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Abstract

We use high-frequency intra-day realized volatility to evaluate the relative fore-
casting performance of commonly used models for the volatility of crude oil daily
spot returns at multiple horizons. The set of models includes RiskMetrics, GARCH,
asymmetric GARCH, Fractional Integrated GARCH and Markov switching GARCH
models. We �rst implement Carrasco, Hu, and Ploberger�s (2014) test for regime
switching in the mean and variance of the GARCH(1,1), �nding overwhelming sup-
port for regime switching. We then perform a comprehensive out-of-sample fore-
casting performance evaluation using a battery of tests. We �nd that under the
MSE and the QLIKE loss functions: (i) models with a Student�s t innovation are
favored over those with a normal innovation; (ii) RiskMetrics and GARCH(1,1) have
good predictive accuracy at short forecast horizons whereas EGARCH(1,1) yields
the most accurate forecast at medium horizons; and (iii) Markov switching GARCH
shows superior predictive accuracy at long horizons. These results are established
by computing the Equal Predictive Ability test of Diebold and Mariano (1995) and
West (1996) and the Model Con�dence Set of Hansen, Lunde, and Nason (2011)
over the totality of the evaluation sample. In addition, a comparison of the MSPE
ratios computed using a rolling window suggests that the Markov switching GARCH
model is better at predicting volatility during periods of turmoil.
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1 Introduction

Throughout the past months, newspaper headlines such as �Oil prices will be much more
volatile in 2017: IEA� (Reuters, January 15, 2017) and �IEA Sees Risk of Volatile Oil
Prices on Weak Upstream Investment" (Bloomberg, September 17, 2017) have put in
evidence concerns voiced by the International Energy Agency regarding the return of high
volatility in crude oil markets. This time around, apprehension regarding higher volatility
seems to stem from the slow pace of investment in new production. Nevertheless, surges
in the volatility of the daily West Texas Intermediate (WTI) spot returns were observed
around the 1986 oil price collapse, during the Gulf War, and after the onset of the 2007-
2008 �nancial crisis, and more recently since the fall in oil prices that started in July 2014
(see Figure 1). Clearly, periods of heightened volatility in crude oil markets are recurrent,
and these headlines manifest the importance of evaluating whether the econometric tools
available to practitioners are able to generate reliable forecasts of crude oil volatility.
�Spot oil price volatility re�ects the volatility of current as well as future values of [oil]

production, consumption and inventory demand�(Pindyck 2004), thus they are relevant
for various economic agents. Accurate forecasts are key for those �rms whose business
greatly depends on oil prices. For instance, oil companies that need to decide whether
to drill a new well (Kellogg 2014) or to undertake long-term investments in re�ning and
transportation infrastructure, airline companies who use oil price forecasts to set airfares,
and the automobile industry. Second, oil price volatility also plays a role in households�de-
cisions regarding purchases of durable goods (Kahn 1986, Davis and Kilian 2011). Lastly,
they are useful for agents whose daily task is to produce forecasts of industry-level and
aggregate economic activities, such as policy makers, business economists, and private
sector forecaster (see, e.g., Elder and Serletis 2010, Jo 2014).
The aim of this paper is to evaluate the out-of-sample forecasting performance of dif-

ferent volatility models for the conditional variance (hereafter variance) of spot crude oil
returns, where we proxy the unobserved variance with the realized volatility of intra-day
returns (Andersen and Bollerslev 1998). More speci�cally, we investigate the predictive
ability of RiskMetrics, GARCH, asymmetric GARCH, Fractionally Integrated GARCH
(FIGARCH) and Markov switching GARCH (MS-GARCH) models. The motivation for
choosing these models is as follows. RiskMetrics remains a very popular empirical model
among practitioners. Meanwhile GARCH (Bollerslev 1986) sets out the idea of modeling
and forecasting volatility as a time-varying function of currently available information.
On the empirical side, the GARCH(1,1) model has also fared well in predicting the con-
ditional volatility of �nancial assets (Hansen and Lunde 2005) and crude oil price volatil-
ity (see Xu and Ouennich 2012 and references therein). Asymmetric GARCH models
such as EGARCH (Nelson 1991) and GJR-GARCH (Glosten, Jagannathan, and Runkle
1993) have been shown to have good out-of-sample performance when forecasting oil price
volatility one-step ahead (Mohammadi and Su 2010, and Hou and Suardi 2012). As for
Markov switching models, they have been found to be better suited to model situations
where changes in regimes are triggered by sudden shocks to the economy. Thus, they
might have good predictive ability for spot crude oil returns, which are characterized by
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sudden jumps due to, for instance, political disruptions in the Middle East or military
interventions in oil exporting countries. However, regime switching and long memory are
intimately related and it is hard to di¤erentiate a Markov switching model from a long
memory model (Nelson and Inoue 2001). Therefore, we add the FIGARCH to our pool
of models for forecasting evaluation.
We provide a comprehensive study on the relative out-of-sample forecasting perfor-

mance at multiple horizons. We start by formally testing for regime switches using the
procedure proposed by Carrasco, Hu, and Ploberger (2014). Then, we evaluate directional
accuracy using Pesaran and Timmerman�s (1992) test. Furthermore, we conduct pairwise
comparisons between di¤erent candidate models using Diebold and Mariano (1995) and
West�s (1996) test of Equal Predictive Ability. In addition, we employ Hansen, Lunde,
and Nason�s (2011) Model Con�dence Set procedure to determine the best set of model(s)
from the pool. All the tests are reported under two loss functions: the mean square error,
MSE; and the quasi likelihood, QLIKE. We also inquire into the stability of forecasting
accuracy for the preferred models over the evaluation period (2013-2014).
Our �ndings are summarized as follows: (i) the Student�s t distribution is generally

favored in the parametric models due to extremely high kurtosis in the oil return volatility;
(ii) the nonparametric model (RiskMetrics) and parsimonious models like GARCH(1,1)
perform better at short (1- and 5-day) horizons; (iii) the EGARCH stands out at the
21-day horizon; (iv) at the longer 63-day horizon, the MS-GARCH model yields more
accurate forecasts; and (v) the MS-GARCH model has higher predictive ability during
periods of turmoil.
We are not the �rst to consider Markov switching models in forecasting the volatility of

the crude oil market. For example, Fong and See (2002) and Nomikos and Pouliasis (2011)
both apply MS-GARCH to forecasting the volatility of crude oil futures and evaluate
the out-of-sample forecasts at the one-day horizon. Wang, Wu, and Yang (2016) study
the volatility of spot returns by comparing the forecasting performance of the Markov
switching multifractal volatility model (Calvet and Fisher 2001) vis-à-vis a set of GARCH-
class models. Alternatively, Arouri et al. (2012) discover that accounting for structural
breaks and long memory in the GARCH speci�cations leads to gains in forecasting the
conditional volatility of spot and futures oil prices. Our paper clearly bene�ts from this
literature, but also di¤ers in several aspects. Speci�cally, the MS-GARCH speci�cation
in this paper allows for great �exibility in modeling the persistence and regime switches.
The adopted estimation method not only facilitates calculation of the multi-step-ahead
forecast, but also makes more e¢ cient use of the information contained in the data. We
also employ an accurate proxy for the underlying volatility (the realized volatility instead
of squared returns) and investigate forecasting stability over time.
This paper is organized as follows. Section 2 introduces the econometric models used

in estimating and forecasting oil price returns and volatility. Section 3 describes the data.
The in-sample estimation results are reported in Section 4. The out-of-sample forecast
evaluation follows. The last section concludes.
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2 Model Speci�cations

In this section, we brie�y describe the parametric models widely used by practitioners in
modeling and forecasting oil price volatility.

2.1 Standard GARCH Models

The conventional GARCH models considered in this paper comprise the GARCH (Boller-
slev 1986), the EGARCH (Nelson 1991), and the GJR-GARCH (Glosten, Jagannathan,
and Runkle 1993). The GARCH(1,1) is given by8<:

yt = �t + "t;
"t =

p
ht � �t; �t � iid(0; 1)

ht = �0 + �1"
2
t�1 + 1ht�1;

where �t is the time-varying conditional mean possibly given by �
0xt with xt being the

k � 1 vector of stochastic covariates and � a k � 1 vector of parameters to be estimated.
�0; �1; and 1 are all positive and �1 + 1 � 1:
For the Exponential GARCH (EGARCH) model the logarithm of the conditional

variance is de�ned as

log(ht) = �0 + �1

 ����� "t�1p
ht�1

������ E
����� "t�1p
ht�1

�����
!
+ �

"t�1p
ht�1

+ 1 log(ht�1):

As for the GJR-GARCH, the conditional variance is given by

ht = �0 + �1"
2
t�1 + �"

2
t�1 � If"t�1<0g + 1ht�1;

where If!g is the indicator function equal to one if "t�1 < 0, and zero otherwise.

2.2 MS-GARCH

In using GARCH models to estimate the conditional variance of economic or �nancial
series, a common �nding is that the persistence level is very high. Lamoureux and Las-
trapes (1990) show that this may be the result of neglected structural breaks or regime
changes. In addition, Caporale, Pittis, and Spagnolo (2003) demonstrate via Monte Carlo
studies that �tting (misspeci�ed) GARCH models to data generated by a MS-GARCH
process tends to produce Integrated GARCH (IGARCH) parameter estimates, leading to
erroneous conclusions about the persistence levels.
Oil prices are characterized by sudden changes in volatility due to, for instance, politi-

cal disruptions in the Middle East, military interventions in oil exporting countries or de-
pressed aggregate demand following the �nancial crisis. Consequently standard GARCH
models that ignore these sudden changes are likely to be misspeci�ed. Therefore, we also
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consider the MS-GARCH(1,1), which is speci�ed as follows:8<:
yt = �

St + "St ;

"St =
p
hStt � �t; �t � iid(0; 1)

hStt = �
St
0 + �

St
1 "

2
t�1 + 

St
1 ht�1;

(1)

where both the conditional mean �St and the conditional variance hStt are subject to a
hidden Markov chain, St: We assume a two-state �rst-order Markov chain so that the
transition probability of the current state, St, only depends on the most adjacent past
state, St�1:

P (St j St�1; It�2) = P (St j St�1) ;
where It�2 denotes the information set up to t� 2: The transition probability that state
i is followed by state j; is denoted by pij: St takes on two values (1, 2) and has transition
probabilities p11 = P (St = 1 j St�1 = 1) and p22 = P (St = 2 j St�1 = 2). St is geometric
ergodic if 0 < p11 < 1 and 0 < p22 < 1:

2.3 FIGARCH

As noted earlier, IGARCH behavior has been widely reported in the empirical literature on
asset returns, commodity prices and exchange rates, especially at a daily frequency. The
e¤ect of any shock to the IGARCH volatility process will persist for an in�nite horizon.
This does not seem compatible with the persistence observed after large shocks such as
the global �nancial crisis in Figure 1. Baillie, Bollerslev and Mikkelsen (1996) argue that
IGARCH may be a mathematical artifact of a mean-reverting long-memory FIGARCH
instead. In fact, it is well documented in the literature that Markov switching and long
memory are intimately related to each other. Diebold and Inoue (2001) point out that
Markov switching is easily confused with long memory, even asymptotically. Granger and
Hyung (2004) show that occasional structural breaks also generate long memory which is
hard to distinguish from fractional integration. In addition, Hsu (2001) proves that the
presence of long memory in time series may result in spurious detection of change-points.1

Therefore, we also include FIGARCH in the set of volatility models to be evaluated.
We consider the FIGARCH(1; d; 1) of Baillie, Bollerslev and Mikkelsen (1996), which

relies on the ARMA representation of "2t and takes the following form:

�(L)(1� L)d"2t = �0 + (1� 1L)wt;

where wt = "2t � ht; �(L) = (1 � (�1 + 1)L)=(1 � L) � (1 � �L)=(1 � L): d is the
fractional di¤erencing parameter and 0 < d � 1: Hence, the conditional variance has the
representation:

ht = �0 + 1ht�1 + [1� 1L� (1� �L)(1� L)d]"2t :
1We thank an anonymous referee for bringing this issue to our attention.

4



3 Data Description

Our measure of crude oil prices is the daily spot price for the West Texas Intermediate
(WTI) crude oil obtained from the U.S. Energy Information Administration. The sample
ranges from January 2, 2007 to April 2, 2015, a time period that comprises the rapid
growth in oil production following the fracking revolution, the large upswing in oil prices
during the economic expansion of the early 2000s, the downswing following the 2008-2009
global �nancial crisis, and the sharp decline since the second semester of 2014. To model
crude oil returns and their volatility, we calculate daily returns by taking 100 times the
di¤erence in the logarithm of consecutive days�closing spot prices.
To evaluate the forecasting performance of di¤erent models, we need a measure of

the true underlying volatility. Since the true volatility of crude oil returns is unobserved,
we use an estimated measure of the realized volatility as proxy. More speci�cally, we
obtain 5-minute prices of 1-month WTI oil futures contracts series from TickData.com
spanning the period between January 2, 2007 and April 2, 2015.2 These contracts are
traded around the clock with the exception of a 45-minute trading halt from 5:15pm to
6:00pm EST, Sunday through Friday, excluding market holidays. We construct the daily
realized volatility RVt by summing the squared 5-minute returns over all the trading
hours.3 Then, to calculate m-step-ahead realized volatility at time T , we simply sum the
daily realized volatility over m days, denoted by:

dRV T;T+m = mX
j=1

dRV T+j:
Table 1 reports the summary statistics for the WTI rates of return, the RV 1=2t and

the logarithm of RV 1=2t . The mean rate for the WTI returns is -0.010 with a standard
deviation of 2.426. Note that WTI returns are slightly positively skewed. The kurtosis

2Andersen and Bollerslev (1998) note that squared daily returns are a noisy proxy of the true volatility
and this noise can lead to improper conclusions about the forecasting ability of GARCH-type models.
Anderson et al. (2006) establish the theoretical justi�cation for the realized volatility as an accurate
measure of the underlying volatility. Liu, Patton, and Sheppard (2012) among others, also �nd that the
5-minute sampling frequency outperforms most other realized volatility measures across multiple asset
classes.

3For markets where futures are not traded around the clock, Blair, Poon, and Taylor (2001) suggest
constructing the measure of daily realized volatility by summing the 5-minute returns during the trad-
ing hours and then adding the square of the previous �overnight� return. Hansen and Lunde (2005)
propose an alternative way to measure the daily realized volatility. They �rst calculate the constantbc = [n�1 nP

t=1
(rt � b�)2]=[n�1 nP

t=1
rvt]; where rt and b� are the close-to-close return of the daily prices and

the mean respectively, and rvt is the 5-minute realized volatility during the trading hours only. Then they
scale the realized volatility rvt by the constant bc: This measure is less noisy compared with Blair, Poon,
and Taylor (2001). During our sample period, crude oil futures are traded almost continually during the
day with the exception of the 45 minute gap between 5:15 and 6:00 p.m. EST. We have tried scaling and
it turns out that our results are robust to scaling for the daily 45-minute interval when trading is halted.
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equals 8.491 which is high compared to 3 for a normal distribution.4 The RV 1=2t series is
severely right-skewed and leptokurtic. However, the logarithmic series is less skewed with
a kurtosis close to 3.
Figure 1 plots the returns of the WTI spot prices and the squared returns over the

sample period. Two salient characteristics of WTI crude returns are apparent in the �gure.
First, crude oil returns are characterized by periods of low (high) volatility followed by low
(high) volatility most of the time. GARCH models are intended to capture this volatility
clustering. Second, exceptionally large variations in the WTI returns are observed during
the global �nancial crisis in late 2008 and since crude oil prices started decreasing in July
2014. In other words, periods of low volatility may be followed by periods of elevated
volatility in the face of major political or �nancial unrest. This behavior supports the
use of MS-GARCH models, where the GARCH parameters are allowed to switch between
two regimes according to a Markov chain.

4 In-Sample Estimation

This section describes the estimation methods and discusses the in-sample estimation
results for the parametric models.

4.1 Estimation Methods

Estimation of the GARCH-family and FIGARCH models is standard and it is conducted
via maximum likelihood. We thus restrict our discussion to the estimation of the MS-
GARCH model in (1), which is computationally intractable because the conditional vari-
ance ht depends on the state-dependent ht�1; and consequently on all past states. In
other words, computing the likelihood function is infeasible as it requires integrating out
all possible unobserved regime paths, which grow exponentially with the sample size T .
Therefore, to estimate the MS-GARCH model we follow Klaassen (2002)5 and replace
ht�1 by its expectation conditional on the information set at t� 1 and the current state
variable, namely,

h
(i)
t = �

(i)
0 + �

(i)
1 "

2
t�1 + 

(i)
1 Et�1 [ht�1 j St = i] ; (2)

4These numbers are consistent with previous studies by, e.g., Abosedra and Laopodis (1997), Morana
(2001), Bina and Vo (2007), among others.

5The choice of estimation method made in this paper is driven by our interest in multi-step-ahead
forecasts. Alternative estimation methods for MS-GARCH models include: (1) Gray�s (1996) proposal
to integrate out the unobserved regime path ~St�1 = (St�1; St�2; :::) in ht�1 in order to avoid the path
dependence; (2) Francq and Zakoian�s (2008) generalized method of moments (GMM) estimator using the
autocovariances of the powers of the squared process; (3) Bauwens, Preminger, and Rombouts�s (2010)
Markov Chain Monte Carlo (MCMC) algorithm �modi�ed later in Bauwens, Dufays, and Rombouts
(2014)- where the parameter space is enlarged to include the state variables and Bayesian estimation is
done using Gibbs sampling; and (4) Augustyniak�s (2014) combination of a Monte Carlo expectation-
maximization (MCEM) algorithm and Bayesian importance sampling to calculate the Maximum Like-
lihood Estimator (MCML). However, the multi-step-ahead volatility forecasts are less straightforward
using these methods.
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where

Et�1 [ht�1 j St = i] =
2X
j=1

P (St�1 = j j St = i; It�1)h(j)t�1; i; j = 1; 2:

The speci�cation in (2) circumvents the path dependence by integrating out ht�1.
Because the conditional variance depends only on the current state St, estimation and
computation of the forecasts are straightforward.6 Indeed, the m-step-ahead volatility
forecast at time T is calculated through a recursive procedure as follows:

ĥT;T+m =
mX
�=1

ĥT;T+� =
mX
�=1

2X
i=1

P (ST+� = i j IT )ĥ(i)T;T+� ;

where the � -step-ahead volatility forecast in regime i made at time T is given by

ĥ
(i)
T;T+� = �

(i)
0 +

�
�
(i)
1 + 

(i)
1

�
ET
h
h
(i)
T;T+��1 j ST+� = i

i
:

Note that the necessary conditions for second-order stationarity, which follow from
Klaassen (2002), are:

p11(�
(1)
1 + 

(1)
1 ) < 1; p22(�

(2)
1 + 

(2)
1 ) < 1;

and

p11(�
(1)
1 + 

(1)
1 ) + p22(�

(2)
1 + 

(2)
1 ) + (1� p11 � p22)(�

(1)
1 + 

(1)
1 )(�

(2)
1 + 

(2)
1 ) < 1:

Abramson and Cohen (2007) further show that these conditions are not only necessary,
but also su¢ cient.7 It is easy to observe that these conditions do not require stationar-
ity within each regime. For example, regime 1 could be nonstationary, or even slightly
explosive (e.g. �(1)1 + 

(1)
1 � 1) as long as the probability of staying in regime 1 (p11) is

small. Thus, the MS-GARCHmodel allows for great �exibility in modeling the conditional
variance.
Finally, because oil price returns exhibit leptokurtosis, we consider three di¤erent

types of distributions for �t: standard normal, Student�s t, and GED distributions across
all parametric models.

4.2 Estimation Results

The whole sample is divided into two parts: the �rst 1512 observations (corresponding to
the period of January 3, 2007 to December 31, 2012) are used for in-sample estimation
and the rest are reserved for out-of-sample evaluation. Model speci�cation tests suggest
the simplest conditional mean equation rt = � + "t is appropriate, whereas testing the
residuals from this speci�cation reveals very small autocorrelations yet tremendous ARCH
e¤ects.

6Given that regimes are often observed to be highly persistent, St contains a lot of information about
St�1: Thus, by conditioning on St; extra information also leads to more e¢ cient estimation.

7Francq and Zakoian (2008) also derived the conditions for weak stationarity and existence of moments
for MS-GARCH(p; q) processes.
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4.2.1 Non-switching GARCH models

The ML estimates and asymptotic standard errors (in parenthesis) for the GARCH(1; 1),
EGARCH(1; 1), GJR-GARCH(1; 1) and FIGARCH(1; d; 1) models are reported in Table
2. Notice that the results from GARCH and FIGARCH are very close to each other,
with the fractional di¤erencing parameter d very close to 1.8 The conditional mean in the
GARCH/FIGARCH models is signi�cantly positive at around 0:1 regardless of the dis-
tribution. The estimated conditional mean is lower for the EGARCH and GJR-GARCH
than for the GARCH and is insigni�cant across all distributions. Three features are worth
noticing. First, the degrees of freedom for the t distribution are estimated to be greater
than 8.37 in all three models and the estimated shape parameter for GED distribution
is around 1:5:9 This is consistent with the high sample kurtosis of daily crude oil returns
(8.491) and, in turn, with the potential inability of a normal error to account for all the
mass in the tails of the distribution.10 Second, the asymmetric e¤ect (�) is signi�cant
in the EGARCH and GJR-GARCH models across all distributions, suggesting that a
negative shock would increase the future conditional variance more than a positive shock
of the same magnitude. This result is consistent with political disruptions and large de-
creases in global demand leading to larger increases in volatility than, for instance, the
fracking revolution. Third, the parameter estimates for the variance equation reveal high
persistence for all models. In the GARCH speci�cation �1 + 1 are estimated close to
1. In the FIGARCH, d is estimated to be very close to 1, suggesting the process is very
close to an IGARCH. In the EGARCH and GJR-GARCH models the persistence level
measured by 1 and �1 + 1 + 0:5�, respectively, is also close to 1. As mentioned be-
fore, such persistence might be indicative of possible structural breaks or regime switches
(Lamoureux and Lastrapes 1990, Mikosch and Starica 2004).

4.2.2 MS-GARCH Models

Before using the MS-GARCH models, one needs to test whether Markov switching ex-
ists in the data. Testing for Markov switching in GARCH models is complicated for
two reasons. First, the GARCH model itself is highly nonlinear. When the parameters
are subject to regime switching, path dependence together with nonlinearity makes the
estimation intractable, consequently the (log) likelihood functions are not calculable.11

Second, standard tests su¤er from the famous Davies problem, where the nuisance para-
meters characterizing the regime switching are not identi�ed under the null hypothesis of

8This suggests that long memory might not be present in the in-sample estimation window. Nev-
ertheless, since we use a rolling-window scheme to calculate the out-of-sample forecasts, we leave the
FIGARCH in the pool for evaluation.

9The conditional kurtosis for the t distribution is calculated by 3(� � 2)=(� � 4); � = 8:37 implies
a kurtosis of 4.37. The kurtosis for the GED distribution is given by (� (1=�) � (5=�)) =�2 (3=�) : When
� = 1:5, the kurtosis is at 3:76:
10Our �ndings di¤er from Marcucci (2005) where a normal innovation is favored in modeling �nancial

returns.
11Markov switching tests by e.g., Hansen (1992) or Garcia (1998) are not applicable here since they both

involve examining the distribution of the likelihood ratio statistic, which is not feasible for MS-GARCH.
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parameter constancy. Therefore, standard tests like the Wald or LR test do not have the
usual �2 distribution.
We apply the test developed by Carrasco, Hu, and Ploberger (2014). This test is

similar to a LM test and only requires estimating the model under the null hypothesis
of constant parameters, yet the test is still optimal. In addition, it has the �exibility to
test for regime switching in both the mean and/or the variance or any subset of these
parameters. We compute two test statistics, the supTS and the expTS12; they equal 0:007
and 0:680; respectively. Then, we simulate the critical values by bootstrapping using
3; 000 iterations. We reject the null of constant parameters in favor of regime switching
in both the mean and variance equations with p-values of 0:028 for supTS and 0:018 for
expTS. These results reveal overwhelming support for a Markov switching model, hence
we estimate the MS-GARCH models with a two-state Markov chain as described in (1).
Table 3 presents the parameter estimates for the three MS-GARCH models: MS-

GARCH-N , MS-GARCH-t, and MS-GARCH-GED, respectively. In all three speci�ca-
tions, the common �ndings are: (i) regime 1 corresponds to signi�cantly positive expected
returns whereas the expected returns are negative �but seldom signi�cant�in regime 2;
(ii) the transition probabilities p11 and p22 are close to one, implying that both regimes
are highly persistent; (iii) the majority of observations belong in regime 2; (iv) the persis-
tence of shocks to the system in regime 2 is very close to 1, suggesting a close-to-IGARCH
behavior in this regime; and (v) shocks to the conditional variance are less persistent in
regime 1. Speci�cally, the MS-GARCH-N has a signi�cantly negative mean at -0.2323 in
regime 2 and 60% of the observations lie in this regime. Meanwhile, the MS-GARCH-t and
the MS-GARCH-GED have a more prevalent regime 2 (70% and 84% of the observations,
respectively), with a mean that is insigni�cantly di¤erent from 0. In the MS-GARCH-t;
regime 1 is speci�ed by a t distribution with 4.56 degrees of freedom, and regime 2 is
closer to a normal distribution (the degrees of freedom equal 15.10). In the meantime,
MS-GARCH-GED�s regime 1 is closer to being normal with the shape parameter at 1.91
and regime 2 is characterized by higher kurtosis.
To summarize, regime 1 is a relatively good regime with positive expected returns,

much smaller dispersion and any shocks to the conditional variance do not persist for long.
The majority of observations lie in regime 2, which is characterized by either negative or
zero expected returns, and the shocks to the conditional variance are highly persistent.
We conclude this section with a caveat. Of the three MS-GARCH models considered

here, the MS-GARCH-t produces the most stable results with regards to various starting
values and di¤erent numerical algorithms. This result should probably not come as a
surprise to the reader as the MS-GARCH-N is more restrictive and may not be able
to accommodate the extra kurtosis that is present in the data. Alternatively, the MS-
GARCH-GED allows for greater �exibility in modeling leptokurtosis. Yet, because the
density of the GED involves a double exponential function of the absolute value of the
residuals, numerical convergence tends to be more di¢ cult to attain. The practitioner
should be aware that poor performance of the MS-GARCH-GED in forecasting may stem

12A detailed description of their testing procedure is in the appendix.
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from less accurate computation rather than from the model itself.

5 Forecast Evaluation

The out-of-sample forecast evaluation spans the period from January 2, 2013 to December
31, 2014.13 We compute the forecasts using a rolling scheme and evaluate forecasting
performance based on 504 out-of-sample volatility forecasts (corresponding to the years
2013 and 2014) for the 1-, 5-, 21-, and 63-step horizons (corresponding to 1 day, 1 week,
1 month, and 3 months, respectively).14 We choose a rolling window scheme because it is
more robust to the presence of time-varying parameters than the recursive one. We also
report the forecasts from the RiskMetrics given its popularity among practitioners.15

Figure 2 plots the volatility forecasts obtained from four competing models: RiskMet-
rics, GARCH-t; EGARCH-t; and MS-GARCH-t.16 The corresponding realized volatility
is also plotted for reference. At 1- and 5-day horizons, the four models yield very similar
forecasts. They move closely with the realized volatility and are able to capture the large
increase in the realized volatility in mid-2014. At a 21-day horizon, all models are able to
forecast the major upward and downward movements in the realized volatility, although
the EGARCH-t seems to yield a more accurate forecast of the spike at the end of 2014.
Only when we increase the forecast horizon to 63 days (3 months) do our forecasts contain
less information about the aggregated realized volatility during the out-of-sample period,
which is as expected. However, the MS-GARCH-t does a good job at forecasting the
sharp increase in volatility from mid-2014.
We compare volatility forecasts (denoted as bht) based on two widely-used loss func-

tions, where the realized volatility is substituted for the latent conditional variance (de-
noted as �2t ). The �rst one is the common Mean Square Error, de�ned as MSE =

n�1
Pn

t=1

�
�2t � bht�2 : The second one, QLIKE = n�1Pn

t=1

�
logbht + �2t=bht� ; is equiva-

lent to the loss function implied by a Gaussian likelihood. Our motivation to focus on
these particular loss functions derives from Patton (2011) who shows that only the MSE
and QLIKE loss functions generate optimal forecasts equal to the conditional variance
�2t , even when noisy volatility proxies are used in forecast comparisons. The loss functions
from all competing models and their ranking are reported in Table 4.
For the sake of brevity, and because models where the innovations are assumed to

follow a Student�s t �t the data better, we restrict our discussion to these models. At the
1-day forecast horizon, both the MSE and QLIKE rank RiskMetrics �rst. The MSE

13Our observations extend to April 2, 2015 to accommodate the m-step-ahead forecast at m = 63:
14Financial investors are likely to rely more on short term 1- and 5-day forecasts. However, central

bankers typically use monthly forecasts. For oil exploration and production �rms, longer horizons are
of interest as the time spanning from pre-drilling activities to production easily exceeds one month and
varies across regions. For instance, while the time to complete oil wells averages 20 days in Texas, it
averages 90 days in Alaska.
15RiskMetrics is equivalent to an IGARCH model (with normally distributed innovations) where the

autoregressive parameter is set to � = 0:94 and the coe¢ cient on the square residual is set to 1� �:
16To economize space, plots for the remaining models are relegated to the online appendix.
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ranks the FIGARCH-t second and the EGARCH-t third, whereas the ranking is reversed
for the QLIKE: Similarly, at the 5-day horizon RiskMetrics is ranked �rst by both loss
functions. Yet, under bothMSE and QLIKE the FIGARCH models drop to the bottom
of the ranking and the GARCH-t emerges as the closest competitor to RiskMetrics. As the
forecast horizon increases, the EGARCH models tend to rank higher than the GARCH
models with the EGARCH-t ranking �rst (second) at the 21-day horizon according to the
MSE (QLIKE), and the GARCH-t ranking �fth. At this forecast horizon, RiskMetrics
remains in the top third of the rankings, however the loss di¤erential between RiskMetrics
and GARCH-t (EGARCH-t), is smaller at the 21-day horizon than at the 1- or 5-day
horizons. At the longer 63-day horizon, the MS-GARCH-t emerges as the winner under
both loss functions, the EGARCH models continue to rank highly, the GARCH models
and RiskMetrics drop in the rankings, and the FIGARCH models remain at the bottom.
These results reveal important information. First, given that RiskMetrics can be con-

sidered as an IGARCH(1,1) with normal errors, the fact that it ranks highly suggests
that the volatility exhibits IGARCH behavior. Either long memory or Markov switching
could cause the extremely high persistence observed in the volatility of crude oil returns.
Second, the huge losses for the FIGARCH models imply that long memory can probably
be ruled out (in favor of regime switching) as the reason for the high persistence in the
volatility level.17

5.1 Success Ratio and Directional Accuracy

To evaluate the ability of the models to predict the direction of the change in the volatility,
we calculate the Success Ratio (SR) and apply the Directional Accuracy (DA) test of
Pesaran and Timmermann (1992). The results are reported in Table 4.
For the 1- and 5-day horizons, the SR exceeds 68% for all models. This is also the

case at the 21-day horizon, with the exception of the FIGARCH-N for which the SR
equals 64%. At a longer 63-day horizon the SR averages 70% across all models but there
is greater variability. For instance, the SR ranges between 44% for the FIGARCH-N and
84% for the MS-GARCH-t. These results imply that, in the long run, the MS-GARCH-t
does an exceptional job at predicting the direction of the change in volatility.
The results of Pesaran and Timmermann�s DA test reinforce this �nding. The test is

signi�cant at the 5% level for all models at most forecast horizons, which indicates that
the forecast models have predictive power for the directional change in the underlying
volatility. The exceptions are the FIGARCH models and the MS-GARCH-GED at a
63-day horizon.
To summarize, we �nd that at short (1- and 5-day) and medium (21-day) horizons

RiskMetrics and the conventional GARCH models do a good job at predicting the direc-
tion of the change in volatility. However, at longer horizons the MS-GARCH-t model is
more capable of directional prediction.

17For FIGARCH models, the estimation involves a truncation of the MacLaurin sequence of the poly-
nomials. However, the long-run dependence implied by an IGARCH would be so highly persistent that
any truncation would cause severe bias, even at long lags.
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5.2 Tests of Equal Predictive Ability

To assess the relative predictive accuracy of the volatility models we implement the
Diebold-Mariano-West (Diebold and Mariano 1995 and West 1996) test of Equal Pre-
dictive Ability (EPA).18 The results are reported in Table 5. Notice that since we use the
rolling scheme with a �nite observation window, the EPA test statistic does not su¤er from
the nested-model bias (see Giacomini and White 2006) and it has a normal distribution.19

For the sake of brevity, and because RiskMetrics and MS-GARCH-t are, respectively,
ranked higher at short and long horizons, we discuss the results where these two models
are taken as benchmarks.20

First, consider RiskMetrics, which is ranked highest by bothMSE and QLIKE at the
1- and 5-day horizons. At the 1-day horizon RiskMetrics has signi�cantly higher predictive
accuracy against all competing models under QLIKE; but insigni�cantly under MSE.
Similar results are obtained at the 5-day horizon, with the exception that RiskMetrics
has signi�cantly higher predictive accuracy than the FIGARCH family and MS-GARCH-
GED not only under QLIKE but alsoMSE. As we move from short forecast horizons to
the medium (21-day) horizon, evidence that RiskMetrics has higher predictive accuracy
than the competing models becomes less prevalent. In particular, RiskMetrics signi�cantly
dominates the FIGARCH family, the GJR-N and the MS-GARCH-GED under both loss
functions, and the GARCH-N and GJR-GED under QLIKE: At the longer 63-day hori-
zon, the EGARCH-t and the MS-GARCH-t beat RiskMetrics under MSE: RiskMetrics
continues to have signi�cantly higher predictive ability than the FIGARCH models and
the MS-GARCH-GED; it is also found to be more accurate than the GARCH-N under
QLIKE:
When the MS-GARCH-t is considered as the benchmark, the null of equal predictive

ability cannot be rejected for the majority of competing models across short horizons.
The exceptions are MS-GARCH-GED under QLIKE at the 1- and 5-day horizons and
the FIGARCH models under both loss functions at the 5-day horizon. In addition, under
QLIKE, we reject the null in favor of RiskMetrics at 1- and 5-day horizons and in favor of
the GARCH-t at the 5-day horizon. Nevertheless, at the 63-day horizon the MS-GARCH-
t has signi�cantly higher predictive accuracy than all competing models under MSE and
twelve out of �fteen models under QLIKE:21

18White�s (2000) Reality Check (RC) test, and Hansen�s (2005) Superior Predictive Ability (SPA) test
and test results are also reported in an online appendix.
19When two nested models are compared, the smaller model has an unfair advantage relative to the

larger one because the larger model estimates extra parameters, thus introducing estimation error. There-
fore, the larger model�s sample loss function, e.g., MSE is expected to be greater. One may therefore
erroneously conclude that the smaller one is better, resulting in size distortions where the larger model
is rejected too often. In this case, one can use Clark and McCracken�s ENC test which corrects for the
�nite sample bias. See Clark and McCracken (2001) for details.
20The test results for EPA for other benchmark models are available from the authors upon request.
21Results for the superior predictive ability test and the reality check, reported in the online appendix,

are in line with these �ndings.
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5.3 Model Con�dence Set

This section discusses the Model Con�dence Set (MCS) computed according to the pro-
cedure developed by Hansen, Lunde, and Nason (2011). An advantage of the MCS over
the EPA tests is that it does not require a pre-speci�ed benchmark model; instead, it
determines a set of �best�modelsM� with respect to a loss function given some speci�ed
level of con�dence. Furthermore, if the data is su¢ ciently informative regarding which
model is �the best�, then the MCS will contain only one (or a small set) of the competing
models.
To determine the MCS we follow Hansen, Lunde, and Nason�s (2011) suggestion to

focus on the TR;M statistic and report the p-values in Table 6.22 The TR;M test is computed
with con�dence level of 0:25 over 3000 bootstrap iterations. We denote the resulting
con�dence sets by cM�

:75. The cM�
:75 is reduced to a singleton with RiskMetrics at the 1-

day horizon and the MS-GARCH-t at the 63-day horizons. At the 5- and 21-day horizon
MSE produces more conservative sets than QLIKE and, thus, the resulting MCS set
contains more models. For instance, at a 5-day horizon, cM�

:75 contains only RiskMetrics
under QLIKE: In contrast, cM�

:75 also contains GARCH-t, GARCH-GED, EGARCH-t
and MS-GARCH-N under MSE: Similarly, at the 21-day horizon the MCS set contains
six out of sixteen models under QLIKE and ten models under MSE. The FIGARCH
models are all ruled out from the MCS and the GJR models are commonly ruled out,
except for the GJR-t at a 21-day horizon under MSE.
To summarize, RiskMetrics and the MS-GARCH-t emerge as the single best fore-

casting models at 1- and 63-day forecast horizons, respectively. Instead, RiskMetrics,
GARCH-t and EGARCH-t consistently appear in the MCS for 5- and 21-day forecast
horizons.

5.4 How Stable is the Forecasting Accuracy of the Preferred
Models?

One concern with using a single model to forecast over a long time period is that the
predictive accuracy might depend on the out-of-sample period used for forecast evaluation.
In particular, a model might be chosen for its highest predictive accuracy when evaluating
the loss functions over the entire out-of-sample period, yet one of the competing models
might exhibit a lower Mean Squared Predictive Error (MSPE) at a particular point (or
points) in time during the evaluation period. For instance, Table 4 indicates that for the
entire evaluation period of 2013-2014, the RiskMetrics exhibits lowerMSPE �as measured
by the loss functions (MSE; QLIKE)�for the 1- and 5-day forecast horizons, whereas
the EGARCH-t results in smaller MSPE for the 21-day horizon and the MS-GARCH-t
for the 63-day forecast horizon.
To investigate the stability of the forecast accuracy, we compute the MSPE ratio

22Hansen, Lunde, and Nason�s (2011) proposed another statistic Tmax;M (see appendix for details). Our
results suggest that (Tmax;M; emax;M) are conservative and produce relatively large model con�dence sets,
which is consistent with the Corrigendum to Hansen, Lunde, and Nason�s (2011) paper.
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from the preferred QLIKE loss over 442 rolling sub-samples in the evaluation period.
The �rst sub-sample consists of the �rst 63 forecasts (spanning three months) in the
evaluation period, the second sub-sample is created by dropping the �rst forecast and
adding the 64th forecast at the end, and so on. In brief, theseMSPEs are now computed
as the average QLIKE over a rolling window of size n = 63: Figure 3 plots the ratio of the
MSPE for RiskMetrics, GARCH-t and EGARCH-t models relative to the MS-GARCH-
t at each of the four horizons. Note that, because the last window used to compute
the MSPE spans the period between October 2, 2014 and December 31, 2014, the last
MSPE is reported at October 1, 2014.
Figure 3 illustrates that the MSPE ratio contains a lot of time variation during the

evaluation period. The GARCH-t tends to have low predictive accuracy at the beginning
of the period. In contrast, RiskMetrics has higher predictive ability in the middle of
the sample. Although, when considering the forecast period as a whole, we �nd that
the EGARCH-t has good predictive ability at all horizons, it is outperformed by the
MS-GARCH-t between September and December 2013. Recall that this was a period of
consistent decrease in the WTI price. Similarly, during the second half of 2014 when the
WTI price fell sharply (a 44% drop between June and December of 2014) and returns
became more volatile, the MS-GARCH-t does a better job at predicting the increase in
volatility even at short 1- and 5-day horizons. We conclude that there are clear gains
from using the MS-GARCH-t model for forecasting crude oil return volatility, especially
during periods of turmoil. Whereas these gains are not as evident for the 1- and 5-day
horizons over the two-year evaluation period (Table 4), they become clear when we plot
the ratio of the rolling window MSPEs over a sub-period of three months.

6 Conclusion

This paper o¤ered an extensive empirical investigation of the relative forecasting per-
formance of di¤erent models for the volatility of daily spot oil price returns at multiple
horizons. Our �nding is in favor of RiskMetrics and GARCH models for short-horizon
forecasts, EGARCH at medium horizons and MS-GARCH at long horizons. Thus, our
results support the widespread use by practitioners of a naïve volatility model, RiskMet-
rics, to forecast crude oil volatility at short horizons. We also discover that the extremely
high persistence level observed in the volatility of crude oil prices is driven by Markov
switching, rather than by long memory. The insights derived here are also in line with
the literature�s �ndings for other assets (see, e.g. Hansen and Lunde 2005). Because the
GARCH(1,1) model implies a geometric decay of the autocorrelation of the squared re-
turns, short-term volatility dynamics can be well captured by such a parsimonious model.
Alternatively, the MS-GARCH has the additional feature of incorporating abrupt changes
in the parameters and consequently allowing a more �exible functional form for the au-
tocorrelation of the squared returns. Hence it is not surprising that the MS-GARCH-t
model not only does a better job at forecasting volatility during periods of turmoil but
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also yields more accurate long-term forecasts of the spot WTI return volatility.23

Two caveats are needed here. First, EGARCH models deliver an unbiased forecast for
the logarithm of the conditional variance, but the forecast of the conditional variance itself
will be biased following Jensen�s Inequality (see, e.g., Andersen et al. 2006, among oth-
ers). Hence, for practitioners who prefer unbiased forecasts, caution must be taken when
using EGARCH models. Second, long horizon volatility forecasts such as the one- and
three-month horizons, may be computed in various ways. For instance, if a researcher is
interested in obtaining a one-month-ahead forecast, she could compute a �direct�forecast
by �rst estimating the horizon-speci�c (e.g., monthly) GARCH model of volatility and
then use the estimates to directly predict the volatility over the next month. Alternatively,
as we do here, she could compute an �iterated�forecast where a daily volatility forecast-
ing model is �rst estimated and the monthly forecast is then computed by iterating over
the daily forecasts for the 21 working days in the month. Ghysels, Rubia, and Valkanov
(2009) �nd that iterated forecasts of stock market return volatility typically outperform
the direct forecasts. Thus we opt for this forecasting scheme. Nevertheless, evaluating
the relative performance of these two alternative methods and comparing it to the more
recent mixed-data sampling (MIDAS) approach proposed by Ghysels, Santa-Clara, and
Valkanov (2005, 2006) is the aim of our future research.

23For example, our �nding that the MS-GARCH-t model is clearly preferred at long horizons is robust
to using a longer in-sample period ranging from Jan 2, 1986 to Dec 30, 2011 and evaluating the forecasting
ability on a shorter out-of-sample period (the year 2012), which excludes the large increase in volatility
in the second half of 2014.
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Table 1: Descriptive Statistics
WTI Returns

Mean Std. Dev Min Max Variance Skewness Kurtosis
-0.010 2.426 -12.827 16.414 5.887 0.055 8.491

RV 1=2

Mean Std. Dev Min Max Variance Skewness Kurtosis
0.020 0.012 0.004 0.184 0.00014 3.207 26.494

ln(RV 1=2)
Mean Std. Dev Min Max Variance Skewness Kurtosis
-4.027 0.469 -5.457 -1.692 0.220 0.553 3.608

: Note: WTI returns denotes the log di¤erence of the West Texas Intermediate daily spot closing price. RV denotes realized
volatility computed from the 5-minute returns on oil futures. WTI returns, RV 1=2, and the natural logarithm of RV 1=2

series are from the sample period of January 3, 2007 to April 2, 2015 for 2079 observations.
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Table 3: Maximum Likelihood Estimates of MS-GARCH Models
MS-GARCH-N MS-GARCH-t MS-GARCH-GED

�(1) 0.4181** 0.5367** 0.7125**
(0.0938) (0.1588) (0.1761)

�(2) -0.2323** -0.1570 -0.0730
(0.1080) (0.1411) (0.0973)

�
(1)
0 9.4156E-06 8.7386E-06 0.1952

(0.0026) (0.0024) (0.2126)
�
(2)
0 0.2541** 0.1266* 0.1643**

(0.0887) (0.0653) (0.0642)
�
(1)
1 1.0828E-07 0.0293 0.0045

(6.0075E-05) (0.0425) (0.0225)
�
(2)
1 0.0628** 0.0812** 0.0733**

(0.0226) (0.0282) (0.0225)

(1)
1 0.8673** 0.8689** 0.5918**

(0.0432) (0.0667) (0.1622)

(2)
1 0.9372** 0.9188** 0.9244**

(0.0226) (0.0282) (0.0235)
p11 0.8603** 0.8186** 0.7258**

(0.0480) (0.1037) (0.1082)
p22 0.9077** 0.9226** 0.9496**

(0.0313) (0.0393) (0.0240)
�(1) - 4.5596* 1.9116**

(2.4744) (0.5866)
�(2) - 15.0977* 1.5313**

(8.3849) (0.0872)
Log(L) -3325.7 -3312.5 -3316.4
N:of Par: 10 12 12

�1 0.3977 0.2992 0.1554
�2 0.6023 0.7008 0.8446

�
(1)
1 + 

(1)
1 0.8673 0.8982 0.5963

�
(2)
1 + 

(2)
1 0.99996 0.99997 0.9977

: Note: * and ** represent signi�cance at 10% and 5% level respectively. Each MS-GARCH model is estimated using
di¤erent distribution as described in the text. The in-sample data consist of WTI returns from 1/3/07 to 12/31/12. The

superscripts indicate the regime. �i is the ergodic probability of being in regime i; �
(i)
1 + 

(i)
1 measures the persistence of

shocks in the i-th regime. Asymptotic standard errors are in the parentheses.
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Table 4: Out-of-sample evaluation of the volatility forecasts
One Day Five Days

Model MSE Rank QLIKE Rank SR DA MSE Rank QLIKE Rank SR DA
GARCH-N 2.9916 7 1.4323 10 0.70 4.3826** 47.5283 6 3.0616 8 0.71 5.4174**
GARCH-t 2.7977 4 1.4198 4 0.69 4.2114** 42.7514 2 3.0460 2 0.72 6.0005**
GARCH-GED 2.8719 5 1.4249 6 0.70 4.5531** 44.5346 3 3.0522 4 0.72 5.8787**
EGARCH-N 3.2616 11 1.4257 7 0.70 3.4073** 60.6607 9 3.0595 6 0.72 4.5157**
EGARCH-t 2.7733 3 1.4174 2 0.69 3.5224** 46.5105 5 3.0489 3 0.70 3.9106**
EGARCH-GED 3.0544 9 1.4246 5 0.69 3.5224** 53.8590 8 3.0562 5 0.70 3.9703**
GJR-N 4.3695 15 1.4485 15 0.73 5.0201** 91.3195 13 3.0872 12 0.76 6.7207**
GJR-t 3.4927 12 1.4374 13 0.73 5.0201** 66.9322 11 3.0716 10 0.76 6.8970**
GJR-GED 3.9189 14 1.4439 14 0.73 5.0201** 78.4154 12 3.0795 11 0.76 6.7207**
MS-GARCH-N 2.9479 6 1.4323 9 0.68 4.7602** 46.4689 4 3.0631 9 0.71 6.5707**
MS-GARCH-t 3.1016 10 1.4321 8 0.68 4.9266** 53.2638 7 3.0607 7 0.70 6.0637**
MS-GARCH-GED 3.6191 13 1.4814 16 0.71 4.3033** 65.7369 10 3.1209 13 0.71 4.5082**
FIGARCH-N 3.0058 8 1.4350 12 0.72 5.6985** 130.8121 14 4.3071 14 0.73 6.4477**
FIGARCH-t 2.6977 2 1.4185 3 0.71 5.4694** 134.1039 15 4.5046 16 0.73 6.8015**
FIGARCH-GED 50.5641 16 1.4324 11 0.73 4.2957** 181.0000 16 4.4164 15 0.75 4.6106**
RiskMetrics 2.2407 1 1.3812 1 0.72 4.9563** 40.8392 1 3.0268 1 0.72 5.1754**

Twenty-one Days Sixty-three Days
Model MSE Rank QLIKE Rank SR DA MSE Rank QLIKE Rank SR DA
GARCH-N 805.0850 9 4.5939 10 0.69 4.0120** 18559.0190 12 5.9356 12 0.65 2.3983**
GARCH-t 705.4356 5 4.5619 5 0.72 5.3630** 16354.4177 9 5.8806 8 0.73 6.6624**
GARCH-GED 739.6034 7 4.5745 7 0.71 4.6018** 17178.7713 10 5.9034 10 0.70 5.5209**
EGARCH-N 657.7634 4 4.5625 6 0.76 6.5598** 11710.8017 4 5.8359 4 0.79 9.1202**
EGARCH-t 448.1821 1 4.5457 2 0.75 6.2716** 10929.9002 2 5.8107 2 0.78 8.7478**
EGARCH-GED 527.3319 2 4.5522 3 0.75 6.4433** 10991.1017 3 5.8113 3 0.79 9.2570**
GJR-N 1203.2662 13 4.6121 12 0.78 7.0732** 18297.7123 11 5.9271 11 0.82 9.8728**
GJR-t 787.5492 8 4.5827 9 0.78 7.3624** 13803.3579 5 5.8767 7 0.80 9.2404**
GJR-GED 960.2393 11 4.5944 11 0.78 7.4936** 15199.0102 6 5.8918 9 0.81 9.5234**
MS-GARCH-N 716.5405 6 4.5758 8 0.74 6.9141** 15731.5260 8 5.8735 6 0.64 3.5959**
MS-GARCH-t 825.9422 10 4.5612 4 0.74 6.0481** 4266.8562 1 5.7903 1 0.84 10.1785**
MS-GARCH-GED 1199.0743 12 4.6765 13 0.70 3.0337** 27755.6880 13 6.0497 13 0.48 -6.1371
FIGARCH-N 3869.7152 14 14.0268 14 0.64 1.7795* 56387.1570 14 40.0194 14 0.44 -7.8655
FIGARCH-t 3899.8170 15 15.6592 16 0.68 4.4536** 56535.3748 16 45.7293 16 0.53 -2.3056
FIGARCH-GED 3905.4469 16 14.9680 15 0.74 2.0092* 56442.8738 15 43.5655 15 0.56 -7.1929
RiskMetrics 652.1611 3 4.5425 1 0.76 6.2046** 15418.4813 7 5.8562 5 0.81 10.0461**

: Note: The volatility proxy is given by the realized volatility calculated with �ve-minute returns. * and ** denote
5% and 1% signi�cance levels for the DA statistic, respectively.

23



Table 5: Equal Predictive Ability Test
RiskMetrics Benchmark

One Day Five Days Twenty-one Days Sixty-three Days
Model MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE
GARCH-N -1.18 -3.47** -1.03 -3.17** -1.38 -2.71** -1.82 -2.53*
GARCH-t -1.01 -2.91** -0.49 -2.03* -0.60 -1.17 -0.69 -0.92
GARCH-GED -1.07 -3.14** -0.74 -2.51* -0.90 -1.82 -1.20 -1.67
EGARCH-N -1.06 -3.76** -1.02 -2.41* -0.04 -0.98 1.16 0.53
EGARCH-t -0.66 -3.28** -0.38 -1.79 1.38 -0.18 2.07+ 1.48
EGARCH-GED -0.90 -3.69** -0.74 -2.24* 0.89 -0.52 1.93 1.40
GJR-N -1.60 -4.89** -1.77 -3.89** -2.12* -2.96** -0.87 -1.72
GJR-t -1.27 -4.55** -1.34 -3.14** -0.77 -1.86 0.61 -0.55
GJR-GED -1.47 -4.79** -1.60 -3.53** -1.5 -2.32* 0.08 -0.92
MS-GARCH-N -1.14 -3.94** -0.79 -3.08** -0.58 -1.88 -0.20 -0.66
MS-GARCH-t -1.54 -3.71** -1.57 -2.92** -1.58 -1.09 2.24+ 1.70
MS-GARCH-GED -1.71 -6.42** -2.01* -5.74** -3.47** -5.15** -4.88** -4.46**
FIGARCH-N -1.63 -4.80** -2.52* -10.20** -3.16** -11.57** -3.82** -8.07**
FIGARCH-t -1.16 -3.60** -2.55* -11.40** -3.18** -13.48** -3.83** -9.17**
FIGARCH-GED -1.02 -3.95** -2.33* -11.04** -3.19** -12.54** -3.82** -8.62**

MS-GARCH-t Benchmark
One Day Five Days Twenty-one Days Sixty-three Days

Model MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE
GARCH-N 0.20 -0.03 0.45 -0.13 0.14 -4.18** -3.53** -7.39**
GARCH-t 0.68 1.77 1.03 2.33+ 0.94 -0.10 -2.75** -3.98**
GARCH-GED 0.47 0.99 0.77 1.29 0.62 -1.80 -3.01** -5.21**
EGARCH-N -0.14 0.47 -0.30 0.10 1.19 -0.14 -3.14** -4.15**
EGARCH-t 0.32 1.16 0.32 1.04 2.10+ 2.01+ -2.22* -1.53
EGARCH-GED 0.04 0.56 -0.03 0.38 1.85 1.12 -2.30* -1.66
GJR-N -0.88 -1.07 -1.16 -1.94 -1.72 -4.80** -5.03** -11.48**
GJR-t -0.33 -0.38 -0.54 -0.89 0.22 -2.49* -3.53** -7.67**
GJR-GED -0.63 -0.81 -0.89 -1.44 -0.74 -3.48** -4.05** -8.96**
MS-GARCH-N 0.26 -0.03 0.49 -0.33 0.70 -2.09* -2.76** -3.98**
MS-GARCH-GED -0.69 -5.54** -0.70 -5.98** -2.07* -8.62** -5.97** -10.53**
FIGARCH-N 0.16 -0.30 -2.66** -9.68** -3.18** -11.42** -3.71** -8.02**
FIGARCH-t 0.80 1.70 -2.69** -10.80** -3.20** -13.28** -3.72** -9.12**
FIGARCH-GED -1.00 -0.03 -2.26* -10.45** -3.20** -12.37** -3.71** -8.57**
RiskMetrics 1.54 3.71++ 1.57 2.92++ 1.58 1.09 -2.24* -1.70

: Note: * and ** represent the Diebold-Mariano-West test statistic for which the null hypothesis of equal predictive
accuracy can be rejected at 5% and 1% signi�cance level respectively and the test statistic is negative. + and ++
represent the test statistic is statistically positive at 5% and 1% level, respectively.
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Table 6: MCS TR;M p-values
One Day Five Days Twenty-one Days Sixty-three Days

Model MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE
GARCH-N 0.0000 0.0000 0.0500 0.0058 0.6696* 0.0466 0.0000 0.0000
GARCH-t 0.0160 0.0000 1.0000* 0.0230 1.0000* 0.3254* 0.0014 0.0004
GARCH-GED 0.0000 0.0006 1.0000* 0.0098 0.9954* 0.1338 0.0000 0.0000
EGARCH-N 0.0072 0.0004 0.0280 0.0272 1.0000* 0.3148* 0.0066 0.0004
EGARCH-t 0.0748 0.0000 0.2572* 0.0346 1.0000* 1.0000* 0.0724 0.0276
EGARCH-GED 0.0318 0.0006 0.1322 0.0260 1.0000* 1.0000* 0.0588 0.0586
GJR-N 0.0004 0.0000 0.0000 0.0008 0.0000 0.0376 0.0000 0.0000
GJR-t 0.0004 0.0004 0.0000 0.0070 0.8790* 0.1238 0.0000 0.0000
GJR-GED 0.0000 0.0000 0.0000 0.0024 0.0000 0.0824 0.0000 0.0000
MS-GARCH-N 0.0000 0.0000 0.2930* 0.0032 1.0000* 0.1062 0.0004 0.0006
MS-GARCH-t 0.0050 0.0002 0.0120 0.0164 0.2698* 0.4388* 1.0000* 1.0000*
MS-GARCH-GED 0.0000 0.0000 0.0000 0.0000 0.0000 0.0022 0.0000 0.0000
FIGARCH-N 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FIGARCH-t 0.0436 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FIGARCH-GED 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RiskMetrics 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.1286 0.0854

: Note: This table presents the TR;M p-values from the MCS test. The models in cM�
:75 are identi�ed by *.
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Figure 1: Daily WTI Crude Oil Returns and Squared Returns. The sample period extends from
January 3, 2007 through April 2, 2015.
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Figure 2: Volatility Forecast Comparisons for Select Models. The out-of-sample period extends
from January 2, 2013 through Dec 31, 2014.
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Figure 3: Rolling Window MSPE Ratio Relative to MS-GARCH-t model
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7 Appendix

7.1 Model Speci�cations and Estimation Methods

We describe the parametric models used in this paper and the detailed estimation method
for each model.

7.1.1 Conventional GARCH Models

The �rst model we estimate is the standard GARCH(1; 1) ; reproduced below:8<:
yt = �

0xt + "t;
"t =

p
ht � �t; �t � iid(0; 1)

ht = �0 + �1"
2
t�1 + 1ht�1:

(3)

Denote the parameters of interest as � = (�; �0; �1; 1)
0. Let f(�t; �) denote the density

function for �t = "t(�)=
p
ht(�) with mean 0, variance 1, and nuisance parameters � 2 Rj:

The combined parameter vector is further denoted as  = (�0; � 0)0: The likelihood function
for the t-th observation is given by

ft(yt) = ft(yt; ) =
1p
ht(�)

f

 
"t(�)p
ht(�)

; �

!
:

When �t is assumed to follow a standard normal, the probability density function
(p.d.f.) is

f(�t) =
1p
2�
exp

�
��

2
t

2

�
:

Alternatively, if �t is assumed to be distributed according to the Student�s t with �
degrees of freedom, the p.d.f. of �t is then given by

f(�t; �) =
�
�
�+1
2

�p
(� � 2)��

�
�
2

� �1 + �2t
� � 2

�� (�+1)
2

; (4)

where �(�) is the Gamma function and � is constrained to be greater than 2 so that the
second moment exists and equals 1. � is a nuisance parameter that needs to be estimated.
Instead, if a GED distribution is assumed, the p.d.f. of �t is

f(�t; �) =
� exp

�
�1
2

���t
�

����
�2(1+

1
� )�

�
1
�

� ; (5)

with

� �

24
�
2�

2
��
�
1
�

��
�
�
3
�

�
35

1
2

;
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and � de�nes the shape parameter indicating the thickness of the tails and satisfying
0 < � <1. When � = 2, the GED distribution becomes a standard normal distribution.
If � < 2, the tails are thicker than normal.
The Exponential GARCH (EGARCH) model is given by:

log(ht) = �0 + �1

 ����� "t�1p
ht�1

������ E
����� "t�1p
ht�1

�����
!
+ �

"t�1p
ht�1

+ 1 log(ht�1):

Note that the equation for the conditional variance takes a log-linear form. Thus, the
implied value of ht can never be negative, permitting the estimated coe¢ cients to be
negative. In addition, the level of the standardized value of "t�1,

���"t�1=pht�1���, is used
instead of "2t�1.

Notice that in the EGARCH, E
���"t�1=pht�1��� takes di¤erent values under di¤erent

distribution speci�cations. When �t is normal, E
���"t�1=pht�1��� is the constantq 2

�
: Under

the t distribution speci�ed in (4),

E

����� "t�1p
ht�1

����� = E ���t�1�� = 2
p
� � 2�

�
�+1
2

�
p
� � (� � 1) � �

�
�
2

� :
Under the GED distribution speci�ed in (5),

E

����� "t�1p
ht�1

����� = E ���t�1�� = �
�
2
�

��
�
�
1
�

�
�
�
3
�

��1=2 :
The conditional variance for the GJR-GARCH is given by

ht = �0 + �1"
2
t�1 + �"

2
t�1 � If"t�1<0g + 1ht�1:

ML estimation of EGARCH and GJR-GARCH can be conducted similarly under dif-
ferent distributional speci�cations.

7.1.2 MS-GARCH

The MS-GARCH(1,1) speci�cation is given as follows:8<:
yt = �

St + "St ;

"St =
p
hStt � �t; �t � iid(0; 1)

hStt = �
St
0 + �

St
1 "

2
t�1 + 

St
1 ht�1:

(6)

Parameter estimates for (6) can be obtained by maximizing the (conditional) log like-
lihood function

L =

TX
t=1

log ft�1(yt)

=
TX
t=1

log [pt�1(St = 1)ft�1(yt j St = 1) + pt�1(St = 2)ft�1(yt j St = 2)] ;
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where ft�1(yt j St = i) is the conditional density of yt given regime i occurs at time t; and
pt�1(St = i) = P (St = i j It�1) are the ex-ante probabilities.
Recall the path dependent ht�1 is replaced by

Et�1 [ht�1 j St = i] =
2X
j=1

P (St�1 = j j St = i; It�1)h(j)t�1; i; j = 1; 2:

Denote pji;t�1 = P (St�1 = j j St = i; It�1) ; which is calculated as

pji;t�1 =
pjiP (St�1 = j j It�1)
P (St = i j It�1)

=
pjipt�1(St�1 = j)

pt�1(St = i)
;

where pt�1(St�1 = j) can be computed as

pt�1(St�1 = j) = P (St�1 = j j yt�1; It�2) =
P (St�1 = j; yt�1 j It�2)

f(yt�1 j It�2)

=
f(yt�1 j St�1 = j; It�2)P (St�1 = j j It�2)

ft�2(yt�1)

=
ft�2(yt�1 j St�1 = j)pt�2(St�1 = j)

ft�2(yt�1)
:

That is, pt�1(St�1 = j) can be calculated recursively.
The ex-ante probability pt�1(St = i) in the log likelihood function follows immediately:

pt�1(St = i) =
2X
j=1

P (St = i; St�1 = j j It�1)

=
2X
j=1

P (St = i j St�1 = j; It�1)P (St�1 = j j It�1)

=
2X
j=1

pjipt�1(St�1 = j):

7.1.3 FIGARCH

The FIGARCH(1; d; 1) model is reproduced here:

�(L)(1� L)d"2t = �0 + (1� 1L)wt;

where wt = "2t � ht; and �(L) = (1� (�1 + 1)L)=(1� L) � (1� �L)=(1� L):
The conditional variance is as follows:

ht = �0 + (1� 1L� (1� �1L� 1L) (1� L)d�1)"2t + 1ht�1
= �0 + (�1L+ �2L

2 + :::)"2t + 1ht�1

= �0 + �1"
2
t�1 + �2"

2
t�2 + :::+ 1ht�1: (7)
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To solve for �j; we use the MacLaurin series:

(1� L)d�1 = 1� (d� 1)
1!

L+
(d� 1)(d� 2)

2!
L2 � (d� 1)(d� 2)(d� 3)

3!
L3 + :::

= 1 +
(1� d)
1!

L+
(1� d)(2� d)

2!
L2 +

(1� d)(2� d)(3� d)
3!

L3 + :::

Therefore, we can calculate the following sequences recursively:

�1 = 1� d; �1 = ��1 + �1;
�2 =

(1�d)(2�d)
2!

; �2 = ��2 + �1(�1 + 1);
�3 =

(1�d)(2�d)(3�d)
3!

; �3 = ��3 + �2(�1 + 1);
�4 =

(1�d)(2�d)(3�d)(4�d)
4!

; �4 = ��4 + �3(�1 + 1);
::: :::

The likelihood function is constructed conditional on initial values for "20; "
2
�1; ::: in (7) to

be set at the unconditional sample variance. We choose the truncation lag at 1512, the
in-sample window size.

7.2 Testing for Markov Switching

We follow Carrasco, Hu and Ploberger (2014) and illustrate how to test for regime switch-
ing in the mean and variance of the MS-GARCHmodel with a normal distribution. Specif-
ically, under the null hypothesis (H0) the model is given by (3) with a constant mean,
whereas under the alternative (H1) the model is given by (6).
The (conditional) log likelihood function under H0 is

lt = �
1

2
ln 2� � 1

2
ln
�
�0 + �1"

2
t�1 + 1ht�1

�
� (yt � �)2

2
�
�0 + �1"2t�1 + 1ht�1

� : (8)

We �rst obtain the MLE for the parameters �̂ under H0; where � = (�; �0; �1; 1)
0: Then,

we calculate the �rst and second derivatives of the log likelihood (8) with respect to �
evaluated at �̂:
Note that the Markov chain St and the parameters driven by it (�St ; �

St
0 ; �

St
1 ; 

St
1 )

0 in
the alternative model (6) are not present under H0; therefore they cannot be consistently
estimated and the test is nonstandard. Let & denote the nuisance parameters specifying
the alternative model, which are not identi�ed under the null. In (6), & consists of a
constant c, which characterizes the amplitude of the alternative, and a vector � = (�; � :
k�k = 1;�1 < � < � < �� < 1); where � is a normalized 4 � 1 vector that characterizes
the direction of the alternative and � speci�es the autocorrelation of the Markov chain.
Given the nuisance parameters &, Carrasco, Hu, and Ploberger (2014) �rst derive the test

statistic process �2;t
�
�; �̂

�
by approximating the likelihood ratio, then they integrate out

the process with respect to some prior distribution on �. Speci�cally, the �rst component
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of their test is ��T =
P
�2;t

�
�; �̂

�
=
p
T ; and

�2;t

�
�; �̂

�
=
1

2
�0

"�
@2lt
@�@�0

+

�
@lt
@�

��
@lt
@�

�0�
+ 2

X
s<t

�(t�s)
�
@lt
@�

��
@ls
@�

�0#
�: (9)

The second component, b��; is the residual of the regression of �2;t ��; �̂� on l(1)t �
�̂
�
: Then

the sup test takes the form:

supTS = sup
f�;�:k�k=1;�<�<��g

1

2

�
max

�
0;

��Tpb��0b��
��2

: (10)

Alternatively, the exp test is:

expTS = avg
f�;�:k�k=1;�<�<��g

	(�; �) ;

where

	(�; �) =

8<:
p
2� exp

�
1
2

�
��Tpb��0b�� � 1

�2�
�
�

��Tpb��0b�� � 1
�
if b��0b�� 6= 0;

1 otherwise.

That is, the unidenti�ed nuisance parameters � are integrated out with respect to some
prior distributions to deliver an optimal test in the Bayesian sense.24 The asymptotic
distributions of the supTS and expTS tests are nonstandard; thus, the critical values are
obtained by bootstrapping the empirical distributions.
To compute the test statistics, we use a uniform prior for � and generate the 4 � 1

vector uniformly over the unit sphere 100 times, corresponding to the switching mean and
the three GARCH parameters.25 The supTS is maximized with respect to � and �, where
� takes on incremental values on the interval [�0:95; 0:95] with the step length of 0:05.
Meanwhile, expTS is the average of 	(�; �) above computed over those � and �0s:

7.3 Forecast Evaluation Metrics

7.3.1 Statistical Loss Functions

We report the two loss functions,MSE and QLIKE in the paper. Other commonly used
loss functions include:

MSE1 = n
�1

nX
t=1

�
�t � bh1=2t �2 ; (11)

24The �rst part in (9) is the key component of the Information Matrix test commonly seen in testing for
random coe¢ cients, and the second part comes from the serial dependence of the time-varying coe¢ cients.b��0b�� is the extra term to compensate for the di¤erence in the likelihood ratio when we replace the true
parameter � by its MLE �̂ under H0: supTS is constructed from the supremum norm on c, � and �.
expTS integrates out the exponential of test statistic process with an exponential prior on c2 and uniform
priors on � and �: Therefore, c seems to disappear from the formulae.
25To test for switching in the variance equation only, we can simply set the �rst element of � to be 0

and generate the remaining 3� 1 vector uniformly over the unit sphere.
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MAD1 = n
�1

nX
t=1

����t � bh1=2t ��� ; (12)

MAD2 = n
�1

nX
t=1

����2t � bht��� ; (13)

R2LOG = n�1
nX
t=1

h
log(�2t=

bht)i2 ; (14)

and

HMSE = n�1
nX
t=1

�
�2t=
bht � 1�2 : (15)

Equations (12) and (13) are two Mean Absolute Deviation criteria. Equation (14) rep-
resents the logarithmic loss function of Pagan and Schwert (1990), whereas (15) is the
heteroskedasticity-adjusted MSE proposed by Bollerslev and Ghysels (1996). Patton
(2011) shows that only the MSE and QLIKE loss functions generate optimal forecasts
equal to the conditional variance �2t , even when noisy volatility proxies are used in fore-
cast evaluations. Nevertheless, for the proxy we choose, namely, the realized volatility
constructed from the 5-minute returns over all the trading hours, the degree of distortion
for other loss functions is also negligible. Test results for those loss functions are available
from the authors upon request.

7.3.2 Success Ratio and Directional Accuracy

The percentage of times bht moves in the same direction as �2t is given by
SR = n�1

nX
t=1

If�2t �ht>0g;

where �2t is the demeaned volatility at t, and ht is the demeaned volatility forecast at t.
If the volatility and the forecasted volatility move in the same direction, then If!>0g is
equal to 1; 0 otherwise.
Having computed the SR, we calculate SRI = P bP + (1 � P )(1 � bP ) where P is the

fraction of times that �2t is positive and bP is the fraction of times that ht is positive. The
DA test is given by

DA =
SR� SRIp

V(SR)� V(SRI)
;

where V(SR) = n�1SRI(1 � SRI) and V(SRI) = n�1(2 bP � 1)2P (1 � P ) + n�1(2P �
1)2 bP (1 � bP ) + 4n�2P bP (1 � P )(1 � bP ). A signi�cant DA statistic indicates the model
forecast bht has predictive power for the direction of the movements in the underlying
volatility �2t :
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7.3.3 Test of Equal Predictive Ability

De�ne the loss function L(bht; �2t ) where bht is the volatility forecast made when the un-
derlying volatility is �2t : Consider two sequences of forecasts generated by two competing

models, i and j,
nbhi;ton

t=1
and

nbhj;ton
t=1
. The loss di¤erential between the two models is

de�ned as dij;t � Li;t � Lj;t = L(bhi;t; �2t )� L(bhj;t; �2t ), where Li;t � L(bhi;t; �2t ) denotes the
loss function for the benchmark model i and Lj;t is the loss function for the alternative
model j. Giacomini and White (2006) show that if the parameters are estimated using a
rolling scheme with a �nite observation window, the asymptotic distribution of the sample
mean loss di¤erential d = n�1

Pn
t=1 dij;t is asymptotically normal as long as fdij;tg

n
t=1 is

covariance stationary with a short memory. So the Diebold-Mariano-West statistic for
testing the null hypothesis of Equal Predictive Accuracy (EPA) between models i and j

is DMW = d=

qbV(d); where the asymptotic variance bV(d) can be estimated by Newey-
West�s HAC estimator.26 DMW has a standard normal distribution under H0. If the
test statistic DMW is signi�cantly negative, the benchmark model is better since it has
a smaller loss function; if DMW is signi�cantly positive, then the benchmark model is
outperformed.

7.3.4 Test of Superior Predictive Ability

Consider comparing l + 1 forecasting models where model 0 is de�ned as the benchmark
model and k = 1; :::; l represent the l alternative models. Let Lk;t and L0;t denote the loss
when the k-th and the benchmark models are used to forecast the underlying volatility
�2t , respectively. The performance of the k-th forecast model relative to the benchmark
is given by the loss di¤erential

d0k;t = L0;t � Lk;t; k = 1; :::; l; t = 1; :::; T:

Under the assumption that d0k;t is stationary, the expected performance of model k
relative to the benchmark can be de�ned as �k = E [d0k;t] for k = 1; :::; l: The value of
�k will be positive for any model k that outperforms the benchmark. Hence, the null
hypothesis for testing whether any of the competing models signi�cantly outperforms the
benchmark is de�ned in terms of �k for k = 1; :::; l as:

H0 : �max � max
k=1;:::;l

�k � 0:

The alternative is that the best model has a smaller loss function relative to the bench-
mark. If the null is rejected, then there is evidence that at least one of the competing
models has a signi�cantly smaller loss function than the benchmark.

26 bV(d) = n�1 (b + 2Pq
k=1 !kbk), where q = h � 1, !k = 1 � k

q+1 is the lag window and bi is an
estimate of the i-th order autocovariance of the series fdtg ; where bk = 1

n

Pn
t=k+1

�
dt � d

� �
dt�k � d

�
for k = 1; :::; q:
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White�s RC test is de�ned as

TRCn � max
k=1;:::;l

n
1
2 �dk;

where �dk = n�1
Pn

t=1 d0k;t: T
RC
n �s asymptotic null distribution is normal with mean 0 and

some long-run variance 
:
Note that the TRCn �s asymptotic distribution relies on the assumption that �k = 0 for

all k; however, any negative values of �k would also conform with H0. Hansen (2005)
proposes an alternative Super Predictive Ability (SPA) test statistic:

T SPAn = max
k=1;:::;l

n
1
2 �dkqbV(n 1

2 �dk)
;

where bV(n 1
2 �dk) is a consistent estimator of the variance of n

1
2 �dk obtained via bootstrap.

The distribution under the null is N(�̂;
), where �̂ is a chosen estimator for � that
conforms with H0: Since di¤erent choices of �̂ would result in di¤erent p-values, Hansen
proposes three estimators �̂l � �̂c � �̂u: We name the resulting tests SPAl, SPAc, and
SPAu, respectively. SPAc would lead to a consistent estimate of the asymptotic distribution
of the test statistic. SPAl uses the lower bound of �̂ and the p-value is asymptotically
smaller than the correct p-value, making it a liberal test. In other words, it is insensitive
to the inclusion of poor models. In contrast, SPAu uses the upper bound of �̂ and it is a
conservative test. It has the same asymptotic distribution as the RC test and is sensitive
to the inclusion of poor models.

7.3.5 Model Con�dence Set

Given the loss di¤erential dij;t = Li;t � Lj;t for i; j 2 M0 and �ij = E [dij;t] ; the set of
superior objects is de�ned as

M� =
�
i 2M0 : �ij � 0 for all j 2M0

	
:

The EPA hypothesis for a given set of modelsM can be formulated in two ways:

H0;M : �ij = 0 for all i; j 2M �M0; (17)

HA;M : �ij 6= 0 for some i; j 2M �M0;

or

H0;M : �i: = 0 for all i; j 2M �M0; (18)

HA;M : �i: 6= 0 for some i; j 2M �M0;

where �dij = n�1
Pn

t=1 dij;t, �di: = m�1P
j2M

�dij and �i: = E(di:): According to Hansen,
Lunde and Nason (2001), we construct the t-statistics as in the EPA test for testing the
pair (17):

tij =
�dijqbV( �dij) ; i; j 2M:
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Similarly, to test (18), the t-statistics is

ti: =
�di:qbV( �di:) ; i; j 2M;

where �di: is the sample loss of the i-th model relative to the average across models inM,
and bV( �di:) is the estimate of V( �di:):
Then the null hypotheses in (17) and (18) map to the following two test statistics

respectively:
TR;M = max

i;j2M
jtijj and Tmax;M = max

i2M
ti::

The asymptotic distributions of TR;M and Tmax;M are nonstandard and can be simu-
lated through bootstrap. The elimination rules applied are

eR;M = argmax
i2M

�
sup
j2M

tij

�
and emax;M = argmax

i2M
fti:g :
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Table A.1: Reality Check and Superior Predictive Ability Tests

One Day Five Days Twenty-one Days Sixty-three Days
Benchmark MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE

SPAl 0.535 0 0.650 0.856 0.693 0.882 0.755 0.869
GARCH-N SPAc 0.177 0 0.208 0 0.254 0 0.312 0.001

SPAu 0.211 0 0.281 0 0.358 0 0.462 0.001

SPAl 0.631 0.007 0.774 0.850 0.845 0.880 0.883 0.883
GARCH-t SPAc 0.258 0.005 0.324 0.004 0.381 0.003 0.426 0.005

SPAu 0.294 0.007 0.384 0.005 0.466 0.009 0.562 0.013

SPAl 0.593 0.004 0.739 0.853 0.791 0.891 0.847 0.878
GARCH-GED SPAc 0.207 0.003 0.282 0.002 0.348 0.001 0.405 0.001

SPAu 0.233 0.004 0.336 0.002 0.513 0.002 0.505 0.002

SPAl 0.483 0 0.397 0.849 0.422 0.885 0.385 0.882
EGARCH-N SPAc 0.188 0 0.182 0 0.204 0 0.149 0

SPAu 0.188 0 0.182 0 0.204 0 0.149 0

SPAl 0.680 0 0.673 0.868 0.721 0.882 0.735 0.878
EGARCH-t SPAc 0.280 0 0.315 0 0.36 0 0.345 0.002

SPAu 0.289 0 0.319 0 0.374 0 0.354 0.003

SPAl 0.547 0 0.494 0.853 0.535 0.879 0.547 0.874
EGARCH-GED SPAc 0.227 0 0.249 0 0.256 0 0.260 0

SPAu 0.234 0 0.249 0 0.256 0 0.260 0

SPAl 0.379 0 0.137 0.850 0.131 0.887 0.113 0.880
GJR-N SPAc 0.102 0 0.028 0 0.028 0 0.026 0

SPAu 0.102 0 0.028 0 0.028 0 0.026 0

SPAl 0.444 0 0.289 0.846 0.291 0.886 0.305 0.886
GJR-t SPAc 0.125 0 0.093 0 0.084 0 0.084 0

SPAu 0.125 0 0.093 0 0.084 0 0.084 0

SPAl 0.393 0 0.188 0.852 0.211 0.886 0.182 0.878
GJR-GED SPAc 0.106 0 0.043 0 0.052 0 0.039 0

SPAu 0.106 0 0.043 0 0.052 0 0.039 0

: Note: This table presents the p-values of White�s (2000) Reality Check test, and Hansen�s (2005) Superior Predictive
Ability test. The SPAl, SPAc, SPAu are the lower, consistent, and upper p-values from Hansen (2005), respectively.
Each row contains the benchmark model. The null hypothesis is that none of the alternative models outperform the
benchmark. The p-values are calculated using 3000 bootstrap replications with a block length of 2.
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Table A.2: Reality Check and Superior Predictive Ability Tests

One Day Five Days Twenty-one Days Sixty-three Days
Benchmark MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE

SPAl 0.564 0 0.684 0.853 0.741 0.887 0.789 0.881
MS-GARCH-N SPAc 0.166 0 0.237 0 0.290 0 0.373 0

SPAu 0.188 0 0.271 0 0.290 0 0.373 0

SPAl 0.534 0 0.572 0.858 0.624 0.885 0.644 0.887
MS-GARCH-t SPAc 0.196 0 0.215 0 0.233 0 0.240 0

SPAu 0.196 0 0.215 0 0.237 0 0.251 0.001

SPAl 0.390 0 0.264 0.846 0.287 0.872 0.291 0.883
MS-GARCH-GED SPAc 0.050 0 0.037 0 0.043 0 0.043 0

SPAu 0.050 0 0.037 0 0.043 0 0.048 0

SPAl 0.528 0 0.009 0.001 0.009 0 0.005 0.051
FIGARCH-N SPAc 0.124 0 0.009 0.001 0.009 0 0.005 0

SPAu 0.175 0 0.009 0.001 0.009 0 0.005 0

SPAl 0.714 0 0.012 0.007 0.008 0.002 0.004 0.003
FIGARCH-t SPAc 0.232 0 0.012 0 0.008 0.002 0.004 0

SPAu 0.307 0 0.012 0 0.008 0.002 0.004 0

SPAl 0.146 0 0.01 0 0.008 0.003 0.004 0.005
FIGARCH-GED SPAc 0.146 0 0.010 0 0.008 0.001 0.004 0.005

SPAu 0.146 0 0.01 0 0.008 0.003 0.004 0.005

SPAl 0.984 1 0.977 1 0.979 1 0.980 1
RiskMetrics SPAc 0.687 0.690 0.692 0.653 0.663 0.655 0.671 0.610

SPAu 0.687 1 0.692 1 0.663 1 0.827 1

: Note: This table presents the p-values of White�s (2000) Reality Check test, and Hansen�s (2005) Superior Predictive
Ability test. The SPAl, SPAc, SPAu are the lower, consistent, and upper p-values from Hansen (2005), respectively.
Each row contains the benchmark model. The null hypothesis is that none of the alternative models outperform the
benchmark. The p-values are calculated using 3000 bootstrap replications with a block length of 2.
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