on variation in firms’ learning.

5 Conclusion

This paper is motivated by our empirical observation that the relationship between

aggregate investment and Tobin’s q has become remarkably tight in recent years.

This observation stands in contrast to a large literature showing that this regression

performed quite poorly in the past.

We attribute the improvement in the empirical performance of the classic regres-

sion to an increase in the empirical variation in Tobin’s q relative to residual factors

affecting investment. We rationalize this increase in variation with a learning-based

model of corporate investment. Better learning by firms endogenously produces more

variation in marginal q, improving the fit of the regression. Our learning mechanism

is relevant especially in intangible-intensive industries. Thus, the improved fit of the

investment-q relationship fits well with the observation that expenditures on research

and other intangible assets have grown substantially in the aggregate. Besides de-

livering the above empirical observation, our theoretical model has several testable

predictions. We test these predictions in the cross-section of firms in Compustat, and

find empirical support for our learning mechanism.

Our main conclusion is that even a simple version the q theory of investment can

describe the data quite well, when given sufficient variation in the key regression vari-

ables. Counterintuitively, that variation occurs in firms that probably look the least

like the classic capital-intensive firms for which the theory was initially developed. As

these firms become a growing segment of the economy, the future of the investment-q

relationship should look increasingly bright.
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Figure 1: Aggregate quarterly investment rate and lagged Tobin’s q. Both series are
constructed as in Hall (2001). Compare R2 values with Philippon (2009), Table III,
top panel.
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Figure 2: 4-quarter differences in investment and q. Both series are constructed as in
Hall (2001). Compare R2 values with Philippon (2009), Table III, bottom panel.
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rate (left axis) and Tobin’s q (right axis), across the firms in Compustat during that
year. Both series are calculated as in Peters and Taylor (2016), and are then smoothed
over a five-year lag.
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Figure 4: Within-firm dispersion in investment and Tobin’s q, 1960-2015. For each
firm in Compustat, we calculate the within-firm volatility of investment rate and
Tobin’s q during that firm’s entire lifetime in Compustat. We then average that firm-
level measure across all firms in Compustat for each year. The series are thus driven
entirely by changes in the composition of Compustat firms.
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Figure 6: Relationship between investment and q for three different firms (simulated
data). In the left panel, the firm does not learn about µ, which is fixed constant at µ̄.
In the middle panel, the firm learns about µ exclusively from the cash-flow process (6)
(i.e., Φ = 0). In the right panel, the firm learns about µ from the cash-flow process
(6) and from the signal (8) (i.e., Φ > 0). The parameters used for these simulations
are: a = 100, r = 10%, δ = 2%, λ = 1, σθ = 0.1, κ = 100, σν = 3, µ̄ = 0.2, η = 1,
σµ = 0.2. For the right panel, we fix Φ = 100.
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right panel uses the finite difference method to compute qΦσµ , which is positive in all
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Figure 8: Empirical distribution of Tobin’s q for firm-years in annual Compustat
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tech industries are defined as SIC codes 283, 357, 366, 367, 382, 384, and 737.
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Figure 10: Fraction of firms in Compustat each year that fall into our classification
of high-tech industries. The blue line is an equal-weighted average, while the red line
weights firms by their shareholders’ equity. High-tech industries are defined as SIC
codes 283, 357, 366, 367, 382, 384, and 737, following Brown et al. (2009).
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Figure 11: This figure plots within-R2 values from panel regressions of investment on
lagged Tobin’s q. The data are annual Compustat from 1956-2015. The regressions
are performed separately for quartiles of the industry-level correlation between q and
cash flow, where industry is measured by 3-digit SIC code. We drop industries for
which this correlation is estimated to be negative (about 20% of the sample), and
firm-years with missing values of q or cash flow. Cash flow is defined as operating
income before depreciation, scaled by gross PP&E. Cash flow, investment, and q are
all winsorized at the first and 99th percentiles.
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(1) (2) (3) (4)
Iy/Ky-1 Iy/Ky-1 Iy/Ky-1 Iy/Ky-1

qy-1 0.0801∗∗∗ 0.0638∗∗∗ 0.0375∗∗∗ 0.00474∗∗∗

(0.00447) (0.00242) (0.00157) (0.000533)
Sample Bin 1 Bin 2 Bin 3 Bin 4
Firm FE? Yes Yes Yes Yes
Obs. 37806 42365 43761 43723
R2 0.0317 0.0619 0.0721 0.122

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1: This table performs panel regressions of investment on lagged Tobin’s q,
using annual data from Compustat, after sorting firms into bins based on the within-
firm volatility of Tobin’s q (with bin 4 as the highest volatility). Investment rate
and Tobin’s q are both defined as in Peters and Taylor (2016), and the same data
filters are applied as in their analysis, except that the regression variables in this table
are not winsorized. Standard errors are clustered by firm, and the table reports the
within-firm R2 of the regression.

(1) (2) (3) (4)
Iy/Ky-1 Iy/Ky-1 Iy/Ky-1 Iy/Ky-1

qy-1 0.0792∗∗∗ 0.0634∗∗∗ 0.0388∗∗∗ 0.0172∗∗∗

(0.00454) (0.00250) (0.00154) (0.000562)
Sample Bin 1 Bin 2 Bin 3 Bin 4
Firm FE? Yes Yes Yes Yes
Obs. 37692 42359 43814 43790
R2 0.0291 0.0584 0.0795 0.146

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2: This table repeats the analysis of Table 1, after winsorizing Tobin’s q at the
1st and 99th percentiles.
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(1) (2) (3) (4)
Iy/Ky-1 Iy/Ky-1 Iy/Ky-1 Iy/Ky-1

qy-1 0.0172∗∗∗ 0.0119∗∗∗ 0.0207∗∗∗ 0.0161∗∗∗

(0.000524) (0.000297) (0.000855) (0.000696)
Sample Non-high-tech High-tech Non-high-tech, High-tech,

pre-2000 pre-2000
Firm FE? Yes Yes Yes Yes
Obs. 133860 37641 81645 16662
R2 0.104 0.217 0.0832 0.178

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: This table performs panel regressions of investment on lagged Tobin’s q using
annual data from Compustat. Investment rate and Tobin’s q are both defined as in
Peters and Taylor (2016) (see discussion in the main text), and the same data filters
are applied as in their analysis. “High-tech” refers to SIC codes 283, 357, 366, 367,
382, 384, and 737, following Brown et al. (2009). The data are annual Compustat
from 1956-2015. Columns 3 and 4 restrict to pre-2000 firm-years. Investment and
q are winsorized at the first and 99th percentiles. Standard errors are clustered by
firm, and the table reports the within-firm R2 of the regression.

(1) (2) (3) (4)
Iy/Ky-1 Iy/Ky-1 (I+R&D)y/Ky-1 (I+R&D)y/Ky-1

qy-1 0.00934∗∗∗ 0.0113∗∗∗ 0.0245∗∗∗ 0.0278∗∗∗

(0.000229) (0.000275) (0.000832) (0.000661)
Sample High-tech High-tech Non-high-tech High-tech
Firm FE? No Yes Yes Yes
Year FE? No Yes No No
Obs. 37641 37641 133860 37641
R2 0.212 0.302 0.121 0.271

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: The regressions are as in Table 3, except as noted in each column: Column
2 adds year fixed effects (as done in Peters and Taylor (2016)), and Column 1 drops
both firm and year fixed effects. In columns 3 and 4, R&D is added to capital
expenditures as a measure of intangible “investment.” Standard errors are clustered
by firm, and the table reports the within-firm R2 of the regression. (The year fixed
effects in Column 2 contribute to the high R2 value in that column.)
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B Data details

The data from Hall (2001) and Philippon (2009) are publicly available, but they end
in 1999 and 2007 respectively. For our analysis, it is critical to have the last few
years of data. Therefore, we reconstructed the series of aggregate investment and
Tobin’s q following the discussion in those papers. As demonstrated in the figures
and correlation matrices on the following page, our series are very close to the prior
papers but not quite the same:

• Most notably, the q series reported in Philippon (2009) is much higher than
the other two, reaching a maximum around 5. In contrast, the series from Hall
(2001) peaks around 3, while our reconstruction peaks around 2.

• Our q series does not perfectly track Hall (2001) either, but this is completely
explained by a restatement of the replacement-cost series in the Fed Flow of
Funds (the denominator of Tobin’s q) since his series were constructed.

• Hall (2001) does not perform the usual investment-q regression in his paper,
so we do not reconstruct his investment series. Our reconstruction of the in-
vestment series in Philippon (2009) is tightly correlated with his but does not
match perfectly, with the residual going in both directions. Further investiga-
tion should reveal whether this is due to a difference in the data analysis, or
rather due to a restatement of the series, as was the case with the replacement-
cost series above.

These discrepancies should not affect our linear regressions much, since all the series
are correlated at 94% or more.
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C Proofs

C.1 Proof of Proposition 1

The observable variables are the cash flow process (6) and the signal (8). The unob-
servable variable is µt. Write the dynamics of the observable variables θt and st:[

dθt
dst

]
=

([
−λθt

0

]
︸ ︷︷ ︸

A0

+

[
λ
0

]
︸︷︷︸
A1

µt

)
dt+

[
0
1

]
︸︷︷︸
B1

dW µ
t +

[
σδ 0
0 1√

Φ

]
︸ ︷︷ ︸

B2

[
dW θ

t

dW s
t

]
, (20)

and of the unobservable variable µt:

dµt = ( ηµ̄︸︷︷︸
a0

+ (−η)︸︷︷︸
a1

µt)dt+ σµ︸︷︷︸
b1

dW µ
t +

[
0 0

]︸ ︷︷ ︸
b2

[
dW θ

t

dW s
t

]
. (21)

We will apply the following standard theorem.

Theorem 1 (Liptser and Shiryayev, 1977) Consider an unobservable process ut and
an observable process st with dynamics given by

dut = [a0(t, st) + a1(t, st)ut] dt+ b1(t, st)dZ
u
t + b2(t, st)dZ

s
t (22)

dst = [A0(t, st) + A1(t, st)ut] dt+B1(t, st)dZ
u
t +B2(t, st)dZ

s
t . (23)

All the parameters can be functions of time and of the observable process. Liptser and
Shiryayev (1977) show that the filter evolves according to (we drop the dependence of
coefficients on t and st for notational convenience):

dût = (a0 + a1ût)dt+ [(b ◦B) + ζtA
>
1 ](B ◦B)−1[dst − (A0 + A1ût)dt] (24)

dζt
dt

= a1ζt + ζta
>
1 + (b ◦ b)− [(b ◦B) + ζtA

>
1 ](B ◦B)−1[(b ◦B) + ζtA

>
1 ]>, (25)

where ζt is the posterior variance (or the Bayesian uncertainty) about ut and

b ◦ b = b1b
>
1 + b2b

>
2 (26)

B ◦B = B1B
>
1 +B2B

>
2 (27)

b ◦B = b1B
>
1 + b2B

>
2 . (28)
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In our setup, we obtain

b ◦ b = σ2
µ (29)

B ◦B =

[
σ2
θ 0

0 Φ+1
Φ

]
(30)

b ◦B =
[
0 σµ

]
, (31)

and

[(b ◦B) + ζtA
>
1 ](B ◦B)−1 =

[
λζt
σ2
θ

σµΦ

1+Φ

]
. (32)

The Bayesian uncertainty ζt follows the deterministic process

dζt
dt

=
σ2
µ

1 + Φ
− 2ηζt −

λ2ζ2
t

σ2
θ

. (33)

We assume that enough time has passed by such that the Bayesian uncertainty has
reached a steady state. This is a common assumption in the literature on incomplete
information (e.g., Dumas, Kurshev, and Uppal, 2009), and it fits well in our model
with infinite horizon. The steady-state value solves dζt = 0. This is a quadratic
equation with two solutions. Only one of the solutions is positive:

ζ̄ =
σ2
θ

λ2

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
(34)

The steady-state uncertainty is a decreasing function of Φ and goes to zero as Φ→∞
(in this case, µt is perfectly observable).

Using (24) and (32) and replacing ζt = ζ̄, we can write

dµ̂t = η(µ̄− µ̂t)dt+
[
λ
σ2
θ
ζ̄ σµ

Φ
1+Φ

] [dθt − λ(µ̂t − θt)dt
dst

]
(35)

The (observable) process θ can be written in two ways:

dθt = λ(µt − θt)dt+ σθdW
θ
t (36)

dθt = λ(µ̂t − θt)dt+ σθdŴ
θ
t (37)

The first equation is written under the physical (true) probability measure. The

second equation is written under the filtration of the firm, and Ŵ θ
t is a standard

Brownian motion under this filtration (intuitively, the second equation shows how the
firm interprets the dynamics of the observable process θ). From these two equations,
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we obtain:

dθt − λ(µ̂t − θt)dt = σθdŴ
θ
t (38)

Furthermore, we can write the signal as

dst = dW µ
t +

1√
Φ
dW s

t =

√
Φ + 1

Φ
dŴ s

t , (39)

where Ŵ s
t is a standard Brownian motion independent of Ŵ θ

t . This leads to

dµ̂t = η(µ̄− µ̂t)dt+
[
λ
σθ
ζ̄ σµ

√
Φ

1+Φ

] [dŴ θ
t

dŴ s
t

]
, (40)

which, after replacement of (34), yields:

dµ̂t = η(µ̄− µ̂t)dt+
σθ
λ

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
dŴ θ

t + σµ

√
Φ

1 + Φ
dŴ s

t . (41)

Notice that from (36)-(37) we can write:

dŴ θ
t = dW θ

t +
λ

σθ
(µt − µ̂t)dt, (42)

and we also have from (39):

dŴ s
t =

√
Φ

1 + Φ
dst. (43)

We can therefore write Proposition 1.
From Proposition 1, the conditional variance of the filter µ̂t is

Vart[µ̂t] = σ2
µ −

2ησ2
θ

λ2

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
. (44)

We can then compute

∂ Vart[µ̂t]

∂σµ
= 2σµ

1− ησθ

(1 + Φ)
√
η2σ2

θ +
λ2σ2

µ

1+Φ

 > 0 (45)
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and

∂ Vart[µ̂t]

∂Φ
=

ησθσ
2
µ

(1 + Φ)2

√
η2σ2

θ +
λ2σ2

µ

1+Φ

> 0, (46)

which leads to Corollary 1.1.

C.2 Discretization used for simulations

The following processes are simulated under the filtration of the firm:

cash flow: dθt = λ(µ̂t − θt)dt+ σθdŴ
θ
t (47)

(scaled) signal: dŴ s
t (48)

filter: dµ̂t = η(µ̄− µ̂t)dt+ ΩdŴ θ
t + σµ

√
Φ

1 + Φ
dŴ s

t (49)

adj. costs shocks: dνt = −κνtdt+ σνdW
ν
t , (50)

where we define

Ω ≡ σθ
λ

(√
η2 +

1

1 + Φ

λ2σ2
µ

σ2
θ

− η

)
. (51)

Once we have simulated the four time-series above, we compute q(θt, µ̂t, νt) for each
simulated point. Then, we use the first order condition for investment to compute
the investment-capital ratio for each simulated point:

It
Kt

= 1
1

a
+

1

a
q(θt, µ̂t, νt)−

1

a
νt, (52)

which provides all the data necessary for the regressions. We implement the following
discretization of the continuous-time processes (47)-(50):

νt+∆ = νte
−κ∆ + σν

√
1− e−2κ∆

2κ
dW ν

t . (53)

µ̂t+∆ = µ̂te
−η∆ + µ̄

(
1− e−η∆

)
+

√
1− e−2η∆

2η

(
ΩdŴ θ

t + σµ

√
Φ

1 + Φ
dŴ s

t

)
. (54)

θt+∆ = θte
−λ∆ + µ̂t

(
1− e−λ∆

)
+ σθ

√
1− e−2λ∆

2λ
dŴ θ

t . (55)
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Figure 12: Plot of our series for aggregate Tobin’s q against those from Hall (2001)
and Philippon (2009).

(1)

Tobin’s Q Hall ’01 Philippon ’09
Tobin’s Q 1
Hall ’01 0.950∗∗∗ 1
Philippon ’09 0.943∗∗∗ 0.989∗∗∗ 1
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 5: Correlation matrix of our series for aggregate Tobin’s q against those from
Hall (2001) and Philippon (2009).
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Figure 13: Plot of our series for investment against the series from Philippon (2009).

(1)

Investment rate Philippon ’09
Investment rate 1
Philippon ’09 0.940∗∗∗ 1
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 6: Correlation matrix of our series for investment against the series from Philip-
pon (2009).
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