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Abstract

We investigate the e¤ect of oil price innovations on the U.S.
stock market using a model that nests symmetric and asymmetric
responses to positive and negative oil price innovations. We �nd no
evidence of asymmetry for aggregate stock returns, and only very
limited evidence for 49 industry-level portfolios. Moreover, these
asymmetries do not match up well with conventional views regard-
ing energy-dependent sectors of the economy. Instead, asymmetries
are more likely driven by the e¤ect of oil price innovations on ex-
pected and/or realized demand. We inquire whether the size of the
shock matters in that doubling the size of the shock more (or less)
than doubles the size of the response, �nding that the e¤ect of a 2.s.d
innovation is just about double the magnitude of the impact of a 1.s.d
innovation. Furthermore, we �nd no support for the conjecture that
shocks that exceed a threshold have an asymmetric e¤ect on stock
returns.
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1 Introduction

Headlines such as "U.S. stocks plunge after oil climbs $6" (New York Times,

June 11, 2008) or "U.S. stocks rally after crude drops to 3-month low"

(Wall Street Journal, August 8, 2008) highlight the shared belief among

journalists and stock market commentators that oil price shocks have a

direct e¤ect on the U.S. stock market. Moreover, these headlines put in

evidence the belief that the e¤ect might depend on the behavior of crude

oil prices in the recent history, and suggest that the relationship between

oil price shocks and stock returns might be nonlinear.

For many years, researchers compiled con�icting evidence regarding the

nature of the relationship between changes in crude oil prices and stock

returns. On the one hand, Chen, Roll and Ross (1986) and Huang, Masulis

and Stoll (1996) found no evidence of a negative relationship between prices

of oil futures and stock returns. Similarly, Wei (2003) encountered that the

oil price shock of 1973-74 had no impact on stock returns. On the other

hand, work by Kling (1985) and Jones and Kaul (1996) pointed towards

a negative e¤ect of oil price shocks on stock returns. Yet, in recent years,

a consensus appears to have emerged among academics: oil price shocks

exert a negative impact on most stock returns, though the nature of the

relationship depends on the underlying shock. In particular, Kilian and

Park (2009) �nd that oil price shocks that are driven by innovations to the

precautionary demand for crude oil have a negative impact on U.S. stock

returns. They show that the response di¤ers signi�cantly depending on

the source of the oil price shock (e.g., supply or demand driven). Thus,

changes in the composition of oil price shocks over time help explain why,

in the past, researchers failed to �nd evidence in favor of an e¤ect of oil

price innovations on U.S. stock returns.
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An alternative explanation for these contrasting results could stem from

the possibly nonlinear nature of the relationship between stock returns and

oil price shocks. For instance, if people�s perception of the importance of

an oil price shock depends on the past history of oil prices (Hamilton 1996,

2003), or if �rms�cash �ows respond di¤erently to positive and negative oil

price innovations, then the e¤ect of an oil price shock on stock returns will

also depend on the size and the sign of the shock.

There are a number of reasons why oil price shocks could have an asym-

metric, and possibly nonlinear, e¤ect on stock returns. First, oil prices

do not appear to have an asymmetric e¤ect on aggregate real GDP (Kil-

ian and Vigfusson 2011a, b) and aggregate industrial production (Herrera,

Lagalo, and Wada 2011). Yet, they seem to have an asymmetric e¤ect on

some (but not all) industries that use energy intensively in their production

process such as rubber and plastics, or in consumption such as transporta-

tion equipment (Herrera, Lagalo and Wada 2011). On the other hand,

some of the industries that exhibit asymmetric response patterns are not

energy intensive at all, contradicting conventional explanations of asymme-

tries. Asymmetries in the response of production could translate into an

asymmetric response of pro�ts and, thus, stock returns.

In addition, the optimal decision for a �rm that pays dividends to its

shareholders and seeks to maximize the expected present value of its div-

idends (without closing), could be to pay dividends only when its surplus

exceeds a threshold (Wan 2007). Therefore, a negative (or a positive) oil

price innovation could push the surplus below the cuto¤ required to pay

dividends for an oil company (or an industry that uses energy intensively).

If that is the case, the company could choose not to pay dividends and face

a decline in stock prices. The negative impact that such a decision would
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have on stock returns is likely to be larger than the increase in stock returns

that would stem from higher dividend payments due to a larger surplus.

Another possibility is that uncertainty and �nancial stress brought about

by the oil price shock, could lead to asymmetries in the response of interest

rates (Ferderer 1996; Balke, Brown and Yücel 2002) and, in turn, on the

expected present discounted value of the dividends and stock returns. Such

an e¤ect would also be evident if people believed the monetary authority

will respond di¤erently to oil price increases and decreases. For instance,

Ferderer (1996) and Bernanke, Gertler and Watson (1997) �nd that part

of the decline in economic activity brought about by a positive oil price

innovation can be attributed to a more restrictive monetary policy. Yet the

importance of this systematic monetary policy response �on average and

after the Great Moderation�has been questioned (see, for instance, Hamil-

ton and Herrera 2004, Herrera and Pesavento 2009, Kilian and Lewis 2010,

Kilian and Vigfusson 2011a). Thus, one would expect the asymmetries

embedded in this transmission channel to be negligible.

These arguments merit a careful investigation of the presence of possible

asymmetries in the response of stock returns to unexpected variation in

crude oil prices �both at the aggregate and disaggregate level. Indeed, if the

relationship between stock returns and oil price changes was nonlinear, then

a linear VAR model in oil prices and stock returns would be misspeci�ed.

This would also be the case for linear models that decompose oil price

innovations into oil demand and oil supply shocks (i.e., Kilian and Park

2009). Studying whether the responses of stock returns to unanticipated

oil price increases and decreases are symmetric provides a benchmark for

thinking about the mechanisms that are commonly thought to amplify the

e¤ect of oil price innovations. In particular, proponents of the hypothesis
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that oil price increases have led to recessions �and lower stock returns�in

the U.S. commonly appeal to asymmetries in the transmission of oil price

shocks. However, the asymmetry in the response of U.S. stock returns to

oil price shocks is yet to be established.

Our contribution to the literature is twofold. First, we explore the ques-

tion of asymmetry in the response of U.S. real stock returns, both at an

aggregate and a disaggregate level. To do so we estimate a dynamic simul-

taneous equation model that nests symmetric and asymmetric responses to

positive and negative oil price innovations using monthly data on aggregate

US stock returns and 49 industry-level portfolios. We then employ state-

of-the art techniques to directly test the null of symmetry in the response

of real stock returns to real oil price innovations (see Kilian and Vigfusson

2011a).

Our estimation results suggest that the response of aggregate stock re-

turns is well captured by a linear model. This is also the case for most of

the 49 industry-level portfolios. Yet, there are a small number of portfo-

lios (candy & soda, apparel, healthcare, textiles, aircraft, and insurance)

where we �nd some evidence of asymmetry. Many of these industries are

neither energy-intensive in consumption nor in production, thus our evi-

dence should not be necessarily viewed as support for conventional models

of asymmetry. Yet, these results imply that �nancial investors interested in

the latter industries should consider asymmetries in the response of stock

returns to oil price innovations when forming their portfolios. Similarly, for

�nancial forecasters, innovations of the same magnitude but opposite sign

should not enter their loss function in a symmetric manner.

Second, we investigate whether the response of stock returns depends

nonlinearly on the size of the shock. To do that, we evaluate whether the
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test of symmetry leads to di¤erent results when we consider innovations

of one and two standard deviations. In addition, we explore whether only

shocks that exceed a threshold have an asymmetric e¤ect on stock returns

as one could conjecture that agents chose to be inattentive to small oil

price changes but re-optimize when changes are large. This inattentiveness

to small price changes might be justi�ed by the fact that monitoring energy

costs is costly, as well as by the presence of adjustment costs in production

and consumption (see, e.g., Goldberg 1998; Davis and Kilian 2011). More

speci�cally, we explore a model speci�cation where small oil price changes

have di¤erent e¤ects than large oil price changes (i.e., changes that exceed

one or two standard deviations).

Does the size of the shock matter? The answer to this question is no.

First, our results indicate that doubling the size of the shock doubles the

size of the response function. In other words, because we cannot reject the

null of symmetry, we conclude that a shift in the size of the shock shifts the

response function for aggregate stock returns and almost all industry-level

portfolios proportionally. In addition, we show that a transformation of

the oil price change that �lters out small oil price movements that do not

exceed one (or two) standard deviation(s) does considerably worse in �tting

the data. Our �ndings are consistent with Edelstein and Kilian (2009) who

reject the latter model for U.S. consumption data.

This paper is organized as follows. Section 2 relates the analysis to

previous literature. Section 3 describes the data on stock returns and oil

prices. Section 4 explores the response of aggregate and industry-level

stock returns to oil price innovations. The results of the tests of symmetry

in the response to a one standard deviation innovation (hereafter 1 s.d.)

are reported in section 5. The following section explores whether our
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�ndings are robust to considering larger innovations (2 s.d.) or de�ning the

nonlinear transformation in terms of oil price changes that exceed one or

two standard deviations. Section 7 concludes.

2 Relationship with the Related Literature

Although there is a broad body of literature exploring the question of asym-

metry in the response of real economic activity to oil price increases and

decreases, relatively few studies have addressed the issue of asymmetry for

stock returns. Notable exceptions are Sadorsky (1999), and Park and Ratti

(2008) who investigate possible nonlinearities in the relationship between

aggregate stock returns and oil price shocks. Their approach is di¤erent

from ours in three dimensions. First, neither Sadorsky (1999) nor Park and

Ratti (2008) test for asymmetry in the response functions. Sadorsky (1999)

addresses the question of asymmetry by evaluating the contribution to the

forecast error variance of stock returns of positive and negative innovations

in the level of oil prices. He also investigates the contribution of asymmet-

ric oil price volatility shock to the variance decomposition. Park and Ratti

(2008) test the null of symmetry in the slope coe¢ cients but not in the

response functions. Until recently, it was common to estimate a censored

VAR model and then implement a slope based test to evaluate the presence

of asymmetry in the response of economic activity (see, e.g., Park and Ratti

2008). In fact, it was customary to assume that the nonlinear transforma-

tion of oil prices was predetermined with respect to the macroeconomic

aggregates. Nevertheless, Kilian and Vigfusson (2011a) show that this ap-

proach results in inconsistent estimates of the impulse responses, which

invalidates their use for quantifying the degree of asymmetry. In contrast,
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the methodology used in this paper has two advantages: (a) it produces

consistent estimates of the response coe¢ cients in the presence of asym-

metry; and (b) it enables us to test jointly the empirical implications of

the di¤erent theoretical models of an asymmetric response discussed in the

introduction.

Second, unlike our work, Sadorsky (1999) and Park and Ratti (2008)

use only aggregate data on stock returns. Sadorsky (1999) uses data for the

U.S., whereas Park and Ratti�s (2008) investigation also considers aggre-

gate stock returns for other OECD countries. We restrict ourselves to the

U.S. stock market but utilize a longer sample containing data not only on

aggregate stock returns but also returns for a large number of industry-level

portfolios.

Third, both studies include industrial production and interest rates in

their VARmodel. Instead, as we will discuss in the next section, we opt for a

more parsimonious bi-variate model that is better suited for our purpose of

explicitly testing for symmetry in the response of real stock returns. While

adding more variables might allow us to better pin down the transmission

mechanism from oil price shocks to stock returns (e.g. interest rate channels

versus aggregate demand channels), doing so would lower the power of the

impulse response based test, stacking the odds against �nding any statistical

evidence of asymmetry. The reader may wonder whether by excluding these

variables from the system we might incur in omitted variable biases. This

is not the case. In fact, it can be shown that a higher order VAR model

can be written as a bi-variate VAR in which shocks to stock returns would

re�ect shocks to industrial production and interest rates (see Lütkepohl

2007). Furthermore, estimating a higher dimensional model implies a very
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high computation cost.1

It is also useful to put our results in perspective relative to recent studies

regarding the impact of oil price shocks on stock returns. At �rst sight it

may seem that the central question of our paper was already addressed

by Kilian and Park (2009). Although they certainly deserve credit for

being the �rst researchers to disentangle and quantify the impact of deeper

structural oil shocks on U.S. stock returns, this is not the case.2 In fact,

their approach di¤ers from ours in two important dimensions.

First, to investigate the impact of demand and supply driven oil price

shocks on the U.S. stock market, Kilian and Park (2009) estimate a struc-

tural VAR model that relates U.S. stock returns to the global oil market.

Unlike our model, theirs decomposes unexpected oil price changes into oil

supply, aggregate demand and oil-speci�c demand shocks. The structural

VAR they estimate is given by

A0zt = �+

24X
i=1

Aizt�1 + "t (1)

where zt contains the percentage change in global crude oil production, a

measure of real activity in global industrial commodity markets, the real

price of oil, and the U.S. stock market variable of interest (e.g., aggregate

stock returns or industry-level stock returns), in that order. Then, they

use a standard Choleski decomposition to identify the deep structural �oil

supply, aggregate demand and oil-speci�c demand�shocks. In other words,

they impose the assumption that there is no contemporaneous feedback

1Estimating a higher dimensional semi-structural model while simultaneously con-
trolling for data mining would not be feasible within a year of continuously operating
all our computation resources. Note that we are already using a cluster to execute our
computations.

2Apergis and Miller (2009) extend Kilan and Park�s (2009) work to examine the e¤ect
of deep structural oil shocks on aggregate stock returns in eight OECD countries.
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from stock returns to oil prices. Here we consider a simpli�ed version of

their model in the sense that we do not decompose oil price innovations

into deep structural shocks. Therefore, our impulse response functions do

not have the causal interpretation attached to Kilian and Park�s (2009)

responses; yet, they represent the expected response to an unexpected oil

price shock that consists of a combination of these deep structural shocks.

Second, an important methodological di¤erence between our work and

that of Kilian and Park (2009) is that we do not impose the restriction that

stock returns are a linear function of past oil price changes. Kilian and Park

(2009) do not model, nor test for possible nonlinearity in the relationship

between oil prices and stock returns. Instead, we allow for asymmetry

in the response of stock returns to unanticipated oil price increases and

decreases. Therefore, in our case, Monte Carlo integration is required to

compute the impulse response functions, which implies a signi�cantly higher

computation cost.

All in all, Kilian and Park�s (2009) central question is whether time-

variation in the response of U.S. stock returns can be explained by changes

in the composition of the deep structural oil shocks and, in turn, whether

these changes account for the contrasting �ndings in the literature regarding

the role of oil price shocks on stock returns. In contrast, we focus on the

role of unanticipated positive and negative oil price shocks, which constitute

an average of the deep structural shocks considered in Kilian and Park

(2009). Although our impulse response function may not be given the

causal interpretation of Kilian and Park (2009), they provide a benchmark

for thinking about di¤erent theoretical explanations for the presence of

asymmetries in the relationship between oil price shocks and stock returns.

As mentioned above, our choice of a more parsimonious model is driven by
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the fact that introducing additional variables: (a) would lower the power

of the symmetry test; and (b) would not be feasible in less than a year of

continuous computation using a cluster.

Let us conclude this section by reiterating that evaluating the degree

of asymmetry in the response of stock returns to unanticipated oil price

changes is crucial because this asymmetry constitutes a leading explanation

for the seeming instability in the response of macroeconomic aggregates to

oil price shocks. Furthermore, the presence of asymmetry �if established�

would have implications regarding which of the transmission mechanisms

better �t the data on stock returns.

3 Data Description

We use aggregate and industry-level U.S. real stock returns spanning the

period between January 1973 and July 2013. Although data on stock re-

turns and oil prices was available starting January 1947, we restrict the

sample to the period between January 1973 and July 2013. This decision

is motivated by the fact that oil prices behaved very di¤erently during the

years when the Texas Railroad Commission set production limits in the

U.S. In fact, it was not until 1972 when U.S. production had increased sig-

ni�cantly that nominal oil prices stopped being �xed for long periods of

time.3 Hence, given that we lose one observation at the beginning of the

sample when we take �rst di¤erences, and twelve additional observations

given the number of lags considered, our estimation sample starts after the

structural break in late 1973.

All of the data on monthly nominal stock returns were obtained from

3Estimation results for the full sample are available in the on-line appendix at
http://gatton.uky.edu/faculty/herrera/documents/AHappendix.pdf
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Kenneth French�s database available on his webpage.4 As a measure of

aggregate stock returns we use the excess return on the market, which is

de�ned as the value-weighted return on all NYSE, AMEX, and NASDAQ

stocks from the Center for Research in Security Prices (CRSP) minus the

one-month Treasury bill rate. For industry level stock returns we use the

returns on 49 industry portfolios provided on French�s webpage. In this

database each NYSE, AMEX, and NASDAQ stock is assigned to an indus-

try portfolio based on its four-digit SIC code as reported by Compustat or,

in absence of a Compustat code, by the four-digit SIC classi�cation pro-

vided in CRSP. These portfolios include industries in agriculture, mining,

construction, manufacturing, transportation and public utilities, wholesale

and retail trade, �nance, insurance and real estate, and services. (A com-

plete list of the 4-digit SIC industries included in each portfolio is provided

in Part B of the on-line appendix.) We then compute real stock returns

by taking the log of the nominal stock returns and subtracting the CPI

in�ation.

Regarding the nominal oil price, we follow the literature (see, for in-

stance Mork 1989, Lee and Ni 2002) and use the composite re�ners�acqui-

sition cost (RAC) for crude oil from January 1974 until July 2013. Then,

to compute prices for the previous months, we extrapolate using the rate of

growth in the producer price index (PPI) for crude petroleum, after making

adjustment to account for the price controls of the 1970s. The real price of

oil is then computed by de�ating the price of oil by the U.S. CPI.

To assess whether oil price innovations have an asymmetric e¤ect on U.S.

stock returns, we use three di¤erent nonlinear transformations of the real oil

price, ot. The �rst nonlinear transformation is a modi�ed version of Mork�s

4See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
We use the �le containing 49 industry portfolios.
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(1989) proposal to split percent changes in oil prices into increases and

decreases to allow for an asymmetric response of stock returns to positive

and negative oil price shocks. That is, we use the oil price increase, which

is de�ned as:

x1t = max (0; ln ot � ln ot�1) : (2)

Alternatively, Hamilton (1996, 2003) suggests that agents might react

in a di¤erent manner if the oil price increase constitutes a correction for a

previous decline and not an increase in a previously stable environment. To

account for this behavior, he proposes to use the net oil price increase as a

measure of oil price shocks. Thus, as a second nonlinear transformation of

oil prices we use the net oil price increase relative to the previous 12-month

maximum (Hamilton 1996), which is given by:

x12t = max (0; ln ot �max (ln ot�1; :::; ln ot�12)) (3)

The last measure is the net oil price increase over the previous 36-month

maximum (Hamilton 2003), which is de�ned in a similar manner:

x36t = max (0; ln ot �max (ln ot�1; :::; ln ot�36)) (4)

Although, the last two measures do not have a direct grounding on

economic theory, there are behavioral explanations as to why agents might

react di¤erently in the face of a positive shock if oil prices have been stable

in the near past or if they only represent a correction for a previous decline.

In fact, the headlines reported in the news often suggest that analysts and

stock market commentators consider the behavior of oil prices in the recent

past when thinking about the impact of shocks on stock returns.
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4 The E¤ect of Oil Price Shocks on Stock

Returns

To evaluate the e¤ect of positive and negative oil price innovations on stock

returns we use a simultaneous equation model that nests both symmetric

and asymmetric responses of stock returns. In addition, the nonlinear na-

ture of this model allows for small and large oil price innovations to have

di¤erent e¤ects on the stock market. Thus, consider the data generating

process for each of the stock return series, yi;t; to be given by the following

dynamic simultaneous equation model:

xt = a10 +

pX
j=1

a11;jxt�j +

pX
j=1

a12;jyi;t�j + "1t (5a)

yi;t = a20 +

pX
j=0

a
21;j
xt�j +

pX
j=1

a
22;j
yi;t�j +

pX
j=0

g
21;j
x#t�j + "2t (5b)

where xt is the log growth of the crude oil price at time t, yi;t�j is the

return on the i � th portfolio at time t, x#t is one of the nonlinear trans-

formations of oil prices described in the previous section, and "1t and "2t

are, by construction, orthogonal disturbances. That is, for identi�cation

purposes, we assume that oil price changes are predetermined with respect

to U.S. stock returns. This identi�cation strategy is common in the litera-

ture on the relationship between oil price shocks and economic activity and

amounts to assuming that there is no contemporaneous feedback from U.S.

stock returns to oil prices (see for instance, Kilian and Vigfusson 2011a,b;

Herrera, Lagalo and Wada 2011; Kilian 2014). Moreover, such assumption

is justi�ed by the work of Kilian and Vega (2011) who show that daily U.S.

macroeconomic news has no predictive content for oil prices within a month

but it does for changes in stock returns. As for the number of lags included
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in the model, we follow Hamilton and Herrera (2004) and Kilian and Park

(2009) in selecting twelve monthly lags, p = 12, to capture the e¤ect of oil

prices on economic activity.

Note that the inclusion of x#t in equation (5b) invalidates the compu-

tation of the impulse response functions in the usual textbook manner (see

Gallant, Rossi and Tauchen 1993 and Koop, Pesaran and Potter 1996). In-

stead, to compute the response of stock return i to an innovation of size �

in "1t we use Monte Carlo integration as in Kilian and Vigfusson (2011a).

That is, we �rst calculate the impulse response functions to a positive in-

novation, Iy (h; �;
t), and to a negative innovation, Iy (h;��;
t) of size �

�conditional on the history 
t�for h = 0; 1; 2; :::; 12. We perform this com-

putation for 1,000 di¤erent histories and then calculate the unconditional

impulse response functions, Iy (h;��) ; by averaging over all the histories.5

Figure 1 about here

The �rst panel of Figure 1 illustrates the response of aggregate stock

returns to positive and negative innovations of one standard deviation in the

real oil price. For ease of comparison, we report the response to a positive

innovation and the negative of the response to a negative innovation of size

� = 1 s.d. Note that, regardless of the oil price measure, the e¤ect of a 1 s.d.

innovation in oil prices has a statistically insigni�cant e¤ect on aggregate

stock returns in the short-run. Using the oil price increase (the net oil price

increase relative to the previous 36 months) the response of aggregate stock

returns to both positive and negative innovations becomes signi�cant at the

5% level 8 months (8 and 12 months) after the shock. In both cases, an

unexpected increase in real oil prices leads to a decline in U.S. aggregate

5See Herrera, Lagalo and Wada (2011) for a detailed description of the computation.
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stock returns of less than 1%, whereas an unexpected decrease causes an

increase of about the same magnitude. At a �rst sight, the fact that the

IRFs to positive and negative innovations lie almost on top of each other

suggests no asymmetry is present in the response of aggregate stock returns.

The remaining panels of Figure 1 plot the response of stock returns for

a group of portfolios that are thought to be a¤ected by oil prices (see Kilian

and Park 2009). To economize space, the impulse response functions for the

remaining industry-level portfolios are plotted in Figures A.1a-A.1f of the

on-line appendix. Evidence of a negative relationship between positive oil

price innovations and real stock returns at the industry-level, for at least two

of the oil price measures, is apparent for entertainment, consumer goods,

chemicals, rubber and plastic products, steel works, automobiles and trucks,

aircraft, shipbuilding and railroad equipment, utilities, retail, restaurants,

hotels and motels, agriculture, candy & soda, beer & liquor, tobacco prod-

ucts, printing & publishing, apparel, medical equipment, textiles, construc-

tion materials, construction, personal services, computer hardware, electric

equipment, business supplies, shipping containers, banking, insurance, real

estate, and trading. For most of these portfolios, the responses to pos-

itive and negative innovations of 1 s.d. lie on top of each other. This

suggests that a negative innovation of 1 s.d. would have a positive e¤ect

on stock returns of the same magnitude �but opposite sign�than a 1 s.d.

positive innovation. These results are in line with Kling (1985), and Jones

and Kaul (1996), who �nd a negative impact of oil price shocks on stock

returns. Notwithstanding important di¤erences in the sample period and

model speci�cation, our empirical results are fully consistent with Kilian

and Park�s (2009) �nding of a negative impact of oil prices on stock returns.

Furthermore, note that we �nd a statistically signi�cant e¤ect of oil price
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changes, even though we do not account for the source of the shock.

5 Does the Sign of the Shock Matter?

Recent research into the question of asymmetry in the response of economic

activity to positive and negative oil price innovations suggests that the

magnitude of the e¤ect of a positive innovation is not larger (in absolute

terms) than the magnitude of the e¤ect of a negative innovation. Is this also

the case for the response of U.S. stock returns? We address this question by

implementing Kilian and Vigfusson�s (2011a) impulse response based test.

That is, we use the impulse response functions computed in the previous

section to construct a Wald test of the null hypothesis:

Iy (h; �) = �Iy (h;��) for h = 0; 1; 2; :::; 12:

Note that this test jointly evaluates whether the response of stock returns

(for a particular portfolio) to a positive shock of size � equals the negative

of the response to a negative shock of the same size, ��; for horizons h =

0; 1; 2; :::; 12: Our motivation for focusing on a one-year horizon is twofold.

First, the extant literature on the e¤ect of oil price shocks has found that

the largest and most signi�cant impact on economic activity takes place

around a year after the shock (see, for instance, Hamilton and Herrera

2004). Therefore, one could conjecture a similar lag in the transmission of

oil price shocks to dividends, and thus to stock returns. But, even in the

case where �nancial investors rapidly incorporate the information regarding

oil price changes in their expected dividends, since the Wald test is a joint

test for horizons h = 0; 1; 2; :::; 12, we take into account the response at

shorter horizons.
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Second, by focusing on the 12-months horizon we mitigate issues of data

mining related to repeating the test over a di¤erent number of horizons.

That is, if we were to repeat the impulse response based test with a 5%

size say for 6 di¤erent horizons H; then the probability of �nding at least

one rejection would exceed 5% under the null.

Having addressed the possible issue of data mining across horizons by

focusing on H = 12, we still have to tackle data mining concerns related

to repeating the impulse response based test over 49 di¤erent portfolios.

To avoid this potential problem, we compute data-mining robust critical

values by simulating the distribution of the supremum of the bootstrap

test statistic, under the null, across all portfolios for each of the oil price

transformations.6 To compute the data mining robust critical values we

generate 100 pseudo-series using the estimated coe¢ cient for the 49 portfo-

lios in model (5). We then use 100 histories to get the conditional impulse

response functions for each pseudo-series and compute the IRFs by Monte

Carlo integration. We repeat this procedure 100 times to obtain the em-

pirical distribution of the test statistic.

Before we review the test results it is worth noting that the �2H+1 distri-

bution becomes a less accurate approximation under the null as the number

of restrictions increases. For instance, Kilian and Vigfusson (2011a) results

suggest that at H = 12 the actual size of the symmetry test is about twice

the nominal size. Thus, it is not surprising that the �2H+1 critical values

exceed in a number of instances the bootstrapped critical values. For this

reason, and because the bootstrap critical values control for data mining,

we rely heavily on the data mining robust critical values to conduct our

6See Inoue and Kilian(2004) and Kilian and Vega (2011) for the e¤ect of data min-
ing and solutions to the problem of data mining in the related context of tests of
predictability.
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inference.

The left panel of Table 1 reports the p�values for the test of symmetry

in the response to positive and negative innovations of 1 s.d. in the real

oil price. In addition, we denote signi�cance at the 5% and 10% level,

after controlling for data mining, by ** and *, respectively. As the �eyeball

metric�would have suggested when looking at Figure 1, there is no evidence

of asymmetry in the response of aggregate stock returns. Regardless of the

oil price transformation (x#t = x
1
t ; x

12
t ; x

36
t ), we are unable to reject the null

at a 5% level. As for the industry-level portfolios, we �nd some evidence of

asymmetry when we use the net oil price increase relative to the previous 36-

month maximum, x36t : In particular, we reject the null at a 5% signi�cance

level for candy & soda, healthcare, and aircraft, and we reject the null at

a 10% level for apparel, and insurance. Interestingly, we fail to reject the

null for all industry-level portfolios when we use the oil price increase, x1t ,

or net oil price increase with respect to the previous 12-month maximum,

x12t :

TABLE 1 about here

Finding asymmetries in the response of aircraft, or apparel might not

be surprising to the reader, as the use of transportation equipment requires

considerable amounts of re�ned products and apparel is somewhat energy

intensive in production (see Table 2). Thus, a-priori, one could anticipate

the demand for these goods to contract more in response to positive oil price

innovations than it would expand when faced by negative innovations. After

all, �rms might postpone the purchases of planes when hit by an unexpected

oil price surge, but they might not increase their demand when faced by an

unexpected price drop. As a consequence, one would expect the response of
19



pro�ts, and thus stock returns, to be asymmetric. Yet, by the same token,

we would expect to �nd asymmetries in automobiles and truck, but none is

evident. On the contrary, evidence of asymmetry in candy & soda as well as

in insurance might be more puzzling as the total (direct and indirect) cost of

crude petroleum and natural gas used to produce a dollar of output in these

industries is less than 4 cents (see Table 2). A possible explanation for this

�nding could be that consumers increase precautionary savings when faced

with a positive shock (Edelstein and Kilian 2009), reduce the demand for

these goods, and this shortfall in demand leads to lower expected dividends

and stock returns. However, Edelstein and Kilian (2009) found no evidence

of asymmetry in aggregate consumer expenditures.

TABLE 2 about here

It is interesting to compare our results with those obtained by Herrera,

Lagalo and Wada (2011) who study the question of asymmetry in the re-

sponse of industrial production, as such a comparison could shed some light

on the source of the asymmetry in stock returns. Using data mining robust

critical values, they fail to reject the null of symmetry for H = 12 for the

total industrial production index, as well as for all the industry-level in-

dices, when using x1t and x
12
t : Instead, they �nd evidence of asymmetry in

transit equipment, petroleum and coal, plastics and rubber, and machinery,

when using x36t . In brief, there is no correspondence between our results

and those for industrial production, which suggests that asymmetries in the

response of industry-level stock returns are not driven by asymmetries in

the response of production. Instead, other transmission mechanisms are at

play. In particular, the story driving the asymmetries in stock returns ap-

pears to be one in which increases in oil prices have a greater contractionary
20



e¤ect in the expected and/or realized demand for aircraft, apparel, candy

& soda, healthcare, and insurance, than the expansionary e¤ect of an oil

price decline. Hence the asymmetry in the response of these stock returns.

Furthermore, our inability to reject the null of symmetry in aggregate re-

turns rules out the monetary transmission story. Recall that any individual

stock return is a function of expected discounted dividends where the dis-

count rate is an average of interest rates overtime; thus, changes in the

level and term structure of interest rates a¤ect all stock returns. Therefore,

any nonlinearity in the response of interest rates to oil price shocks should

be translated into a nonlinear response of individual and aggregate stock

returns. Yet, that is not the case.

Does the sign of the shock matter? For aggregate stock returns, the an-

swer is only to the extent that the response has the opposite sign; yet, pos-

itive and negative innovations have a symmetric e¤ect. For most industry-

level portfolio returns, we �nd no evidence that positive innovations have a

larger impact than negative innovations up to a year after the shock. Yet,

there are a few industries where the sign of the shock matters in that the

response of real stock returns is asymmetric.

6 Does the Size of the Shock Matter?

In a linear model, the magnitude of the response to a 2 s.d. shock is simply

twice that of the response to a 1 s.d. shock. Nevertheless, in a nonlinear

model such as that in (5) the magnitude of the response depends on the

size of the shock, and on the history of oil price changes and stock returns.

Thus, we estimate the IRFs to 2 s.d. innovations and test for symmetry

in the response to positive and negative innovations of this magnitude, as
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we did in the previous section. Figure 2 plots the IRFs to a positive 2 s.d.

and the negative of the IRFs to a negative innovation of the same size.7

The second panel of Table 1 reports the p�values for the test of symmetry

in the response to a 2 s.d. innovation.

Figure 2 about here

At �rst glance, it would appear that doubling the size of the innovation

increases the evidence in favor of asymmetry (see Figure 2 and the second

panel of Table 1). Note how there are more p � values below 5%, which

are marked in bold, for a 2 s.d. innovation than for a 1 s.d. innovation.

Yet, this is not the case when we control for data mining. In fact, using

x1t and x
36
t we are unable to reject the null for the aggregate and all of the

industry-level portfolios. For x12t we �nd evidence of asymmetry in textiles.

The di¤erence between the test results before and after controlling for data

mining is indicative of the higher degree of uncertainty associated with

the estimation of the IRFs to a 2 s.d. innovation. Moreover, since our

data mining robust critical values are computed using the supremum of the

bootstrap test statistic across all industry-level portfolios, it would su¢ ce

for the IRFs to be estimated with a higher degree of uncertainty for one

portfolio in order to get larger critical values.

To further evaluate whether the size of the oil price shock matters, we

employ a di¤erent oil price transformation along the lines of Edelstein and

Kilian (2007). Consider a situation in which �rms and individuals only

respond to shocks that exceed a certain threshold. Such behavior could be

observed if there are adjustment costs that prevent agents from optimizing

7 IRFs for the remaining portfolios are illustrated in Figures A.2a-A.2f of the on-line
appendix.
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when the change in the price of an input or a consumption good is small,

or if dividends are paid only if the surplus exceeds a threshold.

Let us de�ne

xsdt =

8>><>>:
0 if jxtj � �

xt if jxtj > �

9>>=>>; (6)

where xt is the percentage change in the oil price, and � equals one (6.83%)

or two (13.66%) standard deviations of the oil price change.

The fourth column in the left and right panels of Table 1 report the

p� values for the test of symmetry computed using this alternative trans-

formation of the oil price change. Clearly, there is no evidence of asymmetry

in the response to 1 s.d. or 2 s.d. innovations when we use xsdt : In fact,

our estimates suggest that xsdt does a very bad job at capturing possible

asymmetries in the response of U.S. stock returns.

All in all, the response of aggregate stock returns to innovations in

the real oil price, as well as that of most industry-level portfolios, is well

captured by a linear model. Hence, the impact of innovations that di¤er

only in size should di¤er only in the same scale. Yet, for a number of

industries such as candy&soda, healthcare, aircraft, apparel, and insurance,

the magnitude of the shock matters as the response is a nonlinear function

of the innovation.

7 Conclusions

We started our study by inquiring whether the size and the sign of an oil

price shock matter for the response of U.S. real stock returns. To answer

these questions we estimated a simultaneous equation model that nests

symmetric and asymmetric responses to positive and negative innovations
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in the price of crude oil. We found that positive oil price innovations depress

aggregate stock returns, as well as the returns of about 60% of the industry-

level portfolios.

We explored the question of asymmetry in the response of real stock

returns by implementing Kilian and Vigfusson�s (2011a) impulse response

based test. To avoid issues of data mining related to the repetition of

the test over all the portfolios, we bootstrapped the distribution of the

supremum of the Wald test across all portfolios. Estimation results sug-

gested that a linear model �ts the data well for aggregate returns, as well

as for most industry-level portfolios. Notable exceptions are candy & soda,

healthcare, and aircraft for which we found evidence of asymmetry in the

response to a 1 s.d. innovation using the net oil price increase relative

to the previous 36-month maximum, x36t . No evidence of asymmetry is

found when we use the oil price increase, x1t , or the net oil price increase

relative to the 12-month maximum, x12t : Consistent with these �ndings,

we concluded that, for aggregate stock returns and for most industry-level

portfolios, the sign of the shock mattered only in that it determined the sign

of the response. Yet, the absolute magnitude of the responses coincided.

To investigate whether the size of the shock matters we explored the

question of symmetry in the response to a 2 s.d. innovation. For this larger

shock, evidence of asymmetry was absent for all portfolios but textiles when

we used x12t . We then explored the conjecture that only oil price innovations

that exceed a threshold (1 s.d. or 2 s.d. of the percentage change in the real

oil price) have an asymmetric e¤ect on real stock returns. Our estimation

results lead us to strongly reject such a model. We thus concluded that the

size of an innovation in real oil prices only matters in that it determines

the scale of the e¤ect. That is, consistent with our �nding of symmetry, a
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doubling in the size of the innovation in real oil prices leads to a doubling

(no more, no less) in the response of almost all analyzed stock returns.

Comparing the test results across di¤erent oil price measures reveals

only a few rejections when we use the net oil price increase relative to the

previous 36-month maximum, x36t ; and a typical shock. Yet, it appears that

the net oil price increase relative to the previous 12-month maximum, x12t ,

works best at capturing possible asymmetries in the oil price-stock returns

relationship for large shocks. These results are suggestive of a behavioral

driven story as a possible theoretical explanation for the asymmetric e¤ect

of positive and negative oil price innovations. On the one hand, our �nding

of symmetry in the response of aggregate stock returns rules out monetary

policy as the source of the asymmetry. In addition, the fact that some of the

industries that exhibit asymmetric response patterns are not energy inten-

sive at all suggests that mechanisms other than the transmission through

a production channel are at play. On the other hand, our �nding of asym-

metries in aircraft, apparel, candy & soda, and insurance suggests that an

asymmetric response of the demand for these goods might be the source

of these patterns. Now, whether changes in demand are driven because

consumers perceive oil prices to be higher than in the recent past (i.e., the

behavioral explanation) or whether the decline in demand is driven by in-

creased precautionary savings or shifts in demand, is an issue that should

be explored by future research.

Do sign and size matter? The answer to this question appears to be that

sign only matters in that it determines the direction of the e¤ect on stock

returns but �for the aggregate and most industry-level returns� it has no

impact on the magnitude of the response. As for the size of the shock, given

that in most cases the responses are symmetric, the e¤ect of a two standard
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deviation shock is just twice the e¤ect of a one standard deviation shock.

In brief, our results suggest a linear model provides a good approximation

to the response of real stock returns to real oil price innovations.
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Table 1. Test of symmetry in the response to positive and negative innovations in the real oil price for H=12

1 s.d. 2 s.d.

Sector x#t = x
1
t x#t = x

12
t x#t = x

36
t x#t = x

sd
t x#t = x

1
t x#t = x

12
t x#t = x

36
t x#t = x

sd
t

Aggregate 0.62 0.94 0.87 1.00 0.35 0.42 0.62 1.00
Agriculture 0.88 0.96 0.90 1.00 0.86 0.66 0.94 1.00
Food Products 0.93 0.67 0.94 0.84 0.90 0.23 0.88 1.00
Candy & Soda 0.47 0.69 0.25** 1.00 0.29 0.01 0.71 1.00
Beer & Liquor 0.69 0.77 0.97 0.88 0.27 0.15 0.93 1.00
Tobacco Products 0.58 0.93 0.91 0.99 0.42 0.20 0.76 1.00
Recreation 0.69 0.91 0.83 0.97 0.55 0.52 0.90 1.00
Entertainment 0.46 0.55 0.74 0.99 0.03 0.01 0.47 1.00
Printing and Publishing 0.86 0.90 0.75 1.00 0.56 0.43 0.64 1.00
Consumer Goods 0.62 0.75 0.84 0.80 0.41 0.06 0.90 1.00
Apparel 0.30 0.61 0.53* 0.94 0.01 0.02 0.53 1.00
Healthcare 0.96 0.83 0.36** 0.67 0.91 0.12 0.41 1.00
Medical equipment 0.42 0.76 0.92 1.00 0.48 0.09 0.84 1.00
Pharmaceutical products 0.73 0.71 0.95 0.92 0.57 0.15 0.97 1.00
Chemicals 0.73 0.77 0.66 1.00 0.48 0.09 0.84 1.00
Rubber and plastic products 0.75 0.76 0.78 1.00 0.50 0.34 0.51 1.00
Textiles 0.25 0.31 0.75 1.00 0.04 0.00** 0.42 1.00
Construction materials 0.53 0.89 0.85 0.99 0.36 0.23 0.93 1.00
Construction 0.97 0.98 0.80 1.00 0.94 0.66 0.46 1.00
Stee works etc. 0.79 0.98 0.84 1.00 0.38 0.45 0.74 1.00
Fabricated products 0.85 0.87 0.85 1.00 0.79 0.25 0.85 1.00
Machinery 0.58 0.93 0.88 1.00 0.41 0.13 0.69 1.00
Electrical equipment 0.77 0.93 0.73 0.99 0.71 0.29 0.73 1.00
Automobiles and trucks 0.31 0.92 0.82 0.97 0.02 0.14 0.47 1.00
Aircraft 0.64 0.85 0.35** 0.99 0.35 0.17 0.42 1.00
Shipbuilding, railroad equip. 0.91 0.97 0.69 1.00 0.88 0.84 0.83 1.00
Defense 0.74 0.66 0.85 0.93 0.33 0.02 0.61 1.00
Precious metals 0.97 0.74 0.65 0.81 0.96 0.04 0.70 1.00
Mines 0.94 0.99 0.98 1.00 0.91 0.83 0.93 1.00
Coal 0.95 0.91 0.68 1.00 0.88 0.18 0.44 1.00
Petroleum and natural gas 0.98 0.97 0.82 1.00 0.97 0.36 0.55 1.00
Utilities 0.87 0.91 0.73 1.00 0.70 0.27 0.22 1.00
Communication 0.52 0.64 0.96 0.96 0.15 0.07 0.72 1.00
Personal services 0.49 0.89 0.63 1.00 0.70 0.27 0.22 1.00
Business services 0.85 0.85 0.98 1.00 0.64 0.36 0.96 1.00
Computer hardware 0.15 0.91 0.80 1.00 0.03 0.09 0.63 1.00
Computer software 0.53 0.95 0.93 0.97 0.34 0.26 0.95 1.00
Electronic equipment 0.29 0.82 0.87 0.99 0.22 0.14 0.86 1.00
Measuring and control equip. 0.72 0.96 0.97 1.00 0.69 0.50 0.97 1.00
Business supplies 0.86 0.84 0.66 0.98 0.69 0.32 0.67 1.00
Shipping containers 0.91 0.77 0.80 1.00 0.89 0.07 0.80 1.00
Transportation 0.70 0.74 0.60 0.98 0.36 0.11 0.61 1.00
Wholesale 0.92 0.88 0.75 1.00 0.84 0.44 0.80 1.00
Retail 0.23 0.67 0.64 1.00 0.00 0.12 0.75 1.00
Restaurants, hotels, motels 0.53 0.71 0.77 0.75 0.11 0.08 0.71 1.00
Banking 0.45 0.51 0.68 0.85 0.08 0.01 0.24 1.00
Insurance 0.83 0.53 0.43* 0.90 0.47 0.01 0.29 1.00
Real estate 0.69 0.54 0.70 1.00 0.22 0.01 0.33 1.00
Trading 0.63 0.87 0.96 0.99 0.22 0.08 0.87 1.00
Other 0.39 0.71 0.77 0.94 0.08 0.02 0.54 1.00

Notes: based on 1000 simulations of model (5). p-values are based on the �2H+1. Bold and italics denote
signi�cance at 5% and 10% level, respectively. ** and * denote signi�cance at the 5% and 10%, respectively,
after accounting for data mining.



Table 2. Direct and total requirements of crude petroleum and natural gas

Direct cost Total cost
Industry 1977 1999 1977 1999
Food and kindred products 0.000 0.000 0.036 0.023
Tobacco products 0.000 0.000 0.025 0.006
Apparel 0.000 0.000 0.033 0.020
Textiles 0.000 0.000 0.057 0.033
Paper and allied products, except containers (Business supplies) 0.000 0.000 0.062 0.031
Chemicals and selected chemical products 0.025 0.097 0.187 0.268
Petroleum re�ning and related industries 0.607 0.484 0.720 0.785
Plastics and synthetic materials 0.016 0.006 0.118 0.075
Rubber and miscellaneous plastics products 0.001 0.000 0.059 0.030
Primary iron and steel manufacturing 0.000 0.000 0.047 0.031
Lumber and wood products 0.000 0.000 0.064 0.017
Computer and o¢ ce equipment 0.000 0.000 0.021 0.010
Household appliances 0.000 0.000 0.028 0.020
Motor vehicles and equipment 0.000 0.000 0.027 0.034
Transportation and warehousing 0.001 0.003 0.067 0.177
Wholesale and retail trade 0.000 0.000 0.020 0.018
Finance and insurance 0.000 0.000 0.010 0.009
Private electric, gas, water, and sanitary services (Utilities) 0.125 0.466 0.237 0.876
Amusements 0.000 0.000 0.022 0.007

This table reports, as a measure of energy-intensity, total and direct costs of crude petroleum
and natural gas required to produce a dollar of output of the particular industry in 1977 and
1999. These requirements are computed using the 1977 and 1999 annual Input-Output tables
published by the BEA.
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Notes : Es timates  are based on 1000 replications  of the s imultaneous  equation model in (5). Squares  repres ent s ignific anc e
at the 5% level .

Figure 1a: Response to one standard deviation positive and negative innovation in the real oil price change
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Figure 1b: Response to one standard deviation positive and negative innovation in the real oil price change

N otes : Es timates  are  bas ed on 1000 rep lic a tions  o f the s imultaneous  equation model in  (5 ) . Squares  repres ent s ign ific anc e
at the 5% lev e l .
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Figure 1c: Response to one standard deviation positive and negative innovation in the real oil price change

N otes : Es timates  are  bas ed on 1000 rep lic a tions  o f the s imultaneous  equation model in  (5 ) . Squares  repres ent s ign ific anc e
at the 5% lev e l .
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Figure 2a: Response to two standard deviation positive and negative innovation in the real oil price change

N otes : Es timates  are  bas ed on 1000 rep lic a tions  o f the s imultaneous  equation model in  (5 ) . Squares  repres ent s ign ific anc e
at the 5% lev e l .
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Figure 2b: Response to two standard deviation positive and negative innovation in the real oil price change

N otes : Es timates  are  bas ed on 1000 rep lic a tions  o f the s imultaneous  equation model in  (5 ) . Squares  repres ent s ign ific anc e
at the 5% lev e l .

xt
# = x t

1

37



0 2 4 6 8 10 12
­5

0

5

C
oa

l

0 2 4 6 8 10 12
­5

0

5

0 2 4 6 8 10 12
­5

0

5

0 2 4 6 8 10 12
­5

0

5
Pe

tro
le

um
 a

nd
N

at
ur

al
 G

as

0 2 4 6 8 10 12
­5

0

5

0 2 4 6 8 10 12
­5

0

5

0 2 4 6 8 10 12
­2

0

2

U
tili

tie
s

0 2 4 6 8 10 12
­2

0

2

0 2 4 6 8 10 12
­2

0

2

0 2 4 6 8 10 12
­2

0

2

Tr
an

sp
or

ta
tio

n

0 2 4 6 8 10 12
­2

0

2

0 2 4 6 8 10 12
­2

0

2

0 2 4 6 8 10 12
­5

0

5

R
et

ai
l

0 2 4 6 8 10 12
­5

0

5

0 2 4 6 8 10 12
­5

0

5

0 2 4 6 8 10 12
­5

0

5

R
es

ta
ur

an
ts

,
 H

ot
el

s,
 M

ot
el

s

0 2 4 6 8 10 12
­5

0

5

0 2 4 6 8 10 12
­5

0

5

Positive Negative

xt
# = x t

12 xt
# = x t

36
Figure 2c: Response to two standard deviation positive and negative innovation in the real oil price change
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N otes : Es timates  are  bas ed on 1000 rep lic a tions  o f the s imultaneous  equation model in  (5 ) . Squares  repres ent s ign ific anc e
at the 5% lev e l .
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