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Abstract

When arbitrage happens with limited capital, it can determine the cross-section of
risks of the arbitraged assets. This happens as arbitrage turns “alphas” into “betas”:
an asset that is initially more mispriced attracts more arbitrage capital and attains a
correspondingly large endogenous beta with respect to arbitrage capital shocks. This
mechanism helps explain the cross-section of betas of 40 equity “anomalies” in multi-
factor and intermediary-based asset pricing models. The presence of this alphas-into-
betas effect means that a naive cross-sectional asset pricing regression suffers from
endogeneity.
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1 Introduction

In a financial market with frictionless arbitrage, the role of arbitrageurs is limited to eliminating

mispricings. When arbitrage happens with limited capital, however, arbitrageurs can play an addi-

tional role of determining the cross-section of risks of the arbitraged assets. They do this by turning

“alphas” into “betas”: an initially more mispriced asset attracts more arbitrage capital and attains

a correspondingly large beta with respect to arbitrage capital shocks.1 The goal of this paper is to

document this risk-allocating role of arbitrage both theoretically in a model of capital-constrained

arbitrageurs and empirically in the cross-section of equity “anomalies.”

To fix ideas, consider assets “A” and “B” that are claims to some deterministic payoff of $10 in

present value. Suppose also that absent arbitrage capital, behavioral investors for whatever reason

drive their prices down to PA = $5 and PB = $8, creating “pre-arbitrage” alphas of 100% (A) and

25% (B). Now, if arbitrageurs enter with unlimited capital, they would immediately drive up both

PA and PB to $10, and no further price movement would happen. Hence, frictionless arbitrage

turns these assets with different pre-arbitrage alphas into effectively identical riskless assets.

If arbitrage capital faces shocks, however, the act of arbitrage itself makes A endogenously

riskier than B. To see this, suppose that in the middle of the arbitrage, the arbitrage capital faces

a negative shock and drops all the way to zero. In response, PA and PB would drop 50% ($10 to

$5) and 20% ($10 to $8) respectively, assuming that the force that caused the initial underpricing

stays. Hence, A suffers a worse return than B precisely when extra return is most valuable to the

arbitrageurs, making A riskier.2 That is, in equilibrium, the initially-more-mispriced assets rely

more heavily on the arbitrageurs’ price-correcting role, making them endogenously more sensitive

to the variation in arbitrage capital and hence riskier. In this way, arbitrage turns alphas into betas.

This intuition carries over to a simple model of capital-constrained arbitrageurs. In my three-

period model, a representative arbitrageur trades a continuum of assets but faces exogenous shocks

to her wealth and funding constraint, which generates variation in the capital that she can deploy.

1Andrew Lo first used the phrase “alpha is becoming beta” to mean a situation where, as in Shleifer and Vishny
(1997), quantitative trading strategies designed to have no systematic exposures become endogenously exposed to the
risk of “unwinding” by the quantitative hedge funds (e.g., Khandani and Lo, 2011). Instead, my “alphas into betas”
refers to a cross-sectional phenomenon.

2And this endogenous risk means that PA and PB would actually be lower than $10 even with sufficiently large
arbitrage capital, except in the period immediately before the deterministic payoff.
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The assets are known to realize their fundamental value eventually (at time 3) but may be un-

derpriced in the early (time 1) and intermediate (time 2) periods of arbitrage due to behavioral

investors. Importantly, the degree of underpricing in the absence of arbitrage capital—the “pre-

arbitrage” alpha—differs across the assets.

In this model, assets with high pre-arbitrage αs become assets with high endogenous “post-

arbitrage” βs with respect to arbitrage capital shocks (Proposition 1). A large pre-arbitrage α

means that a larger fraction of the asset is held by the arbitrageur since she plays a larger price-

correcting role in that asset in equilibrium. This, however, also means that this asset responds

more to the variation in the arbitrage capital at time 2, making the asset endogenously riskier for

the arbitrageur. What follows from this explanation is that the cross-section of average arbitrage

positions in the assets should also explain their post-arbitrage βs (Proposition 2).

Furthermore, this endogenous post-arbitrage β arises only when the arbitrageur is capital-

constrained (Proposition 3); in times when the arbitrageur has a “deep pocket,” the arbitrageur

does not generate endogenous βs in the anomalies. A naive asset pricing test that does not account

for this endogenous generation of βs can lead to a false discovery of a pricing factor (Proposi-

tion 4).

In light of these predictions, I study to what extent 40 equity anomaly portfolios’ beta exposures

to Fama-French (2015) (FF) five factors and Adrian, Etula, and Muir (2014) funding-liquidity fac-

tor are an outcome of arbitrage. The two papers find that anomalies have significant beta exposures

to their respective factors. However, since the anomalies have been actively traded by arbitrageurs

like hedge funds since the early 1990s, it seems possible that their betas partly come from the

arbitrage capital having systematic exposures to those factors. My main approach is to study the

anomalies’ βs before and after 1993, the approximate year when arbitrage capital began enter-

ing into anomalies according to short interest data, and I supplement this with the cross-sectional

differences in the anomalies’ publication sample years.3

My tests suggest that the 40 anomalies’ different betas with respect to FF five factors and the

funding-liquidity factor are explained by the extent of arbitrage on their alphas. Among the FF five

3Chordia, Roll, and Subrahmanyam (2011) and Chordia, Subrahmanyam, and Tong (2014) are the first to suggest
that anomaly trading grew rapidly around 1993. McLean and Pontiff (2016) are the first to exploit the cross-sectional
differences in the publication sample years of anomalies.
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factors, a simple long-short arbitrage involves a natural exposure to RMW and CMA (“profitabil-

ity” and “investment” factors) but no significant exposure to MKT, SMB, and HML (“market,”

“size,” and “value” factors). Consistent with this observation, the anomalies with high pre-1993

FF five-factor alphas attain higher post-1993 betas with respect to RMW and CMA but not with

respect to SMB and HML (Proposition 1). Somewhat puzzling is that the anomalies with high

pre-1993 alphas attain lower MKT betas in the post-1993 period, which may be because a set of

dedicated “short” arbitrageurs have a negative exposure to MKT and transmit these exposures to

short anomalies. Consistent with this view, the negative αs-into-βs effect for MKT betas only

exists among short-side anomalies.

Although this αs-into-βs observation around 1993 supports the arbitrage-based explanation for

βs, it is also consistent with betas of high-alpha anomalies in the pre-1993 period measured with

errors that subsequently disappear in the post-1993 period. This problem is aggravated if anomaly

“discovery” happens when researchers find strategies whose in-sample alpha is high because its

in-sample beta is erroneously low, in which case a high in-sample alpha should predict an increase

in the beta out-of-sample. However, two observations are at odds with this alternative explanation.

First is the absence of the positive αs-into-βs effect in MKT, SMB, and HML, which suggests that

measurement error is not a serious issue for the FF factors. Second, the RMW and CMA betas do

not change predictably from in to out-of sample, indicating that there was no factor mining based

on RMW and CMA betas.

More evidence suggests that part of the post-1993 RMW and CMA betas explained by the

pre-1993 alpha are endogenous betas arising from arbitrage. Anomalies whose RMW and CMA

betas increase more are the ones with larger arbitrage positions in the post-1993 period, consistent

with the intuition that an anomaly in which arbitrageurs play a larger price-correcting role has a

larger endogenous price sensitivity to the variation in arbitrage capital (Proposition 2). The part of

the post-1993 betas predictable using the pre-1993 alpha comes from the subperiod of post 1993

in which the VIX is high, consistent with the risk-allocating role of arbitrage arising only when

arbitrageurs are constrained (Proposition 3). Anomalies with high costs of arbitrage show a weaker

αs-into-βs relation, consistent with the relation driven by arbitrage.

The intermediary-based asset pricing model of Adrian, Etula, and Muir (2014) offers another

interesting opportunity to apply the αs-into-βs prediction. The funding-liquidity factor used in
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their model measures shocks to broker-dealers that also serve as the prime brokers of hedge funds,

suggesting that the anomalies’ exposures to this factor may also be endogenous.

My tests again point to the arbitrage-based explanation for the funding-liquidity betas: (i) the

anomalies have no significant exposures to funding liquidity in the pre-1993 period but subse-

quently attain a large exposures in the post-1993 period that line up with their pre-1993 FF five-

factor alphas; (ii) the cross-section of different funding-liquidity exposures are explained by the

differences in their average arbitrage position in the post-1993 period; (iii) the funding-liquidity

exposures arise exclusively in the “constrained” part of the post-1993 period.

This endogenous channel for the cross-section of betas is interesting in its own right, but it also

has an important implication for conducting cross-sectional asset pricing tests: ignoring this poten-

tial endogeneity in the betas can bias the price of risk estimate upward, leading to a false discovery

of a pricing factor (Proposition 4). To take an extreme example, consider systematic shocks to

arbitrage capital that for whatever reason are not “priced” by the arbitrageurs. If anomalies with

high pre-arbitrage returns due to alphas attain high beta exposures to these shocks through arbi-

trage, those betas can appear to explain the cross-section of returns in a sample that includes the

pre-arbitrage period, when in fact causality goes in the opposite direction. The endogeneity issue

can be especially severe for intermediary-based models of asset pricing (e.g., Adrian, Etula, and

Muir, 2014; He, Kelly, and Manela, 2017; Avdjiev, Du, Koch, and Shin, 2017), as discussed in sec-

tion 4.3. It is thus important to understand whether or not the suggested αs-into-βs phenomenon

happens empirically and to what extent it affects the existing asset pricing test results. I provide

evidence that this does occur, but it is not definitive evidence, and more future work should follow.

My theoretical point is related to the literature on asset pricing in the presence of arbitrageurs

and financial intermediaries that trade against mispricings. My model is close to that of Kozak,

Nagel, and Santos (2017) in which assets mispriced by behavioral investors become assets that

can be “priced” using their betas with respect to the arbitrageur’s stochastic discount factor (SDF).

However, my model gains additional traction by introducing multiple assets that differ in their pre-

arbitrage alphas, which generates additional predictions about a market in which factor betas arise

endogenously through the act of arbitrage.

My prediction that alphas turn into betas is a cross-sectional extension of the insight that ar-

bitrage with limited capital makes the arbitraged asset endogenously risky for the arbitrageur
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(Shleifer and Vishny, 1997). My paper is thus related to the vast literature on limits of arbi-

trage (e.g., De Long, Shleifer, Summers, and Waldmann, 1990; Kyle and Xiong, 2001; Gromb and

Vayanos 2002; Liu and Longstaff, 2004; Stein, 2009). My model is also related to recent models

of arbitrage with multiple assets (Brunnermeier and Pedersen, 2009; Gromb and Vayanos, 2017;

Kondor and Vayanos, 2018), but it differs in that the key cross-sectional difference in the assets in

my model is their pre-arbitrage alpha.

I am not the first to find empirical evidence that arbitrage on anomalies change the nature of their

risks. Brunnermeier, Nagel, and Pedersen (2009) find that more profitable carry trades are subject

to higher currency crashes, consistent with the act of arbitrage generating crash risks. Lou and

Polk (2013) find that arbitrage trading of momentum can lead to momentum crashes. Drechsler

and Drechsler (2016) find that short-side anomalies are exposed to risks specific to shorting a

stock. Liu, Lu, Sun, and Yan (2015) find that anomalies become correlated with hedge-fund wealth

volatility after their discovery. McLean and Pontiff (2016) find that anomalies upon publication

become more correlated with other published anomalies.

2 A Model of Arbitrage Determining the Cross-section of Risks

2.1 Model setup

Time horizon, assets, and investors. Consider a three-period (t = 1, 2, 3) economy with two

types of securities: a risk-free bond and a continuum of anomaly assets i ∈ [0, 1]. The risk-free

bond is supplied elastically at the zero interest rate. An anomaly asset (“asset”) is a claim to a

stream of cash flows {δi,2, δi,3 + pi,3} over t = 2, 3 and has a zero net supply. Both {δi,t} and

{pi,3} are i.i.d. across assets and time (for dividends) with Et [δi,t+1] = 0 and E2 [pi,3] = v, which

makes the assets effectively risk-free for a diversified investor.

There are two types of investors: behavioral investors and a representative arbitrageur. The

behavioral investors cause the assets to be mispriced and are modeled as a set of demand curves.

An arbitrageur with mass µ trades against these mispricings but may be capital-constrained. I

analyze the three-period equilibrium under two different assumptions about µ: the trivial “pre-
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arbitrage” equilibrium with µ = 0 and the more interesting “post-arbitrage” equilibrium with

µ = 1/2. These two equilibria capture the period before the growth of arbitrage on the assets and

after, respectively.

Behavioral investor demand. Behavioral investors cause the assets to be underpriced, with the

severity of underpricing increasing in i.4 This is modeled using the following aggregate behavioral

investor demand for each asset i:

Bi,t =
Et
[
rei,t+1

]
rmax

− i ∀t, (1)

whereBi,t is the aggregate behavioral investor demand for anomaly i (in units of wealth),Et
[
rei,t+1

]
is the objective conditional expected (excess) return, and rmax > 0 is a constant representing the ab-

normal return on the most underpriced when arbitrageurs have a zero mass (rmax = Et
[
re1,t+1|µ = 0

]
).

As a usual, this demand curve describes a negative relationship between price pi,t and demand

Bi,t (to see this, simply express Et
[
rei,t+1

]
as p−1

i,t Et [pi,t+1 + δi,t+1] − 1). Furthermore, as i in-

creases, the demand curve shifts downward, implying that high-i assets have lower prices than

low-i assets for any given level of behavioral investor demand. Since the demand curves are fixed

over time, this cross-sectional ordering of the force behind the underpricing is time-invariant, a key

assumption I maintain throughout the analysis.5

Specifying the demand curves rather than preferences of the behavioral investors allows me to

abstract away from the underlying reason for the apparent mispricing, which could be behavioral,

rational, or statistical. For instance, the assets may generate an “alpha” because they covary with

consumption shocks that risk-averse households want to avoid but the arbitrageur does not care

about. In this case, the alpha reflects a rational compensation for risk but can still turn into “beta”

through the act of arbitrage. By construction, all assets have an equal “size” in the sense that

for all assets, a given change in the arbitrage position leads to an equal change in the expected

return on the asset: ∂Et
[
rei,t+1

]
/∂xi,t = −µ

(
∂Et

[
rei,t+1

]
/∂Bi,t

)
= −µ rmax ∀i, where xi,t is the

arbitrageur’s position on anomaly i at t with the first equality holding by market clearing.

4This direction of mispricing is chosen for convenience and does not affect my theoretical predictions.
5This can happen in practice despite the growth of institutional capital in the stock market if mutual fund managers

exhibit behavioral patterns similar to retail investors, which seems to be true (e.g., Frazzini, 2006; Frazzini and Lamont,
2008).
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Arbitrageur. A representative, risk-neutral arbitrageur trades assets to maximize the expected

terminal wealth at time 3 but may be capital-constrained. Specifically, the arbitrageur faces a zero-

mean wealth shock w̃t and can borrow only up to a funding constraint ft ∈ [0,∞) that may also

be time-varying. Making the arbitrageur wealth and funding shocks systematic but keeping the

dividends i.i.d. and behavioral investor demand constant is a conscious choice that elucidates how

assets with only idiosyncratic risks can attain systematic risks through the act of arbitrage.

The arbitrageur can take long or short positions in the assets but faces the margin rate of 1,

which reflects that actual arbitrageurs like hedge funds are not short-sale constrained but face a

non-zero margin requirement (e.g., Brunnermeier and Pedersen, 2009; Ang, Gorovyy, and van

Inwegen, 2010; Gârleanu and Pedersen, 2011; Gromb and Vayanos, 2017).6 If the arbitrageur

wealth turns negative in any period, the arbitrageur is forced to exit the market immediately and

pay an interest cost c ≥ rmax on the negative wealth in all future periods.7

Hence, the arbitrageur’s objective at time t is as follows:

max{xi}Et [w3]

s.t. wt+1 =

 wt +
∫ 1

0
ri,t+1xi,tdi+ w̃t+1

(1 + c)wt

if wt > 0

if wt ≤ 0∫ 1

0
|xi,t| di ≤ 1 (wt > 0) kt

kt = wt + 1 (wt > 0) ft,

(2)

where xi is the unit arbitrageur’s sequence of dollar positions on anomaly i at t and all future

trading periods, wt is the arbitrageur wealth (equity), ri,t is the asset return, 1 (·) is an indicator

function, and kt is the arbitrageur’s deployable capital (“arbitrage capital”).

Equilibrium conditions. I look for a competitive equilibrium in which

1. The aggregate behavioral investor demand {Bi,1} and {Bi,2} satisfy equation (1) given

prices {pi,1} and {pi,2};

6Keeping the margin constant rather than allowing it to depend on the volatility of the asset, I emphasize that
different endogenous betas can arise without differences in the anomalies’ idiosyncratic volatilities, the key feature in
Brunnermeier and Pedersen (2009) and Gromb and Vayanos (2017).

7This allows me to obtain the marginal value of wealth and hence define the stochastic discount factor in the
negative-wealth region.
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2. The arbitrageur’s chosen positions {xi,1} and {xi,2} solve problem (2) given prices {pi,1}
and {pi,2}; and

3. All markets for the assets clear: xi,t +Bi,t = 0 ∀i, t.

2.2 The pre-arbitrage equilibrium

Given this setup, how do asset prices behave in the “pre-arbitrage economy” in which the mass of

arbitrageurs is negligible (µ = 0)? In this case, the assets generate different alphas but have no

systematic risks (all proofs are in Appendix B):

Lemma 1. (Asset returns in the pre-arbitrage economy). If µ = 0, the return on asset i follows

ri,t = αprei + εi,t, (3)

where the “pre-arbitrage alpha,”
αprei = rmaxi, (4)

increases monotonically from asset 0 to asset 1 (from 0 to rmax) and εi,t is i.i.d. with mean zero.

This model of asset return will contrast sharply with that in the post-arbitrage economy in which

the assets have different systematic risks that correspond to the strength of the arbitrage on the

asset. Since the post-arbitrage economy will feature the same behavioral investors that generated

αprei in this pre-arbitrage economy, αprei will continue to measure the degree of latent mispricing

that pushes the asset price away from the correct level and as the key cross-sectional variable in

my comparative statistics.

2.3 The post-arbitrage equilibrium

A. The nature of equilibrium

The equilibrium in this “post-arbitrage economy” with a non-negligible mass (µ = 1/2) of arbi-

trageurs is solved backward, starting from time 2. Time 2 represents the period immediately before

mispricing disappears and asset prices converge to their fundamental value. Hence, an arbitrageur

at time 2 devotes all available capital into mispriced assets without worrying about asset returns
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covarying with the level of arbitrage capital in the future. Time 1 represents the earlier periods of

arbitrage in which an arbitrageur does worry about asset returns covarying endogenously with the

level of arbitrage capital before the assets realize their fundamental value. The asset prices at time

1 therefore take into account these endogenous risks.

The equilibrium price at time 2 is given by the following lemma:

Lemma 2. (Time-2 equilibrium prices). The equilibrium price of asset i at time 2 is

pi,2 = mi,3v (5)

s.t. (i) mi,3 = 1/ (1 + rmaxi
∗
2) for the “exploited” assets i ∈ (i∗2, 1].

(ii) mi,3 = 1/ (1 + rmaxi) for the “unexploited” assets i ∈ [0, i∗2].
(iii) i∗2 is the marginal asset s.t. i∗2 = 1, 1−

√
k2, and 0 for k2 ∈ (−∞, 0], (0, 1), and [1,∞),

respectively.

This result is intuitive. If k2 ≥ 1 and thus i∗2 = 0, the arbitrageur has enough capital to restore all

asset prices to the correct level v. If k2 < 1, the arbitrageur faces a capital constraint. In this case,

the assets that the arbitrageur exploits have price v/ (1 + rmaxi
∗
2) and generate a positive expected

return of rmaxi∗2, which is also the arbitrageur’s shadow cost of capital.8 The lower-i assets [0, i∗2]

remain unexploited since their expected return is lower than rmaxi∗2 even before arbitrage capital

enters into those assets.

These time-2 prices offer a glimpse into why high-i assets become endogenously riskier in this

post-arbitrage equilibrium. This is because the prices of high-i assets respond more to the variation

in k2: as k2 ranges from 0 to 1, the price of asset i rises from v/ (1 + rmaxi) to v, implying a rmaxi

percent increase in its price. The intuition is that the an initially more-mispriced asset relies more

heavily on the price-correcting role of arbitrage capital, which makes its price more sensitive to

the variation in the level of arbitrage capital.

From Lemma 2 follows the arbitrageur’s marginal value of wealth at time 2:

Lemma 3. (Time-2 marginal value of wealth). The arbitrageur’s value function at time 2 is

V2 = Λ2w2 (6)

where the marginal value of wealth of wealth in the non-default state (w2 > 0) is Λ2 = 1 + rmaxi
∗
2

and that in the default state (w2 ≤ 0) is Λ2 = 1 + c.
8Recall that the risk-free rate is 0 so that an expected return is also the expected excess return.
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Lemma 3 implies that a low-k2 state is a “bad” state in which the arbitrageur’s marginal value

of wealth is high: Λ2 rises from 1 to 1+rmax and to 1+c as k2 decreases from∞ to 0+ and to−∞.

This inverse relationship between Λ2 and k2 is a natural result that is expected to occur regardless

of the preference for risk or intertemporal substitution, similarly to how the decreasing marginal

utility of consumption does not rely on the curvature of the utility function. With risk-neutrality in

particular, this happens because arbitrage capital k2 falls precisely when the investment opportunity

rmaxi
∗
2 improves.

Given this, the equilibrium price at time 1 is as follows:

Lemma 4. (Time-1 equilibrium prices). The equilibrium price of asset i at time 1 is

pi,1 = E1 [mi,2 (pi,2 + δi,2)] (7)

s.t. (i) mi,2 = mA
2 ≡ Λ2/Λ1 for the exploited assets i ∈ I∗1 where I∗1 is the set of exploited

assets.
(ii) mi,2 = mB

i,2 ≡ 1/ (1 + rmaxi) for the unexploited assets i ∈ I∗1.
(iii) Λ1 is the time-1 marginal value of wealth s.t. Λ1 = E1 [Λ2] + ψ1 where ψ1 > 0 if the
arbitrageur is constrained and ψ1 = 0 if the arbitrageur is unconstrained.
(iv) The arbitrageur is unconstrained if k1 is above a threshold k∗1 ≤ 1.

This result is also intuitive. The exploited assets I∗1 are priced by the arbitrageur’s stochastic

discount factor (SDF) mA
2 , whereas the unexploited assets [0, 1] \ I∗1 are priced by the behavioral

investors’ discount factor mB
i,2. The law of one price is violated if the non-zero margin require-

ment makes the arbitrageur’s capital constraint bind, similarly to Gârleanu and Pedersen (2011),

Geanakoplos and Zame (2014), and Gromb and Vayanos (2017). The capital constraint is slack

when k1 is above the threshold k∗1 , and this value may be lower than the threshold value at time 2

because the arbitrageur at time 1 may find it optimal not to fully correct the asset prices if these

prices covary endogenously with the arbitrage capital at time 2 (Shleifer and Vishny, 1997).

B. The equilibrium with unconstrained arbitrageurs

Based on the derivations above, I first study the equilibrium in the benchmark case where the

arbitrageur is always unconstrained with sufficient capital (k1, k2 ≥ 1). In this case, the arbitrageur

completely eliminates the mispricings, and no endogenous risk arises:
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Lemma 5. (Asset returns with unconstrained arbitrageurs). Suppose µ = 1/2 and k1, k2 ≥ 1

with certainty so that the arbitrageur is always unconstrained. Then, the return on asset i follows

ri,t = εt (8)

where εt is the idiosyncratic return with mean zero.

With k2 ≥ 1, all assets get fully arbitraged and are priced v since the arbitrageur is uncon-

strained and holding a large number of assets diversifies away the idiosyncratic risks of the assets.

Knowing that pi,2 = v with certainty, the arbitrageur at time 1 also fully arbitrages all assets

and drives up their prices to v. Hence, with frictionless arbitrage, the assets that were differently

mispriced in the pre-arbitrage economy become indistinguishable in the post-arbitrage economy.

C. The equilibrium with constrained arbitrageurs

In contrast, if arbitrage capital is limited in the sense that it can face large shocks, these assets

become endogenously risky since their prices in the interim period (time 2) comove endogenously

with the arbitrageurs’ marginal value of wealth. This implies that an asset’s expected return at time

2 is no longer zero and can be explained by its beta with respect to the arbitrageur’s stochastic

discount factor:

Lemma 6. (Asset returns with constrained arbitrageurs). Suppose µ = 1/2 and k2 has a full

support over [0, 1] so that the arbitrageur may be constrained. Then, the expected return on asset

i at time 2 follows

E1ri,2 = αi,0 + λmβi,m (9)

s.t. (i) βi,m is the negative of the beta with respect to mA
2 , the arbitrageur’s SDF (see Lemma 4).

(ii) αi,0 = 1/E1

[
mA

2

]
− 1 if i ∈ I∗1.

(iii) αi,0 ≤ 1/E1

[
mA

2

]
− 1 if i /∈ I∗1.

Furthermore, βi,m > 0 ∀i ∈ (0, 1] and λm > 0 so that the “limits of arbitrage” arise even when

the arbitrageur is unconstrained at time 1 (ψ1 = 0 andαi,0 = 0).

The ability of the arbitrageur’s SDF to “price” the cross-section of expected returns is not sur-

prising—absent constraints, any rational investor’s SDF should price the assets. Since the arbi-
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trageur in this model may be capital-constrained, the arbitrageur’s SDF only prices the exploited

assets, whereas the unexploited assets should have a zero-beta rate λi,0 lower than that of the ex-

ploited assets’ (λA0 ).

Equation (9) nonetheless has the appeal that it expresses the limits of arbitrage mechanism

as a beta-pricing model. Intuitively, arbitrage trading of single mispriced asset is endogenously

risky since the return on the asset and the level of arbitrage capital comove endogenously (Shleifer

and Vishny, 1997). In a multi-asset economy, this insight implies that the act of arbitrage makes

the arbitraged assets endogenously risky (βi,m > 0), which limits a complete arbitrage even in

unconstrained times as the arbitrageur demands positive risk premium (λmβi,m > 0 =⇒ E1 [ri,2] >

0).

Although βi,m is the correct measure of risk, it relies on being able to observe the arbitrageur’s

stochastic discount factor mA
2 . It is therefore useful to obtain an approximate factor model based

on the observable determinants of mA
2 . I do this with the level of arbitrage capital k2, the key

determinant of the arbitrageur’s marginal value of wealth at time 2, and the subcomponents of k2.

The resulting approximate factor model is as follows:

Lemma 7. (A factor model of asset returns). Suppose µ = 1/2 and k2 has a full support over

[0, 1] so that the arbitrageur may be constrained. Then, the expected return on asset i at time 2

approximately follows a factor model with respect to arbitrage capital k2:

E1ri,2 ≈ αi,0 + λkβi,k (10)

where αi,0 is the asset-specific zero-beta rate defined in Lemma 6 and βi,k is the arbitrage cap-

ital beta with βi,k > 0 ∀i ∈ (0, 1]. Furthermore, this factor model can be expanded using the

components of k2:

E1ri,2 ≈ αi,0 + λrβi,r + λwβi,w + λfβi,f (11)

where βi,z = Cov (ri,2, z2) /V ar (z2) is the beta with respect to a factor z2 ∈
{
rA2 , w̃2, f2

}
and

rAt ≡
∫ 1

0
ri,txi,t−1di∫ 1

0
|xi,t−1| di

(12)

is the arbitrageur portfolio return. By Stein’s lemma, these factor models hold exactly if k2 and
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ri,2 are jointly normally distributed.

In an arbitrageur-based asset pricing model like the one here, the level of arbitrage capital k2

is a key determinant of the arbitrageur’s marginal value of wealth. Hence, an asset that covaries

strongly with the level of arbitrage capital is likely to command a high risk premium since such

an asset is also likely to have a strong negative covariance with the arbitrageur’s marginal value of

wealth. This means that the underlying sources of systematic shocks to arbitrage capital can also

serve as the approximate asset pricing factors: shocks to assets held by the arbitrageurs rA2 , other

shocks to the arbitrageur’s wealth w̃2 (e.g., investor flow shocks), and funding-liquidity shocks f2.

Next, I show that the cross-section of post-arbitrage risks of the assets measured by their arbi-

trage capital betas βi,k line up with their pre-arbitrage alphas αprei :9

Proposition 1. (Pre-arbitrage alpha determines the cross-section of post-arbitrage betas). Sup-

pose µ = 1/2 and k2 has a full support over [0, 1] so that the arbitrageur may be constrained.

(i) Then, the cross-section of arbitrage capital betas increase in their pre-arbitrage alphas:

∂βi,k
∂αprei

> 0. (13)

That is, “alphas turn into betas.”

(ii) Similarly, the cross-section of betas with respect to the factors of k also line up with αprei :

∂βi,r
∂αprei

> 0,
∂βi,w
∂αprei

> 0,
∂βi,f
∂αprei

> 0. (14)

A large pre-arbitrage means that a larger fraction of the asset is held by the arbitrageur since

she plays a larger price-correcting role in the asset in equilibrium. This, however, also means

that this asset responds more to the variation in the arbitrage capital at time 2, making the asset

endogenously more exposed to each of the different systematic shocks to arbitrage capital. What

follows from this explanation is that the cross-section of average arbitrage positions in the assets

should also explain the cross-section of post-arbitrage βs:

9I show this using βi,k instead of the exact measure of risk βi,m for a tighter link to the empirical section. Ap-
pendix B provides the corresponding proof for βi,m.
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Proposition 2. (The cross-section of average arbitrage positions explains the cross-section of

post-arbitrage betas). The expected arbitrage position in an asset µE1 [xi,2] explains the cross-

section of betas βi,k in the post-arbitrage equilibrium. This is also true with respect to βi,r, βi,w,

and βi,f .

One restriction on the the alphas-into-betas relation in Proposition 1 that can be useful in an

empirical application is that this cross-sectional beta “predictability” comes from the constrained

states of time 2. Put differently, in times when the arbitrageur has a “deep pocket,” the arbitrageur

does not generate endogenous βs in the assets:

Proposition 3. (The endogenous post-arbitrage beta arises when the arbitrageur is constrained).

The endogenous post-arbitrage betas arise only when the arbitrageur is constrained. That is,

βi,k| (k2 ≥ 1) = 0

βi,k| (k2 < 1) > 0
(15)

for all i ∈ (0, 1]. For this reason, if kt follows a process k∗t such that k∗1, k
∗
2 > 1 almost surely, then

neither beta nor abnormal return arises:

βi = 0 and E1 [ri,2] = 0 for all i ∈ [0, 1] (16)

Finally, asset pricing should be handled with care if the econometrician cannot distinguish

between pre- and post-arbitrage economies. The presence of the alphas-into-betas relation means

that part of the ability of beta to explain the cross-section of returns can come erroneously from the

fact that assets with high pre-arbitrage returns due to αprei has turned into beta in the post-arbitrage

equilibrium:

Proposition 4. (An upward-biased price of risk in a naive asset pricing test). Suppose that the

arbitrageur enters time 1 to face a pre-arbitrage economy (µ = 0) with probability φ and a post-

arbitrage economy (µ = 1/2) with probability 1− φ. If this arbitrageur’s capital kt has a positive

support on [0, 1], an econometrician who does not condition on µ observes an upward-biased price
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of risk associated with βi,k:

E [ri,2] ≈ (1− φ)αi,0 +

λk + φb−1︸︷︷︸
bias

 βi,k (17)

where b is the coefficient on the linearized alphas-into-betas effect, βi,k = b αprei .

3 Application to Multifactor Models

Does the act of arbitrage help determine the cross-section of risks by turning alphas into betas in

practice? If so, what does this imply about asset pricing using these risks?

3.1 The anomalies

To answer these questions, I study the cross-section of betas of equity anomalies. Equity anoma-

lies are well-suited for this purpose for two reasons. First, they have been actively traded by

arbitrageurs such as the quantitative equity hedge funds since the early 1990s (e.g., Hanson and

Sunderam, 2014), suggesting that some of these anomalies’ risks may be an endogenous outcome

of the arbitrage itself. Second, they offer a reasonably rich cross-section as noted in Green, Hand,

and Zhang (2016), allowing me to test the cross-sectional predictions of the model.

In particular, I use a set of 40 equity anomalies which are the “long” and “short” portfolios (top

and deciles) of 20 anomaly characteristics (see the list in Table 1).10 The return on an anomaly is

the monthly value-weighted average return of all domestic, common stocks from the three major

exchanges (NYSE, AMEX, and NASDAQ) that belonged to the extreme decile portfolios in the

previous month.11 I use data from 1974m1 to 2016m12.
10This list of 20 characteristics represents a standard set of low-turnover anomaly characteristics. One can arrive

at this set by taking the 32 characteristics surveyed by Novy-Marx and Velikov (2016) and excluding the 5 redundant
(e.g., “high-frequency combo”) and 7 highest-turnover (e.g., short-term reversal) characteristics. I thank Mihail Ve-
likov for several correspondences that helped ensure my replication of their anomalies. I exclude the high turnover
anomalies since endogenous beta should not arise in anomalies with a short mispricing horizon (i.e., if the asset price
achieves the fundamental value v at time 2, in the context of my model) (for a formal treatment of this point, see
Gromb and Vayanos, 2017).

11See the online data appendix to this paper as well as Novy-Marx and Velikov (2016) for more information on the
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3.2 The Fama-French (2015) five factors

I study the anomalies’ cross-section of beta with respect to the five factors in the asset pricing

model of Fama and French (2015). The model suggests that the market, size, value, profitability,

and investment factors (labeled “MKT,” “SMB,” “HML,” “RMW,” and “CMA”) summarize the

systematic risks of a stock. Consistent with this claim, the five-factor model have an ability to

explain high returns to beta arbitrage, net issuance, and volatility anomalies through their positive

exposures to RMW and CMA in addition to the the size, value, investment and profitability anoma-

lies that the model is intended to explain (Fama and French, 2015, 2016). Table 2 summarizes the

40 anomalies’ beta exposures to the five factors in two different sample periods based on the 1993

cutoff explained next.12

3.3 The 1993 cutoff

I use 1993 as the approximate year in which the shift from the “pre-arbitrage” equilibrium to the

“post-arbitrage” equilibrium occurred in equity anomalies. There are several reasons. First, the

amount of hedge fund capital grew rapidly in the 1990s, with the total assets under management

of hedge funds undergoing a dramatic change from $39 billion in 1990 to $1.73 trillion in 2008

(Stein, 2009). Second, some of the most influential papers in equity anomalies were published

around 1993, including Fama and French (1993) and Jegadeesh and Titman (1993), igniting the

practitioner interest. Third, the stock market liquidity improved significantly around 1993 (Chor-

dia, Roll, and Subrahmanyam, 2011), lowering the cost of arbitrage on the anomalies (Chordia,

Subrahmanyam, and Tong, 2014).

I back up this anecdotal evidence using actual arbitrage activity inferred from short interests.

Since endogenous risk in equity anomalies, if exists, is likely to arise due to the activity of long-

short arbitrageurs such as the equity quantitative hedge funds, abnormal shorting of a stock can

serve as a noisy proxy for arbitrage activity by these arbitrageurs.13 I therefore measure arbitrage

anomaly construction.
12I thank Kenneth French for providing the factor data through his data library.
13Ben-David, Frazoni, and Moussawi (2012) and Boehmer, Jones, and Zhang (2013) both argue that hedge funds

are responsible for most of the short interest. Other papers that measure arbitrage activity using short interest include
Hanson and Sunderam (2014) and Hwang, Liu, and Xu (2018).
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activity as the negative (× − 1) of the abnormal short interest, which I define to be the value-

weighted average of short interest ratio (shares shorted / shares outstanding) minus the cross-

sectional average short interest ratio of stocks that belong to the size NYSE size decile, where the

average is taken over all stocks that belong to the anomaly portfolio.

Arbitrage activity inferred from short interests on the anomalies tell a consistent story about the

1993 cutoff (Table 3). The post-1993 dummy has the single largest effect on the growth of arbitrage

activity on the anomalies, controlling for both the post-publication and post-sample effects (read

the coefficients on variables interacted with the long anomaly dummy or pre-1993 alpha).14 The

publication effect is significant only in the post-1993 period, when hedge funds had sufficient

capital to generate observable effect on short interests in response to an academic publication.

Multifactor alphas seem to be a better measure of the anomalies’ latent mispricing assessed by the

arbitrageurs (the R2 is lower when CAPM α is used), but the exact horizon in which the alpha is

measured during the pre-1993 period matters less.

3.4 The evidence

Is there evidence of the alphas-into-betas effect arising in practice, and if so, to what extent are

the anomalies’ five-factor betas endogenous? (Note: Throughout this paper, “endogenous beta”

refers to the part of the beta that arises from arbitrage on past returns, which makes the beta an

endogenous variable in an asset pricing regression with realized past returns on the left-hand side).

The first task is to infer which of the five factors represent systematic shocks for a long-short

arbitrageur. Table 4 shows that in the pre-1993 period, both long and short anomalies are posi-

tively exposed to MKT and SMB and negatively exposed to HML, allowing a long-short strategy

to neutralize these exposures. In contrast, the long and short anomalies respectively have positive

and negative exposures to RMW and CMA, making them “slope” factors in the language of Clarke

(2016). Consistent with this evidence, Table A3 shows that a 90/10 mix of equity market-neutral
14My finding on the 1993 cutoff is at odds with the finding that no return decay is observed in the anomalies

following 1993 (McLean and Pontiff, 2016). The main reason for this difference is that short interest measures the
arbitrage activity by a group of sophisticated arbitrageurs, whereas return decay reflects investment by all types of
investors as well as other determinants of return changes such as the change in risk premium. Another contributing
factor is that I use the year in which the anomaly was first published, not when it was first well-publicized (e.g., the
academic publication of value anomaly is Rosenberg, Reid, and Lanstein 1985 in my data but Fama and French 1992
in McLean and Pontiff.
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and equity short-bias hedge funds neutralizes the exposures to MKT, SMB, and HML but has pos-

itive exposures to RMW and CMA. This suggests that a long-short arbitrage on the anomalies has

a natural exposure to both RMW and CMA (and more so to RMW), implying that the anomalies’

post-1993 exposures to these two factors may be endogenous.

I therefore test whether the anomalies’ pre-1993 five-factor alphas predict their post-1993 betas

with respect to RMW and CMA but not those with respect to MKT, SMB, and HML (Proposi-

tion 1). Table 5 shows that a high pre-1993 alpha predicts high post-1993 RMW and CMA betas,

controlling for the effect of pre-1993 beta. Comparing the R2s suggests that as much as 38%

(RMW) and 21% (CMA) of the cross-sectional variation in the post-1993 betas may be endoge-

nous. The coefficient on pre-1993 beta is around .6 for both RMW and CMA (and for SMB and

HML as well), suggesting that these factor betas shrink by a factor of 0.6 around the cross-sectional

mean of zero between the two sample periods, similarly to how the market beta shrinks around one

over time (e.g., Vasicek, 1973).

The αs-into-βs effect is stronger for RMW betas than for CMA betas, which may be because

a long-short strategy is slightly more exposed to the RMW factor (Table 4). The effect exists in

both long and short anomalies for RMW betas, but it only exists in short anomalies for CMA betas,

which is interesting since only the long anomalies had significant exposure to CMA in the pre-1993

period (Table 4). This can mean that CMA shocks from the long positions have been transmitted

to short positions, but the weak effect in long anomalies remains a puzzle.

The effect does not exist for SMB and HML, consistent with the earlier observation that a long-

short strategy neutralizes the exposure to these factors. With MKT, a high pre-1993 alpha predicts

a lower post-1993 beta, which is consistent with a simple long-short strategy in Table 4 having a

sightly negative exposure to MKT but inconsistent with equity market-neutral hedge funds having

a slightly positive market exposure. One explanation is that dedicated “short” arbitrageurs whose

capital is negatively exposed to market movements have significant positions in the short anoma-

lies and cause the prices of short anomalies to escalate quickly when these group of arbitrageurs

unwind their positions quickly in a sudden bullish movement in the market. And when this hap-

pens, the lower-alpha anomalies with more arbitrage short interests would experience a larger price

increase, which explains their higher post-1993 market betas. This explanation is consistent with

the negative αs-into-βs effect for MKT existing only in the short-side anomalies.
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A. The measurement-error explanation

The results above are consistent with the arbitrage-based explanation for αs-into-βs, but what other

explanations exist? To answer this, I take a step back and consider the αs-into-βs regression. The

estimated equation is

β̂posti = b0 + b1α̂
pre
i + b2β̂

pre
i + ui, (18)

where α̂ and β̂ are the estimated alphas and betas. Assuming for simplicity a single-factor model,

this can be rewritten as

βposti + eposti = b0 + b1 (αprei + εprei − gie
pre
i ) + b2 (βprei + eprei ) + ui, (19)

which expresses the estimated alpha as the actual alpha α plus the realized mean error of the

return process ε minus the measurement error in the risk premium (realized factor mean g times

the measurement error in the beta ei). Hence, even with b1 = 0, the estimated b̂1 is expected to be

positive when b2 is positive: a positive measurement error epre means that the actual beta is lower.

The problem is aggravated if anomaly “discovery” happens when a researcher finds a strategy

whose realized in-sample alpha is higher because its in-sample beta is erroneously lower—i.e., if

“factor mining” has focused on anomalies with erroneously low (for long anomalies) or high (for

short anomalies) realized in-sample risk premia.

However, two observations are at odds with this measurement-error explanation. First is the

absence of a positive αs-into-βs effect in MKT, SMB, and HML. All five factors have positive

realized mean in the pre-1993 period, implying that the measurement error issue, if exists, should

apply to all five factors. Instead, the absence of a positive αs-into-βs effect in those three factors

suggests that betas are measured with a sufficient precision over 240 months in the pre-1993 period.

Second, I test if RMW and CMA betas of the anomalies change predictably from in to out-of

sample, finding that they do not once the post-1993 effect has been controlled for (Table A1). This

is in contrast to MKT betas of long (short) anomalies dropping (increasing) predictably out-of-

sample, suggesting that “beta mining” did occur with respect to MKT (Table A2).15 This helps

alleviate further the concern that anomalies are the ones whose in-sample RMW and CMA betas

15This null finding on RMW and CMA betas is also consistent with RMW and CMA not being the original Fama
and French (1992, 1993) factors, although beta mining could have occurred indirectly through RMW and CMA being
closely related to HML (Fama and French, 2015).
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are measured with errors due to factor mining.

B. Further evidence for the arbitrage channel

On the other hand, two additional pieces of evidence are consistent with arbitrage-based expla-

nation for the αs-into-βs effect in RMW and CMA. First, using the time-series average of the

arbitrage activity measure in section 3.3 to measure average arbitrage activity in an anomaly in the

post-1993 period, I test whether endogenous beta is larger in an anomaly that has a larger average

arbitrage activity (Proposition 2).

The results in Table 6 are strongly in favor of arbitrage activity explaining the cross-section

of betas in the post-1993 period: anomalies that attain high post-1993 RMW and CMA betas are

the ones with larger average arbitrage positions in the same period, consistent with the intuition

that an anomaly in which arbitrageurs play a larger price-correcting role endogenously has a larger

price sensitivity to the variation in arbitrage capital. The effect is not symmetric for CMA betas,

however, which may be because my measure of arbitrage activity based on short interests is a

poorer proxy for arbitrageur price-correcting role in long anomalies.

It is useful to consider this result jointly with the αs-into-βs result in Table 5. In both regres-

sions, I use αpre or arbitrage activity as the determinant of endogenous beta, but the conceptual

motivation is different. The advantage of the arbitrage activity measure is that it directly measures

the underlying cause of the endogenous betas, but inferring arbitrage activity from short interests is

a noisy exercise that introduces large measurement errors. When this measurement error is large,

the pre-1993 alpha acts as an instrument for the actual arbitrage activity in the post-1993 period and

can provide a cleaner estimate of the αs-into-βs effect if arbitrage capital is allocated to anomalies

based on past alphas.16

The predictability of post-1993 betas using pre-1993 alphas comes from the constrained times

of the post-1993 period, consistent with the notion that in times when the arbitrageur has a “deep

pocket,” the arbitrageur does not generate endogenous βs in the anomalies (Proposition 3). To

test this, I proxy the constrained times within the post-1993 as the months in which the 3-month

moving average of VIX was above the median, which roughly gives 1997m1-2003m8 and 2007m7-

16I thank Yao Zeng for this point.
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2012m6 as the times in which arbitrageurs’ capital constraint was likely to be binding (Figure 1).

The first period begins in the aftermath of the Peso crisis and includes the LTCM, 9/11, and the

Iraq War, whereas the second period coincides with the beginning and the aftermath of the Great

Recession. I then ask if the αs-into-βs result earlier is coming from these constrained times of the

post-1993 period in which shocks to arbitrage capital should translate into a larger price response

in the anomalies with the arbitrageur finding it harder to replenish its capital.

Comparing theR2s in Table 7 shows that the ability of pre-1993 alphas to explain the post-1993

betas is stronger during constrained times, consistent with the risk-allocating role of arbitrage aris-

ing only when arbitrageurs are constrained. Some predictive power of pre-1993 alphas remains in

my proxy for unconstrained times, suggesting that the constrained vs. unconstrained classification

is imperfect. The larger alphas and lower arbitrage activities both indicate that the high-VIX times

are indeed when arbitrageurs operate with a reduced level of capital.

An alternative explanation for this result is that pre-1993 alpha represents compensation for

conditional risk with respect to these two factors. However, I find that the differential αs-into-βs

result does not arise in MKT, SMB, and HML, implying that the pre-1993 alpha is not a compensa-

tion for conditional risks with respect to the five factors (Table A4). Another useful exercise would

be to find a measure comparable to VIX in the pre-1993 period (VIX begins in 1990) and repeat

the exercise to see if the conditional beta also arises in the pre-1993 period as well, which I have

not done.

C. Costs of arbitrage

Costs of arbitrage such as idiosyncratic volatility and liquidity may matter in arbitraging anomalies,

especially for anomalies that involve short selling (Knez and Ready, 1996; Mitchell and Pulvino,

2001; Korajczyk and Sadka, 2004; Lesmond, Schill, and Zhou, 2004; Pontiff, 2006; Duan, Hu,

and McLean, 2010). Hence, if the αs-into-βs effect arises through arbitrage, the strength of the

effect may depend on the costs of arbitraging each anomaly. I therefore include arbitrage cost

and its interaction with pre-1993 alpha in my main αs-into-βs regression, using size, idiosyncratic

volatility, illiquidity (Amihud, 2002), and bid-ask spread (Corwin and Schultz, 2012) to measure

the cost.
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Arbitrage costs affect the αs-into-βs relation in the direction one would expect if the relation

were driven by arbitrage (Table 8; each cost variable is signed so that a high value means high arbi-

trage cost). Anomalies whose underlying stocks are small, volatile, and have a large bid-ask spread

see their alphas turn into smaller betas, although the the effect—albeit weak—has an opposite di-

rection for the Amihud measure of illiquidity. Among different costs of arbitrage, idiosyncratic

volatility and bid-ask spread have the largest magnitudes of the effect, and their effect is statis-

tically significant for CMA but not for RMW. The finding that idiosyncratic volatility plays an

important role in determining the level of arbitrage activity inferred from the αs-into-βs relation

is consistent with the finding of McLean and Pontiff (2016) based on anomaly return decay after

academic publication.

3.5 Implications for asset pricing tests

So far I have presented theoretical and empirical evidence that the act of arbitrage may be con-

tributing to the determination of the cross-section of risks. Understanding the role of arbitrage

in determining the cross-section of risks is interesting in its own right, but it also important for

interpreting asset pricing test results correctly.

This is because the αs-into-βs effect represents a source of endogeneity in the β in an asset

pricing test (Proposition 4). Consider a cross-sectional asset pricing regression with a single factor,

assuming for simplicity that all quantities are perfectly measured:

E [rei ] = λ0 + λ1βi + υi, (20)

where λ1 is the price of risk associated with the factor. Also, rewrite the αs-into-βs in terms of

expected return to obtain

βposti = b0 + b1

E [re,prei ]− λ1β
pre
i︸ ︷︷ ︸

=αpre
i

+ b2β
pre
i + ui, (21)

again assuming that no measurement issue arises.

This should remind the reader of the classic simultaneity problem in econometrics. If the re-
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gression in eq. (7) is run in a sample in which the fraction φ of the time periods is the pre-arbitrage

equilibrium, the asset pricing regression becomes

φE [re,prei ] + (1− φ)E [re,prei ] ≈ λ0 + φλ1β
pre
i + (1− φ)λ1β

post
i︸ ︷︷ ︸

≈λ1βi

+ υi. (22)

But eq. (21) implies that βposti is partly determined by E [re,prei ], which biases the estimated λ1

upward if b1 > 0. That is, a naive asset pricing test attributes part of the realized return due

to (realized) alpha to risk premium associated with beta, when in fact the positive relationship

between the two in the cross-section of test assets is due to high past alphas turning into high

future betas through arbitrage.

If the empirical evidence presented in this paper is correct, this “endogenous beta” problem will

arise in using the FF five-factor model to price the cross-section of expected returns, especially

when the test assets have large exposures to RMW and CMA. Addressing this issue more formally

will be an interesting future work. Some immediate remedies include (i) comparing the price of

risk estimates from a cross-sectional regression with the realized factor means and (ii) estimating

the price of risk in samples with decreasing exposure to the possible pre-arbitrage sample to see if

the estimated price of risk falls.

3.6 Implications for discount-rate vs. cash-flow channels

My model and empirical evidence does not help distinguish whether the systematic factor in ques-

tion is a discount-rate shock or a cash-flow shock, an interesting question that matters especially

for long-term investors.17 However, it does suggest that the arbitrage-driven change in the anoma-

lies’ betas with respect to a factor represents a discount-rate exposure of the anomaly to that factor.

Hence, this component of the beta represents risk that dissipates if the anomaly is held for a suf-

ficiently long period. This is good news for long-term investors trading anomalies with a long

horizon (e.g., value) but matters less for investment in short-horizon anomalies (e.g., momentum).

17See Cohen, Polk, and Vuolteenaho (2009) for an analysis of size and value anomalies from this perspective.
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3.7 Other multifactor models

There are other factor models of equity anomalies suggested in the literature. These include, but

are not limited to, the models motivated by the arbitrage pricing theory (APT) (e.g., Fama and

French, 1992, 1993; Carhart, 1997), intertemporal CAPM (e.g., Campbell and Vuolteenaho, 2002;

Campbell, Giglio, Polk, and Turley, 2017), q-theory (e.g., Hou, Xue, and Zhang, 2015), consump-

tion and macroeconomic risks (e.g., Parker and Julliard, 2005; Yogo, 2006; Lettau, Ludvigson, and

Ma, 2017), and behavioral factors (e.g., Stambaugh and Yuan, 2016; Daniel, Hirschleifer, and Sun,

2017). My findings about the FF 5-factor model and their asset pricing implication should apply

similarly to these models: asset pricing tests should be handled with care if their factors represent

systematic shocks that the long-short arbitrageurs of anomalies must bear so that the act of arbi-

trage changes the cross-section of betas. This makes the “level, slope, and curve” factor analysis

of Clarke (2016) useful since a long-short arbitrage is likely to be exposed only to “slope” factors,

making those factors likely suspects for the alphas-into-betas effect and hence the endogenous beta

problem in an asset pricing test.

4 Application to Intermediary-based Asset Pricing

Intermediary-based asset pricing models offer another interesting opportunity to test the alphas-

into-betas prediction. These models have enjoyed some empirical success in pricing the cross-

section of assets by measuring risks from the perspective of financial intermediaries (e.g., Adrian,

Etula, and Muir, 2014; He, Kelly, and Manela, 2017). These models, however, seem incomplete

without an adequate explanation on where the cross-section of different intermediary βs come

from:

“. . . ultimately we want to understand not only the pricing of assets’ covariances with

risk factors, but also the determinants of these covariances themselves. In the context

of [Adrian, Etula, and Muir (2014)]’s empirical analysis specifically, a full account of

margin risk should explain why some assets covary more strongly than others with the

leverage of security broker-dealers” (p.484 of Campbell, 2017).

Why do some assets covary more strongly with systematic shocks to financial intermediaries than
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others? To what extent are the intermediary asset pricing betas an endogenous outcome of arbi-

trage?

4.1 Funding-liquidity factor of Adrian, Etula, and Muir (2014)

I answer these questions using the funding-liquidity factor of Adrian, Etula, and Muir (2014)

(AEM). Motivated by funding-liquidity model of Brunnermeier and Pedersen (2009), AEM fo-

cuses on aggregate funding-liquidity shocks to financial intermediaries, which they proxy using

shocks to the leverage of security broker-dealers (plotted in Figure 2). Using these shocks, they

find that high returns to value and momentum anomalies are explained by their positive exposures

to aggregate funding-liquidity shocks.

However, these funding-liquidity exposures of anomalies may be endogenous given that long-

short arbitrageurs like hedge funds are strongly exposed to these shocks (Brunnermeier and Peder-

sen, 2009; Aragon and Strahan, 2012; Mitchell and Pulvino, 2012). This seems especially plausible

in the context of the AEM factor given that the majority of security broker-dealers provide funding

to hedge funds as prime brokers.

4.2 The evidence

I therefore test if the funding-liquidity betas of 40 anomalies are consistent with the arbitrage-based

alphas-into-betas explanation (Table 9). In the pre-1993 period, the anomalies did not have strong

exposures to this measure of funding liquidity. It is only in the post-1993 period that the anomalies

attain strong beta exposures, consistent with anomalies on average having no inherent exposure to

funding liquidity. These exposures are concentrated in short anomalies, which may be due to short

positions being exposed to margin shocks.

Additional evidence also point to the arbitrage-based explanation for the betas. The cross-

section of betas are explained by the cross-section of average arbitrage positions in the post-1993

period, consistent with anomalies with more arbitrageur involvement being endogenously more

exposed to arbitrage capital shocks. The endogenous part of the beta comes from parts of post-

1993 period in which arbitrageurs are likely to be capital-constrained, proxied by quarters in which
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the VIX is above the post-1993 median. This is again consistent the alphas-into-betas effect arising

when arbitrageurs are constrained but not when they are unconstrained.

4.3 Implications for intermediary-based asset pricing

The endogenous beta problem discussed in section 3.5 is is especially relevant for intermediary-

based models. The premise of these models is to identify important shocks to intermediary capital

or risk aversion, and these shocks can easily be transmitted to assets traded by these intermedi-

aries. This transmission of shocks would be especially strong for assets that were initially more

mispriced in the absence of intermediary capital from the intermediaries’ perspective. In this way,

the “pre-intermediary” alpha can turn into “post-intermediary” beta, generating the endogenous

beta problem discussed earlier. This issue is missing from the current intermediary-based asset

pricing literature but needs to be addressed as the literature matures.

5 Conclusion

In this paper, I show both theoretically and empirically that the act of arbitrage plays an important

role of determining the cross-section of risks of the arbitraged assets. When risks arise in this

manner, a cross-sectional asset pricing test can lead to a false discovery of a pricing factor. Useful

future work is to provide additional empirical evidence for or against this risk-allocating role of

arbitrage in the equity and other markets and to examine the severity of the endogeneity problem

caused by the alphas-into-betas effect in popular asset pricing models.
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Table 1: List of Anomaly Characteristics

Academic Publication Market Cap Share

No Anomaly Label Authors Year Sample Short Long

1 Beta arbitrage beta Fama and MacBeth 1973 1926-1968 0.09 0.09
2 Return on market equity rome Basu 1977 1956-1971 0.05 0.03
3 Ohlson’s O-score ohlson Ohlson 1980 1970-1976 0.29 0.01
4 Size size Banz 1981 1926-1975 0.02 0.58
5 Long-run reversals rev60m DeBondt and Thaler 1985 1926-1982 0.03 0.13
6 Value value Rosenberg, Reid, and Lanstein 1985 1980-1990 0.04 0.2
7 Momentum mom12m Jegadeesh 1990 1964-1987 0.1 0.04
8 Net issuance netissue Ikenberry, Lakonishok, and Vermaelen 1995 1980-1990 0.11 0.09
9 Net issuance monthly netissue_m Ikenberry, Lakonishok, and Vermaelen 1995 1980-1990 0.1 0.09

10 Accruals acc Sloan 1996 1962-1991 0.06 0.05
11 Return on assets roa Haugen and Baker 1996 1979-1993 0.17 0.03
12 Return on book equity roe Haugen and Baker 1996 1979-1993 0.14 0.04
13 Failure probability failprob Dichev 1998 1981-1996 0.16 0.02
14 Piotroski’s f-score piotroski Piotroski 2000 1976-1997 0.21 0.09
15 Investment invest Titman, Wei, and Xie 2004 1973-1996 0.03 0.07
16 Idiosyncratic volatility idiovol Ang et al. 2006 1986-2000 0.25 0.04
17 Asset growth atgrowth Cooper, Gulen, and Schill 2008 1968-2003 0.03 0.1
18 Asset turnover ato Soliman 2008 1984-2002 0.05 0.09
19 Gross margins gm Soliman 2008 1984-2002 0.2 0.04
20 Gross profitability profit Balakrishnan, Bartov, and Faurel 2010 1976-2005 0.1 0.07
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Table 2: Beta Exposures to Fama-French (2015) Five Factors

For failure probability, the pre-arbitrage period is computed from 1981m1 to account for its sensitivity to sample
period emphasized in Dichev (1998). Significance at the 5% level based on heteroskedasticity-robust OLS standard
errors is expressed in boldface. Returns are in annualized percentages.

Pre-1993 Period (1974m1-1993m12) Post-1993 Period (1994m1-2016m12)

β β

No Anomaly re α MKT SMB HML RMW CMA re α MKT SMB HML RMW CMA

1 beta(L) 7.92 2.58 0.67 0.06 0.40 -0.28 -0.19 7.75 0.8 0.54 -0.01 0.09 0.28 0.43
2 rome(L) 16.39 5.43 1.10 0.30 0.58 0 -0.22 13.74 2.93 1.06 0.20 0.30 0.30 0.08
3 ohlson(L) 5.96 0.7 0.97 -0.22 -0.21 0.17 0.14 8.45 2.14 0.97 -0.15 -0.28 0.03 -0.01
4 size(L) 9.48 -2.21 0.89 1.19 0.01 -0.20 0.15 9.73 2.53 0.81 0.97 0.07 -0.40 0.12
5 rev60m(L) 11.23 -4.63 1.18 0.89 0.36 -0.08 0.4 12.61 2.12 1.16 0.59 0.33 -0.44 0.39
6 value(L) 13.38 -2.43 1.15 0.49 0.82 0.08 0.17 8.93 0 0.93 0.15 0.65 -0.12 0.06
7 mom12m(L) 14.06 6.29 1.11 0.38 -0.48 -0.03 0.32 8.74 1.62 1.02 0.36 -0.42 0.01 -0.07
8 netissue(L) 10.92 1.05 1.02 0.08 0.16 0.24 0.23 12.48 1.85 1.02 0.11 0.12 0.41 0.20
9 netissue_m(L) 11.04 1.18 1.05 0.10 0.27 0.33 -0.02 10.72 0.29 1.04 -0.04 0.12 0.33 0.29
10 acc(L) 7.88 -0.37 1.02 0.21 -0.18 0.15 0.24 7.65 0.69 1.16 0.04 -0.18 -0.27 -0.09
11 roa(L) 7.05 2.68 0.98 -0.07 -0.46 0.20 0.08 9.80 2.74 0.98 -0.02 -0.42 0.30 -0.1
12 roe(L) 8.72 3.58 1.04 0.03 -0.45 0.22 0.04 9.76 0.97 1.01 -0.04 -0.25 0.40 0.1
13 failprob(L) 7.75 2.48 0.93 0 -0.41 0.08 0.23 10.02 3.03 0.87 0.16 -0.31 0.14 0.11
14 piotroski(L) 7.16 1.69 0.96 -0.03 -0.10 0.14 -0.1 7.70 -0.31 1.02 0.06 -0.1 0.19 -0.09
15 invest(L) 12.03 0.58 1.14 0.37 -0.06 0 0.53 9.84 0.51 1.02 0.24 -0.11 -0.09 0.53
16 idiovol(L) 6.31 1.09 0.83 -0.30 0.20 0.03 -0.02 8.04 0.33 0.79 -0.17 0.06 0.24 0.27
17 atgrowth(L) 10.70 -1.82 1.14 0.62 -0.23 -0.15 0.80 10.17 0.4 1.08 0.11 -0.06 -0.15 0.63
18 ato(L) 10.56 0.82 1.03 0.37 -0.04 0.37 0.07 8.84 0.34 0.95 0.16 -0.06 0.44 -0.2
19 gm(L) 4.7 0.45 0.93 -0.11 -0.37 0.11 0.1 9.27 3.71 0.97 -0.14 -0.35 -0.06 -0.06
20 profit(L) 7.05 1.56 0.94 -0.02 -0.31 0.28 0.07 10.48 2.17 0.94 0.08 -0.27 0.29 0.17
21 beta(S) 4.29 -3.71 1.31 0.55 0.02 -0.26 -0.51 5.73 -4.07 1.53 0.16 0.52 -0.54 -0.42
22 rome(S) -1.13 -11.53 1.16 0.30 -0.1 -0.2 0.52 4.31 -3.59 1.38 0.34 0.25 -0.89 -0.1
23 ohlson(S) 3.08 -6.49 1.10 0.81 -0.13 -0.45 0.13 5.07 -2.14 1.18 0.66 0.1 -0.57 -0.33
24 size(S) 5.06 -0.73 0.98 -0.29 -0.01 0.15 0.07 7.10 0.19 0.99 -0.26 0 0.02 -0.02
25 rev60m(S) 4.86 -0.72 1.10 0.1 -0.52 0.20 0.08 9.13 2.12 1.14 0.03 -0.18 0.13 -0.50
26 value(S) 3 -0.34 0.99 -0.02 -0.55 0.12 -0.03 7.45 1.18 1.03 -0.12 -0.35 0.07 -0.16
27 mom12m(S) -4.5 -11.32 1.07 0.51 0.23 -0.48 -0.51 2.72 -5.35 1.44 0.19 0.62 -0.64 -0.70
28 netissue(S) 3.16 -0.6 0.97 0.19 -0.04 -0.41 -0.42 3.44 -3.78 1.10 0.04 0.24 -0.14 -0.39
29 netissue_m(S) 5.31 0.48 0.99 0.22 -0.01 -0.34 -0.34 3.92 -3.09 1.12 0.12 0.26 -0.28 -0.41
30 acc(S) 3.81 -2.73 1.09 0.42 -0.27 0.09 -0.27 5.58 -1.83 1.08 0.44 -0.18 0.09 -0.47
31 roa(S) -0.29 -11.89 1.09 0.66 0.05 -0.33 0.41 3.27 -1.83 1.22 0.37 -0.20 -0.88 -0.21
32 roe(S) 0.51 -11.45 1.11 0.63 0.18 -0.30 0.3 1.57 -4.33 1.29 0.32 -0.11 -0.91 -0.14
33 failprob(S) -2.39 -11.46 1.29 1.09 0.31 -0.47 -0.11 0.67 -8.94 1.69 0.32 0.46 -0.78 -0.59
34 piotroski(S) 3.36 -3.51 1.04 0 -0.04 -0.33 0.26 7.09 -1.07 1.02 0.14 -0.04 -0.21 0.34
35 invest(S) 3.77 -2.2 1.12 0.25 -0.18 0.11 -0.38 5.2 -3.1 1.06 0.30 0.11 0.22 -0.48
36 idiovol(S) -3.6 -14.52 1.09 1.16 -0.02 -0.37 -0.1 3.67 -2.23 1.37 0.64 -0.19 -0.99 -0.36
37 atgrowth(S) 4.19 -1 1.09 0.31 -0.29 0.02 -0.36 6.07 -0.33 1.10 0.19 -0.24 0.08 -0.58
38 ato(S) 5.53 3.15 0.77 -0.19 0.33 -0.60 -0.39 3.69 -2.53 1.02 -0.12 0 -0.27 -0.04
39 gm(S) 7.46 -1.58 1.08 0.27 -0.02 -0.20 0.28 6.43 -0.83 0.94 0.39 -0.02 -0.20 0.05
40 profit(S) 4.88 1.8 0.90 -0.01 0.29 -0.92 -0.36 6.12 1.27 0.84 -0.10 -0.06 -0.33 0.07
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Table 3: Arbitrage Activity on Anomalies Inferred from Short Interests

Baseline: ArbActivityi,t = b0 + (αpre
i ×Xi,t)

′
b1 +X ′i,tb2 + ui + εi,t

The table studies the determinants of arbitrage activity on an anomaly using panel data (40 anomalies × 1974m1-2016m12) of short interests. The
dependent variable measures arbitrage activity on anomaly i in month t using the negative of (−1 × 104) the “abnormal” short interest defined as the
value-weighted average of short interest ratio (shares shorted / shares outstanding) minus the cross-sectional average short interest ratio of stocks that
belong to the size NYSE size decile, where the average is taken over all stocks that belong to the anomaly portfolio. I use short interests reported in
mid month and shares outstanding on the same day (if available) or the previous trading day. The post-1993 dummy is 0 for the pre-1993 (1974m1-
1993m12) and 1 for the post-1993 (1994m1-2016m12) periods. For columns (6)-(12), an anomaly’s “pre-arbitrage” alpha, denoted αpre, is measured
by its alpha with respect to the multifactor model specified in the column head in the pre-1993 period. Columns (11) and (12) use αpre computed in the
last 15 (1979m1-1993m12) and 10 years (1984m1-1993m12) leading to 1993m12, respectively. For failure probability, αpre is computed from 1981m1
onward. Post-Publication, Post-Sample, Post-1993, Post-1993×Post-Pub, and constant terms are included in the regression (whenever appropriate) but
not reported in the table. In the parentheses are standard errors adjusted for cross-anomaly covariances. ***, **, and * indicate 1%, 5%, and 10%
significance levels.

Long vs. Short Model: FF5 CAPM FF3 Carhart FF5(’79-) FF5(’84-)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Long× Post-Publication 66.09∗∗∗ 5.42 -15.26
(18.74) (14.19) (18.77)

Long× Post-Sample 71.70∗∗∗ 11.20 16.59
(18.53) (18.69) (16.76)

Long× Post-1993 79.08∗∗∗ 69.12∗∗∗ 55.31∗∗∗

(17.11) (18.90) (14.61)

Long× Post-1993× Post-Pub 29.04
(24.14)

αpre × Post-Pub 3.40∗∗ -0.25 -0.49 -1.48 -0.58 -1.22 -1.58
(1.50) (1.57) (1.44) (1.33) (1.99) (1.54) (1.61)

αpre × Post-Sample 0.77 2.11 3.36∗∗ 1.80 0.66 2.24∗ 2.51
(1.72) (1.35) (1.54) (1.18) (1.39) (1.25) (1.63)

αpre × Post-1993 8.86∗∗∗ 6.14∗∗∗ 5.71∗∗∗ 5.21∗∗∗ 7.62∗∗∗ 6.50∗∗∗ 6.77∗∗∗

(1.43) (1.06) (1.19) (1.02) (0.91) (1.08) (1.40)

αpre × Post-1993× Post-Pub 5.04∗∗∗ 2.69 5.41∗∗∗ 7.35∗∗∗ 6.32∗∗∗ 6.24∗∗∗

(1.64) (1.76) (1.44) (2.26) (1.36) (1.71)

Anomaly FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 20640 20640 20640 20640 20640 20640 20640 20640 20640 20640 20640 20640
AdjustedR2 0.11 0.11 0.16 0.17 0.18 0.28 0.28 0.23 0.29 0.28 0.30 0.28
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Table 4: Pre-1993 Beta Exposures of a Simple Long-Short Strategy on Anomalies

Baseline: βpre
i = b0 + b1 (1 (i ∈ ILong)− 1 (i ∈ IShort)) /2 + ui

The table regresses the pre-1993 factor betas of 40 anomalies on the “long - short” dummy variable
(2−1 (1 (i ∈ ILong)− 1 (i ∈ IShort))) to show that a simple long-short strategy on the anomalies has a
natural positive exposure to RMW and CMA but no significant exposure to MKT, SMB, and HML. I use the
pre-1993 period to infer exposures uncontaminated by the act of arbitrage. In the parantheses are standard
errors adjusted for cross-anomaly covariances in measurement errors. ***, **, and * indicate 1%, 5%, and
10% significance levels.

MKT βpre SMB βpre HML βpre RMW βpre CMA βpre

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Long - Short -0.063 -0.128 0.015 0.331∗∗∗ 0.238∗∗

(0.043) (0.125) (0.108) (0.090) (0.110)

Long 1.004∗∗∗ 0.218∗∗∗ -0.025 0.082∗ 0.151∗∗

(0.029) (0.084) (0.086) (0.048) (0.061)

Short 1.068∗∗∗ 0.346∗∗∗ -0.039 -0.249∗∗∗ -0.086
(0.031) (0.091) (0.065) (0.075) (0.091)

Constant 1.036∗∗∗ 0.282∗∗∗ -0.032 -0.083∗ 0.032
(0.021) (0.062) (0.054) (0.044) (0.055)

Observations 40 40 40 40 40 40 40 40 40 40
Adjusted R2 0.04 0.99 0.00 0.35 -0.03 -0.04 0.32 0.36 0.13 0.12
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Table 5: “Turning Alphas into Betas” in Beta Exposures to Fama-French Five Factors

Baseline: βpost
i = b0 + b1α

pre
i + b2β

pre
i + ui

The table shows the ability of pre-1993 alpha to explain the cross-section of post-1993 betas. I do this separately for factors that are likely to be systematic
shocks to arbitrage capital (RMW and CMA) and for factors that are not (MKT, SMB, and HML), in light of the result in Table 4. Both alphas and betas
are with respect to the Fama-French (2015) five-factor model. In the parentheses are standard errors adjusted for cross-anomaly covariances in measurement
errors. ***, **, and * indicate 1%, 5%, and 10% significance levels.

Factors That Proxy Arbitrage Capital Shocks Other Fama-French Factors

RMW βpost CMA βpost MKT βpost SMB βpost HML βpost

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Long - Short 0.444∗∗∗ 0.409∗∗∗

(0.129) (0.110)

αpre 0.054∗∗∗ 0.030∗∗ -0.018∗∗∗ 0.005 -0.011
(0.011) (0.014) (0.006) (0.009) (0.012)

βpre 0.579∗∗∗ 0.981∗∗∗ 0.676∗∗∗ 0.627∗∗∗ 0.904∗∗∗ 1.265∗∗∗ 0.628∗∗∗ 0.582∗∗∗ 0.625∗∗∗ 0.658∗∗∗

(0.115) (0.243) (0.139) (0.157) (0.244) (0.270) (0.099) (0.100) (0.083) (0.103)

αpre × Long 0.061∗∗∗ -0.013 0.001
(0.022) (0.026) (0.008)

αpre × Short 0.056∗∗∗ 0.026 -0.018∗∗

(0.012) (0.019) (0.008)

βpre × Long 0.703∗∗ 0.368 0.936∗∗∗

(0.337) (0.307) (0.202)

βpre × Short 0.616∗∗∗ 0.605∗∗∗ 0.834∗

(0.131) (0.216) (0.454)

Long -0.083 0.197 -0.178
(0.069) (0.128) (0.505)

Constant -0.130∗∗ 0.012 -0.048 0.055 -0.066 -0.036 -0.086 -0.101 0.104 -0.239 0.204 -0.000 0.004 -0.002 0.018
(0.062) (0.034) (0.045) (0.051) (0.053) (0.048) (0.056) (0.095) (0.251) (0.269) (0.471) (0.025) (0.024) (0.034) (0.047)

Observations 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
Adjusted R2 0.29 0.86 0.48 0.85 0.40 0.55 0.34 0.59 0.72 0.57 0.74 0.75 0.75 0.58 0.55
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Table 6: Arbitrage Activity Explains the Endogenous Post-1993 Betas

Baseline: βpost
i = b0 + b1ArbActivity

post
i + b2β

pre
i + ui

The table relates the cross-section of post-1993 betas to the cross-section of post-1993 arbitrage activity
using a cross-sectional regression with 40 anomalies. Arbitrage activity is measured as the negative (×− 1)
of the “abnormal” short interest defined as the value-weighted average of short interest ratio (shares shorted
/ shares outstanding) minus the cross-sectional average short interest ratio of stocks that belong to the size
NYSE size decile, where the average is taken over all stocks that belong to the anomaly portfolio and then
over the post-1993 period. I use short interests reported in mid month and shares outstanding on the same day
(if available) or the previous trading day. In the parentheses are standard errors adjusted for cross-anomaly
covariances in measurement errors. ***, **, and * indicate 1%, 5%, and 10% significance levels.

RMW βpost CMA βpost

(1) (2) (3) (4) (5) (6)

Post-1993 Arbitrage Activity 0.306∗∗∗ 0.216∗∗∗

(0.073) (0.083)

Pre to Post-1993 Change in Arbitrage Activity 0.392∗∗∗ 0.259∗∗

(0.088) (0.101)

Pre-1993 Arbitrage Activity× Long 0.310∗∗∗ 0.142
(0.110) (0.142)

Pre-1993 Arbitrage Activity× Short 0.333∗∗∗ 0.184∗

(0.090) (0.109)

βpre 0.574∗∗∗ 0.554∗∗∗ 0.592∗∗∗ 0.614∗∗∗

(0.118) (0.118) (0.120) (0.122)

βpre × Long 0.748∗∗∗ 0.552∗∗

(0.267) (0.241)

βpre × Short 0.584∗∗∗ 0.498∗∗∗

(0.156) (0.159)

Long -0.085 0.106
(0.098) (0.110)

Constant 0.057 0.053 0.106 0.013 0.004 -0.055
(0.038) (0.039) (0.087) (0.046) (0.046) (0.093)

Observations 40 40 40 40 40 40
Adjusted R2 0.78 0.80 0.77 0.64 0.63 0.63
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Table 7: The Part of Post-1993 Beta Predicted by Pre-1993 Alpha Arises in Constrained Post-1993 Period

Baseline: βpost, constrained
i = b0 + b1α

pre
i + b2β

pre
i + ui

The table shows that the ability of pre-1993 alpha to explain the cross-section of post-1993 betas for RMW and CMA comes from its ability to
predict betas in the constrained times of the post-1993 period. The constrained vs. unconstrained post-1993 periods are proxied by months in which
the 3-month moving average of VIX is above vs. below the median (see Figure 1). Both alphas and betas are with respect to the Fama-French
(2015) five-factor model. In the parentheses are standard errors adjusted for cross-anomaly covariances in measurement errors. ***, **, and *
indicate 1%, 5%, and 10% significance levels.

Unconstrained Post-1993 Period (Low-VIX) Constrained Post-1993 Period (High-VIX)

α ArbActivity RMWβ CMAβ α ArbActivity RMWβ CMAβ

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Long - Short 2.483∗ 0.011∗∗∗ 0.125 0.184 3.478 0.009∗∗∗ 0.194 0.285∗∗

(1.485) (0.002) (0.124) (0.126) (2.301) (0.002) (0.124) (0.135)

αpre 0.036∗∗ 0.008 0.058∗∗∗ 0.031
(0.017) (0.016) (0.013) (0.020)

βpre 0.584∗∗ 0.439∗∗ 0.446∗∗ 0.578∗∗∗ 0.819∗∗∗ 0.580∗∗∗ 0.437∗∗∗ 0.673∗∗∗

(0.270) (0.183) (0.206) (0.220) (0.270) (0.126) (0.166) (0.167)

Constant -0.294 -0.006∗∗∗ -0.075 -0.024 -0.012 -0.002 0.284 -0.003∗∗∗ -0.080 0.001 -0.098 -0.051
(0.794) (0.001) (0.057) (0.046) (0.071) (0.069) (1.073) (0.001) (0.055) (0.038) (0.063) (0.054)

Observations 40 40 40 40 40 40 40 40 40 40 40 40
Adjusted R2 0.18 0.38 0.38 0.62 0.27 0.22 0.29 0.28 0.50 0.88 0.49 0.56
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Table 8: The Role of Arbitrage Costs in the Alphas-into-Betas Relation

Baseline: βpost
i = b0 + b1α

pre
i × Costi + b2α

pre
i + b3Costi + b4β

pre
i + ui

The table shows how the anomaly’s size (expressed in ×− 1), idiosyncratic volatility (“Idivol”), illiquidity
(“Amihud”), and bid-ask spread affects the level of arbitrage involvement inferred from the regression of
post-1993 betas on pre-1993 alphas. The dependent variable is the post-1993 beta with respect to RMW or
CMA, a proxy for systematic shocks to arbitrage capital. Both alphas and betas are with respect to the Fama-
French (2015) five-factor model. The cost of arbitrage of an anomaly is calculated as value-weighted decile
ranks (based on NYSE stocks) of the underlying stocks’ costs of arbitrage as measured by size, illiquidity
(Amihud, 2002), idiosyncratic volatility, or bid-ask spread (Corwin and Schultz, 2012). This measure is
averaged over time within the pre-1993 period with little arbitrage disturbance and then cross-sectionally
standardized for the ease of interpretation. In the parantheses are standard errors adjusted for cross-anomaly
covariances in measurement errors. ***, **, and * indicate 1%, 5%, and 10% significance levels.

RMW βpost CMA βpost

(1) (2) (3) (4) (5) (6) (7) (8)

αpre × Cost -0.001 -0.005 0.001 -0.005 -0.002 -0.012∗∗ 0.000 -0.016∗∗

(0.005) (0.004) (0.005) (0.005) (0.007) (0.006) (0.008) (0.007)

αpre 0.052∗∗∗ 0.049∗∗∗ 0.051∗∗∗ 0.048∗∗∗ 0.033∗∗∗ 0.028∗∗ 0.033∗∗∗ 0.031∗∗

(0.009) (0.010) (0.009) (0.010) (0.012) (0.013) (0.012) (0.014)

Cost -0.024 -0.070∗ -0.020 -0.073∗∗ 0.022 -0.104∗ 0.036 -0.100∗

(0.030) (0.038) (0.029) (0.034) (0.042) (0.063) (0.041) (0.060)

βpre 0.559∗∗∗ 0.575∗∗∗ 0.563∗∗∗ 0.595∗∗∗ 0.675∗∗∗ 0.723∗∗∗ 0.665∗∗∗ 0.747∗∗∗

(0.094) (0.092) (0.092) (0.091) (0.119) (0.121) (0.120) (0.125)

Constant 0.006 -0.014 0.009 -0.014 -0.035 -0.084∗ -0.030 -0.092∗∗

(0.035) (0.034) (0.034) (0.033) (0.050) (0.048) (0.048) (0.045)

Cost of Arbitrage Size Idivol Amihud Spread Size Idivol Amihud Spread
Observations 40 40 40 40 40 40 40 40
AdjustedR2 0.85 0.86 0.85 0.87 0.53 0.59 0.54 0.61
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Table 9: Explaining the Cross-section of Funding-liquidity Betas

The table applies the key cross-sectional tests to understand the cross-section of betas with respect to the funding-liquidity factor (also called
“leverage factor”) of Adrian, Etula, and Muir (2014), controlling for the Fama-French (2015) (FF) five factors. The alphas are with respect to FF
five factors. The anomaly data used in this analysis are quarterly (1974Q1-2016Q4) to match the quarterly frequency of the funding-liquidity factor.
The constrained vs. unconstrained post-1993 periods are proxied by quarters in which the VIX is above vs. below the median. In the parentheses
are standard errors adjusted for cross-anomaly covariances in measurement errors. ***, **, and * indicate 1%, 5%, and 10% significance levels.

βpre
f βpost

f Unconstrained βpost
f Constrained βpost

f

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Long - Short 0.24 9.03 -5.03 16.80
(3.42) (6.86) (4.88) (10.56)

αpre -0.03 0.54∗ 0.56∗∗ 0.15 -0.01 0.93∗∗

(0.16) (0.28) (0.28) (0.26) (0.23) (0.42)

βpre
f 0.70 0.71 0.35 0.44 0.32 0.30 0.70 1.07

(0.49) (0.45) (0.44) (0.45) (0.62) (0.62) (1.01) (0.88)

αpre × Short 0.61∗∗

(0.30)

βpre
f × Short 0.17

(0.66)

Post-1993 Arbitrage Activity 11.89∗

(6.14)

Pre to Post-1993 Change in Arbitrage Activity 14.51∗

(7.48)

Short 3.07
(3.38)

Constant 0.99 0.79 -4.51 -0.97 -1.53 -1.13 0.54 0.10 -0.07 -0.13 -8.08 -2.36
(1.64) (1.13) (3.70) (2.45) (2.67) (2.29) (2.12) (2.17) (3.01) (2.19) (6.95) (4.73)

Observations 40 40 40 40 40 40 40 40 40 40 40 40
Adjusted R2 -0.03 -0.02 0.10 0.53 0.60 0.69 0.58 0.57 0.11 -0.01 0.15 0.60

39



10
20

30
40

50
60

VI
X

1995m12 2000m12 2005m12 2010m12 2015m12

Month-end VIX Median
Constrained Unconstrained

Figure 1: Constrained vs. Unconstrained Post-1993 Periods Inferred from the VIX
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Figure 2: Funding-Liquidity Shocks Measured by Broker-Dealer Leverage Shocks
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A Additional Tables

Table A1: In-Sample to Out-of-Sample Change in the Estimated RMW and CMA Betas

Baseline: β̂i,t = b0 + b1 (α
pre
i × 1 (t /∈ sample)) + b21 (t /∈ sample) + ui + εi,t

The dependent variable is the beta estimated over one year using daily returns on the anomaly and the factor.
In the parentheses are standard errors not adjusted for cross-anomaly covariances in betas but adjusted for
serial correlations in the betas within an anomaly. ***, **, and * indicate 1%, 5%, and 10% significance
levels.

RMW βpost CMA βpost

(1) (2) (3) (4) (5) (6) (7) (8)

Long× Out-of-Sample -0.006 -0.069 0.057 0.018
(0.048) (0.051) (0.067) (0.066)

Long× Post-1993 0.104∗ 0.065
(0.059) (0.070)

αpre × Out-of-Sample 0.012∗∗∗ -0.001 0.007 -0.001
(0.003) (0.003) (0.007) (0.006)

αpre × Post-1993 0.022∗∗∗ 0.013∗∗

(0.005) (0.006)

Out-of-Sample -0.016 0.065∗ 0.002 0.030 -0.078∗ -0.013 -0.038 -0.005
(0.032) (0.034) (0.023) (0.026) (0.039) (0.036) (0.040) (0.039)

Post-1993 -0.133∗∗ -0.043 -0.108∗∗ -0.053
(0.050) (0.028) (0.047) (0.040)

Constant -0.128∗∗∗ -0.117∗∗∗ -0.126∗∗∗ -0.118∗∗∗ -0.012 -0.003 -0.012 -0.003
(0.016) (0.017) (0.014) (0.015) (0.022) (0.023) (0.022) (0.023)

Anomaly FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 1,720 1,720 1,720 1,720 1,720 1,720 1,720 1,720
AdjustedR2 -0.00 0.03 0.01 0.06 0.00 0.01 0.00 0.02
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Table A2: In-Sample to Out-of-Sample Change in the Estimated MKT, SMB, and HML Betas

Baseline: β̂i,t = b0 + b1 (α
pre
i × 1 (t /∈ sample)) + b21 (t /∈ sample) + ui + εi,t

The dependent variable is the beta estimated over one year using daily returns on the anomaly and the factor.
In the parentheses are standard errors not adjusted for cross-anomaly covariances in betas but adjusted for
serial correlations in the betas within an anomaly. ***, **, and * indicate 1%, 5%, and 10% significance
levels.

MKT βpost SMB βpost HML βpost

(1) (2) (3) (4) (5) (6)

Long× Out-of-Sample -0.002 0.098∗∗ 0.005
(0.027) (0.047) (0.054)

Long× Post-1993 0.009 -0.092 -0.005
(0.035) (0.056) (0.056)

αpre × Out-of-Sample -0.006∗∗ -0.001 -0.004
(0.002) (0.004) (0.004)

αpre × Post-1993 0.010∗∗∗ -0.003 -0.002
(0.003) (0.005) (0.007)

Out-of-Sample 0.009 -0.001 -0.025 0.023 0.079∗ 0.076∗∗∗

(0.021) (0.012) (0.033) (0.025) (0.043) (0.027)

Post-1993 -0.059∗∗ -0.037∗∗ 0.025 -0.027 -0.023 -0.028
(0.026) (0.016) (0.036) (0.030) (0.047) (0.026)

Constant 1.052∗∗∗ 1.051∗∗∗ 0.155∗∗∗ 0.155∗∗∗ -0.088∗∗∗ -0.089∗∗∗

(0.006) (0.006) (0.012) (0.013) (0.018) (0.018)

Anomaly FE Yes Yes Yes Yes Yes Yes
Observations 1,720 1,720 1,720 1,720 1,720 1,720
AdjustedR2 0.04 0.07 0.01 0.00 0.01 0.01
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Table A3: Post-1993 Beta Exposures of Equity Long-Short Hedge Funds

Baseline: rei,t = β0 + βMKT rMKT,t + βSMBrSMB,t + βHMLrHML,t + βRMW rRMW,t + βCMArCMA,t + εi,t

The table computes the post-1993 beta exposures of equity long-short hedge funds proxied by a 90/10 mix of
equity market neutral hedge fund return and equity short-bias hedge fund indices from Hedge Fund Research
(HFR). The standard errors are heteroskedasticity-robust OLS standard errors. ***, **, and * indicate 1%,
5%, and 10% significance levels.

Equity Long-Short Alternative Mix of Equity Market Neutral + Short Bias Hedge Funds

Hedge Funds (90/10) 100/0 80/20 60/40 40/60 20/80 0/100

(1) (2) (3) (4) (5) (6) (7)

MKT 0.007 0.085∗∗∗ -0.070∗∗∗ -0.225∗∗∗ -0.380∗∗∗ -0.534∗∗∗ -0.689∗∗∗

(0.015) (0.016) (0.016) (0.021) (0.029) (0.038) (0.047)

SMB 0.005 0.045∗∗ -0.035∗ -0.114∗∗∗ -0.194∗∗∗ -0.273∗∗∗ -0.352∗∗∗

(0.018) (0.019) (0.018) (0.025) (0.034) (0.046) (0.057)

HML 0.008 -0.020 0.036 0.091∗∗∗ 0.147∗∗∗ 0.202∗∗∗ 0.258∗∗∗

(0.023) (0.024) (0.025) (0.032) (0.042) (0.053) (0.065)

RMW 0.087∗∗∗ 0.068∗∗ 0.105∗∗∗ 0.142∗∗∗ 0.178∗∗∗ 0.215∗∗∗ 0.252∗∗∗

(0.023) (0.028) (0.022) (0.031) (0.046) (0.063) (0.081)

CMA 0.076∗∗ 0.058 0.093∗∗∗ 0.127∗∗∗ 0.162∗∗∗ 0.196∗∗∗ 0.231∗∗

(0.032) (0.036) (0.031) (0.038) (0.054) (0.072) (0.092)

Constant 0.136∗∗∗ 0.146∗∗∗ 0.126∗∗∗ 0.107∗ 0.087 0.067 0.048
(0.047) (0.050) (0.048) (0.064) (0.089) (0.117) (0.146)

Observations 276 276 276 276 276 276 276
Adjusted R2 0.16 0.15 0.48 0.72 0.77 0.79 0.80
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Table A4: Constrained vs. Unconstrained Post-1993 Period Betas: MKT, SMB, and HML

Baseline: βpost, constrained
i = b0 + b1α

pre
i + b2β

pre
i + ui

The table studies the ability of pre-1993 alpha to explain the cross-section of constrained vs. unconstrained post-1993 period betas for MKT, SMB,
and HML. The constrained vs. unconstrained post-1993 periods are indicated in Figure 1. Both alphas and betas are with respect to the Fama-
French (2015) five-factor model. In the parentheses are standard errors adjusted for cross-anomaly covariances in measurement errors. ***, **, and
* indicate 1%, 5%, and 10% significance levels.

Unconstrained Post-1993 Period (Low-VIX) Constrained Post-1993 Period (High-VIX)

MKTβ SMBβ HMLβ MKTβ SMBβ HMLβ

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Long - Short -0.057 -0.135∗ -0.083 -0.157∗∗∗ 0.046 -0.111
(0.046) (0.070) (0.090) (0.060) (0.077) (0.123)

βpre 1.049∗∗∗ 0.940∗∗∗ 0.634∗∗∗ 0.589∗∗∗ 0.585∗∗∗ 0.575∗∗∗ 1.139∗∗∗ 0.914∗∗∗ 0.573∗∗∗ 0.643∗∗∗ 0.688∗∗∗ 0.640∗∗∗

(0.219) (0.208) (0.098) (0.109) (0.148) (0.153) (0.265) (0.281) (0.123) (0.119) (0.152) (0.118)

αpre -0.009 -0.009 -0.002 -0.020∗∗ 0.009 -0.015
(0.006) (0.011) (0.012) (0.008) (0.012) (0.018)

Constant -0.031 0.067 0.060∗∗ 0.058∗ -0.047 -0.051 -0.111 0.088 -0.022 -0.026 0.043 0.016
(0.214) (0.205) (0.029) (0.030) (0.048) (0.045) (0.264) (0.290) (0.029) (0.029) (0.070) (0.049)

Observations 40 40 40 40 40 40 40 40 40 40 40 40
Adjusted R2 0.70 0.72 0.78 0.74 0.47 0.45 0.64 0.68 0.65 0.66 0.50 0.52
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B Theory Appendix

B.1 Solving the pre-arbitrage equilibrium

Proof of Lemma 1 (Asset returns in the pre-arbitrage economy). Since the behavioral in-

vestors alone clear the market, equation (1) implies that the price at time t is simply the

price at time t + 1 discounted by the behavioral investors’ asset-specific discount factor

1 + rmaxi:

pi,t = (1 + rmaxi)
−1 pi,t+1,

where the expected dividend term drops out by the zero-mean assumption Et [δi,t+1] = 0. It

follows that the return on asset i at time t+ 1 is

ri,t+1 = rmaxi︸ ︷︷ ︸
≡αpre

i

+ (1 + rmaxi)
3−t δi,t+1

v︸ ︷︷ ︸
≡εi,t+1

.

with δi,3 = 0 and ∂αprei /∂i = rmax > 0.

B.2 Solving the post-arbitrage equilibrium

The arbitrageur’s objective function in (2) implies the following value function at t ∈ {1, 2}:

Vt (wt, ft) = max{xi,t} Et [Vt+1 (wt+1, ft+1)]

s.t.
∫ 1

0
|xi,t| di ≤ (wt + ft)

wt+1 = wt +
∫ 1

0

(
pi,t+1+δi,t+1

pi,t
− 1
)
xi,tdi+ w̃t+1

V3 = w3

in the non-default state (wt > 0), and

Vt = (1 + c)3−twt (23)

in the default state (wt ≤ 0). Then, it is straightforward to solve the time-2 equilibrium prices:
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Proof of Lemma 2 (Time-2 equilibrium prices). The arbitrageur’s value function at time 2 in

the non-default state (w2 > 0) is

V2 = w2 + max
{xi,2}

{∫ 1

0

E2 [ri,3]xi,2di+ ψ2

[
w2 + f2 −

∫ 1

0

|xi,2| di
]}

(24)

where ψ2 = 0 if the arbitrageur is unconstrained. Since the arbitrageur does not take a

negative position on the assets in equilibrium (doing so would generate a negative expected

return due to the behavioral investor demand), the first order condition with respect to xi,2

within the value function at time 2 implies

E2 [ri,3] ≤ ψ2

Now, suppose that there exists a marginal asset i∗2 such that the condition binds for i ≥ i∗2

and is slack for i < i∗2. The unexploited assets (i < i∗2) are priced by the behavioral investors

using the demand curve in (1) so that mi,3 = 1/ (1 + rmaxi). The exploited assets share

the same discount factor 1/ (1 + rmaxi
∗
2), which coincides with the behavioral investors’

discount factor for the marginal asset. Finally, since the behavioral investors’ demand in (1)

and market clearing imply µxi,1 = 2−1xi,1 = i− i∗2, the marginal asset is given by

k2 =

∫ 1

i∗2

xi,1di = (1− i∗2)2 ⇐⇒ i∗2 = 1−
√
k2

in the constrained case. Given these discount factors, E2 [ri,3] = rmaxi
∗
2 for any i ≥ i∗2 and

E2 [ri,3] = rmaxi < rmaxi
∗
2 for i < i∗2 so that i∗2 is indeed the marginal asset. If k2 ≥ 1,

1 −
√
k2 ≤ 0 and all assets are exploited so that i∗2 = 0. If k2 ≤ 0, no asset is exploited so

that i∗2 = 1.

For completeness, one can obtain the equilibrium arbitrage position on asset i at time 2 from this

proof:

xi,2 =

 i− i∗2

0

if i ≥ i∗2

if i < i∗2

.

Next is the marginal value of wealth and the value function at time 2:

Proof of Lemma 3 (Time-2 marginal value of wealth). First, consider w2 > 0. The derivative
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of the value function (24) with respect to w2 gives Λ2 = 1 + ψ2. For ψ2 , the derivative

with respect to any exploited asset’s xi,2 within the bracket implies ψ2 = E2 [ri,3] = rmaxi
∗
2,

where the second equality follows from equation (5). Next, Λ2 for w2 ≤ 0 follows from

equation (23). Finally, V2 = Λ2w2 since Lemma 2 implies that the marginal value of wealth

Λ2 = 1 + ψ2 = 1 + rmaxi
∗
2 is also the average return on wealth in the non-default state and

w3 = (1 + c)w2 in the non-default case.

Next, I derive the equilibrium prices at time 1:

Proof of Lemma 4 (Time-1 equilibrium prices). Since again the arbitrageur does not take neg-

ative positions in the assets in equilibrium, in the unconstrained case where ψ1 = 0, taking

the first order condition with respect to xi,1 within the maximization bracket implies the

fundamental theorem of asset pricing with Λ1 = E1 [Λ2]. In the constrained case, tak-

ing the first order condition with respect to xi,1 within the maximization bracket implies

(E1 [Λ2] + ψ1) pi,1 ≥ E1 [Λ2 (pi,2 + δi,2)], which holds with equality if xi,1 > 0. Then,

Λ1 = dV1/dw1 = E1 [Λ2] +ψ1 pins down the prices of the exploited assets. The unexploited

assets are priced by the behavioral investors so that pi,1 = E1

[
(1 + rmaxi)

−1 (pi,2 + δi,2)
]
.

Given these prices, the equilibrium arbitrage positions are given by behavioral investor de-

mand (1). Finally, to obtain k∗1 , assume that all assets are exploited and combine (1) and (7)

to obtain

E1

[
Λ2

E1 [Λ2]
(pi,2 + δi,2)

]
=

E1 [pi,2 + δi,2]

1 + rmax (i− µxi,1)
,

which gives

xi,1 = 2

(
i− 1

rmax

[(
1 + Cov1

(
Λ2

E1 [Λ2]
,
pi,2 + δi,2
E1 [pi,2]

))−1

− 1

])
.

Rearranging and setting k∗1 =
∫ 1

0
xi,1di gives

k∗1 = 1− 2

rmax

∫ 1

0

{(
1 + Cov1

(
Λ2

E1 [Λ2]
,
pi,2 + δi,2
E1 [pi,2]

))−1

− 1

}
,

which is less than or equal to 1 since Cov (Λ2, pi,2 + δi,2) = Cov (1 + rmaxi
∗
2, pi,2 + δ2) ≤ 0

∀i since pi,2 = v/ (1 + rmaxi
∗
1) or pi,2 = v/ (1 + rmaxi) and i∗2 = 1 −

√
k2 where k2 =

w1 +
∫ 1

0
(pi,2 + δ2)xi,1di.
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B.3 Proof of other lemmas

Proof of Lemma 5 (Equilibrium with unconstrained arbitrageurs). Since k2 ≥ 1 with cer-

tainty, Λ2 = 1 and i∗2 = 1 with certainty. It follows from equation (5) that the prices of all

assets at time 2 is pi,2 = v and ri,3 = εi,3 ≡ δi,3/v. It follows from this and the assumption

k1 ≥ k∗1 = 1 (note k∗1 = 1 in this special case with no endogenous risk) that, by Lemma 4,

pi,1 = E1 [pi,2 + δi,2] = v so that ri,2 = εi,2 ≡ δi,2/v.

Proof of Lemma 6 (Asset returns with constrained arbitrageurs). The expected return for-

mula follows from an algebraic manipulation of Lemma 4. βi,m > 0 is true because

Cov1

(
ri,2,m

A
2

)
= Cov1

(
pi,2 + δi,2,m

A
2

)
= Cov1

(
v

mi,2

,mA
2

)

where mi,2 = mA
2 when i > i∗2 and mi,2 = (1 + rmaxi)

−1 when i ≤ i∗2. Finally, λm > 0 by

assumption since k2 has a full support over [0, 1].

Proof of Lemma 7 (A factor model of asset returns). Since mA
2 =

(
1 + rmax

(
1−
√
k2

))
/Λ1

at k ∈ (0, 1), a first-order approximation around k2 ≡ (1− r−1
max (E1 [Λ2]− 1))

2 is mA
2 ≈

E1

[
mA

2

]
− rmax

(
2Λ1

√
k2

)−1 (
k2 − k2

)
. Thus,

E [ri,2] = λi,0 + λmβi,m ≈ λi,0 +
rmaxV ar1 (k2)

2Λ1E1 [mA
2 ]
√
k2︸ ︷︷ ︸

≡λk

Cov1 (ri,2, k2)

V ar1 (k2)︸ ︷︷ ︸
≡βi,k

.

Since k2 = w2 + f2 = w1 +
(∫ 1

0
|xi,1| di

)
rA2 + w̃2 + f2, this also means

E [ri,2] ≈ λi,0+
rmax

(∫ 1

0
|xi,1| di+ a

)
V ar1

(
rA2
)

2Λ1E1 [mA
2 ]
√
k2︸ ︷︷ ︸

≡λr

βi,r+
rmaxV ar1 (w̃2)

2Λ1E1 [mA
2 ]
√
k2︸ ︷︷ ︸

≡λw

βi,w+
rmaxV ar1 (f2)

2Λ1E1 [mA
2 ]
√
k2︸ ︷︷ ︸

≡λf

βi,f
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To see βi,k > 0 for i > 0, note

Cov1 (ri,2, k2) = p−1
i,1Cov1 (pi,2 + δi,2, k2) = p−1

i,1Cov1

(
v

mi,2

, k2

)
where we know

∂mi,2

∂k2

≤ 0

for i > 0. Also, for any random variable x, we know

Cov (x, f (x)) = E [(x− E [x]) (f (x)− E [f (x)])]

= E [(x− E [x]) (f (x)− f (E [x]))]︸ ︷︷ ︸
≥0

+E [(x− E [x]) (f (E [x])− E [f (x)])]︸ ︷︷ ︸
=0

≥ 0

if f ′ (x) ≥ 0, which is the case when x is k2 and f (x) is mi,2 (k2).

B.4 Proof of the propositions

Proof of Proposition 1 (Pre-arbitrage alpha determines the cross-section of post-arbitrage

betas). (i) The steps itself has two steps: first prove that the prices of high-i assets respond

more strongly to the variation in arbitrage capital and then prove that this implies those assets

have higher arbitrage capital betas. For the first step, since Cov1 (pi,2, k2) = E1 [pi,2k2] −
E1 [pi,2]E1 [k2],

Cov1 (pi,2, k2) = v

∫ k2(i)

−∞

k2

1 + rmaxi
dF (k2) + v

∫ ∞
k2(i)

k2

1 + rmaxi∗2
dF (k2)

−vE1 [k2]

(∫ k2(i)

−∞

1

1 + rmaxi
dF (k2) +

∫ ∞
k2(i)

1

1 + rmaxi∗2
dF (k2)

)
,

where k2 (i) denotes the value of k2 that makes i the marginal asset, and F is the conditional

conditional cumulative density function of k2. The derivative of the covariance with respect
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to i gives

∂Cov1 (pi,2, k2)

∂i
= −v

∫ k2(i)

−∞

k2

(1 + rmaxi)
2dF (k2) + vE1 [k2]

∫ k2(i)

−∞

1

(1 + rmaxi)
2dF (k2) ,

where the Leibniz terms cancel out by the fact that i∗2 (k2 (i)) = i. Rearranging the terms

gives

∂Cov1 (pi,2, k2)

∂i
=

v

(1 + rmaxi)
2 (E1 [k2]− E1 [k2| k2 ≤ k2 (i)])F (k2 (i))

> 0.

Next, to show how this monotonicity of the price covariance implies ∂Cov1 (ri,2, k2) /∂i >

0, it suffices to show that the equilibrium time-1 prices are non-increasing in i:

∂pi,1
∂i
≤ 0.

To see this, suppose for a contradiction that i < j but pi,1 < pj,1. Suppose also that j is

priced by the arbitrageur so that pj,1 = E0

[
Λ2

Λ1
pj,2

]
. Since pi,2 ≥ pj,2 in all states of t = 2, it

must be that

pi,1 ≥ E1

[
Λ1

Λ0

pi,2

]
≥ E1

[
Λ1

Λ0

pj,2

]
which is a contradiction. Now suppose that j is priced by the behavioral investors so that

pj,1 = 1
1+rmaxj

E1 [pj,2]. Again, since pi,2 ≥ pj,2 in all states of t = 2, it must be that

pi,1 ≥
1

1 + rmaxi
E1 [pi,2] ≥ 1

1 + rmaxj
E1 [pj,2]

which is also a contradiction. Hence, pi,1 is non-increasing in i. Putting these together, we

see that Cov1 (ri,2, k2) is non-decreasing in i:

∂Cov1 (ri,2, k2)

∂i
> 0.

It follows that
∂βi,k
∂αi

=
1

rmaxV ar1 (k2)
× ∂Cov1 (ri,2, k2)

∂i
> 0.
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(ii) This follows from a similar application of the method above, which I skip here.

(iii) Now I show that the proof holds similarly for βi,m. This, I show formally. Note

∂Cov1 (pi,2,Λ2)

∂ (αi)
=
∂Cov1 (pi,2,Λ2)

∂ (rmaxi)
=

∂Cov1(pi,2,Λ2)

∂i
∂(rmaxi)

∂i

= r−1
max ×

∂Cov1 (pi,2,Λ2)

∂i

Now, since Cov1 (pi,2,Λ2) = E1 [Λ2pi,2]− E1 [Λ2]E1 [pi,2],

Cov1 (pi,2,Λ2) = v

∫ 0

−∞

1 + c

1 + rmaxi
dF (k2) + v

∫ k2(i)

0

1 + rmaxi
∗
2

1 + rmaxi
dF (k2) + v

∫ ∞
k2(i)

dF (k2)

−vE1 [Λ2] (

∫ 0

−∞

1

1 + rmaxi
dF (k2) + v

∫ k2(i)

0

1

1 + rmaxi
dF (k2)

+v

∫ 1

k1(i)

1

1 + rmaxi∗2
dF (k2) + v

∫ ∞
1

dF (k2)),

where k2 (i) denotes the value of k2 that makes i the marginal anomaly, and F is the condi-

tional cumulative density function of k1. Thus, the derivative of the covariance with respect

to i gives

∂Cov1 (pi,2,Λ2)

∂i
= −v

(∫ 0

−∞

(1 + c) rmax

(1 + rmaxi)
2dF (k2) +

∫ k2(i)

0

(1 + rmaxi
∗
1) rmax

(1 + rmaxi)
2 dF (k2)

)

+E1 [Λ2] v

(∫ 0

−∞

rmax

(1 + rmaxi)
2dF (k2) +

∫ k2(i)

0

rmax

(1 + rmaxi)
2dF (k2)

)
,

where the Leibniz terms cancel out by the fact that i∗2 (k2 (i)) = i. Rearranging the terms

gives

∂Cov1 (pi,2,Λ2)

∂i
= − v rmax

(1 + rmaxi)
2

(∫ k2(i)

−∞
Λ2dF (k2)− E1 [Λ2]

∫ k2(i)

−∞
dF (k2)

)

= − v rmax

(1 + rmaxi)
2 (E1 [Λ2| i < i∗2]− E1 [Λ2])F (k2 (i))

< 0

since E1 [Λ2| i < i∗2] > E1 [Λ2]. This monotonicity of price covariance implies the mono-

tonicity of return covariance by the same logic as in (i).
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Proof of Proposition 2 (The cross-section of average arbitrage positions explains the cross-

section of post-arbitrage betas). Since xi,2 = i − i∗2, the expectation of aggregate ar-

bitrage position is µE1 [xi,2] = µ (i− E1 [i∗2]). Thus, ∂βi/∂ (µE1 [xi,2]) = (∂βi/∂i) ×
(∂i/∂ (µE1 [xi,2])) ∝ ∂βi/∂i > 0.

Proof of Proposition 3 (The endogenous post-arbitrage beta arises when the arbitrageur is

constrained). Follows trivially from the analysis in Lemma 5.

Proof of Proposition 4 (An upward-biased price of risk in a naive asset pricing test). The

data-generating process considered by the econometrician is

ri,2 =

 rprei,2 = αprei + εprei,2

rposti,2 ≈ αi,0 + λkβi,k + εposti,2

with probability φ

with probability 1− φ

where βi,k ≈ b αprei . Hence, E [ri,2] ≈ φαprei + (1− φ) (αi,0 + λkβi,k) ≈ (1− ρ)λi,0 +λk,0 + φb−1︸︷︷︸
bias

 βi,k.
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