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Abstract

This chapter investigates the robustness of impulse response estimators to near unit roots

and near cointegration in VAR models. We compare estimators based on VAR speci�cations

determined by pre-tests for unit roots and cointegration as well as unrestricted VAR speci�-

cations in levels. Our main �nding is that the impulse response estimators obtained from the

levels speci�cation tend to be most robust when the magnitude of the roots is not known. The

pre-test speci�cation works well only when the restrictions imposed by the model are satis�ed.

Its performance deteriorates even for small deviations from the exact unit root for one or more

model variables. We illustrate the practical relevance of our results through simulation examples

and an empirical application.
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1 Introduction

Most economic variables that are used for policy analysis and forecasting are characterized by

high persistence and possibly nonstationary behavior. It is common practice in applied work to

subject these series to pre-tests for unit roots and cointegration prior to the vector autoregressive

(VAR) analysis to determine the appropriate transformations that render the data stationary.

Incorporating information about the integration and cointegration properties of the data in VAR

models reduces the estimation uncertainty and the degree of small-sample bias of impulse response

estimates. Such pre-tests, however, su¤er from low power in the neighborhood of the null hypothesis.

In fact unit root pretests lack robustness to small deviations from unit roots and cointegration

as they do not not reject the null with probability approaching one for near integrated processes

that are parameterized as local-to-unity. For example, Gospodinov, Maynard and Pesavento (2011)

demonstrate that arbitrarily small deviations from an exact unit root may produce impulse response

estimators that are highly distorted and misleading. The main goal of this article is to study

and quantify the role of pre-tests for unit roots and cointegration for VAR speci�cations and

identi�cation schemes for impulse response analysis. We contrast the pre-test approach to the

speci�cation of VAR models with the alternative of expressing all VAR variables in levels. The

latter practice, which is also common in applied work, is susceptible to problems of small-sample

bias, especially when the data are highly persistent. Moreover, it requires appropriate choices of

bootstrap or asymptotic methods for inference that are developed to accommodate near-integrated

processes. However, the levels speci�cation makes the estimates of structural impulse responses,

identi�ed by short-run restrictions, asymptotically robust to the unknown order of integration of

the model variables. The relative merits of the pre-test VAR approach and the levels approach for

VAR impulse response analysis are not well understood. The objective of this article is to examine

this issue and to provide users of VAR models with advice on how to proceed in practice.

The limitations of the pre-test approach to VAR speci�cation have been discussed previously

in the literature. Elliott (1998) illustrated the possibly large size distortions of the cointegration

methods that arise in systems with near unit roots. It is widely documented that similar distortions

tend to characterize the properties of sequential modeling and speci�cation procedures that are

based on pre-tests for unit roots. These tests are known to have low power in rejecting the null

of a unit root when the data are highly persistent and nearly integrated. Nevertheless, Elliott�s
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(1998) warning has been ignored by many applied researchers who continue to rely on pre-tests,

perhaps because of the perception that the levels speci�cation is not without its own potential

drawbacks. This chapter examines how severe the problem documented by Elliott (1998) is for

estimators of VAR impulse responses and which of the commonly used approaches to determining

the VAR speci�cation is most accurate in practice. We conduct a Monte Carlo study that assesses

the mean squared errors (MSEs) of selected impulse response estimates and quantify how dangerous

the pre-test strategy can be in practice. The pre-tests include individual unit root tests such as

the augmented Dickey-Fuller test with GLS detrending (ADF-GLS) and tests for cointegrating

rank, which determine whether the model should be estimated as a VAR in di¤erences, a vector

error-correction model (VECM) or a VAR in levels. Our simulation results provide support for the

robustness of the level VAR speci�cation to departures from exact unit roots and cointegration and

to the possible presence of unmodelled low frequency co-movement among the variables of interest.

Our evidence in favor of the levels speci�cation highlights the importance of valid inference

on impulse response estimators when there is uncertainty about the integration and cointegration

properties of the data. We provide a brief review of several asymptotic and bootstrap approaches

and methods for inference in levels models including local-to-unity asymptotics (Gospodinov, 2004,

2010; Mikusheva, 2012; Pesavento and Rossi, 2006; Phillips, 1998), delta method asymptotics (Sims,

Stock, and Watson, 1990), and bootstrap (Kilian, 1998; Inoue and Kilian, 2002). We show that

the best approach may di¤er depending on the properties of the data, the dimensionality of the

system, the forecast horizon, the identi�cation scheme, etc.

The remainder of this chapter is structured as follows. Section 2 provides a short description of

various representations of multivariate integrated processes. The following section introduces the

common trend decomposition for nearly integrated process and discusses some theoretical results

for impulse response analysis with nearly integrated (and possibly cointegrated) processes based

on short-run and long-run identifying restrictions. Section 4 reviews the theoretical literature on

inference for impulse response functions which is robust to the magnitude of the largest roots of

the process. Section 5 presents the results of several simulation exercises. Section 6 concludes.
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2 A Brief Review of Representations of Multivariate Integrated

Processes

Let yt be an I(1) multivariate (m� 1) process. Since �yt is I(0) by assumption, �yt has a moving

average (MA) representation of the form

�yt = C(L)ut; (1)

where C(L) = C0 + C1L+ C2L
2 + ::: is a m�m matrix lag polynomial and ut s iid(0;
): Then,

�yt has a long-run covariance matrix C(1)
C(1)0:

For any � 6= 0m�r (r = 1; :::;m), the long-run variance of �0�yt is �0C(1)
C(1)0�. If � are r

cointegrating vectors of dimension m� 1, then �0yt is I(0) and �0�yt is overdi¤erenced with a zero

long-run variance. Therefore, for � to be cointegrating vectors, we must have

�0C(1)
C(1)0� = 0r�r:

This equality cannot hold if C(1) has full rank. Thus, cointegration requires C(1) to have rank less

than m and � must lie in the null space of C(1), i.e., so that �0C(1) = 0r�m:

Assuming that C(L) is invertible, model (1) has the VAR representation

A(L)yt = ut; (2)

where A(L) = (1�L)C(L)�1 is a p-th order lag polynomial. Evaluating (1�L)Im = A(L)C(L) at

L = 1 yields

A(1)C(1) = 0m�m:

Therefore, A(1) lies in the null space of C(1) and, from the previous results for the MA represen-

tation, must be a linear combination of the cointegrating vectors �: More precisely, A(1) = ���0;

where � is an m� r matrix of rank r:

Finally, model (2) admits an VECM representation

�yt = �yt�1 + �(L)�yt + ut;

where � (L) = �1L + �2L
2 + ::: + �p�1Lp�1; �i = �

Pp
j=i+1Aj and � = �A(1) = ��0. In this

representation, rank(�) = r < m, i.e., � has a reduced rank if there are r cointegrating relations.

If rank(�) = m, all elements of yt are I(0) and the appropriate model is an unrestricted VAR in
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levels; whereas if rank(�) = 0, all elements of yt are I(1) and not cointegrated, and the appropriate

model is VAR in �rst di¤erences. Practitioners are commonly faced with the decision of which

of these three models (VAR in levels, VAR in �rst di¤erences, or VECM) to estimate, and this

decision is often made on the basis of pre-tests for unit root and cointegration.

A second issue faced by practitioners interested in identifying the e¤ect of a structural shock of

interest (e.g., monetary policy shocks, oil price shocks, or technological innovations) is the choice of

identifying restrictions. In the applied literature, the most commonly used identi�cation strategies

are short-run and long-run restrictions. Short-run identi�cation schemes can be characterized as

follows. Let B0 denote an m�m invertible matrix with ones on the main diagonal. Pre-multiplying

both sides of (2) by B0 yields the structural VAR (SVAR) model

B(L)yt = "t;

where B(L) = B0A(L) and "t = B0ut denotes an m � 1 vector of structural shocks which are

assumed to be orthogonal with a diagonal covariance matrix �. Hence,

E(utu
0
t) � 
 = B�10 �B�100 :

Given that 
 is symmetric with m(m+1)
2 elements, in order to identify all of the free parameters of B0

we need to impose m(m�1)2 restrictions. One possibility is to restrict B0 to be lower triangular which

is equivalent to a Choleski decomposition of 
: Note that the short-run identifying restrictions do

not depend on the speci�cation of the reduced-form VAR model (e.g., Lütkepohl and Reimers,

1992).

Alternatively, one can impose long-run identifying restrictions that render the moving average

matrix A(1)�1B�10 lower triangular. The use of long-run restrictions is less general in that it re-

quires some model variables to be I(1) and others to be I(0), making this approach particularly

susceptible to any misspeci�cation of the integration properties of the individual series. For exam-

ple, Gospodinov, Maynard and Pesavento (2011) demonstrate that even arbitrary small deviations

from the exact unit, when combined with long run identi�cation restrictions, can produce impulse

response estimates that are highly distorted.

In Section 4 we study how alternative choices of model speci�cation and identi�cation restric-

tions can a¤ect the MSE of the structural impulse responses.
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3 Some Theoretical Results for Near-Integrated Processes

In this chapter, our main interest lies in data generating processes (DGPs) in which the variables

in the VAR are highly persistent with roots that are either close to one or equal to one.1 This is

the typical situation a practitioner estimating a VAR with macroeconomic variables would face.

Theoretically, these variables are well approximated by near-integrated processes. Thus, to under-

stand the e¤ect of persistent variables on the estimation of the VARs, we start by reviewing some

theoretical results for near-intergrated processes.

3.1 Common trend decomposition of near-integrated processes

Let yt denote a multivariate m� 1 process

(Im � �L)yt = 	(L)ut;

where � = Im + C=T and C is a matrix of �xed constants. It is often convenient to de�ne C =

diag(c1; c2; :::; cm) in order to rule out I(2) processes when the diagonal elements are non-zero. We

discuss the e¤ect of non-zero o¤-diagonal elements later. Assume that y0 = 0; 	(L) =
P1
i=0	iL

i

with 	0 = Im;
P1
i=0 ij	ij < 1 and

P1
i=0	i 6= 0m�m; and ut is a homoskedastic martingale

di¤erence sequence with a covariance matrix 
 and �nite fourth moments. Deterministic terms are

assumed away for notational convenience.

Let et = 	(L)ut. Then, et = [	(1)+(1�L)	�(L)]ut by the Beveridge-Nelson (BN) decomposi-

tion, where 	(1) =
P1
i=0	i, 	

�(L) =
P1
i=1	

�
iL

i�1 and 	�i = �
P1
j=i	j : Denoting St =

Pt
j=1 ut

and using recursive substitution and summation by parts,

yt =
tX
j=1

�t�j	(L)uj = 	(1)St + vt +
C

T

t�1X
j=1

	(1)�t�jSj�1 +
C

T

t�1X
j=1

�t�jvj�1; (3)

where vt = 	�(L)ut:

Expression (3) is an algebraic decomposition (or factorization) of the process yt that contains

the standard BN decomposition for exact unit root processes as a special case (C = 0m�m). While

the standard BN decomposition is given by the permanent, 	(1)St; and transitory, vt; components,

the decomposition in (3) contains two additional terms. The fourth term C
T

Pt�1
j=1�

t�jvj�1 is

1Persistent variables can also be approximated by fractionally integrated processes. Allowing for this possibility is

outside the scope of this chapter, although some of the results in our simulations may generalize to the case in which

the DGP contains fractionally intergrated variables.
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asymptotically negligible, whereas the term C
T

Pt�1
j=1	(1)�

t�jSj�1 is not and is of the same order

Op(T
1=2) as 	(1)St: Therefore, (3) contains two permanent component terms (i.e., two terms of

order Op(T 1=2)). Omitting one of the them (by wrongly assuming an exact unit root, for example)

will give rise to a misspeci�cation bias and undermine the size of hypothesis tests.

Consider, for example, the cointegration model (Elliott, 1998)

y1;t = �y2;t + e1;t

y2;t = (1 + c=T )y2;t�1 + e2;t;

which can be cast in a similar representation as the model above. In this case, the restriction

�	(1) = 0 does not annihilate the permanent component. As a result, reduced rank regressions

that impose only this restriction are not valid and would cause misspeci�cation bias and test size

distortions as shown by Elliott (1998). Similar misspeci�cation biases are expected to play a role

in impulse response analysis based on long-run identifying restrictions on 	(1); i.e., restrictions

imposed on the �wrong�permanent component when C 6= 0m�m.

In brief, wrongly assuming that a multivariate process yt has one or more unit roots, when the

roots are close but not equal to unity, leads to distortions in reduced rank regressions, as well as in

the BN decomposition and impulse response analysis.

3.2 Impulse response analysis in VAR models with near unit roots identi�ed

by short-run restrictions

Let the data generating process be given by

~A(L)~yt = ~ut (4)

or

(Im � �L) = 	(L)~ut;

where ~A(L) = Im� ~A1L� :::� ~ApL
p has roots outside or on the unit circle, and � can be expressed

in terms of its eigenvalues and eigenvectors as � = V �1�V with � as de�ned above (Pesavento and

Rossi, 2006). This model allows for unit roots and possible cointegration and several representations

in other parts of the chapter can be regarded as speci�cations in the rotated variables yt = V ~yt

and ut = V ~ut.
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Despite the possible presence of unit roots and cointegration, the estimates of ~A1; :::; ~Ap from

the levels VAR (4) are root-T consistent and individually normally distributed (Sims, Stock and

Watson, 1990). Using these estimates and a short-run (recursive) identi�cation scheme, one can

construct l-period ahead orthogonalized impulse responses �l. Provided that the response horizon

is �xed with respect to the sample size, the impulse response estimators are, under weak regularity

conditions, consistent and asymptotically normally distributed (see Lütkepohl and Reimers, 1992).

This explains the robustness of impulse response estimators based on the level speci�cation to

possible deviations from exact unit roots and cointegration, as long as the structural parameters

and shocks are identi�ed using short-run restrictions. In contrast, inference becomes nonstandard if

we rely on long-run restrictions for identi�cation, as discussed below. A similar problem would arise,

regardless of the identi�cation, if we allow the response horizon to grow fast enough with respect

to the sample size. The latter result casts doubt on impulse response estimates for long horizons

when the data are persistent. Indeed, Kilian and Chang (2000) document that the reliability

of impulse response estimates from standard levels speci�cations may deteriorate substantially at

longer horizons.

3.3 Impulse response analysis in VAR models with near unit roots identi�ed

by long-run restrictions

This case is best illustrated in the context of the Blanchard and Quah (1989) model for which

yt = (4Yt; Ut)0, where Yt is the output (log real GNP) and Ut is the unemployment rate, A(L) =

	(L)�1(I2 ��L) and B0 =

24 1 �b(0)12
�b(0)21 1

35. The structural shocks "t = B0ut can be interpreted

as aggregate supply and demand shocks ("st ; "
d
t )
0. The long-run identifying restriction that the

demand shocks "dt have no long-run e¤ect on output imposes a lower triangular structure on the

moving average matrix A(1)�1B�10 . Hence, under this identifying restriction, the matrix of long-run

multipliers in the structural model, B(1) = B0A(1); is also lower triangular.

The robustness of the impulse response analysis depends crucially on the persistence of Ut and,

hence, on the parameterization of the matrix �. We follow Gospodinov, Maynard and Pesavento

(2011) and express � as � =

24 1 �

0 �

35, where � = �
 (1� �) is the parameter that determines

the low frequency co-movement between the variables, and � = 1 + c=T (for c < 0) denotes the

largest root of the unemployment rate. The non-zero o¤-diagonal element 
 (1� �) allows for the
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possibility that a small low frequency component of unemployment a¤ects output growth.

To gain some further insight into this parameterization, let us assume for simplicity that 	(L) =

I2 and note that the vector error-correction form of the model is given by

4yt = (�� 1)

24 0 �


0 1

35 yt�1 + ut;
which can be written as

4yt = ��0yt�1 + ut;

where � = (�� 1)

0@ 


1

1A and � = (0; 1)0. Therefore, the model has a trivial cointegration vector

(0; 1)0 and the speed of adjustment � is a function of 
 which carries important information from

the levels of the series, provided that � < 1.

With this parameterization of �, the long-run multiplier matrix is given by

B(1) =

24  11(1)� b
(0)
12  21(1) (1� �)

�
[
 11(1) +  12(1)]� b

(0)
12 [
 21(1) +  22(1)]

�
 21(1)� b

(0)
21  11(1) (1� �)

�
[
 21(1) +  22(1)]� b

(0)
21 [
 11(1) +  12(1)]

�
35 ;

where  ij(1) denotes the corresponding elements of the matrix 	(1)
�1. Imposing the long-run

restriction that aggregate demand shocks have no permanent e¤ect on output implies that b(0)12 =

[
 11(1) +  12(1)]=[
 21(1) +  22(1)]: In contrast, imposing a unit root in unemployment (� = 1)

and di¤erencing both output and unemployment renders the restriction b(0)12 =  12(1)= 22(1): Thus,

the di¤erenced VAR ignores any information contained in the levels of output and unemployment.

The main message to the practitioner is that the di¤erenced VAR speci�cation is not robust to

small low frequency co-movements. While the levels speci�cation (in which some of the variables

are in �rst di¤erences and some are in levels) preserves the information on the low-frequency co-

movement, the estimates of the impulse response functions are inconsistent and their distribution is

fat-tailed in the presence of local-to-unity processes (Gospodinov, 2010). In summary, the applied

researchers should exert extreme caution when working with near-integrated variables and the

SVAR is identi�ed by long-run restrictions.

3.3.1 Unit root pre-test VAR speci�cation

Similarly to the case of the di¤erenced VAR, lack of robustness is expected to characterize the

behavior of speci�cations based on pre-test for a unit root given that this pre-test will select the
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di¤erenced speci�cation with probability approaching one when the process is near-integrated.

Hence, the unit root pre-test VAR speci�cation will inherit the non-robustness properties of the

di¤erenced VAR speci�cation for slowly co-moving, near-integrated variables.

4 Robust inference for impulse response functions

Given the low power of most pre-tests for unit root and cointegration, and costs from estimating

a VAR that erroneously imposes unit roots, the current literature has moved in the direction

of methods for inference that are robust to the possible presence of unit roots. These robust

methods are designed for VAR models based on short-run identifying restrictions only, of course, as

departures from exact unit roots immediately invalidate the use of long-run identifying restrictions.

Consider the model

(Im � �L)yt = 	(L)ut;

where � = Im + C=T and C = diag(c1; c2; :::; cm): Note that yt could denote rotated variables to

account for the possibility of cointegration with a known cointegration vector (for more details, see

Pesavento and Rossi, 2006). Suppose that the interest lies in inference on the impulse responses of

yt at long response horizons l, yt+l, to the structural shocks "t = B0ut.

To better capture the uncertainty in estimating the impulse responses at long horizons, it is

convenient to parameterize l as a function of the sample size. More speci�cally, let l = [�T ] for

some �xed � > 0. Under this parameterization, we have that C l ! eC� as T ! 1, where e�C

is a diagonal matrix with (e�c1 ; e�c2 ; :::; e�cm) on the main diagonal (Pesavento and Rossi, 2006;

Gospodinov, 2004). Furthermore,

�l �
@yt+l
@ut

= �l(Im +�
�1	1 +�

�1	2 + :::) + o(1) ' �l	(1) (5)

and the l-period impulse response function of the j-th variable in yt to the k-th structural shock in

"t is given by (Pesavento and Rossi, 2006)

@yj;t+l
@"k;t

' �0j�l	(1)B�10 �k ! �0je
C�	(1)B�10 �k (6)

as T ! 1, where �j and �k are the corresponding columns of the identity matrix Im. Inference

on the impulse response function can then proceed by plugging a consistent estimate of 	(1) and

obtaining the con�dence interval limits for the localizing constant cj of the j-th variable yj;t; which
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is typically done by inverting a unit root test (see, for example, Stock, 1991). In this sense, this

method is a two-step procedure, which involves the construction of a con�dence interval for cj in

the �rst step and using this con�dence interval and the expression (6) to construct a con�dence

interval for the impulse response function @yj;t+l
@"k;t

.

Gospodinov (2004) proposes a one-step test-inversion method for directly constructing con�-

dence bands for the impulse response function. Let � = (vec(�)0; vec(	1)0; vec(	2)0; :::)
0, where in

practice 	1;	2; ::: are approximated by a �nite-order VAR, and hl(�) = �l(�) � �0;l denotes the

constraint that the expression in (5) is equal to a particular value �0;l under the null hypothesis

H0 : �l(�) = �0;l. Finally, let LRT = T tr
hb
�1 �e
� b
�i denote the likelihood ratio statistic of the

hypothesis H0 : hl(�) = 0, where e
 and b
 denote the variance-covariance matrices of the restricted
and the estimated residuals, respectively, from the approximating �nite-order VAR model. Then,

under the null H0 : hl(�) = 0; � = Im + C=T and l = [�T ],

LRT
d! tr

"�Z 1

0
Jc(s)dJc(s)

0
�0�Z 1

0
Jc(s)Jc(s)

0ds

��1�Z 1

0
Jc(s)dJc(s)

0
�#

;

where Jc(s) is an Ornstein-Uhlenbeck vector process. Con�dence sets can be obtained by inverting

the LRT test on a grid of possible values of �0;l and using projection methods for constructing

con�dence bands for individual impulse responses.

One drawback of the methods proposed by Gospodinov (2004) and Pesavento and Rossi (2006)

is that they provide accurate approximations only for near-integrated processes (� = Im + C=T )

and long response horizons (l = [�T ]). While these methods continue to remain asymptotically

valid over the other parts of the parameter space and horizon space, they tend to be conservative.

One solution to this problem is to adopt an approximation procedure which is uniform over the

whole parameter space. Mikusheva (2012) shows that the grid bootstrap of Hansen (1999) adapted

to the LR test inversion method of Gospodinov (2004) delivers the desirable uniform approximation

regardless of the persistence of the underlying process. Unfortunately, this approximation method

su¤ers from the curse of dimensionality and can be computationally demanding (or even infeasible)

as the dimensionality of the VAR model increases, due to the multi-dimensional grid required to

perform the test inversion.

Other practically appealing bootstrap-based methods for inference on impulse response func-

tions are also available. For example, Inoue and Kilian (2002), building on the work of Sims, Stock

and Watson (1990), show that the conventional bootstrap (Runkle, 1987) is asymptotically valid for
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inference on typical nonlinear combinations of VAR parameters even in the presence of unit roots

or near unit roots, provided the VAR model includes more than one lag. However, despite their

asymptotic validity in the presence of highly persistent variables, standard bootstrap methods for

higher-order VAR models may have poor coverage accuracy for impulse responses in small samples.

One source of the unsatisfactory behavior of the conventional bootstrap is that it further exacer-

bates the bias that characterizes the least-squares estimator of VAR models with highly persistent

variables. For this reason, Kilian (1998) develops a two-stage bootstrap method that explicitly

estimates and removes the bias in the VAR parameters before approximating the impulse response

distribution. However, this bias-correction method is not designed for unit root processes, unless

the unit root is imposed in the estimation, and its theoretical validity to date has been established

only for stationary VAR models. We consider these bootstrap methods in our simulation section.

5 Monte Carlo Simulations

5.1 Bivariate DGP with near unit roots, but no near cointegration

Our �rst simulation experiment follows closely the structure of the models used for quantifying

the contribution of aggregate demand (non-technology) and supply (technology) shocks to business

cycle �uctuations (Blanchard and Quah, 1989; Galí, 1999, Christiano, Eichenbaum and Vigfusson,

2006; among others). Blanchard and Quah (1989) use output and unemployment to identify the

demand and supply shocks while Galí (1999) and Christiano, Eichenbaum and Vigfusson (2006)

model the dynamic behavior of labor productivity and hours worked to study the prediction of the

real business cycle theory that technology shocks have a positive e¤ect on hours worked. These

papers impose a unit root on output or technology, i.e., the �rst variable (output or labor produc-

tivity) in the SVAR is expressed in �rst di¤erences. The second variable (unemployment or hours

worked) is highly persistent which has generated a debate about the appropriate empirical speci�-

cation of this variable; the question is whether this second variable should be included in levels or

in �rst di¤erences (see Gospodinov, Maynard and Pesavento, 2011). While the two variables are

not cointegrated, they appear to be driven by some low-frequency co-movement which is preserved

in the levels VAR speci�cation but is eliminated after di¤erencing.

In this simulation exercise, we investigate the robustness of the levels VAR speci�cation (�rst

variable in di¤erenced form and second variable in levels) and a speci�cation based on a pre-test of a
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unit root for the second variable to various degrees of persistence and low-frequency co-movement.

We employ the ADF-GLS test at 5% signi�cance level to pre-test for a unit root in the second

variable. If the test rejects the null, we model the second variable in levels; instead, if the null is

not rejected, we model it in �rst di¤erences. We also follow Gospodinov, Maynard and Pesavento

(2011) in allowing for a small low-frequency co-movement when the root of the second variable is

strictly less than unity. Finally, we consider both long-run identi�cation (based on the assumption

that the shocks to the second variable have no permanent e¤ect on the level of the �rst variable)

and short-run (recursive) identi�cation (based on the assumption that the second variable has no

contemporaneous e¤ect on the �rst variable). More speci�cally, the data are generated from24 4y1;t
y2;t

35 =
24 0 (1� �)

0 �

3524 4y1;t
y2;t

35+
24 u1;t

u2;t

35 ; (7)

where

24 u1;t

u2;t

35 � iid N

0@24 0
0

35 ;
24 1 0:3

0:3 1

351A : The sample size is T = 200 (�fty years of

quarterly data that matches our empirical application) and � 2 f0:92; 0:95; 0:98; 1g. The two

variables are demeaned prior to estimation. The number of Monte Carlo replications is 10,000.

Note that in what follows, the �rst variable is always modeled in �rst di¤erences (4y1;t) and the

second variable is either in levels y2;t (we refer to this as levels VAR speci�cation) or in �rst-

di¤erences 4y2;t.

The simulation results are summarized by plotting the coverage rates of 95% con�dence intervals

of the estimated impulse responses and the MSEs of the impulse response estimator for horizons

1; 2; :::; 24: The con�dence bands for the impulse responses are constructed using the bias-corrected

bootstrap method proposed by Kilian (1998a,b). To illustrate the advantages of Kilian�s (1998a,b)

method over the conventional bootstrap (Runkle, 1987), Figures 1 and 2 report the coverage rates

of the 95% con�dence intervals of the (i; j) impulse response (i = 1; 2; j = 1; 2), constructed

using Kilian�s (1998a,b) and Runkle�s (1987) bootstrap methods, for the levels VAR speci�cation

using long-run identi�cation (� = 0:95 and 0:98). Overall, the coverage rates of Kilian�s (1998a,b)

bootstrap method are very close to the nominal level while Runkle�s (1987) conventional bootstrap

method tends to undercover. In what follows, we use Kilian�s (1998a,b) bias-corrected bootstrap

method to construct con�dence bands for the impulse response of interest.

We start with the case of long-run identi�cation and consider both coverage rates and mean

squared errors of the (2,1) and (2,2) impulse response functions. These impulse responses trace the
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responses of the second variable, for which there is uncertainty about the value of its largest AR

root, to both shocks. Recall that the levels VAR speci�cation always models the �rst variable in

�rst di¤erences and the second variable in levels. Instead, the pre-test VAR speci�cation is based

on a sequential procedure. In the �rst step, the ADF-GLS test is used to determine if the second

variable is integrated of order one or zero. If the null hypothesis is not rejected, the second variable

is modeled in �rst di¤erences; otherwise, the second variable enters the model in levels.

Figures 3, 4 and 5 plot the coverage rates and mean squared errors for � = 0:92; 0:95 and 0:98.

The coverage rates and the mean squared errors of the (2,1) and (2,2) impulse responses from

the pre-test model deteriorate when the root � approaches one. This is due to the presence of

a low frequency component which is di¤erenced away by the pre-test speci�cation when the null

of a unit root in not rejected. In the absence of this low-frequency co-movement, the coverage

rates and MSEs of the pre-test speci�cation should improve. Gospodinov, Maynard and Pesavento

(2011) illustrate how imposing a unit root in the presence of an arbitrarily small low-frequency

co-movement leads to estimated impulse responses that are vastly di¤erent from the true ones. In

the simulation setup (7), the VAR model in �rst di¤erences (except for � = 1) is misspeci�ed and

the estimated impulse responses from this model perform worse than the ones from the pre-test

speci�cation. In contrast, the levels speci�cation performs well and appears to be robust to the

di¤erent degrees of persistence and the presence of a low-frequency co-movement. However, as

the root approaches unity, the structural parameters are only weakly identi�ed and the estimation

uncertainty of the impulse responses is large (see Gospodinov, 2010).

The corresponding short-run identi�cation scheme seems to be immune to some of the problems

that arise under the long-run identifying restrictions (Christiano, Eichenbaum and Vigfusson, 2006;

Gospodinov, Maynard and Pesavento, 2011). Figures 6, 7, 8 and 9 plot the coverage rates and mean

squared errors for � = 0:92, 0:95, 0:98 and 1 under the short-run identi�cation scheme. Again, the

pre-test speci�cation is not robust to deviations from the unit root and exhibits distorted coverage

rates and increased MSEs. When � = 1, the di¤erenced model is correct and the pre-test VAR

speci�cation dominates the levels VAR. But even in this case, the costs from estimating the levels

VAR are not large especially if one employs inference procedures that are asymptotically valid in

the case when the root lies on or near the unit circle.

To summarize, both for the long-run and the short-run identi�cation schemes, the levels VAR

speci�cation fares well in terms of coverage rates and MSEs. The sampling uncertainty associated

13



with the estimated impulse response functions tends to be well approximated by the bias-corrected

bootstrap procedure of Kilian (1998a,b). The coverage rates and the MSEs of the levels speci�cation

continue to be satisfactory even when the largest root is very close to unity (� = 0:95). The

speci�cation based on the pre-test for a unit root exhibits �nite-sample distortions and in�ated

MSEs. Overall, the levels speci�cation emerges as the preferred speci�cation for this simulation

experiment.

5.2 Bivariate DGP with near unit roots and near cointegration

The DGPs so far did not allow for cointegration among the model variables. In the next simula-

tion experiment, we consider a bivariate system with possible cointegration. More speci�cally, we

simulate data from the following model:

y1;t = �y2;t + u1;t

y2;t = �y2;t�1 + u2;t

u1;t = �uu1;t�1 + �t;

where � = 1 � �u, and �t and u2;t are mutually uncorrelated iid N(0; 1) random variables. The

variable y2;t is generated as a (near-) integrated process with � 2 f1; 0:98; 0:95; 0:90; 0:85g. The

autoregressive parameter �u determines the persistence of y1;t and the cointegration properties

between y1;t and y2;t. In our numerical experiment, we set �u to 0:4. Note that when �u = 1, y1;t

is an exact unit root process and there is no cointegration between the two variables, whereas for

�u = 0:4, u1;t is stationary and there is cointegration between the two variables.

Consider �rst the sequential pre-test procedure. The two series are �rst subjected to a unit root

test. If the null of a unit root is not rejected for both series, we test for cointegration between the

two series. Depending on the outcome of the test, the model is estimated as a di¤erenced VAR (if no

cointegration is detected) or as a VECM using the estimated cointegrated vector (if cointegration

is detected). If the null of a unit root is rejected, the levels VAR is estimated. We contrast this

sequential modeling strategy to an unrestricted VAR in levels or �rst di¤erences regardless of the

pre-test results. We also consider the case in which the practitioner only tests for unit roots but no

cointegration, and then uses the results of these pre-tests to decide whether to include each series

in levels or in �rst di¤erences. These models are used to estimate impulse responses, identi�ed

by short-run (recursive) restrictions, which are compared to the true impulse responses from the
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model. Unit root pre-tests are performed using the ADF-GLS test at 5% signi�cance level, with

the number of lags chosen by the modi�ed information criterion of Ng and Perron (2001). For the

VAR and VECM estimation, we select the number of lags using the BIC (the maximum lag order

is set to 4). We run 10; 000 replications for simulated samples of 200 observations. The results are

presented in Figures 10 to 14.

Figures 10 to 14 show the MSE of the (i; j) impulse response (i = 1; 2; j = 1; 2) for the case in

which there is cointegration in the DGP (�u = 0:4): Similar to the results in the previous section,

the levels VAR performs better in terms of MSE than a VAR in �rst di¤erences except in the case

in which we know that the root is equal to one. Pretesting for a unit root has a similar e¤ect as

in the no-cointegration case: pre-testing provides very little gain when the roots are large and it is

not better than estimating the impulse response from the levels VAR in most cases. For the (2,1)

response, when the root is large, pretesting is actually worse in term of MSE than simply running

the VAR in �rst di¤erences. As expected, when � gets smaller, pre-tests have good power and they

are able to correctly suggest to estimate the VAR in levels.

Comparing the results from estimating a VAR in levels ignoring and not ignoring cointegra-

tion reveals some interesting results: the levels VAR provides a smaller MSE for the (1,1) and

(2,1) impulse responses compared to the speci�cation based on a pre-test for cointegration even if

cointegration is actually present (� = 1). For the (1,2) and (2,2) impulse responses there is a gain

from estimating a VECM when indeed there is cointegration (� = 1). When � is less than one,

technically there is no cointegration but we would still expect the variables to behave similarly to

the unit root case. For roots equal to 0:98 and smaller, the levels VARs performs better for all

four impulse responses. Overall, the results seem to suggest that, in most cases, the levels VAR

dominates the other speci�cations in terms of MSE although this depends on the impulse responses

of interest and the magnitude of the largest roots in the model.

5.3 A multivariate model used in monetary policy analysis

In the previous section, we considered a bivariate DGP and evaluated the options faced by the

practitioner regarding model speci�cation. When only one unit root is suspected, these options

include: (a) running a VAR with y2;t in levels ignoring a possible unit root; (b) imposing a unit

root and running a VAR in �rst di¤erences; or (c) carrying out a pre-test for a unit root in y2;t

and specifying the VAR based on the outcome for the pre-test. Instead, when two unit roots are
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suspected, the practitioner would proceed with a sequential procedure that could lead to a VAR

model in �rst-di¤erences, a VECM, a VAR model in levels, or a mixed VAR model with some

variables in levels and some in �rst-di¤erences.

A similar problem is faced by the practitioner when estimating the multivariate VARs that

are commonly employed in analyzing the e¤ect of monetary policy shocks. Below, we use the

benchmark model of Christiano, Eichenbaum and Evans (1998) �hereafter CEE � to study the

e¤ect of exogenous monetary policy shocks on economic activity. In this model, the economy is

described by a 7-dimensional VAR(4) given by

A(L)yt = c+ ut; (8)

where yt = [Yt, Pt, PCOMt, FFt, TRt, NBRt, Mt]
0, Yt is the log of real GDP, Pt is the log of the

implicit GDP de�ator, PCOMt is the log of the Conference Board commodity price index, FFt is

the federal funds rate, TRt is the log of total reserves, NBRt is the log of nonborrowed reserves,

M1t is the log of M1, and ut � iid(0;
).

Motivated by the literature on the transmission of monetary policy shocks, we consider a short-

run (recursive) identi�cation scheme based on the lower triangular decomposition of the variance-

covariance matrix. As in Bernanke and Blinder (1992) and Sims (1986, 1992), among others, we

measure the monetary policy instrument by the federal funds rate.2 The variables in yt are ordered

as described above such that Yt, Pt, and PCOMt do not react on impact to monetary policy shocks.

In the subsequent analysis, we treat the 7-dimensional VAR(4) in (8) as the data generating

process. We follow the standard practice to estimate the model in levels and with an intercept

included. The estimation method is ordinary least squares.

The data are quarterly and, with the exception of the commodity price index, are obtained from

the Federal Reserve Bank of St. Louis (FRED) database. The commodity price index corresponds

to the close of the Reuters/Je¤eries-CRB Index at the end of the quarter. FFt equals the average of

the monthly federal funds rate over the quarter. The monetary aggregates are measured in millions

of dollars at the end of the quarter. The data span the period between 1959:1 and 2006:4. We

exclude the data prior to the onset of the Great Recession as well as subsequent data, given that the

conduct of monetary policy during this period has been markedly di¤erent from earlier years. In

2The results obtained when shocks to monetary policy are identi�ed with shocks to nonborrowed reserves (e.g.,

Eichenbaum 1992; Christiano and Eichenbaum 1992) are virtually the same.
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particular, nonborrowed reserves took on negative numbers during almost all of 2008 �something

that has never been observed in the documented history of this series �and then increased at a

very fast pace in the following year. Total reserves, on the other hand, exploded during 2008 and

have continued to increase at a very rapid pace. As can be seen in Figure 15, all of the variables

appear to exhibit a high degree of persistence.

5.3.1 Multivariate model without considering cointegration

In this section, we consider the approach followed by a practitioner who would �rst pre-test for

unit roots in the individual series before estimating the VAR. Then, based on the test results, the

practitioner would include the variables either in levels or �rst-di¤erences. As we mentioned before,

we treat the estimated 7-variable VAR(4) model in levels as the data generating process.

To simulate the data, we draw randomly from the vector yt to obtain the starting values

y
(i)
1 ; :::; y

(i)
4 , and draw with replacement from the estimated vector of residuals but to obtain u(i)t . We

generate 10,000 samples, y(i)t for i = 1; 2; :::; 10; 000, each consisting of a sequence of data of the

same length as that used to estimate the 7-variable VAR(4).

Then, for each of the 10,000 trials we pre-test the individual series in the vector y(i)t (Y (i)t ; P
(i)
t ;

PCOM
(i)
t ; FF

(i)
t ; TR

(i)
t ; NBR

(i)
t ; M1

(i)
t ) using an ADF-GLS test at a 5% signi�cance level. A time

trend is included in the GLS detrending step for all variables except for FF (i)t . As in the previous

section, the lag order for the unit root test is chosen by the modi�ed information criterion of Ng

and Perron (2001). If the pre-test rejects the null, we keep the simulated variable in levels. Instead,

if we fail to reject, we �rst di¤erence the simulated variable. In all of the 10,000 replications, we

estimate a VAR(4) model with each series either in levels or �rst di¤erences depending on the

outcome of the individual ADF-GLS test. Impulse response functions are then computed using the

recursive identi�cation scheme (Choleski decomposition) described in the previous section. Finally,

we compute the responses to a federal funds shock and report the mean squared errors with respect

to the impulse responses from the data generating process.

The solid and dashed lines in Figure 16 represent the mean squared errors of the impulse

responses for the levels speci�cation and the ADF-GLS pre-testing strategy, respectively. The

numbers on the horizontal axis represent quarters since the monetary policy shock. Note that for

the variables that exhibit a large degree of persistence, the mean squared error deteriorates rapidly

as the horizon increases. This is particularly the case for the log of the GDP de�ator, Pt. Instead,
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for the federal funds rate, the MSE increases a quarter after the shock but it drops in the following

quarter staying about the same level in the long-run.

Comparing the results for the levels speci�cation and the DF-GLS pre-test speci�cation provides

some interesting insights. First, pre-testing for unit roots has the e¤ect of increasing the MSE in

the long-run for all impulse response functions but real GDP. The increase in the MSE, relative

to the levels speci�cation, is larger for the monetary variables, which are characterized by lower

persistence. As it can be seen from the scale of the mean squared errors, the cost associated with

pre-testing for unit roots is not large.3

5.3.2 Multivariate model with possible cointegration

An alternative model selection strategy faced by a practitioner involves considering the possibility

that some of the variables in the system might be cointegrated. In this case, a possible avenue would

be to pre-test for unit roots in each of the series in yt, and then consider cointegration among the

subset of variables that have a unit root. Although this strategy might be employed in practice, the

most commonly used approach is to directly tests for the cointegration rank, without pre-testing

for unit roots. We thus follow the bulk of the literature and address the issue of cointegration in

the full set of variables.

Thus, consider the case where yt might have a VECM representation:

�yt = �yt�1 + �1�yt�1 + :::+ �p�1�yt�p+1 + ut:

For instance, a number of possible cointegrating relationships in a model of monetary transmission is

explored by Juselius (1998a, b). One possibility is that equilibrium in the money market is attained

via stationarity of the liquidity ratio Mt�Pt�Yt, so that a cointegration relationship among these

three variables exists. In addition, in�ation and the nominal interest rate could be cointegrated

given the stationarity of the real interest rate. Moreover, the IS relationship would suggest that

the trend-adjusted real GDP and in�ation (or the interest rate) are cointegrated. Finally, Strongin

(1995) argues that, initially, monetary policy shocks lead only to changes in the composition of total

reserves between borrowed and nonborrowed reserves. Thus, one could conjecture that changes in

3Simulation results (not reported here) suggest that using nonborrowed reserves to identify the monetary policy

shock does not alter our conclusions. In fact, when the data are subject to an ADF-GLS pre-test speci�cation, the

federal funds rate model and the nonborrowed reserves model exhibit mean squared errors of similar magnitudes for

the main variables of interest (i.e., Yt and Pt).
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the ratio of nonborrowed to total reserves are only short-lived and that a long-run relationship

exists so that TRt and NBRt are cointegrated.

In this section, we evaluate the e¤ect of Johansen�s method (Johansen, 1988), used to pre-test

for the cointegration rank, on the MSE of the impulse response functions. In order to do this,

we simulate 10,000 samples of the data generating process as described in the previous section.

For each of these samples, we follow a sequential procedure to determine the cointegrating rank of

the 7-variable system (see Lütkepohl 2005, and the references therein). That is, using the trace

statistic, we test the sequence of null hypotheses

H0 : rank (�) = 0;H0 : rank (�) = 1; :::;H0 : rank (�) = 6 (9)

and stop the test procedure when the null hypothesis cannot be rejected for the �rst time. The

cointegrating rank is selected to be the value when the test is stopped. That is, if we cannot reject

the null that rank (�) = 0, the cointegrating rank is taken to be 0 and we estimate a model in �rst

di¤erences. If the null is rejected, we proceed to test H0 : rank (�) = 1: This continues until we are

not able to reject the null. If the �rst time we reject the null is for 0 < rank (�) = r < 7; then the

analysis proceeds with a cointegrating rank of r and a VECM is estimated. Finally, if we cannot

reject the null that rank (�) = 7; then we estimate a VAR in levels. We use the trace statistic at

5% signi�cance level to test the sequence of null hypothesis describe in (9). The critical values for

the trace test are taken from MacKinnon, Haug and Michelis (1999).

Before we proceed to describe the e¤ects of pre-testing on the impulse response functions, it is

worth mentioning that in 55% percent of the simulations, the trace statistic leads us to conclude

that the rank rank (�) = 7. Hence, in more than a half of the simulations we use a VAR in levels

when computing the impulse response functions. This result is not surprising because our data

generating process is given by the estimated VAR in levels (equation (8)).

The comparison of the dashed and the dotted lines in Figure 16 suggests some di¤erences in the

MSEs for the impulse responses when we use the ADF-GLS pre-test speci�cation and the Johansen

pre-test speci�cation. Only slight di¤erences are observed in the MSEs on impact and in the short-

run. As the horizon increases, the MSE for the impulse responses of Yt, Pt; TRt, and NBRt are

larger under the Johansen pre-test strategy than if we pre-test for unit roots.

The cost associated with pre-testing for cointegrating rank, as measured by the mean squared

errors, is not large. This �nding is consistent with our previous �ndings based on short-run (re-
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cursive) identi�cation scheme. Nevertheless, in the long-run, pre-testing for cointegration results

in larger MSEs for all impulse responses �except for the log of the GDP de�ator�than the levels

speci�cation.

6 Concluding Remarks and Practical Recommendations

The practical relevance of structural VARs has been recently questioned (Cooley and Dwyer, 1998;

Chari, Kehoe and McGratten, 2008; among others) with criticisms targeting their theoretical un-

derpinnings, identi�cation assumptions and statistical methodology. Despite these criticisms, the

SVARs prove to be an indispensable tool for policy analysis and evaluation of dynamic economic

models. However, their robustness to uncertainty about the magnitude of the largest roots in the

system and possible co-movements between the variables has not been fully investigated. For exam-

ple, the costs from erroneously imposing restrictions (by di¤erencing the data and/or incorporating

cointegrating relationships) on the models or from estimating unrestricted VAR models in levels

(when the true model is a VECM) have not been quanti�ed for the purpose of impulse response

analysis under di¤erent identi�cation schemes. In this chapter, we evaluated the robustness of

alternative VAR speci�cations to deviations from exact unit roots and cointegration.

The main �ndings and practical recommendations that emerge from our results are the following.

First, under the long-run identi�cation scheme, speci�cation strategies based on pre-tests and

restricted VAR models are not robust to uncertainty about the largest roots of the process and

may lead to highly distorted inference. On the other hand, impulse response estimates from VAR

models using long-run restrictions are inconsistent when the non-unit root variables are expressed

in levels, but have near-unit roots. Thus, applied researchers should exert caution in using models

based on long-run restrictions. Nevertheless, we showed that in practice, the VAR speci�cation

with the non-unit root variable in levels is more robust to possible low-frequency co-movements

and departures from exact unit roots.

Second, under the short-run identi�cation scheme, the restricted (based on pre-tests for unit

roots and cointegration) and unrestricted VAR speci�cations do not exhibit substantial di¤erences

in their computed impulse responses. In other words, the costs from imposing restrictions on

the variables of the model (�rst di¤erences or cointegration), when these restrictions do not hold

exactly in the true model, do not tend to be too large when the structural impulse responses are
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identi�ed through short-run restrictions. However, the unrestricted VAR in levels appears to be

the most robust speci�cation when there is uncertainty about the magnitude of the largest roots

and the co-movement between the variables. We conclude that estimating VAR models in levels

and identifying the structural impulse responses through short-run restrictions emerges as the most

reliable strategy for applied work.
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Figure 1: Coverage rates of 95% con�dence intervals for the (i; j) impulse response (response of

the i-th (i = 1; 2) variable to the j-th (j = 1; 2) shock) constructed by Kilian�s (1998a,b)

bias-corrected bootstrap and Runkle�s (1987) conventional bootstrap methods. The data are

generated from model (7) with � = 0:95. The impulse responses are identi�ed using the long-run

identi�cation scheme.
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Figure 2: Coverage rates of 95% con�dence intervals for the (i; j) impulse response (response of

the i-th (i = 1; 2) variable to the j-th (j = 1; 2) shock) constructed by Kilian�s (1998a,b)

bias-corrected bootstrap and Runkle�s (1989) conventional bootstrap methods. The data are

generated from model (7) with � = 0:98. The impulse responses are identi�ed using the long-run

identi�cation scheme.
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Figure 3: Coverage rates of 95% bias-corrected bootstrap con�dence intervals and mean squared

errors for the (2; 1) and (2; 2) impulse responses for the levels (solid line) and pre-test (dashed

line) VAR speci�cations. The data are generated from model (7) with � = 0:92. The impulse

responses are identi�ed using the long-run identi�cation scheme.
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Figure 4: Coverage rates of 95% bias-corrected bootstrap con�dence intervals and mean squared

errors for the (2; 1) and (2; 2) impulse responses for the levels (solid line) and pre-test (dashed

line) VAR speci�cations. The data are generated from model (7) with � = 0:95. The impulse

responses are identi�ed using the long-run identi�cation scheme.
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Figure 5: Coverage rates of 95% bias-corrected bootstrap con�dence intervals and mean squared

errors for the (2; 1) and (2; 2) impulse responses for the levels (solid line) and pre-test (dashed

line) VAR speci�cations. The data are generated from model (7) with � = 0:98. The impulse

responses are identi�ed using the long-run identi�cation scheme.
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Figure 6: Coverage rates of 95% bias-corrected bootstrap con�dence intervals and mean squared

errors for the (2; 1) and (2; 2) impulse responses for the levels (solid line) and pre-test (dashed

line) VAR speci�cations. The data are generated from model (7) with � = 0:92. The impulse

responses are identi�ed using the short-run (recursive) identi�cation scheme.
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Figure 7: Coverage rates of 95% bias-corrected bootstrap con�dence intervals and mean squared

errors for the (2; 1) and (2; 2) impulse responses for the levels (solid line) and pre-test (dashed

line) VAR speci�cations. The data are generated from model (7) with � = 0:95. The impulse

responses are identi�ed using the short-run (recursive) identi�cation scheme.
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Figure 8: Coverage rates of 95% bias-corrected bootstrap con�dence intervals and mean squared

errors for the (2; 1) and (2; 2) impulse responses for the levels (solid line) and pre-test (dashed

line) VAR speci�cations. The data are generated from model (7) with � = 0:98. The impulse

responses are identi�ed using the short-run (recursive) identi�cation scheme.
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Figure 9: Coverage rates of 95% bias-corrected bootstrap con�dence intervals and mean squared

errors for the (2; 1) and (2; 2) impulse responses for the levels (solid line) and pre-test (dashed

line) VAR speci�cations. The data are generated from model (7) with � = 1. The impulse

responses are identi�ed using the short-run (recursive) identi�cation scheme.
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Figure 10: MSEs for � = 1.
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Figure 11: MSEs for � = 0:98.
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Figure 12: MSEs for � = 0:95.
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Figure 13: MSEs for � = 0:90.
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Figure 1: Figure 14: MSEs for � = 0:85.
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Figure 15: Data used in the Monetary Policy VAR.
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Figure 16: MSEs for the impulse responses to a federal funds rate shock in CEE model in (8).

The data are generated as described in Section 5.3. The impulse responses are identi�ed using

short-run (recursive) restrictions.
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