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“Embedded leverage...is the only reason for the existence of leveraged ETFs.” – Frazzini

and Pedersen (2012)

1. Introduction

A number of recent theories have explored the proposition that marginal investors’ abil-

ity to take leverage is a key determinant of asset prices. The tightness of leverage con-

straints is measured by the shadow cost, i.e., the difference between marginal investors’

funding cost and the risk-free rate when the credit risk is fully hedged (Garleanu and Ped-

ersen (2011)).1 Despite its central role, data on the shadow cost of leverage constraints are

lacking because financing terms are typically negotiated bilaterally (and confidentially) be-

tween lenders and leveraged investors. As a result, existing empirical studies mostly use the

Treasury-Eurodollar (TED) spread as the shadow cost measure.2

Our key innovation is to construct a market-wide cost of leverage measure by using

market data on leveraged funds. Leveraged funds provide an attractive alternative to the

TED spread for measuring the shadow cost of leverage constraints. First, leveraged funds

obtain leverage directly from major broker-dealers, and given their passive portfolio choice,

they focus on obtaining the leverage at a competitive market price. Thus, compared to the

indicative LIBOR rate, the cost of leverage for an average leveraged fund is potentially a more

accurate measure of the market price at which financial intermediaries provide funding to

arbitragers such as hedge funds.3 Second, leveraged funds’ borrowing are conducted through

derivatives that are marked to market every day with collateral posted. Consequently, their

borrowings have very low credit risk and thus offer the potential to construct a shadow cost

of leverage constraints measure that is much less contaminated by the credit risk than the

TED spread.

1The shadow cost of leverage constraints is formally the Lagrange multiplier of the constraint on the
marginal investor’s maximum risk exposure in the utility maximization problem. In traditional theories
where the capital is unconstrained, the shadow cost of leverage constraints is zero. In reality, the capi-
tal is constrained due to banks’ capital requirements, investors’ margin requirements, or simply investors’
unwillingness to use explicit leverage.

2See, e.g., Brunnermeier, Nagel, and Pedersen (2008); Cornett, McNutt, Strahan, and Tehranian (2011);
Moskowitz, Ooi, and Pedersen (2012); Asness, Moskowitz, and Pedersen (2013); Frazzini and Pedersen (2014).

3The funding cost paid by leveraged funds is the marginal benefit received by broker-dealers for providing
the funding, which in turn reflects broker-dealers’ shadow cost of capital in equilibrium. In addition, leveraged
funds’ cost of leverage plus their expense ratios is the cost of leverage borne by investors of leveraged funds.
Therefore, leveraged funds’ cost of leverage can be informative about the marginal investor’s shadow cost
of leverage constraints, when either broker-dealers or investors in leveraged funds consider cost of leverage
when making portfolio choices.
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As Frazzini and Pedersen (2012) highlight, estimating the cost of leverage for leveraged

funds is particularly straightforward given their unique feature of targeting a constant daily

leverage.4 We take the difference between daily gross returns on leveraged funds and the

target multiple of the underlying index returns, and use it as leverage funds’ all-in cost of

leverage. We then use the full cross section of leveraged funds to infer the market-wide cost

of leverage at a point of time. To this end, we assemble the most comprehensive dataset

on leveraged funds known to the literature that includes all leveraged funds, dead or active,

that rebalance daily to track a constant multiple of the daily performance of an underlying

index between 2006 and 2016.

We start the empirical analysis by correlating our cost of leverage measure, the (cross-

sectional) median cost of leverage for all bullish leveraged funds, with benchmark interest

rates.5 Consistent with the characterization of a funding cost measure, we find our cost

of leverage measure tracks benchmark interest rates.6 The Garleanu and Pedersen (2011)

model demonstrates that the shadow cost of leverage constraints is the interest-rate spread

between the borrowing rate of leverage constrained investors and the collateralized interest

rate. We thus compute our baseline shadow cost measure as the interest-rate spread between

our cost of leverage measure and the general collateral (GC) repo rate.7

We find that our shadow cost estimate averages 0.30% per annum and is almost always

positive after the 2007–2009 financial crisis. During the crisis, our baseline shadow cost

estimate frequently drops below zero largely because security lending income is substantially

higher, lowering the effective funding cost. Adjusting for the security lending income, our

shadow cost estimate averages 0.51% per annum.

We use our shadow cost measure and the TED spread as proxies for the shadow cost

of leverage constraints in tests of four hypotheses from the Garleanu and Pedersen (2011)

model. The model predicts that (i) the shadow cost of leverage constraints is higher when

the constraints are more binding; (ii) when the shadow cost increases, the required return

for high-beta stocks that provide embedded leverage decreases relative to low-beta stocks,

4Frazzini and Pedersen (2012) study the pricing of embedded leverage in different financial instruments
including 7 leveraged funds.

5We focus on bullish funds in this paper because bearish funds earn rebate rates instead of paying cost
of leverage. More discussions are in Subsection 3.1.

6Our benchmark interest rates include the one-month Treasury bill rate, the general collateral (GC)
repo rate, which is the inter-broker collateralized overnight borrowing rate, and the effective fed funds rate
(EFFR), which is the unsecured overnight borrowing rate between depository institutions in the fed funds
market.

7We use the GC repo rate in our baseline estimation to closely follow the collateralized interest rate in
the Garleanu and Pedersen model. We also compute the spread over EFFR as a robustness check.
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and hence (iii) high-beta stocks would have contemporaneously higher returns; (iv) exposure

to time variation in the shadow cost is priced in the cross section of expected stock returns.8

These predictions are shared by other leverage constraint based theories.

Our first set of tests examines the prediction in hypothesis (i) that the shadow cost

is higher in periods when the leverage constraints are likely more binding. We find that

both our shadow cost measure, after adjusting for security lending income, and the TED

spread are substantially higher in bear market states defined using either 3-year cumulative

market returns (Cooper, Gutierrez, and Hameed (2004)) or VIX. These results are consistent

with the intuition that the leverage constraints are more binding when market participants

suffer large losses and when the volatility is high (Ang, Gorovyy, and van Inwegen (2011)).

However, the increase in funding costs could simply due to an increase in credit risk rather

than a tighter leverage constraint. We conduct a sharper test of hypothesis (i) by examining

the changes in our shadow cost measures and the TED spread upon quarter-ends.9 We find

that our shadow cost measures increase by 1.2 percentage points on an annualized basis upon

quarter-ends, which is statistically highly significant, while the corresponding changes in the

TED spread are minimal and insignificant.

Our second set of results test for a positive relation between the shadow cost and future

BAB returns as predicted in hypothesis (ii).10 We follow the empirical specification in

Boguth and Simutin (2018) by regressing BAB returns over the next 1, 6, 12 months on

lagged moving averages of shadow cost measures. We find that our shadow cost measure

strongly and positively predicts future BAB returns. In contrast, we find the TED spread

predicts future BAB returns with a theoretically incorrect negative sign, confirming Frazzini

and Pedersen (2014)’s findings. The positive relation between our shadow cost measure is

robust to controlling for the TED spread, the LCT measure in Boguth and Simutin (2018),

and the MD measure in Asness, Frazzini, Gormsen, and Pedersen (2016).

Somewhat surprisingly, we find that the LCT measure, which is the market beta of stock

holdings by active mutual funds, predicts future BAB returns with a negative sign in our

sample period. This contrasts with the findings in Boguth and Simutin (2018) that the LCT

8Though the last prediction is not explicitly stated in Garleanu and Pedersen (2011), it is a natural
implication from the model.

9The bank window dressing literature suggests that banks have incentive to shrink the size of balance
sheet upon financial reporting days because of capital ratio requirements. Thus, the capital constraint is
likely to be more binding while the credit risk stays the same upon quarter-ends.

10The BAB portfolio put forth by Frazzini and Pedersen (2014) is a zero investment portfolio that takes
a levered long position in low beta stocks and a unlevered short position in high beta stocks that has a zero
ex-ante CAPM beta.
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measure positively predicts future BAB returns in their longer sample period. We connect

these seemly contradictory results to the broader discussion on the relation between the level

of leverage and the tightness of leverage constraints in the literature.11 We highlight that

quantity and price can move in the same or opposite direction depending on whether supply

or demand shifts are driving the equilibrium. Specifically, if mutual funds’ demand curve

for the leverage implicit in high-beta stocks shifts outward, the aggregate mutual fund beta

increases and the leverage constraints is more binding (i.e., a higher shadow cost). On the

other hand, if the supply curve for leverage shifts outward, the aggregate mutual fund beta

can still increase while the constraint is less binding.12 Consistent with this supply-demand

prediction, we find a more positive relation between the aggregate mutual fund beta and

future BAB returns when the LCT measure and our shadow cost measure move in the same

direction.

Our third set of tests analyze the relation between the shadow cost estimates and con-

temporaneous BAB returns. We find a negative and significant correlation between our

shadow cost measure and contemporaneous BAB returns, consistent with hypothesis (iii).

This negative relation is robust to controlling for the negative correlation between the TED

spread and contemporaneous BAB returns documented in Frazzini and Pedersen (2014) and

robust to controlling for VIX and the market returns.

Our final set of tests examine the implications of leverage constraints on the cross-section

of stock returns. We run rolling regressions of excess stock returns on market excess returns

and the AR(1) innovations in our shadow cost measure or the TED spread. We find strong

evidence that exposure to our shadow cost measure negatively predicts stock returns in the

cross section, supporting hypothesis (iv). In contrast, we find no evidence that exposure

to the TED spread is priced. When we sort stocks into quintile portfolios based on their

sensitivities to our shadow cost measure, we find that stocks in the bottom quintile (i.e.,

stock underperform when the shadow cost is high) on average outperform stocks in the top

quintile by 0.75% per month. Further analysis shows that this risk premium cannot be

explained by exposures to standard risk factors, such as Fama-French five factors, or by

exposures to other proxies for funding conditions.

Our main contribution to the empirical asset pricing literature is to demonstrate an vi-

11The LCT measure, i.e., the aggregate mutual fund beta, is interpreted as the implicit aggregate leverage
taken by mutual funds in Boguth and Simutin (2018).

12A simple story is that the funding constraint is less binding for arbitragers, who go long low-beta stocks
and short high-beta stocks more aggressively, making high-beta stocks cheaper to purchase for active mutual
funds.
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able alternative to the TED spread for measuring the shadow cost of leverage constraints.

Our measure and the TED spread are different in several important aspects. First, the TED

spread mostly measures the credit risk of unsecured lending to large commercial banks.

However, the shadow cost of leverage constraints can arise independent of the credit risk

(Garleanu and Pedersen (2011)). In this aspect, leveraged funds provide an excellent em-

pirical setting to study the shadow cost of leverage constraints when the complication from

credit risk is minimal. Second, when banks’ capital constraint is tight, the banks’ marginal

cost of capital is likely higher than the LIBOR rate (Kisin and Manela (2016)). Further-

more, the marginal leveraged investors in the stock market may not borrow at the LIBOR

rate.13 In contrast, leveraged fund data provide a rare opportunity to infer the market price

at which major broker-dealers provide fundings to the leveraged investors. Overall, our

findings suggest our measure fits their model’s predictions better than the TED spread.

Our paper is related to several strands of literature. First, Koijen and Yogo (2016)

and Kisin and Manela (2016) are two recent studies that explicitly quantify the shadow

cost of capital for market participants (life insurers and banks, respectively). The average

shadow cost of banks’ tier 1 risk-based capital ratio requirement estimated in Kisin and

Manela (2016) is 30 bps annum, which is is identical to our baseline estimate of the average

annualized shadow cost of leverage constraints.14

Second, our results are also related to the literature on the interaction between limits to

arbitrage and constraints on financial intermediaries exemplified by Du et al. (2018), who find

the violation of covered interest rate parity is more pronounced when the financial contracts

straddle quarter-ends. Consistent with their interpretation that the financial intermediaries

are less willing to lend their balance sheet upon financial reporting days, our estimate of the

shadow cost of leverage constraints rises substantially during quarter-ends. Our findings thus

lend support to the key assumption in intermediary asset pricing models that the shadow

cost of capital constraints faced by banks is closely related to the shadow cost of leverage

constraints faced by the marginal investor.

Third, our paper adds to recent empirical research that investigates the time-series and

cross-sectional pricing implications of leverage constraints. Frazzini and Pedersen (2014);

Asness et al. (2016); Boguth and Simutin (2018) examine the relation between leverage

13Garleanu and Pedersen (2011) raise these two caveats when they use the TED spread as a proxy for the
shadow cost of capital to test their theoretical predictions.

14Estimates based on other capital ratio requirements are slightly lower. The loophole used for estimating
the shadow cost in Kisin and Manela (2016) was closed in January 2010. Koijen and Yogo (2016) find that
the shadow cost of capital for life insurers can be as high as $0.96 per dollar of statutory capital.
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constraints and future BAB returns. They use the TED spread, the ratio of the margin debt

over the total market capitalization for NYSE stocks, and the aggregate active mutual funds

market beta, respectively, as the proxy for the tightness of leverage constraints. Adrian,

Etula, and Muir (2014); He, Kelly, and Manela (2017); Boguth and Simutin (2018) examine

the cross-sectional implication of leverage constraints. They use the leverage of security

broker-dealers, the equity capital ratio of primary dealers, and the aggregate active mutual

funds market beta, respectively, as a proxy for the tightness of the leverage constraints that

drives the stochastic discount factor (SDF) in intermediary asset pricing models. All of

these measures except for the TED spread are “quantity” measures pertaining to the level

of leverage, which is in itself an interesting phenomena but distinct from “price” measures

pertaining to borrowing rates. We add to this body of work by using the difference between

leveraged funds’ funding rate and a benchmark interest rate as a direct estimate of the

shadow cost of leverage constraints. Empirically, our time-series and cross-sectional test

results are robust to control for these existing measures. Conceptually, quantity and price

can comove in the same or opposite direction depending on whether demand or supply shifts

are driving the equilibrium.15 We demonstrate results consistent with this demand-supply

perspective when using the aggregate mutual fund beta in Boguth and Simutin (2018) and

our shadow cost measure as the price-quantity pair to identify demand and supply shifts in

the leverage market.

Finally, our paper contributes to the literature on leveraged funds by assembling a com-

prehensive dataset that we believe include all leveraged funds, dead and active, that track

a constant multiple of daily index returns.16 Frazzini and Pedersen (2012) are the first to

15Ang, Gorovyy, and van Inwegen (2011); He, Kelly, and Manela (2017), among others, document that the
equilibrium leverage can be either high or low when the capital constraint is tight (i.e., the shadow cost is
high), depending on whether the binding constraint is a “equity constraint” (He and Krishnamurthy (2013)
and Brunnermeier and Sannikov (2014)) or a “debt constraint” (Brunnermeier (2009); Adrian and Shin
(2013)). The debt constraint can be interpreted as supply shocks, e.g., lenders reduce leverage when the risk
is high. The equity constraint can be interpreted as demand shocks, e.g., loss of arbitragers’ capital raises
risky assets’ expected returns and thus arbitragers’ optimal leverage is higher. See He and Krishnamurthy
(2018) for a review of the intermediary asset pricing literature.

16There is a growing literature using leveraged fund data. See, e.g., Avellaneda and Zhang (2010) and Lu,
Wang, and Zhang (2009) for studies on the deviation between the long-term performance (instead of the
one-day performance as promised in the prospectus) of leveraged funds and that of a levered buy-and-hold
position in the underlying index. See, e.g., Charupat and Miu (2011), Tang and Xu (2013), and Jiang and
Yan (2016) for studies on the market price discounts and premiums of leveraged funds. With the growth of
the leveraged fund industry, there also has been increasing concerns regarding the implications of the daily
rebalancing of leveraged funds, which is always in the same direction as the benchmark returns for both
bullish and bearish funds, on market liquidity and volatility. See, e.g., Cheng and Madhavan (2009); Tuzun
(2014); Ivanov and Lenkey (2014).
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examine the cost of embedded leverage in leveraged funds. They use the daily returns of 7

leveraged funds between 2006 and 2010. Tang and Xu (2013) investigate the determinants

of the deviation between daily fund returns and the target returns using 12 leveraged funds

between 2006 and 2011. They find that the most important determinant of the deviation

is the prevailing interest rate. Tuzun (2014) and Jiang and Yan (2016) provide the two

most comprehensive leveraged funds in the literature, collected from Morningstar Direct

and Bloomberg, respectively. Tuzun (2014) and Jiang and Yan (2016) focus exclusively on

leveraged ETFs, whereas our dataset includes not only leveraged ETFs but other types of

leveraged funds such as open-end mutual funds. As a result, our dataset includes twice to

four times as many funds, collected mainly from the Center for Research in Security Prices

Survivor-Bias-Free US Mutual Fund Database and supplemented by data from Bloomberg.17

The remainder of this paper is organized as follows. In Section 2, we provide the institu-

tional background for leveraged funds. In Section 3, we describe the theory behind and the

empirical setup for our key empirical measure. Section 4 describes our comprehensive daily

leveraged fund dataset. Section 5 examines our cost of leverage measure and our spread

measure for the shadow cost of leverage constraints. Sections 6 to 9 use our spread measure

to study the asset pricing implications of leverage constraints. We conclude in Section 10.

2. Institutional background

Leveraged funds are open-end mutual funds, exchange-traded funds (ETFs), and exchange-

traded notes (ETNs) that seek to track a multiple of the returns of a benchmark index, be-

fore fees and expenses. While a handful of leveraged and inverse mutual funds first emerged

in 1993 in the United States, the number of leveraged funds increased substantially after

ProShares offered the first leveraged (and inverse) ETFs in 2006.18 The demand for lever-

aged funds has been growing because leveraged funds offer a convenient, transparent, and

potentially less expensive way to obtain leverage. Using the data we assemble, we find that

the number of leveraged funds has grown from 127 to around 400 and the exposure value has

grown from $10 billion to over $75 billion between 2006 and 2016.19 Most leveraged funds

are managed by four investment companies, Rydex, Profunds, Direxion, and ProShares, with

17More details are in the Data Section.
18http://www.proshares.com/media/documents/geared investing.pdf
19The size of the leveraged fund industry is smaller than that of the equity long-short hedge fund sector

($193.6 billion as of September 2016 according to https://www.barclayhedge.com). As we explain later,
there are reasons to believe the cost of leverage for leveraged funds is informative about the cost of leverage
for other leveraged investors such as hedge funds.
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the former two focusing on leveraged mutual funds and the latter two focusing on leveraged

ETFs.

Figure 3 illustrates a typical leveraged fund using the official webpage for ProShares

Ultra Financials. The investment objective is highlighted in bold at the top, as “[The fund]

seeks daily investment results, before fees and expenses, that correspond to two times (2x)

the daily performance the Dow Jones U.S. Financials Index.” The fund emphasizes that

the promised leverage multiple pertains only to daily returns based on NAV and explicitly

warns that returns over periods other than one day can differ from two times the benchmark

returns.20 Furthermore, the leveraged fund discloses its annualized expense ratio, the daily

net asset value (NAV), and the daily holdings.

A snapshot of ProShares Ultra Financials’ daily holdings in sub-figure (b) of Figure

3 demonstrates how the 2x leverage is achieved. The total market value of this fund is

$906,931,618. The fund obtains two times worth of exposure over its market value by invest-

ing $762,011,691 in the constituents of the Dow Jones U.S. Financials Index and acquires

the remaining exposure of $1,050,292,778 via equity swaps.21

More generally, equity swaps are the most common derivative used by leveraged funds

to maintain their target leverage. In such swap transactions, leveraged funds are the equity

return leg receiver and the floating interest rate leg payer, effectively borrowing from their

swap counterparties. The interest rate leg is typically the LIBOR rate plus a markup. The

equity return leg is typically the total return of the index from the initial price specified

in the swap contract. Leverage funds pay transaction costs implicitly as the initial price is

based on the cost at which swap counterparties can acquire the equity exposure from the

cash or futures markets.

The counterparty risk for these swap transactions is relatively low because the swaps

are marked to market daily and collateral equal to the value owed to the counterparty are

required. To further reduce the counterparty risk, leveraged funds enter swap contracts

only with major global financial institutions and they use multiple counterparties simulta-

neously.22 For example, sub-figure (b) of Figure 3 shows that ProShares Ultra Financials’

20Therefore, our daily returns are based on NAV, which in this case is calculated by JPMorgan Chase
Bank, National Association at 4:00 pm ET and reflects the fundamental value of securities owned by the
fund.

21The fund also holds $144,919,927 in cash. As a result, the exposure calculation is Exposure
NAV =

Swap Notional+Index Investment
Swap Net V alue+Index Investment+Cash = 1,050,292,778+762,011,691

0+762,011,691+144,919,927 = 1.998. For ProShares Ultra Financials

observed on 7/24/2018, the percentage of the total exposure due to swaps versus investing in the underlying
is 58% vs. 42%.

22The funds disclose that they may not always be successful at obtaining collateral from the counterparty
collateral. Another potential reason for having multiple counterparties is to prevent counterparties from
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swap counterparties include UBS, Deutsche Bank, Morgan Stanley, Bank of America, Societe

Generale, Citibank, Goldman Sachs, and Credit Suisse, which collectively represents a list

of the largest broker-dealers in the market. The fact that leveraged funds borrow directly

and simultaneously from multiple major broker-dealers motivates our hypothesis that the

funding costs of leverage funds can be informative about the market price at which major

broker-dealers provide funding to other leveraged investors.

3. Model

3.1. Empirical model for inferring the cost of leverage

This subsection develops the empirical model we use to infer the financing cost of leverage

funds from their daily returns. We compute the (before fees) performance shortfall αit for a

leveraged fund i seeking δ times the daily performance of an index j as follows:

αit ≡ rit − δbjt, (1)

where rit is the daily gross return of the leverage fund computed as the sum of the daily

expense ratio and the after-fee NAV return, and bjt is the benchmark return.

The performance shortfalls of bullish and bearish funds are driven by different factors. As

illustrated by the example of ProShares Ultra Financials in Section 2, the portfolio holdings

per dollar of assets under management (AUM) for a typical δx bullish leveraged fund can

be modeled as an investment of $1 in the underlying benchmark and an additional $ (δ − 1)

exposure acquired from the financial intermediaries at a cost rcit. Hence the performance

shortfall αit for a bullish fund is

αit = − (δ − 1) rcit (δ > 1) , (2)

where δ − 1 is the amount of financing needed and rcit is the cost of leverage. We use rcit

to capture the all-in cost of maintaining the constant level of leverage, including costs such

as interest payments and transaction costs.23

In contrast, a δx bearish fund goes short $δ of the underlying benchmark and essentially

lends securities to, rather than borrows funding from, the counterparty and earns the rebate

front running the orders (we thank Tugkan Tuzun for suggesting this possibility).
23In a typical total return equity swap transaction, the transaction costs are embedded in the swap spread.
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rate (the difference between the prevailing risk-free rate and the security lending fee). Hence

the performance shortfall αit for a bullish fund is

αit = rft + |δ| rrebateit (δ ≤ −1) . (3)

Since this paper analyzes the cost of leverage, we focus on bullish funds whose perfor-

mance shortfalls are more closely related to the cost of leverage rcit. We then take into

account two complications in the data. First, we recognize that the true leverage multiple

can differ from the target leverage multiple (δ). The resulting tracking error means αit in

Eq. (2) is a noisy proxy for rcit. We mitigate the influence of measurement errors by taking

cross-sectional and time-series averages to increase the power of our empirical tests.

Second, a bullish fund can potentially earn security lending fees by lending out the basket

of stocks it owns. In practice, because leveraged funds rebalance much more frequently than

unlevered index funds, it is more costly for leveraged funds to set aside substantial amounts

of assets for security lending purposes. Nevertheless, security lending fees can become an

important source of income when the fees are high in bear markets. To address this problem,

for each index j, we use the value-weighted performance shortfall for unlevered index funds as

a control for security lending fees. The idea is that unlevered index funds also earn security

lending fees on their AUM, but since they are unlevered they do not pay cost of leverage.

This control is defined as

α1X
j ≡

∑
i

ωitrit − bjt. (4)

, where i denotes unlevered index funds benchmarked to index j and the weight ωit is

proportional to the total net asset value.24 Because unlevered funds also have tracking

errors, we recognize that α1X
j is a noisy proxy for the security lending fees.

Based on Eqs. (2) and (4), we compute our baseline market-wide cost of leverage measure

24Again rit is the gross return after adding back the expense ratio. α1X
j also serves as a control for

rebalancing costs associated with unlevered funds for index j.
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as the cross-sectional median of αit

1−δ across all bullish funds25

rct ≡ Cross Sectional Median of
αit

1− δ
, δ > 0. (5)

We also compute the cost of leverage measure adjusted for security lending income as

rc,adjt ≡ Cross Sectional Median of
αit − α1X

jt

1− δ
, δ > 0. (6)

3.2. Theoretical motivation for the shadow cost of leverage constraints

We discuss the relation between our cost of leverage measure (rct ) and the shadow cost of

leverage constraints in the theoretical framework of Garleanu and Pedersen (2011). Consider

the following dynamic programming problem of a representative investor,

max{θit,Ct,ηut}Et

∫ ∞
0

e−ρsu (Cs) ds (7)

dWt

Wt

=

(
rft + ηut (rut − rft) +

∑
i

θit (µit − rft)−
Ct
Wt

)
dt+

∑
i

θitσitdωt (8)

where u (Cs) is the utility function for consumption Cs, Wt is the investors’ wealth at

time t with θit being the proportion of wealth invested in asset i. Asset i’s prices follow

an Itô process with innovation dωt, expected return µit, and volatility σit. Investors choose

their collateralized and uncollateralized borrowings given the risk-free rate rft and the un-

collateralized rate rut.
26 Investors’ portfolio choice is subject to the margin constraint∑

mit |θit|+ ηut ≤ 1, (9)

where ηut is the uncollateralized borrowing as a proportion of wealth. The Garleanu

and Pedersen (2011) specification of the margin constraint in Eq. (9) models the real-world

investors’ problem that both long and short positions in risky assets require collateral mit

in their margin accounts. Since uncollateralized borrowing relaxes the leverage constraint

25While more advanced filtering techniques can potentially improve the signal to noise ratio,
we decided to keep the measure simple and easy to replicate. We use the median instead of
the mean because the former is more robust to extreme values. See a related discussion here,
https://www.newyorkfed.org/medialibrary/media/markets/EFFR-technical-note-070815.pdf, in which the
Federal Reserve Bank of New York explains its 2015 methodology change from using the mean transac-
tion rate to calculate the effective Federal Funds Rate to using the median.

26These uncollateralized loans are assumed to have zero credit risk in the model.
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while collateralized borrowing does not, leverage constrained investors are willing to pay a

higher rate for uncollateralized loans. The difference between uncollateralized and collater-

alized interest rates is equal to the Lagrange multiplier on the leverage constraint and hence

naturally proxies for the shadow cost of this constraint.

Denote the economy-wide Lagrange multiplier as λt, Garleanu and Pedersen (2011)

demonstrate that the shadow cost of leverage constraint flattens the security market line:

µit − rft = βitγt + λtmit, (10)

where βit is the consumption risk exposure of asset i and γt is the consumption risk

premium.

The theoretical insight in Eq. (10) can be readily applied to understand the performance

shortfall of leverage funds relative to the benchmark index. Similar to Frazzini and Pedersen

(2014), for simplicity we assume the margin requirement per dollar investment in a leverage

fund is the same as that in its underlying index. Given that the leverage fund returns rit are

δ times the benchmark return bjt, we have βit = δβjt. Substituting the expected returns for

rit and bjt in the following equations into Eq. (1)

E [ri − rf ] = βitγt + λtmt (11)

E [bj − rf ] = βjtγt + λtmt. (12)

We get E [αi] = (1− δ) rft + (1− δ)λtmt,or equivalently

rc =
E [αi]

(1− δ)
= rft + λtmt. (13)

Eq. (13) delivers the economic interpretation of our cost of leverage measure defined

in Eq. (5): rc captures both the prevailing risk-free rate and the shadow cost of leverage

constraints. The second term in Eq. (13) arises because while per-dollar investments in

the leveraged fund and the underlying index have the same margin requirement, the former

provides δ times the risk exposure of the latter. Consequently, for the per dollar risk exposure,

the margin requirement for investments in the leveraged fund is only 1
δ

of that for investments

in the underlying index.

We then define our spread measure as ψ ≡ rc − rf , the difference between our cost of

leverage measure and the risk-free rate, which is designed to capture λtmt in Eq. (13).27

27Jylha (2018) reports that the initial margin requirement for U.S. stocks under Regulation T has remained
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Therefore, ψ is analogous to the interest-rate spread between the uncollateralized and collat-

eralized rates modeled in Garleanu and Pedersen (2011): it is the shadow cost of investors’

funding constraints. We now turn to empirically test whether our spread measure indeed

captures such shadow cost of leverage constraints.

4. Data and Empirical Estimates

4.1. Data

Our sample period starts in June of 2006 when the first leveraged ETF is offered and ends

in December of 2016. For our research purpose, we start by constructing a comprehensive

dataset including all leveraged funds, dead or alive, that track a constant multiple of the daily

performance of an underlying benchmark index. We rely primarily on the the Center for

Research in Security Prices US Survivor-Bias-Free Mutual Fund Database (CRSP MFDB)

to construct this list because it includes dead funds and thus is free of survivorship bias.

We complement it with an alternative list of leveraged funds retrieved from Bloomberg,

because neither CRSP MFDB nor Bloomberg provide a direct identifier for leveraged funds.28

In our Data Appendix, we provide the step-by-step description of how we construct the

comprehensive list of daily leveraged funds.

We obtain most of the fund-level information, such as fund returns, total net assets, and

expense ratios from CRSP MFDB. We manually collect the historical leverage multiple and

the name for the underlying index via Bloomberg and SEC filings. We obtain daily returns

on the underlying index from Bloomberg.29 To ensure the accuracy of the funding costs

we compute, we focus on a final list of 678 domestic funds that track clearly defined and

tradable spot indexes, representing a total of 625,088 fund-day observations between 2006

and 2016.30

unchanged since ends in January 1974, so ψ predominantly captures the variation in λ during our sample
period.

28Applying our algorithm described in the Data Appendix on CRSP MFDB identifies almost all leveraged
funds. Augmenting the CRSP leveraged funds list with the Bloomberg list expands the sample by 2%. In
contrast, the Bloomberg list misses around one third of the leveraged fund names in the CRSP list. The
coverage difference arises mainly because CRSP MFDB has historical data on dead funds, whereas Bloomberg
does not always keep data for dead funds.

29Since returns on total return swaps and futures are typically adjusted for the dividends, we use the total
returns on the underlying indexes (Vanguard (2013)).

30Using domestic funds avoids the issue of trading nonsynchronicity between the leveraged funds and the
underlying. Clearly defined and tradable spot indexes are needed to back out the embedded funding cost.
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Panels A and B of Figure 4 shows the number of funds and the exposure value across

leverage levels over time for our final dataset. 2X (-2X) are the most popular leverage levels

for bullish (bearish) funds for most of the sample period based on the number of funds. 3X

(-3X) funds show up in late 2009 and the number of 3X (-3X) has grown to be about 40.0%

(41.5%) of the number of 2X (-2X) funds.

Since our leverage funds dataset is new to the literature, we report detailed summary

statistics of the variables used to construct our cost of leverage measure in the next subsec-

tion.

4.2. Data Description

Panel A of Table 1 reports the summary statistics of the variables used to compute αit in

Eq. (1) across leverage levels. The column labeled “ExpRatioit” reports the cross-sectional

average of the times-series mean of the expense ratios for funds within a leverage level (δ).

The average expense ratio ranges from 0.95% per annum to 2.05% per annum. 3X (-3X) funds

have the lowest average expense ratios because they are mostly ETFs offered by Proshares

and Direxion that charge lower fees. Column “σi (ExpRatioit)” reports the cross-sectional

mean of the daily standard deviation of the expense ratio. The average standard deviation of

the expense ratio is about two orders of magnitude smaller than the average expense ratio.31

For example, 2X funds on average have an expense ratio of 1.34 per annum with a standard

deviation of 0.02% per annum.

The rest of Panel A of Table 1 examines whether leveraged funds achieve the target

multiple of the benchmark’s performance at the daily frequency. Column “δ̂i” reports the

cross-sectional average of the ordinary least squares (OLS) regression betas from regressing

the daily fund returns on the daily benchmark returns. We find that the average OLS beta

is equal to the target leverage multiple up to the second decimal place across target leverage

levels, with the only exception that -3X funds have an average OLS beta of −3.01. Column

“σ
(
δ̂i

)
” shows that the cross-sectional standard deviation (within each target leverage mul-

tiple) of these OLS betas is small, with the numbers ranging between 0.003 for 1.5X funds

and 0.06 for -3X funds. Therefore, on average leveraged funds manage to achieve the target

multiple on a daily basis.

The next column reports the cross-sectional average of R2
i ≡

V (rit)−V (αit)
V (rit)

, which measures

how much variation in daily fund returns can be explained by the underlying index times the

31Since the expense ratio is stable, for days with missing expense ratios we assume the expense ratio does
not change.
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target multiple. Consistent with the finding that leveraged funds on average achieve their

target leverage level on a daily basis, we find the average R2s ranging between 99.67% for

-1X funds and 99.93% for 1.5X funds.

4.3. Empirical estimates for cost of leverage and the shadow cost of leverage

constraints

This subsection demonstrates that our aggregate cost of leverage measure rc tracks the

benchmark risk-free rates and our shadow cost measure ψ is correlated with the TED spread

during the financial crisis.

Figure 1 illustrates the time series relation between rc and the two benchmark risk-

free rates (the GC repo rate and the one-month T-bill rate) by plotting their three-month

moving averages.32 Our aggregate cost of leverage measure rc fluctuates around the levels of

the benchmark risk-free rates, consistent with the notion that rc is a cost of leverage measure.

For example, when the Federal Open Market Committee (FOMC) cut the fed funds rate to

combat the financial crisis from 2007 to 2009, we observe that rc declines in tandem.

While rc is generally above the GC repo rate and the one-month T-bill rate, rc can be

more than 50 basis points below the two risk-free rates, in particular during the 2007–2009

financial crisis. This can be seen more easily in Sub-figure (a) of Figure 2, where we plot the

three-month moving average of our shadow cost estimate:33

ψt = rct − r
GC repo
t . (14)

The negative ψ during the crisis is largely due to the elevated security lending fees

associated with aggressive short selling between 2007 and 2009. We thus compute the shadow

cost measure using the cost of leverage after adjusting for security lending fees (Eq. (6)),

ψadj
t = rc,adjt − rGC repo

t , (15)

Sub-figure (b) of Figure 2 shows that the three-month moving average of ψadj
t is almost

32Throughout the paper, all interest rates and interest-rate spreads are measured in percentage points per
annum. We use 252 trading days to annualize daily returns.

33The GC repo rate corresponds to the collateralized risk-free rate featured in Garleanu and Pedersen
(2011). Alternatively, we can use the EFFR or the one-month T-bill rate as the benchmark risk-free rate.
In our online appendix, we show that our results are similar when using these two alternative benchmark
risk-free rates.
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always positive. To illustrate how the security lending income lowers the effective cost of

leverage, the same figure also shows the three-month moving average of ψt−ψadj
t = rct−r

c,adj
t .

We observe that the effective cost of leverage was reduced by as much as 2.9 percentage points

by the security lending income during the crisis, and this effect is minimal after the crisis.

When we overlay ψadj
t with the TED spread, we observe that both ψadj

t and the TED spread

spike during the 2007–2009 financial crisis, exhibiting strong comovement.

We report the summary statistics for rc, the benchmark short-term risk-free rates, our

spread measures of the shadow cost, and the TED spread in Panel B of Table 1. From

June 2006 to December 2016, on average, rc is about 0.24% per annum higher than the

EFFR, 0.30% higher than the GC repo rate, and 0.44% higher than the one-month T-bill

rate. The corresponding differences in medians are 0.63%, 0.63%, and 0.70%, respectively.

These numbers indicate that on average leveraged funds borrow at a rate higher than the

overnight uncollateralized borrowing rate for depository institutions (EFFR), which is in

turn higher than the overnight collateralized borrowing rate (GC repo rate) and the U.S.

government funding cost (one-month T-bill rate). Our baseline shadow cost estimate has

mean and median values at 0.30% and 0.22%. Adjusting for the security lending income, our

shadow cost estimate has mean and median values at 0.51% and 0.34%, respectively, similar

to those of the TED spread.

The daily standard deviation of rc is 3.9% per annum, much lower than those of αit,

suggesting taking the cross-sectional median reduces the impact of idiosyncratic noise at

the fund level. However, the maximum and minimum values for the daily rc are still quite

extreme and its 25th percentile value is negative. We thus take the monthly average value

of rc to further reduce the impact of measurement errors. We find that the monthly rc has

maximum and minimum values of 7.11 and −1.07%, respectively, and its 25th percentile

is positive at 0.49%. Furthermore, the first-order autoregressive (AR1) coefficient of the

monthly rc is 0.87 (as opposed to −0.03 for the daily rc), in line with the persistence of

benchmark interest rates. Similarly, we use moving averages of our shadow cost measures to

reduce the impact of measurement errors.34

34We expect the noise in our measure to attenuate our results. Thus, techniques that reduce the impact
of measurement errors will increase our test power.
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5. Shadow cost estimates and binding leverage con-

straints

To investigate whether our spread measure ψ captures the shadow cost of leverage con-

straints, we start by examining whether ψ is higher in periods when the leverage constraints

are likely more binding. We separate months into high, middle, and low states based on

the 10th and 90th percentiles of the 36-month cumulative market return (MKT3Y, Cooper,

Gutierrez, and Hameed (2004)) and VIX, respectively. Theories featuring an equity con-

straint such as He and Krishnamurthy (2013) and Brunnermeier and Sannikov (2014) predict

that the constraint is more binding when market participants suffer a large loss. Theories

featuring a debt constraint such as Brunnermeier (2009); Adrian and Shin (2013) predict

that the constraint is more binding when market volatility increases. Therefore, we expect

the shadow cost estimate to be highest in the low state of MKT3Y and the high state of

VIX.

Panel A of Table 2 shows that, after adjusting for the security lending income, our shadow

cost estimate is on average highest in months with below 10th percentile of MKT3Y. ψadj

averages 0.95% in the low MKT3Y state versus 0.38% and 0.50% in the middle and high

states, respectively.35 It is interesting to note that our shadow cost estimate is higher in the

high market state than in the middle market state. Theories typically predict the leverage

constraint to be more binding in bear markets, but these theories are ambiguous regarding the

tightness of leverage constraints in bull markets. This is expected because both demand for

and supply of leverage can increase in bull markets, and depending on which one dominates,

the leverage constraint can be tighter or looser compared to the middle market state. For

comparison, Panel A of Table 2 also presents the monthly average for alternative funding

condition proxies used in prior studies. We find that their relation with the market states

are also not always monotonic.36 The LEV measure of Adrian, Etula, and Muir (2014) (the

leverage of security broker-dealers) and the MD measure in Asness et al. (2016) (the ratio

of the margin debt over the total market capitalization for NYSE stocks) have the lowest

value in the low market state, but they have the highest value in the middle state. The

LCT measure in Boguth and Simutin (2018) (the innovations to the aggregate active mutual

funds market beta) has the lowest value in the high state and the highest value in the middle

35ψ has the lowest average value in the low MKT3Y state because the security lending income is high
during these months, as the large difference between ψ and ψadj in the low state suggests the security lending
incomes lowers the effective funding cost by −0.88%.

36All these measures other than the TED spread are AR(1) innovations.
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state. On the other hand, the TED spread used in Frazzini and Pedersen (2014) and the

ICR measure in He, Kelly, and Manela (2017) (the AR(1) innovations to the intermediary

capital ratio) increases and decreases monotonically from the low state to the high state,

respectively.

In contrast, Panel B of Table 2 shows that the relation between these proxies and market

states based on VIX is more monotonic. Our shadow cost measure, ψadj, and all the existing

funding condition measures, except for the LCT measure, suggest that leverage constraints

are more binding when the VIX is high and vice versa. These results are not contradictory

to the results based on MKT3Y because volatility can be high during bull markets.

Overall, our results in Table 2 indicate that both our shadow cost measure and the

TED spread comply with the intuition that the leverage constraints are more binding when

market participants suffer large losses and when the volatility is high. However, the increase

in funding costs could simply due to an increase in credit risk rather than a tighter leverage

constraint. We conduct a sharper test of hypothesis (i) by examining changes in ψ upon

quarter-ends. There is an extensive literature on financial intermediaries shrinking balance

sheets on financial reporting days. If financial intermediaries are less willing to lend upon

quarter-ends, we expect them to charge leveraged investors a higher financing rate even when

the credit risk is unlikely to change.

We test this hypothesis in Panel A of Table 3 by running the following time series regres-

sions:

yt = c+ ρ× yt−1 + β ×QtrEndt + εt, (16)

, where yt are daily observations of ψ, ψadj, ψ − ψadj, the TED spread, and the GC repo

rate in regression specifications (1) through (5), respectively. QtrEnd is equal to one for the

two trading days straddling quarter-ends, i.e., the last and the first trading days of a quarter.

We control for the autocorrelation structure by adding the lagged dependent variable and

report Newey and West (1987) t-statistics with 22 lags.

In regression specification (1), we find that the regression coefficient on QtrEnd is 1.31

(t-statistic = 4.5), indicating that the shadow cost of leverage constraints as captured by ψ is

131 basis points per annum higher at quarter-ends. Regression specification (2) shows that

using ψadj rather than ψ yields quantitatively similar results. The regression coefficient is 1.36

and the t-statistic is marginally lower at 4.0. The similar results are expected because the
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security lending income is unlikely to change upon quarter-ends.37 Regression specification

(3) validates these interpretations by using ψ−ψadj as the dependent variable. We find that

ψ − ψadj has an insignificant loading on QtrEnd of 0.06 (t-statistic = 0.25), indicating that

the difference between ψ and ψadj contributes little to the increase in ψ upon quarter-ends.38

To examine whether the results are driven by outliers, Panel B of Table 3 shows the average

ψ on quarter-ends and non-quarter-end days year by year. We observe that ψ is higher upon

quarter-ends for each of 10 years in our sample period with the only exception being 2009.

For comparison, regression specification (4) looks at the quarter-end change in the TED

spread. The regression coefficient on QtrEnd is −0.01 with a t-statistic of −1.45, suggesting

the quarter-end change in the TED spread is close to zero. These results are consistent

with the recent studies that find substantial reduction in banks’ repo borrowing but no

detectable change in their borrowing rate upon quarter-ends (e.g. Munyan (2017)). Results

in regression specification (5) show that the GC repo rate increases by only two basis points

upon quarter-ends, confirming that the increase in ψ is not due to changes in the benchmark

risk-free rate.

Overall, the significant increase in ψ and the lack of movement in TED spread upon

quarter-ends indicate that financial intermediaries leave money on the table. This is con-

sistent with the interpretation in Du, Tepper, and Verdelhan (2018), who find the viola-

tion of covered interest rate parity is more pronounced when financial contracts straddle

quarter-ends, that financial intermediaries face a shadow cost of capital above their explicit

borrowing cost such as the LIBOR rate. From this perspective, our results suggest that ψ

better captures the equilibrium shadow cost of capital in the market than the TED spread.

6. Relation to BAB returns

Next, we use our spread measure ψ to test the key hypothesis in leverage-constraint based

asset pricing theories—the flatness of the security market line is associated with the shadow

cost of leverage constraints (e.g., Garleanu and Pedersen (2011); Frazzini and Pedersen

37Furthermore, because we infer the security lending income using unlevered index fund returns, the
adjustment introduces additional measurement errors and thus lowers the statistical significance.

38Similar to the results here, we find that while adjusting for the security lending income is important for
assessing the level of our shadow cost estimate, all the other results in this paper are not affected by this
adjustment in a significant way. To save space, we present these results as part of the robustness tests in
the online appendix.
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(2014)).39

Frazzini and Pedersen (2014) construct the betting-against-beta (BAB) portfolio to cap-

ture the flatness of the security market line and put forward two testable predictions: a)

when leverage constraints are more binding, ceteris paribus, the BAB premium should be

higher, and b) consequently, the contemporaneous BAB returns should be lower. Frazzini

and Pedersen (2014) test these two prediction by using the TED spread as the proxy for

the shadow cost of leverage constraints. They find results supporting prediction (b) but not

prediction (a). When Jylha (2018) examines the interest-rate spread between the brokers’

borrowing cost and the three-month T-bill rate between 1934 and 1975, he also finds that

this interest-rate spread does not predict the flatness of the security market line. In contrast,

several studies find that alternative proxies for leverage constraints strongly predict BAB

returns (Asness, Frazzini, Gormsen, and Pedersen (2016); Boguth and Simutin (2018); Jylha

(2018); Hedegaard (2018)), lending support to prediction (a).

These findings seem puzzling because Garleanu and Pedersen (2011) predict that the

most direct measure of the shadow cost of leverage constraints should be an interest-rate

spread. These findings are nevertheless consistent with the interpretation that the TED

spread captures financial intermediaries’ leverage constraints rather than the leverage con-

straints of the marginal investor holding high-beta stocks. We now use our spread measure

ψt as a proxy for the shadow cost of leverage constraint and test predictions (a) and (b) in

Frazzini and Pedersen (2014).

6.1. Relation to future BAB returns

Table 4 tests for the positive association between the shadow cost of leverage constraints

(ψ) and the future BAB returns in. For ease of comparison, we follow the regression speci-

fications in Boguth and Simutin (2018). We regress average monthly BAB returns over the

next one, six, or 12 months on the lagged one-, six-, or 12-month moving average of ψ, re-

spectively. To account for the serial correlation introduced by the overlapping observations,

we follow Boguth and Simutin (2018) and compute Newey-West t-statistics with 12 lags.40

In Panel A of Table 4, we find that ψ predicts future BAB returns with the theoretically

correct positive sign across all nine regression specifications. The coefficients on the one-

month moving average of ψ in regressions (1) through (3) are similar, ranging between 0.86

39The idea that a flatter security market line is associated with leverage constraints traces back to Black
(1972).

40In Online Appendix, we show that our main results are robust to using Hodrick (1992) 1B standard
errors, which have better finite-sample properties under the null hypothesis of no return predictability.
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for the 12-month forecasting horizon and 0.91 for the six-month forecasting horizon. This

means that a one percentage point increase in ψ over the past month is associated with an

increase in average monthly BAB premium of 0.86% for the next 12 months. The coefficients

on the six-month moving averages of ψ range between 2.77 for the six-month forecasting

horizon and 3.10 for the one-month forecasting horizon. The coefficients on the 12-month

moving averages of ψ range between 3.24 and 3.52. The economic interpretation is that

if ψ increases by one percentage point over the past six (12) months, the average monthly

BAB premium over the next 12 month will increase by 0.48% (0.27%).41 The regression

coefficients across the nine specifications are all statistically significant at 5% level with t-

statistics ranging from 2.26 to 3.83, except for using one-month ψ to predict one-month BAB

returns.42

Similar to the findings in Boguth and Simutin (2018), we find that the R2 increases

substantially when forecasting BAB returns over a longer horizon. For example, when using

the six-month moving average of ψ as the predictor, the adjusted R2’s range from 7 for

predicting the average BAB returns in the next month to 47 for predicting the average BAB

returns in the next 12 months. In Panel B of Table 4 we demonstrate that the positive

association between ψ and the future BAB returns is robust to using the spread measure

with the EFFR as the benchmark risk-free rate (ψEFFR).

We then examine whether the predictive power of ψ is distinct from that of existing

predictors for BAB returns. In Panel C of Table 4, we control for the TED spread in

Frazzini and Pedersen (2014), the LCT measure in Boguth and Simutin (2018), which is the

market beta of the aggregate stock portfolios held by actively managed mutual funds, and

the MD measure in Asness, Frazzini, Gormsen, and Pedersen (2016), which is the amount

of margin debt held against NYSE stocks as a percentage of the total market capitalization

of NYSE stocks. For brevity, we focus on the six-month moving averages of ψ and the LCT

measure.43 Specifications (1) to (3) run bivariate regressions of the average monthly BAB

returns over the next one, six, or 12 months on ψ and the TED spread. We find that the

TED spread predicts BAB returns with a negative coefficient across all three specifications,

consistent with the findings in Frazzini and Pedersen (2014). The coefficients are statistically

41To gauge the effect of a one percentage point cumulative change in ψ over the past six (12) months on
future BAB returns, one should divide the coefficients on the six- (12-) month moving averages by six (12).

42Using moving averages to smooth out the noise in the one-month ψ increases the predictive power, as
both the six- and 12-month moving averages of ψ predict one-month BAB returns significantly at the 5%
level.

43Both the TED spread and the MD measure are very persistent. Following the original papers, we do
not take the moving averages.
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significant at the 5% level for the one- and six-month forecasting horizons, but insignificant

for the 12-month forecasting horizon. After controlling for the TED spread, the coefficients

on ψ are smaller than those of the univariate regression results in Panel A of Table 4, but

remain economically and statistically significant at 1.70 (t-statistic = 2.10), 1.66 (t-statistic

= 3.90), and 2.02 (t-statistic = 3.29) for predicting BAB returns in the next one, six, and

12 months, respectively. The positive predictive coefficient on ψ and the negative predictive

coefficient on the TED spread in bivariate regressions (1) to (3) indicate that ψ is a better

proxy for the shadow cost of leverage constraints formulated in Frazzini and Pedersen’s

prediction (a).

Next, specifications (4), (5), and (6) control for the LCT measure in Boguth and Simutin

(2018) rather than the TED spread. Boguth and Simutin (2018) find that the LCT measure

positively and strongly predicts future BAB returns in their sample period. In contrast, in our

sample period, when controlling for ψ, the LCT measure predicts future BAB returns with

a negative coefficient that is statistically insignificant across all three specifications. More

importantly, we find that controlling for the LCT measure does not affect the coefficients on

ψ. The coefficients on ψ are 3.01 (t-statistic = 2.49), 2.39 (t-statistic = 3.81), and 2.48 (t-

statistic = 2.76) for predicting BAB returns in the next one, six, and 12 months, respectively,

similar to those in the univariate regressions.

Finally, specifications (7), (8), and (9) control for the MD measure in Asness, Frazz-

ini, Gormsen, and Pedersen (2016). Asness, Frazzini, Gormsen, and Pedersen (2016) find

margin debt negatively predicts BAB returns and interpret low margin debt as indicating

tighter leverage constraints. Consistent with their findings, the bivariate regressions from

(7) through (9) show that the MD measure negatively predicts BAB returns in the next one,

six, and 12 months, although the coefficient is only significant for the one-month forecasting

horizon. Interestingly, for the one-month forecasting horizon, controlling for the MD mea-

sure increases the coefficient on ψ by one third. The coefficients on ψ are 4.80 (t-statistic

= 3.63), 3.14 (t-statistic = 5.32), and 3.11 (t-statistic = 3.57) for the one-, six-, and 12-month

forecasting horizons, respectively, each of which remains positive and highly significant.

6.2. Relation to contemporaneous BAB returns

In Table 5, we test for the negative association between the shadow cost of leverage

constraints (ψ) and contemporaneous BAB returns in Frazzini and Pedersen’s prediction

(b). Because an increase in the expected returns of BAB depresses the realized returns of

BAB in the same period but raises the realized returns of BAB in the subsequent periods, we
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use daily data to increase the power of detecting this negative contemporaneous correlation.

To avoid the errors-in-variables problem due to the noise in daily ψ, we use the daily ψ as the

dependent variable and daily BAB returns as the independent variable. Following Frazzini

and Pedersen (2014), we control for the BAB’s ex post exposure to the market excess return in

the regressions. In regression specification (1), we regress the daily ψ on contemporaneous

BAB returns and market excess returns. We find that the regression coefficient on BAB

returns is −0.79 and the Newey-West t-statistic with 22 lags is −3.21. This means a one

percentage point decrease in daily BAB returns is associated with a 0.79 percentage point

increase in our annualized shadow cost measure.

In regression specification (2), we control for potential serial correlations by adding the

lagged dependent variable to specification (1) and find little change in the negative con-

temporaneous relation between ψ and BAB returns. We additionally control for the change

in the TED spread in specification (3), because Frazzini and Pedersen (2014) find it to be

negatively correlated with the contemporaneous BAB returns. We find that controlling for

the change in the TED spread slightly strengthens the negative contemporaneous relation

between ψ and BAB returns as the coefficient on BAB returns is −0.86 with a t-statistic of

−3.80. In specification (4), rather than controlling for the change in the TED spread, we

control for the volatility risk by including changes in the daily VIX. The negative contempo-

raneous relation between ψ and BAB returns again survives controlling for the volatility risk.

In specification (5), we simultaneously control for the change in the TED spread, the change

in VIX, the market excess return, and the lagged ψ, and we find that the contemporaneous

correlation between ψ and BAB returns remains negative and statistically significant.

Overall, our findings of a negative association between ψ and contemporaneous BAB

returns and a positive association between ψ and future BAB returns support the theoretical

predictions in Frazzini and Pedersen (2014). These results lend further support to the validity

of using ψ as a proxy for the shadow cost of leverage constraints.

7. Supply and demand shifts in the leverage market

In this section, we combine our shadow cost measure (ψ) and the LCT measure in Boguth

and Simutin (2018) to form a leverage price-quantity pair that identifies the demand and

supply shifts in the leverage market. We argue that this demand-and-supply perspective

is crucial for understanding empirical patterns associated with the leverage constraints. In

particular, the demand-and-supply analysis predicts that the relation between the LCT
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measure and the BAB premium should be time varying.

The LCT measure is the market beta of the aggregate stock holdings of all active mutual

funds (hereafter, LCT
(
βMKT
MF

)
). As Boguth and Simutin (2018) highlight, because mutual

funds face regulatory or self-imposed leverage constraints, they are willing to accept a lower

risk-adjusted returns on high-beta stocks in exchange for the implicit leverage. Boguth and

Simutin (2018) posit that LCT
(
βMKT
MF

)
is a contender to the TED spread as a proxy for

leverage constraint tightness and hence LCT
(
βMKT
MF

)
should be positively correlated with

the BAB premium. In contrast to this view, our interpretation is that mutual funds choose

the optimal implicit leverage (their portfolio’s market beta) given the shadow cost of the

leverage constraints (which give rises to the BAB premium). Therefore, the LCT
(
βMKT
MF

)
measure captures the equilibrium quantity of leverage chosen by mutual fund managers.

Depending on whether the demand or supply shift is the driving force in the leverage market,

the correlation between the quantity of leverage (βMKT
MF ) and the cost of leverage (the BAB

premium) can be positive or negative.44

To test this prediction, we start by extending the results in Boguth and Simutin (2018) to

December 2016 by using LCT
(
βMKT
MF

)
to predict average BAB returns over the next one, six,

and 12 months.45 We find that the LCT measure predicts BAB returns with a positive and

significant coefficient between 1980 and 2016. For example, the six-month moving average of

LCT predicts the average BAB returns over the next one, six, and 12 months with coefficients

of 4.74 (t-statistic = 1.72), 5.81 (t-statistic = 2.47), and 7.15 (t-statistic = 3.56), respectively.

Panel B of Table 6 shows the same regression results in our sample period between July

2006 and December 2016. In contrast to the full sample results, the LCT measure predicts

BAB returns with a negative coefficient across all nine specifications, except for a positive and

insignificant coefficient when using one-month LCT to predict one-month BAB. For instance,

when using the six-month moving average of LCT to predict average BAB returns in the

next one, six, and 12 months, the predictive coefficients are −13.58 (t-statistic = −1.51),

−15.24 (t-statistic = −1.76), and −16.26 (t-statistic = −2.55), respectively.46

The sign of the predictive coefficient on the LCT
(
βMKT
MF

)
measure switching from pos-

itive to negative is not surprising, according to the demand-and-supply explanation, if the

44A standard demand-and-supply analysis predicts that an outward shift in the supply (demand) of leverage
will increase (decrease) the quantity of equilibrium leverage and decrease (increase) the cost of leverage.

45We splice the authors’ original LCT measure, which is available from 1980 through 2014, with our
replicated LCT from 2015 through 2016. In the period from 1980 to 2014, our replicated LCT has a 0.97
correlation with the original LCT. The details of the replication are in our Data Appendix.

46In untabulated results, we verify that the regression coefficients are positive when we use data before
July 2006.
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supply shift is more dominant in the leverage market in our sample period. To test this

conjecture, we use our spread measure of the shadow cost of leverage constraints (ψ) and the

LCT
(
βMKT
MF

)
measure to form a leverage price-quantity pair to identify demand- and supply-

shifts. That is, positive (negative) co-movement between ψ and LCT
(
βMKT
MF

)
indicates that

demand (supply) shifts are the dominant force.

We first look at the overall unconditional correlations between ψ and LCT
(
βMKT
MF

)
. The

Spearman rank correlation is −0.09 and the Pearson correlation is −0.05, consistent with

the supply-shift channel being on average more important in our sample period. However,

neither of the unconditional correlations is statistically significant.47 More tellingly, Figure

5 looks at how LCT
(
βMKT
MF

)
’s predictive power for future BAB returns changes with the

conditional correlations between ψ and LCT
(
βMKT
MF

)
. Specifically, at the end of each month

between June 2009 to December 2016, we use the data in the past three years to compute

the rolling correlations between the innovations in monthly ψ and LCT
(
βMKT
MF

)
in the top

panel.48 In the bottom panel, we then look at the predictive coefficient on LCT
(
βMKT
MF

)
from regressing the average monthly BAB returns in the next six months on the six-month

moving average of LCT
(
βMKT
MF

)
over the same three year window.49 We find interesting

comovement between the rolling correlations and the rolling predictive coefficients. When

the rolling correlation between ψ and LCT
(
βMKT
MF

)
becomes the most negative around 2010,

indicating strong supply shifts, LCT
(
βMKT
MF

)
also predicts future BAB returns with the most

negative coefficient. As the rolling correlation between ψ and LCT
(
βMKT
MF

)
becomes positive

toward the end of 2016, LCT
(
βMKT
MF

)
also starts to predict the future BAB returns with a

positive sign.50

Panel C of Table 6 formally tests the prediction that the time-varying relation be-

tween LCT
(
βMKT
MF

)
and future BAB returns is associated with supply-and-demand shifts

in the leverage market. We define CoMove as the correlation between the innovations in

LCT
(
βMKT
MF

)
and monthly ψ in the past 12 months. More positive CoMove indicates de-

mand shifts are more important, and according to the demand-and-supply prediction, the

relation between LCT
(
βMKT
MF

)
and future BAB premium should be more positive. Regres-

47The Spearman rank correlation has p-value 0.32, and the Pearson correlation has p-value 0.61.
48The innovations are computed using an AR(1) model with all data in the sample period.
49To give an example, in June 2010 we estimate the correlation using ψ and LCT between July 2007 and

June 2010 (inclusive) and the predictive regression using the six-month moving averages of LCT that fall
between July 2007 and June 2010 (inclusive), i.e., the first six-month moving average is computed between
July 2007 and December 2007 and the last moving average is computed between January 2010 and June
2010.

50We plot one standard error confidence intervals in the figure, but these standard errors estimated in
small samples need to be interpreted with caution.
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sion specifications (1) through (3) regress the average BAB returns over the next one, six

and 12 months on the 12-month moving average of LCT, CoMove computed in the same

12-month window, and their interaction term. We observe that the coefficients on the inter-

action term are positive and statistically significant at the 1% level across all three regression

specifications. In regression specifications (4) through (6), we instead use an indicator vari-

able (DemandShift = 1 if CoMove > 0, otherwise zero) to classify demand- and supply-shift

dominant periods, we again find that a positive and significant coefficient at 1% level on the

interaction term across the three forecasting horizons.

These results all point to a time-varying relation between LCT
(
βMKT
MF

)
and the BAB

premium that is consistent with the demand-and-supply interpretation. This demand-and-

supply interpretation also explains why ψ subsumes LCT
(
βMKT
MF

)
in predicting the BAB

returns in Panel C of Table 4. This is because our spread measure ψ corresponds to the

theoretically motivated interest-rate spread that captures the shadow cost of leverage con-

straints in Garleanu and Pedersen (2011). In contrast, LCT
(
βMKT
MF

)
is a measure of the

quantity of leverage and hence its relation with the BAB premium can be either positive

or negative. Overall, our evidence suggests that disentangling supply and demand shifts is

crucial for interpreting the empirical patterns associated with leverage constraints.

8. Relation to the cross-section of stock returns

In this section, we use our shadow cost measure to test the theoretical prediction in

Brunnermeier and Pedersen (2009) that the shadow cost of leverage constraints is an addi-

tional risk factor in the pricing kernel. States of the world with high shadow cost of leverage

constraints are states when arbitragers’ marginal utility of wealth is high. Consequently,

stocks that pay off when the shadow cost is high are safe and should earn lower expected

returns.

8.1. Preformation betas

We estimate the exposure of stock i to the time variation in the shadow cost of leverage

constraints at the end of each month by running the following time series regression of excess

stock returns on the market excess return (MKT) and the shocks to our shadow cost measure.

We use daily observations available between the end of month t− 12 and the end of month

t to estimate betas for each stock and require at least 180 non-missing observations. The
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regression specification is

ri,d = β0 + βMKT
i MKTd + βψi ∆ψd + εi,d (17)

, where rid, MKTd and ∆ψd are the daily stock excess returns, the daily market excess

returns, and the daily ψ innovations at the close of day d.51 To mitigate the impact of

nonsynchronous trading and measurement errors in daily ψ, similar to Frazzini and Pedersen

(2014), we use the 3-day moving average of these variables to estimate betas.

8.2. Univariate Portfolio analysis

We start the portfolio analysis with an univariate portfolio sort on βψ. At the end of

each month t, all stocks in the given sample are sorted into quintile portfolios based on an

ascending ordering of βψ. We then calculate the value-weighted average month t+ 1 excess

return for each of the quintile portfolios, as well as for the zero-investment portfolio that

is long the top quintile portfolio and short the bottom quintile portfolio (5− 1 portfolio).52

Our samples cover the months t from June 2007 through December 2016. This period is

chosen because June 2007 and December 2016 are the first and last months for which we can

estimate the regression in equation (17) with a full year’s worth of data.

Panel A of Table 7 show the univariate portfolio sort results using all U.S.-based common

stocks in the the Center for Research in Security Prices (CRSP) database that have a valid

value of βψ at the end of each month t. We find that average excess returns are monotonically

decreasing across the βψ quintiles. The bottom quintile portfolio generates an average excess

return of 1.02% per month and the average excess return of the top quintile portfolio is 0.27%

per month. The 5 − 1 portfolio average return of −0.75% per month is economically large

and statistically significant with a t-statistic of −2.3 after adjusting for heteroskedasticity

and serial correlations following Newey and West (1987) with 12 lags.

To examine whether the pattern in the excess returns of the βψ-sorted portfolios is a man-

ifestation of exposure to previously identified risk factors, we calculate the abnormal returns

of the quintile portfolios relative to the CAPM, the CAPM plus BAB model (CAPM+BAB),

the Fama and French (1993) model (FF3), the Carhart (1997) model (FFC), the Hou, Xue,

and Zhang (2015) Q-factor model (Q), and the Fama and French (2015) model (FF5).53 The

51To avoid look-ahead bias, we compute ∆ψd recursively using only data available up to day d. See the
Data Appendix for more details.

52The excess stock return in month t+ 1 has been adjusted for the delisting returns in CRSP.
53The FF3 model includes the market (MKT) factor, the size (SMB, small minus big) and value (HML,
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alphas exhibit a similar monotonically decreasing pattern across the quintiles. The 5−1 port-

folio generates monthly alpha of −0.88% per month (t-statistic = −3.0), −0.76% per month

(t-statistic = −2.3), −0.78% (t-statistic = −2.9), −0.74% (t-statistic = −2.8), −0.75% (t-

statistic = −2.3), and −0.67% (t-statistic = −2.3) relative to the CAPM, CAPM+BAB,

FF3, FFC, Q, FF5 factor models, respectively. The alpha of the 5 − 1 portfolio relative

to each of the factor models is negative and statistically significant, demonstrating that

standard risk factors do not explain the relation between βψ and average returns.

Panel A of Table 7 also reports the value-weighted pre-formation and post-formation

βψ for each of the quintile portfolios. As emphasized in Ang, Hodrick, Xing, and Zhang

(2006), “finding large spreads in the post-formation loadings is a very stringent requirement”

in tests of a risk-based explanation that predicts contemporaneous relations between the

true forward-looking factor loadings and expected returns. Because the true factor loadings

are unobservable, researchers often implicitly assume that the portfolios sorted on the pre-

formation sensitivities would have significant differential post-formation exposure to the

proposed risk factor. We examine the validity of this assumption by computing the post-

formation βψ from regressing the entire time series of post-formation portfolio daily excess

returns on the contemporaneous MKT and innovations in ψ, as in Eq. (17). The results in

Panel A of Table 7 indicate that the βψ 5 = 1 portfolio has a strong positive post-formation

sensitivity of 4.7, which is statistically significant at the 5% level. Thus, while the pre-

formation βψ is an imperfect measure of the true factor loading, it is sufficiently accurate to

generate economically and statistically significant post-formation exposure to ψ.54

In Panels B and C of 7, we repeat our analysis using the Liquid and Large Cap samples

to distinguish between risk pricing and mispricing explanations because limits to arbitrage

(Shleifer and Vishny (1997)) are less likely to bind in liquid and large stocks. The Liquid

sample is the subset of the full sample with Amihud (2002) illiquidity (ILLIQ) values that

are less than or equal to the 80th percentile month t ILLIQ value among NYSE stocks. The

high minus low) factors. The FFC model includes MKT, SMB, HML, and the momentum (MOM) factor.
FF5 includes MKT, HML, the size (SMB5), profitability (RMW, robust minus weak), and investment (CMA,
conservative minus aggressive) factors.The Q model includes MKT, the size (ME) factor, the return-on-equity
(ROE) factor, and the investment over asset (I/A) factor. We obtain MKT, SMB, HML, RMW, CMA factor
returns from Kenneth French’s online data library, the BAB returns from the AQR online data library, and
the ME, ROE, I/A factor returns from Lu Zhang.

54When the proposed risk factor is not a traded return, the literature typically reports a lack of significant
dispersion in post-formation sensitivities, likely due to measurement errors in pre-formation betas. See
Ang, Hodrick, Xing, and Zhang (2006) and Lu and Murray (2017) for more discussions. Our portfolio sort
approach tests for the rank correlation between pre-formation betas and future returns, and thus it is more
robust to the measurement errors than tests of the linear relation between pre-formation betas and future
returns.
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Large Cap sample is the subset of the full sample with market capitalization (MKTCAP)

values that are greater than or equal to the 50th percentile value of month t MKTCAP

among NYSE stocks.

We find similar and significant patterns in excess returns, factor model alphas, and post-

formation betas in the Liquid and Large Cap samples. The βψ 5 = 1 excess returns are

−0.76% (t-statistic = −2.5) and −0.60% (t-statistic = −2.0) in the Liquid and Large Cap

samples, respectively. In the Liquid sample, the 5 − 1 portfolio generates monthly alpha

of −0.90% (t-statistic = −3.5), −0.79% (t-statistic = −2.7), −0.80% (t-statistic = −3.2),

−0.75% (t-statistic = −3.1), −0.76% (t-statistic = −2.5), and −0.66% (t-statistic = −2.2)

relative to the CAPM, CAPM+BAB, FF3, FFC, Q, and FF5 factor models, respectively.

These numbers are slightly larger in magnitude compared with those of the All stocks sample.

In the Large Cap sample, the 5− 1 portfolio generates monthly alpha of −0.74% (t-statistic

= −3.0), −0.62% (t-statistic = −2.1), −0.63% (t-statistic = −2.6), −0.58% (t-statistic

= −2.6), −0.60% (t-statistic = −2.0), and −0.47% (t-statistic = −1.6) relative to the

CAPM, CAPM+BAB, FF3, FFC, Q, and FF5 factor models, respectively. The alphas in

the Large Cap sample are smaller than those in the All Stocks sample but remain significant

at 5% level, with the only exception being the marginally significant FF5 alphas. Finally,

the βψ 5 = 1 portfolios in both the Liquid and Large Cap samples exhibit significant post-

formation βψ of 4.79 (t-statistic = 2.7) and 4.91 (t-statistic = 2.9), respectively.

Table 8 presents the same univariate portfolio sorting analysis based on βTED, which

is computed under the same regression specification in Eq. (17) except for replacing ∆ψ

with ∆TED. In a sharp contrast with the pricing effect of βψ, we find no evidence that

the exposure to the innovations in the TED spread is priced in the cross-section of stock

returns. The βTED 5 = 1 excess returns are −0.17% (t-statistic = −0.6) and −0.15%

(t-statistic = −0.5) and −0.12% (t-statistic = −0.12) in the Full, Liquid and Large Cap

samples, respectively. Adjusting for exposures to standard factor models yields alphas that

are positive and statistically insignificant.

8.3. Bivariate Portfolio Analyses

Having demonstrated a strong negative cross-sectional relation between βψ and expected

stock returns that is not explained by standard risk factors, we move to investigate the

possibility that this relation can be explained by exposure to the existing proxies for funding

conditions. We compute the sensitivities of returns to these proxies and use them as the

control variables. Table 9 reports the equal-weighted average sensitivities for each quintile
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portfolio. The results of the bivariate portfolio analyses with these control variables are

shown in Table 10. Specifically, at the end of each month t, we first sort all stocks into

quintiles based on the ascending values of a control variable, and then within each control

variable quintile, we sort stocks into quintile portfolios based on an ascending ordering of

βψ. We then calculate the value-weighted month t+ 1 excess return for each of the resulting

portfolios. Next, we compute the average month t + 1 excess return across the control

variable quintile portfolios within each βψ quintile, and refer to this as the bivariate βψ

quintile portfolio excess return. Finally, we calculate the difference in month t + 1 returns

between the bivariate βψ top and bottom quintile portfolios (bivariate βψ 5 − 1 portfolio).

Since the bivariate βψ quintile portfolios have similar values of the control variable, any

return pattern across the bivariate βψ quintile portfolios is unlikely to be driven by the

control variable.

We first control for sensitivities to innovations in the TED spread (βTED). The 3-month

LIBOR used to compute the TED spread has historically been considered as a measure of

the funding cost for large commercial banks.55 Table 9 reports the average βTED across

that βψ quintiles. We do not find a consistent relation between βTED and βψ , consistent

with our earlier results that the funding costs of leveraged funds and banks captured by ψ

and the TED spread are quite different. Table 10 shows that controlling for βTED does not

appear to explain the negative relation between average returns and βψ. The bivariate βψ

5 = 1 portfolio that is neutral to βTED earns a monthly return spread of −0.58% (t-statistic

= −2.4), CAPM alpha of −0.66% (t-statistic = −3.2), CAPM+BAB alpha of −0.59% (t-

statistic = −2.5), FF3 alpha of−0.59% (t-statistic = −3.1), FFC alpha of−0.55% (t-statistic

= −3.3), Q alpha of −0.58% (t-statistic = −2.4), and FF5 alpha of −0.51% (t-statistic

= −2.4).

Next, we control for VIX beta (βVIX). Ang et al. (2011) find that hedge fund leverage

tends to decrease after VIX increases, suggesting links between leverage and VIX. Ang et al.

(2006) find that expected stock returns are negatively related to VIX beta, measured as the

slope coefficient on the change in the VIX index from a 1-month rolling window regression

of daily excess stock returns on contemporaneous MKT and VIX changes. Table 9 shows

that the average βVIX tends to increase with βψ quintiles across the samples, suggesting

stocks that perform poorly when VIX increases overlap with stocks that perform poorly

when the shadow cost of leverage constraints increases. Therefore, controlling for βVIX could

55A caveat is that the LIBOR rate may have been understated during the financial crisis due to manipu-
lation.
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potentially explain the negative relation between βψ and future stock returns. However,

Table 10 shows that controlling for βVIX only slightly reduces the excess returns on the βψ

5 = 1 portfolio. The bivariate βψ 5 = 1 portfolio that is neutral to βVIX earns a monthly

return spread of −0.68% (t-statistic = −2.9) as opposed to −0.75% in the univariate sorts.

The risk adjusted returns all remain statistically significant, with CAPM alpha of −0.75% (t-

statistic = −3.6), CAPM+BAB alpha of −0.67% (t-statistic = −2.7), FF3 alpha of −0.67%

(t-statistic = −3.3), FF3 alpha of −0.64% (t-statistic = −3.4), Q alpha of −0.68% (t-statistic

= −2.9), and FF5 alpha of −0.55% (t-statistic = −2.6).

Our next series of tests examine whether sensitivities to the existing leverage measures

in the literature can explain the premium associated with βψ, which include βLCT (Boguth

and Simutin (2018)), βLEV(Adrian, Etula, and Muir (2014)), and βICR (He, Kelly, and

Manela (2017)).56 Table 9 finds no general monotonic patterns of βLCT, βLEV, and βICR

across βψ quintiles. These results are consistent with our discussions in Section 7 that

leverage measures can be negatively or positively correlated with our cost of leverage measure

depending on whether supply or demand shifts are driving the equilibrium. Table 10 finds

little evidence that any of βLCT, βLEV, and βICR can explain the pricing effect of βψ. The

average returns and all alphas of the bivariate βψ 5 = 1 portfolios that are neutral to βLCT,

βLEV, and βICR range from −0.57% per month to −0.85% per month in magnitude and are

all statistically significant at the 1% level.

In the final column of Panel A in Table 10, we control for idiosyncratic volatility (IVOL),

calculated as the standard deviation of the residuals from a 1-month rolling window regression

of daily excess stock returns on MKT, SMB, and HML. Ang et al. (2006) find that IVOL is

negatively related to the cross section of future stock returns. In Table 9, we see that stocks

in both the bottom and top βψ quintiles have high IVOL. Therefore, we do not expect

IVOL to explain the monotonically decreasing average returns across βψ sorted portfolios.

In Table 9, we find that the average return and alphas of the bivariate βψ 5 = 1 portfolio are

slightly smaller in magnitude after controlling for IVOL, but they remain economically and

statistically significant. The monthly return spread is −0.71% (t-statistic = −3.0), CAPM

alpha is −0.77% (t-statistic = −3.5), CAPM+BAB alpha is −0.74% (t-statistic = −3.4),

FF3 alpha is −0.70% (t-statistic = −3.5), FFC alpha is −0.70% (t-statistic = −3.6), Q alpha

is −0.71% (t-statistic = −3.0), and FF5 alpha is −0.56% (t-statistic = −2.5).

Finally, in Panel B and C of in Table 10, we repeat our analysis using the Liquid and

Large Cap samples, respectively. Confining the sample to liquid stocks decreases the excess

56Our Data Appendix describes the computation of these betas.
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returns and alphas for the bivariate βψ 5 = 1 portfolios controlling for βVIX, βLCT, βLEV, and

βICR and slightly increases the alphas for the bivariate βψ 5 = 1 portfolios controlling for

βTED and IVOL. Importantly, the bivariate βψ 5 = 1 portfolios still generate monthly excess

returns and alphas that are significant at 5% level across all specifications. In the Large

Cap sample, similar to the univariate sort results, excess returns and alphas are smaller

in magnitude across the board. Nevertheless, the excess returns on the bivariate βψ 5 =

1 portfolios remain economically large between −64 to −42 basis points per month. The

bivariate βψ 5 = 1 excess returns are statistically significant at the 5% level when controlling

for βLCT, βLEV, βICR and IVOL and are significant at the 10% level when controlling for

βTED and βVIX. Adjusting for risk exposures generally yield alphas that are significant at

the 5% level, with exceptions being Q-factor alphas for the bivariate βψ 5 = 1 portfolios

controlling for βTED (t-statistic = −1.8) and βVIX(t-statistic = −1.9) and FF5 alphas for

the bivariate βψ 5 = 1 portfolios controlling for βTED (t-statistic = −1.9), βVIX(t-statistic

= −1.7), and βLCT(t-statistic = −1.9). Overall, our bivariate portfolio results show that the

pricing effect of βψ is robust to controlling for exposure to the existing proxies for funding

conditions.

8.4. Risk exposure to the shadow cost of leverage constraints and BAB pre-

mium

The leverage constraint model in Frazzini and Pedersen (2014) predicts that high-beta

stocks have lower CAPM alphas because leverage constrained investors use high-beta stocks

to achieve high risk exposure. In their model, the BAB premium is completely driven by

−∆β × λtmt, i.e. the CAPM beta difference times the shadow cost of leverage constraints

(see Eq. (10)).57 With our new measure of the shadow cost of leverage constraints, we can

quantitatively assess this prediction.

The difference in average CAPM alpha between the high and low CAPM beta portfolios

in Table 3 of Frazzini and Pedersen (2014) is −0.62 per month. The corresponding difference

in realized CAPM betas is 1.18. In order for the CAPM beta difference to fully account for

the difference in CAPM alphas, we need to have −∆β × λtmt = −0.62%. Given ∆β = 1.18,

the shadow cost of leverage constraints λtmt should be at least 0.5% per month. In contrast,

57Frazzini and Pedersen (2014) invite researchers to assess this prediction quantitatively, “An interesting
topic for future research is to empirically estimate agents’ leverage constraints and risk preferences and
study whether the magnitude of the BAB returns is consistent with the model or should be viewed as a
puzzle.” Following their paper, the high and low CAPM beta stocks are assumed to have the same margin
requirement.
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according to our estimate using the monthly ψ in our shorter sample period, the shadow

cost of leverage constraints is an order of magnitude smaller than 0.5% per month (or 6%

per annum): ψ averages 0.30 per annum and has an interquartile of 0.36 per annum.

This contrast highlights that the leverage constraint model in Frazzini and Pedersen

(2014) is meant to deliver theoretical insight rather than empirical realism. A natural ex-

tension of this model is to account for the fact that when the expected returns on an asset

depends on the shadow cost of leverage constraints, this asset has risk exposure to the time-

variation in the shadow cost of leverage constraints and hence should earn additional risk

premium associated with this discount rate risk (Brunnermeier and Pedersen (2009)).

As documented in this section, this risk premium is quite substantial as the univariate

βψ 5 = 1 portfolio earns 0.75 per month with a FF5 alpha of 0.67 per month. To explore

how much of BAB premium can be explained by the discount rate risk associated with the

time-variation in the shadow cost of leverage constraints, we regress BAB returns on the

returns of the univariate βψ 5 = 1 portfolio. We find that BAB returns load negatively

and significantly on the univariate βψ 5 = 1 portfolio, consistent with the theoretical and

empirical results that the BAB portfolio performs well when the shadow cost of leverage

constraints is high.58 The exposure to the univariate βψ 5 = 1 portfolio explains nearly half

of the BAB ’s CAPM alpha, which is 0.36% per month but statistically insignificant in our

sample period.

9. Conclusion

Using the most comprehensive dataset of daily leveraged funds known to the literature,

we construct an alternative measure to the TED spread for estimating the shadow cost of

leverage constraints. Leveraged funds provide a rare opportunity to infer the financing terms

between leveraged institutional investors and major financial intermediaries in the market.

Since leveraged funds’ borrowing has very low credit risk, our shadow cost measure—the

interest-rate spread between the market-wide cost of leverage for leveraged funds and a

benchmark risk-free rate—closely resembles the theoretical construct of the shadow cost of

leverage constraints in Garleanu and Pedersen (2011).

We uncover strong evidence in supportive of the leverage-constraint based asset pricing

58Specifically, we regress the monthly BAB returns on the contemporaneous univariate βψ 5 = 1 portfolio
returns and the market excess return. The coefficients on the intercept, the βψ 5 = 1 portfolio returns, and
the market excess return are 0.20 (Newey West t-statistics = 0.39), −0.19 (Newey West t-statistic = −2.1),
and 0.00 (Newey West t-statistic = 0.03) , respectively.
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theories using our shadow cost measure. We find our shadow cost measure spikes upon

quarter-ends, positively predicts BAB premium, and negatively correlates with contempo-

raneous BAB returns. Furthermore, we find that innovations in our shadow cost measure

are priced in the cross section of stock returns. Stocks that underperform when our measure

indicates high shadow cost of leverage constraints on average earn 0.75% more per month.

These time-series and cross-sectional patterns are all consistent with the theoretical predic-

tions for a valid proxy for the shadow cost of leverage constraints. In contrast, these patterns

except for the negative relation with contemporaneous BAB returns are not detected when

using the TED spread as the shadow cost measure. Finally, we show that using our shadow

cost measure helps to identify the non-monotonic relation between the tightness of leverage

constraints and the level of implicit leverage used by active mutual funds, highlighting the

importance of distinguishing between supply and demand shifts in the leverage market. We

conclude that our shadow cost measure is a useful tool for assessing the wide-ranging asset

pricing implications of leverage constraints.
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Figure 1: Time Series of rc

This figure shows the three-month moving averages of our cost of leverage measure (rc), as defined in Eq
(5), as well as the three-month moving averages of the benchmark risk-free rates: the one-month Treasury
bill rate (T-bill 1M), and the general collateral repo rate (GC repo). The gray shaded area indicates the
US recession from December 2007 to June 2009 defined by National Bureau of Economic Research (NBER),
and the light blue shaded area indicates the Euro area recession from October 2011 to March 2013 defined
by Center for Economic Policy Research (CEPR).
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Figure 2: Time Series of ψ

Sub-figure (a) plots the three-month moving averages of our spread measure of the shadow cost of leverage
constraints (ψ, the difference between rc and the GC repo rate). The plot compares our spread with the
three-month moving averages of the TED spread and the EFFR-GC repo spread. Sub-figure (b) plots the
three-month moving averages of our spread measure after adjusting for the security lending income (ψadj,
the difference between rc,adj and the GC repo rate), the TED spread, and the difference between ψ and ψadj.
The gray shaded area indicates the US recession from December 2007 to June 2009 defined by National
Bureau of Economic Research (NBER), and the light blue shaded area indicates the Euro area recession
from October 2011 to March 2013 defined by Center for Economic Policy Research (CEPR).

(a) ψ and other funding spreads

(b) ψadj,the TED spread, and ψ − ψadj
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Figure 3: An Example

These figures illustrate a typical leveraged fund using the official web-page for ProShares Ultra Financials.
Sub-figure (a) shows the overview of the fund and sub-figure (b) shows the fund holdings. The rows after
the stock holding of JPMORGAN CHASE & CO are not shown to save space.

(a) Fund Overview

ProShares Ultra Financials seeks daily investment results, before fees and expenses, that correspond

to two times (2x) the daily performance of the Dow Jones U.S. FinancialsSM Index.

This leveraged ProShares ETF seeks a return that is 2x the return of an index or other benchmark (target) for a single

day, as measured from one NAV calculation to the next. Due to the compounding of daily returns, ProShares' returns over

periods other than one day will likely differ in amount and possibly direction from the target return for the same period.

These effects may be more pronounced in funds with larger or inverse multiples and in funds with volatile benchmarks.

Investors should monitor their holdings consistent with their strategies, as frequently as daily. For more on correlation,

leverage and other risks, please read the prospectus.

Considerations for Geared Investing – Learn More

Fund Snapshot

Ticker UYG

Intraday Ticker UYG.IV

CUSIP 74347X633

Inception Date 1/30/07

Expense Ratio * 0.95%

NAV Calculation Time 4:00 p.m. ET

Distributions Quarterly

* With Contractual Waiver ending 9/30/18.

Price Information as of 7/24/18

NAV $43.70

NAV Change $0.08

Market Price Closing $43.64

Market Price Closing Change $0.05

Daily Trading Volume 102,834

ULTRA FINANCIALS

The performance quoted represents past performance and does not guarantee future results. Investment return and principal value of an investment will
fluctuate so that an investor's shares, when sold or redeemed, may be worth more or less than the original cost. Shares are bought and sold at market price
(not NAV) and are not individually redeemed from the fund. Market price returns are based upon the midpoint of the bid/ask spread at 4:00 p.m. ET (when NAV
is normally determined for most funds) and do not represent the returns you would receive if you traded shares at other times. Brokerage commissions will
reduce returns. Current performance may be lower or higher than the performance quoted. For standardized returns and performance data current to the
most recent month end, see Performance.

There is no guarantee any ProShares ETF will achieve its investment objective.

Shares of any ETF are generally bought and sold at market price (not NAV) and are not individually redeemed from the fund. Brokerage commissions will reduce returns.

Investing involves risk, including the possible loss of principal. Ultra ProShares are non-diversified and entail certain risks, including risk associated with the use of
derivatives (swap agreements, futures contracts and similar instruments), imperfect benchmark correlation, leverage and market price variance, all of which can increase
volatility and decrease performance. Please see their summary and full prospectuses for a more complete description of risks.

The fund concentrates its investments in certain sectors. Narrowly focused investments typically exhibit higher volatility.

The "Dow Jones U.S. Financials IndexSM" is a product of Dow Jones Indexes, the marketing name and a licensed trademark of CME Group Index Services LLC ("CME

Indexes"). "Dow Jones,®" "DJ," "Dow Jones Indexes" and "Dow Jones U.S. Financials Index" are service marks of Dow Jones Trademark Holdings, LLC ("Dow Jones")
and have been licensed to CME Indexes and sublicensed to ProShares. ProShares have not been passed on by CME Indexes or Dow Jones as to their legality or
suitability. ProShares based on the Dow Jones U.S. Financials Index are not sponsored, endorsed, sold or promoted by CME Indexes or Dow Jones, and they make no
representation regarding the advisability of investing in ProShares. THESE ENTITIES AND THEIR AFFILIATES MAKE NO WARRANTIES AND BEAR NO LIABILITY
WITH RESPECT TO PROSHARES.

ProShares ETFs: Ultra Financials - Overview file:///C:/Users/gqin/Dropbox/Phd Year 2/Leverage Factor/Leverage Fact...

1 of 2 7/24/2018, 8:42 PM

(b) Fund Holdings

ProShares Ultra Financials seeks daily investment results, before fees and expenses, that correspond

to two times (2x) the daily performance of the Dow Jones U.S. FinancialsSM Index.

This leveraged ProShares ETF seeks a return that is 2x the return of an index or other benchmark (target) for a single

day, as measured from one NAV calculation to the next. Due to the compounding of daily returns, ProShares' returns over

periods other than one day will likely differ in amount and possibly direction from the target return for the same period.

These effects may be more pronounced in funds with larger or inverse multiples and in funds with volatile benchmarks.

Investors should monitor their holdings consistent with their strategies, as frequently as daily. For more on correlation,

leverage and other risks, please read the prospectus.

Considerations for Geared Investing – Learn More

As of 7/24/18

Description Ticker Symbol
Exposure Value

(Notional + G/L)
Market Value ($) Shares/Contracts

DJ U.S. FINANCIALS INDEX SWAP UBS AG - 329,268,315.66 - 545,561.71

DJ U.S. FINANCIALS INDEX SWAP DEUTSCHE BANK AG - 263,219,753.41 - 436,126.44

ISHARES U.S. FINANCIALS (IYF) SWAP MORGAN STANLEY &

CO. INTERNATIONAL PLC

- 152,522,542.78 - 69,581.45

DJ U.S. FINANCIALS INDEX SWAP BANK OF AMERICA NA - 97,806,744.11 - 162,055.11

DJ U.S. FINANCIALS INDEX SWAP SOCIETE GENERALE - 84,907,347.66 - 140,682.22

DJ U.S. FINANCIALS INDEX SWAP CITIBANK NA - 68,070,619.21 - 112,785.59

DJ U.S. FINANCIALS INDEX SWAP GOLDMAN SACHS

INTERNATIONAL

- 25,044,912.28 - 41,496.69

DJ U.S. FINANCIALS INDEX SWAP MORGAN STANLEY & CO.

INTERNATIONAL PLC

- 14,375,357.74 - 23,818.40

ISHARES U.S. FINANCIALS (IYF) SWAP BANK OF AMERICA

NA

- 12,637,592.40 - 5,765.32

DJ U.S. FINANCIALS INDEX SWAP CREDIT SUISSE

INTERNATIONAL

- 2,439,593.18 - 4,042.14

JPMORGAN CHASE & CO JPM - $55,499,501.70 486,198.00

BERKSHIRE HATHAWAY INC BRK.B - $54,546,731.00 274,850.00

BANK OF AMERICA CORP BAC - $41,513,704.88 1,346,536.00

WELLS FARGO & CO WFC - $36,542,095.95 626,257.00

VISA INC V - $35,716,751.95 255,065.00

MASTERCARD INC MA - $27,440,518.98 130,931.00

CITIGROUP INC C - $25,878,505.89 364,127.00

GOLDMAN SACHS GROUP INC GS - $11,832,212.56 50,162.00

U.S. BANCORP USB - $11,508,394.75 222,815.00

AMERICAN EXPRESS CO AXP - $10,371,673.83 101,973.00

MORGAN STANLEY MS - $9,923,257.00 194,650.00

PNC FINANCIAL SERVICES GROUP INC PNC - $9,597,348.60 67,044.00

CHARLES SCHWAB CORP SCHW - $9,063,798.48 171,468.00

BLACKROCK INC BLK - $8,961,044.01 17,609.00

CHUBB LTD CB - $8,950,258.40 66,515.00

ProShares ETFs: Ultra Financials - Daily Holdings http://www.proshares.com/funds/uyg_daily_holdings.html

1 of 8 7/24/2018, 8:55 PM
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Figure 4: Number of Funds in the Final Dataset (2006 - 2016)

Sub-figure (a) shows the number of funds and sub-figure (b) shows the total value of exposure in our final
dataset across the stated leverage levels. These are domestic daily leveraged funds tracking spot indexes.

(a) Number of Funds in Final Dataset

(b) Exposure Value in Final Dataset
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Figure 5: Correlations and Predictive Coefficients in 36-month Moving Windows

Sub-figure (a) presents the moving correlations between the innovations in monthly ψ and the LCT measure
from Boguth and Simutin (2018). Sub-figure (b) presents the moving predictive coefficients from regressing
the average monthly BAB returns over the next six months on the six-month moving average of LCT.
Both the correlations and the regression coefficients are estimated in the same 36-month moving estimation
windows. The first 36-month window ends in June 2009 and the last one ends in December 2016. One
standard error confidence intervals are indicated with the dashed lines.

(a) Moving Correlations

(b) Moving Predictive Coefficients
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Table 1: Summary Statistics

Panel A presents the summary statistics of the variables used to compute αit in Eq. (1). For funds with
the stated leverage multiple indicated in Column δ, Column N reports the number of unique CRSP fund

names. ExpRatioit =
∑N
i=1

(∑Ti

t=1ExpRatioit/Ti

)
/N is the cross-sectional mean of the time series average

of annual expense ratios. σi (ExpRatioit) =
∑N
i=1 σi (ExpRatioit) /N is the cross-sectional mean of the time

series standard deviation of annual expense ratios. δ̂i is the OLS regression beta from regressing the daily

fund gross returns on the daily benchmark returns. Columns “δ̂i” and “σ
(
δ̂i

)
” report the cross-sectional

mean and standard deviation of δ̂i. R2
i =

∑N
i=1 (1− Vi (αit) /Vi (rit)) /N is the cross-sectional mean of the

portion of leveraged fund returns that are explained by the underlying returns. σi (αit) =
∑N
i=1 σi (αit) /N

is the cross-sectional mean of the time series standard deviation of αit. αit and ExpRatioit are in annualized
percentage points. The sample period starts on June 30, 2006 and ends on December 30, 2016.

Panel A

δ N ExpRatioit σi (ExpRatioit) δ̂i σ
(
δ̂i

)
R2
i σi (αit)

-1 141 1.53 0.02 -1.00 0.02 99.67 10.60
-2 186 1.32 0.01 -2.00 0.02 99.87 18.67
-3 47 0.94 0.002 -3.01 0.06 99.92 12.57
1.5 61 2.05 0.06 1.50 0.003 99.93 12.58
2 188 1.34 0.02 2.00 0.01 99.92 13.11
3 47 0.95 0.01 3.00 0.03 99.91 13.19

Other 8 1.76 0.02 99.75 42.27
ALL 678 1.52 0.02 99.85 14.42
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Panel B reports the summary statistics for our cost of leverage measure (rc), our spread measure for the
shadow cost of leverage constraints (ψ), the one-month Treasury bill rate (T-bill 1M), the general collateral
(GC) repo rate, the effective fed funds rate (EFFR), the TED spread (TED), and the EFFR-GC repo spread
at the daily and monthly frequencies. Monthly variables are the monthly average of the daily variables. All
variables are in annualized percentage points.

Panel B

N Mean SD Median Min Max Skew Kurtosis IQR Q0.25 Q0.75 AR1 Coef

Daily
rc 2, 645 1.28 3.90 0.79 -68.71 56.90 -0.70 61.78 2.48 -0.26 2.22 -0.03
ψ 2, 645 0.30 3.59 0.22 -69.57 56.32 -1.54 83.97 2.20 -0.85 1.35 -0.22
ψadj 2, 645 0.51 4.35 0.34 -96.62 76.82 -1.41 141.91 2.50 -0.87 1.63 -0.23

T -Bill 1M 2, 645 0.84 1.62 0.09 0 5.27 1.89 1.92 0.24 0.03 0.27 0.99
GC repo 2, 645 0.98 1.73 0.16 -0.01 5.31 1.78 1.44 0.27 0.08 0.35 0.99
EFFR 2, 645 1.04 1.78 0.16 0.02 5.50 1.71 1.17 0.30 0.10 0.40 0.99
TED 2, 645 0.50 0.52 0.32 0.09 4.58 3.11 12.88 0.31 0.21 0.52 0.99

Monthly
rc 126 1.28 1.63 0.63 -1.07 7.11 1.84 2.18 0.55 0.49 1.04 0.87
ψ 126 0.30 0.47 0.42 -1.43 1.94 -0.87 2.89 0.36 0.18 0.54 0.09
ψadj 126 0.51 0.57 0.46 -1.00 3.55 2.22 8.83 0.35 0.27 0.62 0.35

T -Bill 1M 126 0.84 1.62 0.09 0.00 5.21 1.87 1.83 0.23 0.03 0.26 0.97
GC repo 126 0.98 1.73 0.16 0.02 5.24 1.75 1.37 0.27 0.09 0.36 0.97
EFFR 126 1.04 1.79 0.16 0.05 5.27 1.69 1.11 0.28 0.12 0.40 0.97
TED 126 0.50 0.50 0.31 0.12 3.41 2.72 9.22 0.30 0.21 0.51 0.87
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Table 2: Market State and Shadow Cost of Leverage Constraints

This table presents the average of monthly ψ, ψadj, ψ − ψadj, the TED spread, and the other proxies for
funding conditions upon different market states. Month t is defined as a Low (High) state if the 36-month
cumulative return of the market (MKT3Y) and the average VIX for month t is below (above) the respective
10th (90th) percentile within our sample period. Month t is a Mid state if the same variables are between
the 10th and 90th percentiles. Data are converted into monthly frequency. For daily variables, we use the
monthly averages. For quarterly variables, we use the quarterly value for months in that quarter. We use
the AR(1) innovations in monthly LCT and MD to be consistent with ICR and LEV. The sample period
includes the 126 months between June 2006 and December 2016. All variables are in the same units as that
of the summary statistics displayed in Panel B of the Table 1.

Panel A - MKT

State ψ ψadj ψ − ψadj TED ICR LEV LCT MD MKT V IX

Low 0.07 0.95 -0.88 1.04 -0.25 -24.86 -2.51 -0.06 -2.86 40.10
Mid 0.30 0.38 -0.08 0.45 -0.01 2.43 -2.12 1.88 0.98 18.33
High 0.52 0.50 0.02 0.29 0.06 -2.07 -4.03 0.39 1.53 15.86

Panel B - VIX

State ψ ψadj ψ − ψadj TED ICR LEV LCT MD MKT V IX

Low 0.23 0.38 -0.15 0.38 0.08 5.67 -2.46 3.78 1.41 11.89
Mid 0.33 0.38 -0.05 0.44 0.00 1.02 -2.24 1.88 0.90 18.56
High 0.18 1.06 -0.88 1.05 -0.30 -21.75 -3.11 -3.47 -2.13 42.27
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Table 3: Quarter End Regressions

Panel A of this table reports the time-series regression of ψ, ψadj, ψ−ψadj, the TED spread, and the GC repo
rate on the quarter-end indicator variable QtrEnd, which equals one for the first and last trading days of a
quarter. The regression controls for the lagged dependent variable. t-statistics are adjusted following Newey
and West (1987) with 22 lags. Panel B reports the average ψ on quarter-end and non-quarter-end days year
by year. The regression includes 2,645 daily observations between June 30, 2006 through December 30, 2016.
All variables are in annualized percentage points.

Panel A - OLS Regression

ψt ψadj
t ψt − ψadj

t TEDt GC Repot

(1) (2) (3) (4) (5)

QtrEnd 1.31∗∗∗ 1.36∗∗∗ 0.06 −0.01 0.02∗

(4.49) (3.99) (0.25) (−1.45) (1.87)

ψt−1 −0.22∗∗∗

(−5.87)

ψadj
t−1 −0.23∗∗∗

(−4.59)

ψt−1 − ψadj
t−1 −0.02

(−0.46)

TEDt−1 0.99∗∗∗

(121.72)

GC Repot−1 1.00∗∗∗

(616.30)

Constant 0.32∗∗∗ 0.58∗∗∗ −0.21∗∗∗ 0.004 0.002
(5.19) (8.89) (−4.75) (1.18) (1.37)

N 2,645 2,645 2,645 2,645 2,645
R2 0.05 0.05 0.0004 0.99 0.99
Adjusted R2 0.05 0.05 −0.0003 0.99 0.99

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

Panel B - Year by Year

ψt 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

QtrEnd 3.06 5.33 1.21 -0.73 0.38 1.71 1.42 1.44 0.63 0.62 1.20
Non-QtrEnd -0.18 -0.27 0.03 -0.01 0.33 0.45 0.32 0.51 0.51 0.52 0.46

Diff 3.24 5.60 1.18 -0.72 0.05 1.26 1.10 0.93 0.12 0.10 0.74
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Table 4: Predicting BAB Returns with ψ

This table reports the times series predictive regression of the average monthly BAB returns in the next
one, six, or 12 months. Panel A uses the one-, six-, and 12-month moving averages of ψ as the predictor,
respectively. Panel B uses the one-, six-, and 12-month moving averages of an alternative version of ψt,
defined as ψEFFR ≡ rc − EFFR, respectively. Panel C uses the six-month moving averages of ψ and LCT
from Boguth and Simutin (2018), the TED spread (TED), and the NYSE margin debt (MD) from Asness,
Frazzini, Gormsen, and Pedersen (2016) as the predictors. The sample period is from June 30, 2006 through
December 30, 2016, and the first observations of the one-, six-, and 12-month moving averages are available
at the end of July 2006, December 2006, and June 2007, respectively. We report Newey-West t-statistics
with 12 lags. The monthly BAB returns are in percentage points per month. MD is quoted as percentage
points of the total NYSE market capitalization. All the other variables are in percentage points per annum.

Panel A - ψ predicting BAB returns

BABt+1 BABMA6
t+1,t+6 BABMA12

t+1,t+12 BABt+1 BABMA6
t+1,t+6 BABMA12

t+1,t+12 BABt+1 BABMA6
t+1,t+6 BABMA12

t+1,t+12

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ψt 0.89 0.91∗∗ 0.86∗∗∗

(0.90) (2.26) (3.14)

ψMA6
t−5,t 3.10∗∗ 2.77∗∗∗ 2.90∗∗∗

(2.56) (3.85) (3.27)

ψMA12
t−11,t 3.52∗∗ 3.41∗∗∗ 3.24∗∗

(2.52) (2.78) (2.59)

Constant 0.09 0.11 0.12 −0.57 −0.45 −0.47 −0.73 −0.64 −0.52
(0.16) (0.31) (0.40) (−0.99) (−1.08) (−1.03) (−1.12) (−1.08) (−0.91)

N 126 126 126 121 121 121 115 115 115
R2 0.02 0.10 0.13 0.07 0.27 0.43 0.08 0.34 0.48
Adjusted R2 0.01 0.09 0.12 0.07 0.26 0.42 0.07 0.33 0.47

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Panel B - ψEFFR predicting BAB returns

BABt+1 BABMA6
t+1,t+6 BABMA12

t+1,t+12 BABt+1 BABMA6
t+1,t+6 BABMA12

t+1,t+12 BABt+1 BABMA6
t+1,t+6 BABMA12

t+1,t+12

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ψEFFRt 1.18 1.21∗∗ 1.15∗∗∗

(1.19) (2.59) (3.29)

ψMA6,EFFR
t−5,t 3.06∗∗∗ 2.97∗∗∗ 2.86∗∗∗

(3.71) (4.56) (4.14)

ψMA12,EFFR
t−11,t 3.22∗∗∗ 3.09∗∗∗ 2.74∗∗∗

(3.50) (3.53) (3.17)

Constant 0.07 0.09 0.10 −0.38 −0.34 −0.29 −0.45 −0.36 −0.21
(0.15) (0.28) (0.36) (−1.07) (−1.13) (−0.94) (−1.13) (−0.93) (−0.55)

N 126 126 126 121 121 121 115 115 115
R2 0.04 0.20 0.26 0.11 0.47 0.64 0.11 0.47 0.58
Adjusted R2 0.03 0.19 0.26 0.10 0.47 0.64 0.10 0.46 0.57

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

Panel C - Additional Controls

BABt+1 BABMA6
t+1,t+6 BABMA12

t+1,t+12 BABt+1 BABMA6
t+1,t+6 BABMA12

t+1,t+12 BABt+1 BABMA6
t+1,t+6 BABMA12

t+1,t+12

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ψMA6
t−5,t 1.70∗∗ 1.66∗∗∗ 2.02∗∗∗ 3.01∗∗ 2.39∗∗∗ 2.48∗∗∗ 4.80∗∗∗ 3.14∗∗∗ 3.11∗∗∗

(2.10) (3.90) (3.29) (2.49) (3.81) (2.76) (3.63) (5.32) (3.57)

TEDt −1.24∗∗∗ −0.98∗∗ −0.78
(−4.44) (−2.18) (−1.45)

LCTMA6
t−5,t −1.31 −5.50 −6.17

(−0.16) (−0.63) (−1.06)

MDt −4.07∗∗ −0.88 −0.49
(−2.09) (−1.52) (−0.91)

Constant 0.46 0.36 0.18 0.83 5.40 6.10 7.62∗ 1.32 0.52
(1.24) (1.52) (0.54) (0.10) (0.60) (0.99) (1.98) (0.96) (0.42)

N 121 121 121 121 121 121 121 121 121
R2 0.11 0.36 0.51 0.07 0.28 0.45 0.12 0.28 0.43
Adjusted R2 0.09 0.35 0.50 0.06 0.27 0.44 0.11 0.27 0.42

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 5: Contemporaneous Correlation with BAB Returns

This table reports on the contemporaneous relationship between BAB returns and our spread measure (ψ) at
the daily frequency. Across all specifications, we control for the market excess return (MKT). We additionally
control for lagged ψ, changes in TED spread (∆TED), and changes in VIX (∆VIX), respectively, in columns
(2) through (4), and together in Column (5). We report Newey-West t-statistics with 22 lags. The sample
period is between June 30, 2006 and December 30, 2016. The daily BAB and MKT are in percentage points.
All the other variables are in percentage points per annum.

ψt ψt ψt ψt ψt

(1) (2) (3) (4) (5)

BABt −0.79∗∗∗ −0.76∗∗∗ −0.86∗∗∗ −0.70∗∗∗ −0.80∗∗∗

(−3.21) (−3.37) (−3.80) (−2.89) (−3.29)

ψt−1 −0.22∗∗∗ −0.22∗∗∗ −0.21∗∗∗ −0.22∗∗∗

(−5.75) (−5.94) (−5.44) (−5.68)

∆TEDt −8.06∗∗∗ −8.10∗∗∗

(−4.38) (−4.32)

∆V IXt 0.15 0.15
(1.04) (1.20)

MKTt −0.22 −0.20 −0.28 −0.002 −0.07
(−0.99) (−0.96) (−1.29) (−0.005) (−0.20)

Constant 0.32∗∗∗ 0.39∗∗∗ 0.39∗∗∗ 0.38∗∗∗ 0.38∗∗∗

(6.14) (6.20) (6.31) (6.05) (6.19)

N 2,645 2,644 2,644 2,644 2,644
R2 0.02 0.07 0.09 0.07 0.09
Adjusted R2 0.02 0.07 0.08 0.07 0.09

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 6: Predicting BAB Returns with LCT

This table reports the times series predictive regression of the average monthly BAB returns in the next one,
six, or 12 months using the one-, six-, or 12-month moving average of leverage constraint tightness (LCT)
from Boguth and Simutin (2018). LCT is downloaded from the authors’ websites starting from January
1980 though December 2014 and supplemented by our replicated LCT to extend to December 2016. Panel
A uses LCT between January 1980 and December 2016. Panels B and C examine the predictive power of
LCT between July 2006 through December 2016. In Panel C, specifications (1) through (3) include the
12-month moving average LCT (LCTMA12), CoMove (defined as the correlation between innovations in
LCT and monthly ψ in the same past 12 months), and their interaction term; specifications (4) through
(6) include LCTMA12, DemandShift (an indicator equal to one if CoMove is positive), and their interaction
term. LCTMA12 and CoMove are estimated in the same 12-month window for each month. To facilitate
interpretations, LCTMA12 and CoMove are de-meaned. We report Newey and West (1987) t-statistics with
12 lags. The monthly BAB returns are in percentage points.

Panel A - January 1980 to December 2016

BABt+1 BABMA6
t+1,t+6 BABMA12

t+1,t+12 BABt+1 BABMA6
t+1,t+6 BABMA12

t+1,t+12 BABt+1 BABMA6
t+1,t+6 BABMA12

t+1,t+12

(1) (2) (3) (4) (5) (6) (7) (8) (9)

LCTt 1.39 1.56 1.89∗∗

(1.07) (1.63) (2.26)

LCTMA6
t−5,t 4.74∗ 5.81∗∗ 7.15∗∗∗

(1.72) (2.47) (3.56)

LCTMA12
t−11,t 7.91∗∗∗ 9.66∗∗∗ 10.30∗∗∗

(2.60) (3.45) (3.98)

Constant −0.59 −0.75 −1.11 −4.17 −5.32∗∗ −6.75∗∗∗ −7.56∗∗ −9.45∗∗∗ −10.14∗∗∗

(−0.38) (−0.64) (−1.11) (−1.34) (−2.01) (−3.01) (−2.23) (−3.04) (−3.56)

N 444 444 444 439 439 439 433 433 433
R2 0.002 0.01 0.02 0.01 0.04 0.09 0.01 0.08 0.13
Adjusted R2 −0.001 0.01 0.02 0.004 0.04 0.09 0.01 0.07 0.13

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Panel B - July 2006 to December 2016

BABt+1 BABMA6
t+1,t+6 BABMA12

t+1,t+12 BABt+1 BABMA6
t+1,t+6 BABMA12

t+1,t+12 BABt+1 BABMA6
t+1,t+6 BABMA12

t+1,t+12

(1) (2) (3) (4) (5) (6) (7) (8) (9)

LCTt 1.76 −2.10 −2.98∗∗

(0.63) (−0.97) (−2.15)

LCTMA6
t−5,t −13.58 −15.24∗ −16.26∗∗

(−1.51) (−1.76) (−2.55)

LCTMA12
t−11,t −28.62∗∗ −28.15∗∗ −24.76∗∗

(−2.29) (−2.10) (−2.22)

Constant −1.49 2.59 3.51∗∗∗ 14.52 16.28∗ 17.38∗∗∗ 30.20∗∗ 29.77∗∗ 26.29∗∗

(−0.47) (1.21) (2.66) (1.57) (1.84) (2.68) (2.32) (2.15) (2.28)

N 126 126 126 121 121 121 115 115 115
R2 0.002 0.01 0.04 0.02 0.14 0.23 0.06 0.25 0.31
Adjusted R2 −0.01 0.004 0.03 0.02 0.13 0.22 0.05 0.25 0.30

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

Panel C - LCT interacted with CoMove and DemandShift (July 2006 to December
2016)

BABt+1 BABMA6
t+1,t+6 BABMA12

t+1,t+12 BABt+1 BABMA6
t+1,t+6 BABMA12

t+1,t+12

(1) (2) (3) (4) (5) (6)

LCTMA12
t−11,t −0.36∗∗∗ −0.34∗∗∗ −0.28∗∗∗ −0.46∗∗∗ −0.59∗∗∗ −0.50∗∗∗

(−3.12) (−5.00) (−4.38) (−2.83) (−4.01) (−4.97)

CoMovet 0.73 1.54∗∗∗ 1.46∗∗∗

(0.71) (4.02) (3.39)

LCTMA12
t−11,t ∗ CoMovet 0.92∗∗∗ 1.15∗∗∗ 0.91∗∗∗

(6.44) (6.68) (5.75)

DemandShiftt 0.65∗ 0.21 0.07
(1.69) (0.95) (0.42)

LCTMA12
t−11,t ∗DemandShiftt 0.38∗ 0.55∗∗∗ 0.44∗∗∗

(1.97) (3.27) (4.62)

Constant 0.67∗∗∗ 0.81∗∗∗ 0.79∗∗∗ 0.29 0.60∗∗∗ 0.66∗∗∗

(3.20) (7.39) (6.67) (0.96) (3.39) (3.63)

N 115 115 115 115 115 115
R2 0.11 0.62 0.69 0.09 0.45 0.50
Adjusted R2 0.08 0.61 0.68 0.06 0.44 0.49

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 7: Univariate Quintile Sort on βψ

This table reports univariate portfolio analysis of the relation between βψand future stock returns. Each
month t, all stocks in the sample are sorted into quintile portfolios based on ascending order of βψ. The
columns labeled “1” through “5” present results for the first through fifth βψ quintile portfolios. The column
labeled “High-Low” presents results for the zero-investment portfolio that is long stocks in the fifth quintile
portfolio and short the first quintile portfolio. This table shows the average month t + 1 value-weighted
excess returns for these portfolios and alphas relative to the CAPM, CAPM+BAB, FF3, FFC, Q, and FF5
factor models. The factor sensitivities are reported relative to the FF5 factor model. Newey and West (1987)
t-statistics with 12 lags are reported in parentheses. The row labeled “Pre-Formation” shows the time-series
average of the value-weighted average of pre-formation βψ for each of the portfolios. The row labeled “Post-
Formation” presents the corresponding post-formation βψ, calculated as the slope coefficient on ∆ψ from a
regression of the post-formation daily portfolio excess returns on the contemporaneous market excess return
and ∆ψ. The t-statistics reported in parentheses for the post-formation sensitivities are adjusted following
Newey and West (1987) with 22 lags. The first portfolio is formed at the end of June 2007, and the last
portfolio at the end of December 2016, covering 115 months.

Panel A - Full Sample
Model Value 1 2 3 4 5 High-Low
Excess Return ExcessReturn 1.02 0.82 0.69 0.61 0.27 -0.75

(2.0) (1.8) (1.5) (1.2) (0.4) (-2.3)
CAPM α 0.31 0.23 0.11 -0.06 -0.58 -0.88

(1.9) (2.8) (2.1) (-1.0) (-2.7) (-3.0)
CAPM+BAB α 0.29 0.19 0.10 0.01 -0.47 -0.76

(1.9) (1.9) (1.7) (0.1) (-2.1) (-2.3)
FF3 α 0.26 0.20 0.12 -0.02 -0.52 -0.78

(2.1) (2.2) (2.0) (-0.3) (-2.5) (-2.9)
FFC α 0.26 0.18 0.11 -0.01 -0.49 -0.74

(2.0) (2.3) (2.1) (-0.1) (-2.6) (-2.8)
Q α 0.38 0.21 0.14 0.05 -0.39 -0.75

(2.3) (2.3) (2.3) (0.8) (-1.9) (-2.3)
FF5 α 0.28 0.15 0.13 -0.02 -0.39 -0.67

(2.4) (1.3) (2.0) (-0.3) (-1.7) (-2.3)
βMKT 1.11 0.97 0.90 1.04 1.17 0.06

(27.4) (28.8) (52.7) (38.4) (40.8) (1.1)
βSMB 0.20 -0.01 -0.03 -0.12 0.20 0.00

(2.9) (-0.4) (-1.3) (-1.7) (2.4) (-0.0)
βHML -0.27 -0.17 0.03 0.14 0.37 0.64

(-2.2) (-2.1) (0.7) (2.6) (2.0) (2.1)
βRMW -0.12 0.07 -0.02 0.01 -0.13 -0.01

(-0.9) (1.0) (-0.3) (0.1) (-0.8) (-0.0)
βCMA 0.17 0.20 -0.02 -0.15 -0.60 -0.77

(0.9) (1.8) (-0.3) (-1.8) (-2.8) (-2.3)
Pre-Formation βψ -14.63 -5.22 0.11 5.89 16.34 30.97
Post-Formation βψ -1.07 -0.87 -0.67 1.16 3.63 4.70

(-2.8) (-2.4) (-3.2) (4.1) (2.3) (2.5)
N-Stocks 724 724 724 724 724
N-Months 115 115 115 115 115 115
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Panel B - Liquid Sample (≤ NYSE 80th percentile Amihud’s ILLIQ)
Model Value 1 2 3 4 5 High-Low
Excess Return ExcessReturn 1.04 0.75 0.73 0.64 0.27 -0.76

(2.1) (1.6) (1.7) (1.2) (0.4) (-2.5)
CAPM α 0.36 0.17 0.17 -0.02 -0.54 -0.90

(2.7) (1.8) (2.6) (-0.4) (-3.1) (-3.5)
CAPM+BAB α 0.34 0.13 0.16 0.04 -0.45 -0.79

(2.6) (1.2) (2.2) (0.4) (-2.4) (-2.7)
FF3 α 0.32 0.14 0.17 0.01 -0.48 -0.80

(2.7) (1.4) (2.5) (0.1) (-2.7) (-3.2)
FFC α 0.31 0.12 0.16 0.03 -0.45 -0.75

(2.6) (1.4) (2.4) (0.4) (-2.8) (-3.1)
Q α 0.40 0.16 0.19 0.07 -0.36 -0.76

(3.0) (1.5) (3.2) (1.2) (-2.1) (-2.5)
FF5 α 0.31 0.09 0.17 -0.01 -0.35 -0.66

(2.3) (0.8) (2.2) (-0.1) (-1.7) (-2.2)
βMKT 1.07 0.97 0.88 1.05 1.14 0.06

(33.0) (28.0) (58.0) (35.3) (35.4) (1.1)
βSMB 0.12 -0.02 -0.04 -0.17 0.11 -0.01

(1.9) (-0.4) (-1.6) (-2.8) (1.3) (-0.1)
βHML -0.26 -0.15 0.00 0.12 0.43 0.69

(-2.4) (-2.1) (-0.1) (2.6) (2.4) (2.4)
βRMW -0.07 0.08 -0.02 0.04 -0.10 -0.03

(-0.5) (1.1) (-0.4) (0.6) (-0.5) (-0.1)
βCMA 0.22 0.11 0.04 -0.08 -0.66 -0.88

(1.3) (1.1) (0.7) (-0.8) (-3.7) (-2.7)
Pre-Formation βψ -13.03 -4.77 -0.14 4.82 13.91 26.95
Post-Formation βψ -1.28 -1.12 -0.63 0.91 3.51 4.79

(-3.8) (-3.5) (-2.9) (3.1) (2.3) (2.7)
N-Stocks 398 398 398 398 398
N-Months 115 115 115 115 115 115
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Panel C - Large Cap Sample (≥ NYSE 50th percentile MKTCAP)
Model Value 1 2 3 4 5 High-Low
Excess Return ExcessReturn 0.93 0.75 0.74 0.58 0.33 -0.60

(1.8) (1.7) (1.8) (1.2) (0.5) (-2.0)
CAPM α 0.29 0.20 0.20 -0.06 -0.45 -0.74

(2.6) (2.2) (2.5) (-0.8) (-2.7) (-3.0)
CAPM+BAB α 0.24 0.16 0.19 0.00 -0.37 -0.62

(1.9) (1.6) (2.0) (-0.1) (-1.9) (-2.1)
FF3 α 0.24 0.17 0.19 -0.03 -0.39 -0.63

(2.1) (1.9) (2.3) (-0.3) (-2.4) (-2.6)
FFC α 0.22 0.16 0.19 -0.01 -0.36 -0.58

(2.2) (1.7) (2.3) (-0.2) (-2.4) (-2.6)
Q α 0.30 0.18 0.23 0.02 -0.31 -0.60

(2.5) (1.7) (3.5) (0.3) (-1.9) (-2.0)
FF5 α 0.22 0.12 0.20 -0.08 -0.25 -0.47

(1.5) (1.1) (2.3) (-0.8) (-1.4) (-1.6)
βMKT 1.06 0.93 0.86 1.04 1.12 0.07

(34.4) (33.2) (39.7) (35.2) (36.5) (1.3)
βSMB 0.03 -0.08 -0.07 -0.18 -0.07 -0.09

(0.4) (-2.2) (-2.0) (-4.5) (-0.6) (-0.7)
βHML -0.25 -0.12 -0.05 0.12 0.41 0.66

(-2.5) (-2.3) (-1.1) (2.4) (2.3) (2.5)
βRMW -0.03 0.12 -0.04 0.12 -0.18 -0.15

(-0.2) (1.5) (-1.0) (2.0) (-0.9) (-0.5)
βCMA 0.22 0.10 0.07 -0.07 -0.53 -0.75

(1.3) (0.9) (1.0) (-0.8) (-2.7) (-2.2)
Pre-Formation βψ -11.23 -4.05 -0.14 4.06 12.05 23.28
Post-Formation βψ -1.51 -1.26 -0.72 0.85 3.40 4.91

(-5.2) (-3.4) (-2.4) (3.1) (2.3) (2.9)
N-Stocks 179 179 179 179 179
N-Months 115 115 115 115 115 115
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Table 8: Univariate Sort on βTED

This table reports univariate portfolio analysis of the relation between βTED and future stock returns. Each
month t, all stocks in the sample are sorted into quintile portfolios based on ascending order of βTED. The
columns labeled “1” through “5” present results for the first through fifth βTED quintile portfolios. The
column labeled “High-Low” presents results for the zero-investment portfolio that is long stocks in the fifth
quintile portfolio and short the first quintile portfolio. This table shows the average month t + 1 value-
weighted excess returns for these portfolios and alphas relative to the CAPM, CAPM+BAB, FF3, FFC, Q,
and FF5 factor models. The factor sensitivities are reported relative to the FF5 factor model. Newey and
West (1987) t-statistics with 12 lags are reported in parentheses. The row labeled “Pre-Formation” shows the
time-series average of the value-weighted average of pre-formation βTED for each of the portfolios. The row
labeled “Post-Formation” presents the corresponding post-formation βTED, calculated as the slope coefficient
on ∆TED from a regression of the post-formation daily portfolio excess returns on the contemporaneous
market excess return and ∆TED. The t-statistics reported in parentheses for the post-formation sensitivities
are adjusted following Newey and West (1987) with 22 lags. The first portfolio is formed at the end of June
2007, and the last portfolio at the end of December 2016, covering 115 months.

Panel A - Full Sample
Model Value 1 2 3 4 5 High-Low
Excess Return ExcessReturn 0.70 0.60 0.60 0.79 0.53 -0.17

(1.0) (1.1) (1.4) (1.6) (0.8) (-0.6)
CAPM α -0.13 -0.03 0.03 0.18 -0.24 -0.10

(-0.8) (-0.3) (0.4) (1.8) (-1.4) (-0.4)
CAPM+BAB α -0.25 -0.09 0.01 0.19 -0.09 0.16

(-1.4) (-1.0) (0.2) (1.7) (-0.4) (0.5)
FF3 α -0.21 -0.07 0.01 0.18 -0.13 0.08

(-1.1) (-0.7) (0.2) (1.9) (-0.9) (0.3)
FFC α -0.22 -0.07 0.00 0.18 -0.10 0.12

(-1.1) (-0.7) (0.0) (1.9) (-0.8) (0.5)
Q α -0.08 0.01 0.03 0.23 0.03 -0.17

(-0.5) (0.1) (0.4) (2.4) (0.2) (-0.6)
FF5 α -0.15 -0.06 -0.04 0.14 -0.02 0.14

(-0.7) (-0.6) (-0.5) (1.6) (-0.1) (0.4)
βMKT 1.30 1.02 0.95 0.97 1.02 -0.28

(18.8) (25.0) (88.3) (36.0) (19.3) (-2.5)
βSMB 0.29 -0.02 -0.08 0.03 0.12 -0.17

(2.6) (-0.4) (-3.9) (0.6) (1.5) (-1.0)
βHML -0.14 -0.09 -0.13 -0.07 0.38 0.52

(-1.0) (-1.1) (-3.9) (-1.5) (2.1) (1.7)
βRMW 0.10 0.08 0.04 0.02 -0.36 -0.46

(0.5) (0.8) (0.7) (0.3) (-1.8) (-1.3)
βCMA -0.36 -0.11 0.21 0.19 -0.08 0.28

(-2.9) (-1.6) (3.5) (3.6) (-0.4) (1.0)
Pre-Formation βψ -1875.62 -667.39 -31.23 590.38 1728.38 3604.00
Post-Formation βψ -0.04 -0.01 0.09 -0.08 -0.01 0.17

(-1.3) (-0.8) (1.5) (-1.7) (-0.6) (1.7)
N-Stocks 724 724 724 724 724
N-Months 115 115 115 115 115 115
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Panel B - Liquid Sample (≤ 80th percentile NYSE Amihud’s Illqt):
Model Value 1 2 3 4 5 High-Low
Excess Return ExcessReturn 0.74 0.62 0.61 0.76 0.59 -0.15

(1.1) (1.2) (1.4) (1.5) (0.9) (-0.5)
CAPM α -0.03 0.01 0.04 0.16 -0.17 -0.14

(-0.2) (0.2) (0.5) (1.4) (-1.1) (-0.5)
CAPM+BAB α -0.12 -0.03 0.03 0.17 -0.03 0.08

(-0.7) (-0.4) (0.4) (1.4) (-0.2) (0.3)
FF3 α -0.11 -0.01 0.03 0.16 -0.06 0.05

(-0.7) (-0.1) (0.3) (1.4) (-0.4) (0.2)
FFC α -0.11 -0.01 0.02 0.16 -0.03 0.09

(-0.7) (-0.2) (0.2) (1.5) (-0.2) (0.3)
Q α 0.02 0.02 0.05 0.21 0.06 -0.15

(0.2) (0.3) (0.5) (1.8) (0.3) (-0.5)
FF5 α -0.08 0.01 -0.04 0.14 0.03 0.11

(-0.5) (0.1) (-0.4) (1.3) (0.2) (0.4)
βMKT 1.24 0.98 0.96 0.95 1.04 -0.20

(20.9) (54.0) (56.8) (29.7) (19.7) (-1.9)
βSMB 0.20 -0.07 -0.07 -0.01 0.03 -0.18

(2.1) (-1.7) (-2.3) (-0.1) (0.3) (-1.0)
βHML -0.21 -0.04 -0.14 -0.03 0.46 0.66

(-1.4) (-0.8) (-3.4) (-0.6) (2.2) (2.0)
βRMW 0.12 0.02 0.08 -0.02 -0.26 -0.38

(0.8) (0.3) (1.4) (-0.2) (-1.4) (-1.2)
βCMA -0.33 -0.06 0.22 0.14 -0.11 0.22

(-2.9) (-0.9) (2.5) (2.3) (-0.5) (0.7)
Pre-Formation βψ -1556.14 -545.46 6.71 541.92 1538.26 3094.39
Post-Formation βψ -0.02 0.00 -0.07 0.08 -0.02 0.15

(-1.1) (0.3) (-1.5) (1.3) (-1.1) (1.4)
N-Stocks 398 398 398 398 398
N-Months 115 115 115 115 115 115
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Panel C - Large Cap Sample (≥ 50th percentile NYSE MKTCAPt):
Model Value 1 2 3 4 5 High-Low
Excess Return ExcessReturn 0.70 0.54 0.64 0.74 0.58 -0.12

(1.1) (1.2) (1.4) (1.7) (0.9) (-0.4)
CAPM α -0.01 -0.03 0.08 0.17 -0.16 -0.15

(-0.1) (-0.4) (0.8) (1.9) (-1.1) (-0.6)
CAPM+BAB α -0.11 -0.08 0.06 0.18 -0.05 0.06

(-0.9) (-0.8) (0.6) (2.0) (-0.3) (0.2)
FF3 α -0.09 -0.06 0.06 0.17 -0.06 0.03

(-0.6) (-0.8) (0.7) (1.8) (-0.4) (0.1)
FFC α -0.09 -0.07 0.05 0.17 -0.03 0.05

(-0.6) (-0.8) (0.7) (1.7) (-0.2) (0.2)
Q α 0.04 -0.04 0.09 0.20 0.01 -0.12

(0.3) (-0.6) (0.8) (1.9) (0.1) (-0.4)
FF5 α -0.07 -0.06 0.00 0.14 0.02 0.10

(-0.4) (-0.8) (-0.0) (1.3) (0.1) (0.3)
βMKT 1.18 0.96 0.95 0.92 1.05 -0.13

(23.1) (36.7) (41.5) (25.4) (20.0) (-1.4)
βSMB 0.07 -0.15 -0.10 -0.05 -0.08 -0.15

(0.7) (-3.3) (-3.6) (-1.1) (-1.2) (-1.0)
βHML -0.17 -0.09 -0.12 -0.06 0.45 0.61

(-1.0) (-1.7) (-3.3) (-0.9) (2.4) (1.8)
βRMW 0.16 0.02 0.08 0.02 -0.21 -0.38

(1.1) (0.2) (1.6) (0.2) (-1.3) (-1.4)
βCMA -0.30 0.01 0.20 0.15 -0.12 0.18

(-2.4) (0.1) (3.0) (1.9) (-0.6) (0.6)
Pre-Formation βψ -1271.91 -420.64 39.54 483.22 1344.35 2616.26
Post-Formation βψ -0.04 0.00 0.08 -0.03 -0.01 0.12

(-1.2) (0.3) (1.3) (-1.4) (-0.7) (1.4)
N-Stocks 179 179 179 179 179
N-Months 115 115 115 115 115 115
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Table 9: Quintile Portfolio Characteristics

This table presents the equal-weight average characteristics of the univariate quintile portfolios sorted on
βψ. The characteristics include betas with respect to market excess returns (MKT), and other proxies for
funding conditions including the VIX index, TED spread, LCT, intermediary capital risk factor (ICR), and
leverage factor (LEV). The last column reports idiosyncratic volatility (IVOL). See Data Appendix for the
description of these variables. This table reports the times-series average of the monthly estimates. To
facilitate readability, we multiply βVIX, βTED, βICR , βLEVand IVOL by 100. The sample period is June
2007 to December 2016.

Panel A - Full Sample

Quintile βψ βMKT βV IX βTED βLCT βICR βLEV IV OL

1 -0.20 1.05 0.03 -0.90 -6.13 4.26 -0.78 0.16
2 -0.05 0.98 0.03 -0.46 -4.31 0.90 -0.38 0.06
3 0.002 0.97 0.05 -0.21 -3.86 -0.42 -0.09 0.06
4 0.06 1.02 0.06 -0.37 -3.59 -0.39 -0.65 0.07
5 0.22 1.14 0.11 -0.94 -5.58 1.25 -0.60 0.15

Panel B - Liquid Sample (≤ NYSE 80th percentile Amihud’s ILLIQ)

Quintile βψ βMKT βV IX βTED βLCT βICR βLEV IV OL

1 -0.16 1.10 0.02 -0.28 -6.12 2.47 0.44 0.09
2 -0.05 1.03 0.03 -0.03 -3.83 -0.39 0.45 0.04
3 -0.001 1.03 0.04 0.22 -3.48 -1.54 0.55 0.04
4 0.05 1.07 0.05 -0.05 -3.11 -1.49 -0.11 0.04
5 0.17 1.19 0.09 -0.66 -4.25 -0.27 0.43 0.09

Panel C - Large Cap Sample (≥ NYSE 50th percentile MKTCAP)

Quintile βψ βMKT βV IX βTED βLCT βICR βLEV IV OL

1 -0.12 1.17 -0.004 0.35 -8.28 1.08 1.93 0.04
2 -0.04 1.06 0.005 0.46 -3.53 -1.69 1.60 0.02
3 -0.001 1.06 0.01 0.50 -2.35 -2.65 1.88 0.02
4 0.04 1.10 0.03 0.21 -2.31 -2.50 1.29 0.02
5 0.13 1.25 0.05 0.04 -3.25 -0.98 2.16 0.04
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Table 10: Bivariate Portfolio Analysis

This table reports bivariate portfolio analysis sorting first on a control variable and then on βψ. The control
variables include βVIX, βTED, βLCT, βLEV, βICR, and IVOL. Each month t, all stocks are first sorted into
quintile groups based on the control variable in ascending order, and within each control quintile group, the
stocks are further sorted into quintile groups in ascending order based on βψ. The value-weighted excess
return for each of the 25 resulting portfolios are calculated. Within each βψ quintile, we compute the equal-
weighted average of the portfolio excess returns across the quintiles of the control variable, which we then
refer to as the bivariate βψ quintile portfolios. The bivariate βψ 5−1 portfolio is a zero-investment portfolio
that is long the bivariate βψ quintile 5 portfolio and short the bivariate βψ quintile 1 portfolio. The table
presents the month t + 1 average excess returns for these bivariate βψ portfolios, along with the alphas
relative to the CAPM, CAPM+BAB, FF3, FFC, Q, and FF5 factor models. The factor sensitivities are
reported relative to the FF5 factor model. Newey and West (1987) t-statistics with 12 lags are reported
in parentheses. The first portfolio is formed at the end of June, 2007, and the last portfolio at the end of
December 2016, covering 115 months.

Panel A - Full Sample
Quintile Model Value βTED βV IX βLCT βLEV βICR IV OL
βψ 1 Excess Return ExcessReturn 0.92 1.00 1.04 1.02 1.15 1.03
βψ 2 0.81 0.78 0.83 0.83 0.77 0.75
βψ 3 0.69 0.73 0.63 0.71 0.81 0.62
βψ 4 0.58 0.68 0.67 0.52 0.53 0.60
βψ 5 0.34 0.32 0.34 0.29 0.54 0.32
βψ 5− βψ 1 Excess Return ExcessReturn -0.58 -0.68 -0.70 -0.73 -0.60 -0.71

(-2.4) (-2.9) (-2.7) (-2.6) (-3.4) (-3.0)
CAPM α -0.66 -0.75 -0.82 -0.85 -0.62 -0.77

(-3.2) (-3.6) (-3.7) (-3.4) (-3.6) (-3.5)
CAPM+BAB α -0.59 -0.67 -0.73 -0.76 -0.64 -0.74

(-2.5) (-2.7) (-2.9) (-2.8) (-3.7) (-3.4)
FF3 α -0.59 -0.67 -0.73 -0.78 -0.62 -0.70

(-3.1) (-3.3) (-4.1) (-3.2) (-3.8) (-3.5)
FFC α -0.55 -0.64 -0.71 -0.75 -0.63 -0.70

(-3.3) (-3.4) (-4.1) (-3.3) (-3.9) (-3.6)
Q α -0.58 -0.68 -0.70 -0.73 -0.60 -0.71

(-2.4) (-2.9) (-2.7) (-2.6) (-3.4) (-3.0)
FF5 α -0.51 -0.55 -0.61 -0.68 -0.57 -0.56

(-2.4) (-2.6) (-3.1) (-2.6) (-3.3) (-2.5)
βMKT 0.03 0.00 0.07 0.06 0.01 0.04

(0.6) (0.0) (1.6) (0.9) (0.2) (0.7)
βSMB -0.03 -0.07 -0.10 0.06 -0.02 -0.29

(-0.3) (-0.6) (-0.8) (0.5) (-0.1) (-1.6)
βHML 0.41 0.43 0.51 0.40 0.10 0.36

(2.1) (1.8) (2.4) (1.7) (1.1) (1.8)
βRMW -0.10 -0.22 -0.13 -0.11 -0.03 -0.31

(-0.5) (-0.8) (-0.6) (-0.5) (-0.2) (-0.9)
βCMA -0.38 -0.35 -0.51 -0.41 -0.24 -0.22

(-1.3) (-1.5) (-2.1) (-1.6) (-1.5) (-0.9)

59



Panel B - Liquid Sample (≤ NYSE 80th percentile Amihud’s ILLIQ)
Quintile Model Value βTED βV IX βLCT βLEV βICR IV OL
βψ 1 Excess Return ExcessReturn 0.94 1.06 0.96 1.00 1.02 1.15
βψ 2 0.84 0.81 0.87 0.87 0.87 0.68
βψ 3 0.68 0.69 0.68 0.73 0.77 0.72
βψ 4 0.68 0.58 0.63 0.56 0.68 0.56
βψ 5 0.36 0.49 0.47 0.32 0.49 0.36
βψ 5− βψ 1 Excess Return ExcessReturn -0.58 -0.57 -0.48 -0.68 -0.53 -0.79

(-2.3) (-2.5) (-2.2) (-2.6) (-2.9) (-3.3)
CAPM α -0.71 -0.64 -0.61 -0.78 -0.57 -0.86

(-3.3) (-3.2) (-3.2) (-3.5) (-3.2) (-3.8)
CAPM+BAB α -0.64 -0.53 -0.50 -0.68 -0.56 -0.80

(-2.7) (-2.4) (-2.1) (-2.7) (-3.3) (-3.5)
FF3 α -0.64 -0.55 -0.52 -0.70 -0.55 -0.77

(-3.4) (-2.7) (-3.0) (-3.1) (-3.3) (-3.8)
FFC α -0.60 -0.52 -0.48 -0.66 -0.55 -0.76

(-3.1) (-3.0) (-2.8) (-3.2) (-3.2) (-3.9)
Q α -0.58 -0.57 -0.48 -0.68 -0.53 -0.79

(-2.3) (-2.5) (-2.2) (-2.6) (-2.9) (-3.3)
FF5 α -0.55 -0.49 -0.40 -0.60 -0.55 -0.63

(-2.7) (-2.1) (-2.0) (-2.3) (-2.9) (-2.6)
βMKT 0.10 0.03 0.08 0.05 0.03 0.01

(1.7) (0.6) (1.4) (0.8) (0.7) (0.1)
βSMB -0.06 -0.14 -0.09 -0.02 0.05 -0.23

(-0.5) (-1.0) (-0.8) (-0.1) (0.4) (-1.4)
βHML 0.42 0.42 0.52 0.48 0.16 0.48

(2.2) (1.9) (2.4) (2.2) (2.5) (2.0)
βRMW -0.06 -0.07 -0.10 -0.09 0.11 -0.26

(-0.3) (-0.3) (-0.5) (-0.4) (0.9) (-0.8)
βCMA -0.50 -0.35 -0.58 -0.50 -0.27 -0.32

(-1.8) (-1.5) (-2.2) (-1.7) (-1.5) (-1.1)
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Panel C - Large Cap Sample (≥ NYSE 50th percentile MKTCAP)
Quintile Model Value βTED βV IX βLCT βLEV βICR IV OL
βψ 1 Excess Return ExcessReturn 0.85 0.91 0.95 0.93 0.92 0.98
βψ 2 0.83 0.84 0.85 0.85 0.88 0.72
βψ 3 0.71 0.59 0.75 0.70 0.68 0.75
βψ 4 0.58 0.69 0.53 0.58 0.67 0.56
βψ 5 0.38 0.47 0.53 0.35 0.48 0.34
βψ 5− βψ 1 Excess Return ExcessReturn -0.47 -0.45 -0.42 -0.58 -0.44 -0.64

(-1.8) (-1.9) (-2.0) (-2.4) (-2.0) (-2.5)
CAPM α -0.59 -0.55 -0.55 -0.71 -0.49 -0.74

(-2.8) (-2.8) (-3.4) (-3.6) (-2.5) (-3.2)
CAPM+BAB α -0.51 -0.44 -0.44 -0.59 -0.45 -0.65

(-2.2) (-2.0) (-2.0) (-2.5) (-2.5) (-2.4)
FF3 α -0.52 -0.46 -0.46 -0.62 -0.46 -0.65

(-2.6) (-2.3) (-2.8) (-3.0) (-2.4) (-3.0)
FFC α -0.47 -0.42 -0.42 -0.57 -0.44 -0.61

(-2.9) (-2.5) (-2.6) (-3.2) (-2.7) (-2.9)
Q α -0.47 -0.45 -0.42 -0.58 -0.44 -0.64

(-1.8) (-1.9) (-2.0) (-2.4) (-2.0) (-2.5)
FF5 α -0.45 -0.41 -0.35 -0.53 -0.44 -0.55

(-1.9) (-1.7) (-1.9) (-2.2) (-2.0) (-2.3)
βMKT 0.10 0.07 0.09 0.10 0.03 0.07

(1.9) (1.4) (2.0) (2.0) (1.0) (1.4)
βSMB -0.07 -0.09 -0.08 -0.11 0.04 -0.18

(-0.7) (-0.7) (-0.9) (-0.9) (0.3) (-1.5)
βHML 0.37 0.45 0.52 0.46 0.24 0.45

(2.4) (2.4) (2.8) (2.0) (2.7) (2.0)
βRMW -0.10 -0.05 -0.09 -0.10 0.08 -0.15

(-0.5) (-0.2) (-0.4) (-0.5) (0.5) (-0.5)
βCMA -0.29 -0.35 -0.59 -0.48 -0.32 -0.36

(-1.0) (-1.5) (-2.4) (-1.8) (-1.4) (-1.2)
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Appendix A. Data Appendix

A.1. Leveraged fund dataset

A.1.1. List of daily leveraged funds

To identify leveraged funds from the CRSP MFDB, we use the quarterly file to search for

a) fund names associated with the two Lipper objective codes “DL” and “DSB” referring to

“Diversified leveraged funds/Equity Leveraged Funds” and “Dedicated Short Bias Funds”,

respectively, at any point of time since June 2006, or b) fund names that contain “2x”, “3x”,

“5x”, which account for 2x, 3x, and any fund which contains a leverage amount ending in

5x (e.g. 1.25x or 2.5x), or c) fund names that contain both “Proshares” and “Ultra”. The

resulting dataset has an initial list of 1441 unique fund names over the sample period. We

use the fund name as the fund identifier because we find that when the underlying index

changes or when the target leverage changes, the fund name almost always changes but the

CRSP fund number stays the same.59

To ensure we capture all leveraged funds to have ever existed in the market, we cross vali-

date this CRSP-based list with an alternative list retrieved from Bloomberg. The Bloomberg

list is constructed via fund screening with the following filters: “Market Status”: Active,

“Country of Domicile”: United States, “Leverage” equal to yes, “Rebalancing Frequency”

equal to daily, N.A., or unknown, the last nine characters of “Ticker” equal to US equity,

“Leverage Amount” larger or equal to 100 or N.A., and “Inception Date” earlier than Jan-

uary 1, 2017. The Bloomberg list contains 421 Bloomberg tickers, representing 421 eight-digit

CUSIPs. We merge the CRSP list and the Bloomberg list first by the eight-digit CUSIP

then by ticker. We find that there are only 33 tickers from the Bloomberg list that are not

matched with our CRSP list.60 Using these 33 tickers, we are able to add 27 CRSP fund

names to our original CRSP list by searching the entire quarterly CRSP universe using either

ticker or CUSIP. Our augmented CRSP list contains 1468 unique fund names. In contrast,

there are 571 fund names in our initial CRSP list that are not captured by the Bloomberg

list.61

59We also identify the handful of cases when the fund name stays the same in these cases, as described in
the following paragraphs.

60Specifically, we first look for funds that appear in the Bloomberg list but not in the CRSP list by eight-
digit CUSIP. Then, for these funds we further check whether they can be matched to funds in the CRSP list
by ticker.

61The unique identifier, CRSP fund number, in CRSP MFDB can be matched with multiple eight-digit
CUSIPs, tickers, and fund names over the fund’s history. We consider all fund names associated with a
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We merge our augmented CRSP list with the quarterly CRSP file, the daily CRSP

returns, and the monthly CRSP file for the sample period between 2006 and 2016. We

remove fund names that do not track a constant multiple of an underlying benchmark index

on a daily basis. These are typically ETNs that do not track the daily performance of an

index (except for those offered by Velocity) or funds that do not have a constant leverage

multiple. Our comprehensive list of daily leveraged funds contains 1005 CRSP fund names

between 2006 and 2016.

A.1.2. Index Matching

We obtain the constant leverage multiple and the underlying index in two steps. First, if

CRSP provides the NASDAQ ticker for a fund and the ticker has an active trading status ac-

cording to Bloomberg, then we download the constant leverage multiple and the underlying

index ticker from Bloomberg. It is important to emphasize that we only download infor-

mation from Bloomberg for tickers that are currently traded as of March 1, 2017 when our

data collection process finished. This is because Bloomberg information for historical (dead)

funds is sparse and can be inaccurate, especially when the leverage or the benchmark index

changes for the same ticker or CUSIP. Second, for the remaining funds, we manually collect

the constant leverage multiple and the underlying index contained in the funds’ investment

prospectuses, filed pursuant to Securities Act Rule 485(a) from the SEC Edgar database.62

Generally, the investment objective section of these documents contains the leverage multi-

ple, the ticker or name of the underlying index, and the rebalancing frequency.63

We classify leveraged funds into one of the following asset classes: commodity, currency,

equity, fixed income, international, and VIX, according to the asset class of their underlying

benchmark index. In total, our dataset captures 942 funds tracking 123 benchmarks across

major asset classes.

CRSP fund number that is linked to the Bloomberg list via the eight-digit CUSIPs or tickers as included in
the Bloomberg list. The Bloomberg list tends to capture larger funds, although it misses out on historical
CUSIP or ticker information and sometimes records only one class of shares by a fund, such as ProFunds:
UltraBear Profunds; investor shares.

62We identify the first date and the last date appearing in CRSP for each fund name, which determines
the time period we search for this information.

63During this process, we discover 18 instances when the underlying index changes but the fund names
remain the same via the information provided by the SEC 485 filings. We list these instances in our Data
Appendix. For example, the Direxion Shares ETF Trust: Direxion Daily Mid Cap Bear 3X Shares changed
from tracking the Russell Mid Cap index to the S&P Mid Cap index on June 29, 2012.
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A.1.3. Final Dataset

To ensure the accuracy of the funding costs we compute, for the main analysis in this

paper, we focus on a final list of 678 domestic funds that track 70 clearly defined, and trade-

ble spot indexes, representing a total of 625,088 fund-day observations. First, we remove 28

fund names for which we cannot find index returns.64 Second, we remove 41 fund names

that track returns on futures contracts, such as commodity futures and VIX futures, because

these benchmark returns are already levered returns. Third, to avoid measurement errors

associated with trading nonsynchronicity, we remove 240 fund names that belong to the in-

ternational or currency funds. Fourth, we remove 12 fund names associated with abnormally

large tracking errors and 6 fund names associated with a low leverage multiple (i.e., 1.25x).

A.2. Risk-free rates

1. T -bill1M , or the 1-month Treasury bill rate, is downloaded from the St. Louis Fed,

FRED database. Each day, the rate is typically released at 3:30 PM EST.

2. GC repo, or the generalized collateral repurchase (GC repo) rate, is downloaded from

the New York Fed website65

(a) “Since the late 1990s, the Open Market Trading Desk at the Federal Reserve

Bank of New York has conducted a survey of primary dealers each morning cov-

ering their borrowing activity in the Treasury general collateral repurchase (repo)

market on that day.”

3. EFFR, or the effective fed funds rate, is downloaded from the New York Fed website66

(a) The rate is released at 9:00 AM EST

(b) The historical median EFFR is available prior to 6/17/2015. The historical mean

EFFR is available prior to 3/1/2016, when the New York Fed decided to switch

to publishing the median. We use the median EFFR whenever possible, and

fill in with the mean EFFR for the period (inclusive) between 6/17/2015 and

3/1/2016

64E.g. some Rydex fixed income funds state they track the most recently issued long treasury bond without
specifying the exact index.

65https://www.newyorkfed.org/markets/opolicy/operating policy 180309
66https://www.newyorkfed.org/medialibrary/media/markets/EFFR-Data-070815.xlsx
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4. If the risk-free rate for a trading day is missing, we use the 1-day lagged risk-free

rate. In a few cases when the observations are missing for consecutive days, we backfill

missing observations with the last available observation.

A.3. Funding condition proxies

1. TED, or the TED spread, is downloaded from the St. Louis Fed, FRED database

(https://fred.stlouisfed.org/series/TEDRATE). The measure is the spread between the

3-month LIBOR and 3-month Treasury bill rate.

2. V IX is downloaded from the St. Louis Fed, FRED database. The V IX is the implied

30-day volatility of the S&P500 from at-the-money and out-of-money S&P500 options.

3. ICR, or the intermediary capital risk factor of He et al. (2017), is available at the

daily, monthly, and quarterly frequency from the authors’ website.

4. LEV , or the leverage factor of Adrian et al. (2014), is available at quarterly frequency

from the authors’ website.

A.4. Innovations in variables

1. We compute the innovations consistently in the following way that avoids forward-

looking bias, similar to Boguth and Simutin (2018).

(a) We estimate the innovations in all variables using an autoregressive model with 1

lag, i.e., AR(1). Depending on the data frequency, the 1 lag can mean 1 day, or

1 month.

yt = a+ ρyt−1 + εt

(b) For the given variable, the first estimation is done using data in the first year of

the sample period. We then use the resulting residuals as the innovations for the

first year.

(c) At the end of each month t after the first year, we re-estimate the AR(1) model

and use the resulting residuals for month t as the innovations for month t.
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A.5. Extending LCT (βMKT
MF )

Our sample selection follows Boguth and Simutin (2018). We are required to link the

CRSP Mutual Fund Database (CRSP MFDB) to the Thomson Financial Mutual Fund

Holdings (s12) via the Wharton Research Data Services MFLINKS file.

1. We start with the quarterly CRSP mutual fund file. The resulting dataset should

connect the crsp fundno in CRSP MFDB to the wficn identifier in MFLINKs. We

implement the following:

(a) We use the crsp obj cd in conjunction with the si obj cd, and name searching to

get a sample of diversified equity mutual funds that are actively managed.

i. crsp obj cd and si obj cd

A. Keep funds that are in ’EDC’ or EDY’

B. Next, remove funds that are ’EDYH’ or ’EDYS’

C. Finally, remove funds with si obj cd == ’OPI’

ii. List of keywords to remove funds that are index and target date funds

A. Words: ’index’, ’s&p’, ’idx’, ’dfa’, ’program’, ’etf’, ’exchange traded’,

’exchange-traded’, ’target’

B. Numbers: ’2000’, ’2005’, ’2010’, ’2015’, ’2020’, ’2025’, ’2030’, ’2035’,

’2040’, ’2045’, ’2050’, ’2055’, ’2060’, ’2065’, ’2070’, ’2075’

iii. Remove funds that were not ’EDC’ or ’EDY’ at any point in their lifetimes.

(b) Next we get the wficn from the MFLINK1 file via merging by crsp fundno. Here

there is a slight issue that 4 out of 28841 crsp fundno have multiple wficn, which

we remove.

2. Next, we work from the Mutual Fund Holdings file. The resulting dataset is unique

in wficn-month-PERMNO, and in the same month, makes wficn in MFLINKS and

fundno in the Mutual Fund Holdings file one-to-one

(a) First, filter out those with investment objective code (IOC), 1, 5, 6, and 7, Inter-

national, Municipal Bonds, Bond & Preferred, and Balanced codes, respectively.

(b) To prepare for the merge with MFLINK2, select the unique set of fundno-rdate-

fdate from the full holdings data. Call this dataset the MFHoldingsKey

(c) Merging the MFHoldingsKey with the MFLINK2 file
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i. Use fundno-rdate-fdate triple to merge to get wficn and assets.

ii. To avoid stale data, pick out the first fdate for each fundno-rdate pair.

iii. When there is more than one rdate for each fundno-month, pick the most

recent rdate.

iv. To make sure that wficn-rdate is unique, pick the fund that has the largest

assets

(d) Use the MFHoldingsKey to subset of complete holdings data, using fundno-date.

(e) Link the CUSIP from the holdings file to NCUSIP from CRSP to get PERMNO

each equity holding.

i. The merge is by CUSIP==NCUSIP for the same month (by rdate)

A. Next get the CFACSHR for the rdate and the fdate using CUSIP ==

NCUSIP

B. The adjustment to shares is: shares * CFACSHR fdate / CFACSHR rdate

ii. The correct historical holding value is based on shares * CFACSHR fdate /

CFACSHR rdate * abs(PRC)

iii. The adjusted shares == 0 are replaced with the unadjusted shares

3. Finally, we replicate LCT with the following procedure, using the holdings file and the

equity funds file.

(a) The finished file is holdings data that is unique in wficn-month-PERMNO. This

file contains on average 122 holdings per wficn-month (month is based on the

rdate)

(b) Evans (2010) incubation bias

i. We remove observations in which the quarter is before the quarter of the

reported first offer date

ii. We remove observations with missing CRSP fund name

(c) LCT requires three months of reporting positions to calculate for a given month.

i. For month t, get the holdings (in dollars) as of the end of month t

ii. For month t− 1, get the holdings as of the end of month t− 1, adjusted for

returns (i.e. (1 +RETt +DLRETt)) from month t
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iii. For month t− 2, get the holdings as of the end of month t− 2, adjusted for

cumulative returns (i.e. (1 +RETt +DLRETt)×(1 +RETt−1 +DLRETt−1)

) from month t− 1 to t.

iv. Using the adjusted holdings values, aggregate by PERMNO, to get the total

dollar holdings by active domestic equity mutual funds.

(d) Estimate for month t, individual betas for each PERMNO using daily returns

within month t

i. Model: Rit = αi+βi0RMkt,t+βi1RMkt,t−1+βi2[(RMkt,t−2+RMkt,t−3+RMkt,t−4)/3]+

εit

ii. Estimated Beta: βi = βi0 + βi1 + βi2

iii. We require at least 10 non-missing returns for each PERMNO-month to es-

timate.

(e) For month t, LCT =
∑

i
holdingsi∑
i holdingsi

βi

4. Our final procedure results in a 0.97 correlation with actual LCT downloaded from the

authors’ websites over 1980 to 2014. We use the last two years of our replication (2015

and 2016) to extend the actual LCT to 2016.

A.6. Betas and IVOL used as bivariate controls

The control (betas) variables used in our bivariate analysis are: βTED, βV IX , βLCT , βLEV ,

βICR, and IV OL. We compute a valid, based on filters, β for each PERMNO over the sample

period, June 2006 to Dec. 2016.

1. βTED is measured as the slope coefficient on the daily innovation in the TED spread

(TED) from a 12-month rolling window regression of daily excess stock returns on

contemporaneous MKT and TED innovations. We use 3-day moving averages for all

variables, and require ≥ 180 observations in each window for a PERMNO to estimate

βTED.

2. βV IX is measured as the slope coefficient on the change in the VIX index (V IX) from

a 1-month rolling window regression of daily excess stock returns on contemporaneous

MKT and VIX changes. We require ≥ 15 observations in a PERMNO-month to

estimate a valid βV IX .
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3. βLCT is measured as the slope coefficient on the monthly innovation in LCT (βMKT
MF )

from a 24-month rolling window regression of monthly excess stock returns on contem-

poraneous MKT and LCT innovations. We require ≥ 12 observations in each window

for a PERMNO to estimate βLCT .

4. βLEV is measured as the slope coefficient on the Leverage (LEV ) factor from a full

sample regression of quarterly excess stock returns on contemporaneous MKT and

LEV . Quarterly stock and market excess returns are computed by compounding

monthly returns and risk free rates.

5. βICR is measured as the slope coefficient on the daily intermediary capital risk (ICR)

factor from a 12-month rolling window regression of daily excess stock returns on

contemporaneous MKT and ICR. We use 3-day moving averages for all variables, and

require ≥ 180 observations in each window for a PERMNO to estimate βICR.

6. IV OL is measured as the standard deviation of the residuals from a 1-month rolling

window regression of daily excess stock returns on MKT, SMB, and HML. We require

≥ 15 observations in a PERMNO-month to estimate a valid IV OL.

A.7. Additional variable definitions

We compute month t market capitalization (MKTCAP) for firm i in the Large Cap

sample as follows:

MKTCAPit = abs(PRCt) ∗ SHROUTt

We compute Amihud’s illiquidity (ILLIQ) for firm i in the Liquid sample using moving

1 year windows for each month t. rid and volid are the daily return and trading volume for

firm i on day d.

ILLIQit =
1

Tt

Tt∑
d=1

|rid|
volid

We compute margin debt following Asness, Frazzini, Gormsen, and Pedersen (2018). The

data is available for from 1959 to 2017, and is published on the NYSE website.67 The market

capitalization of NYSE firms is from the CRSP monthly file, using exchange code 1, and

share code 10, 11, and 12.

67http://www.nyxdata.com/nysedata/asp/factbook/viewer edition.asp?mode=table&key=3153&category=8
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MDt =
NY SE margin debtt

Market capitalization of NY SE firmst
∗ 100
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