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1 Introduction

The use of structural vector autoregressions to estimate the effect of oil supply and demand shocks

on economic activity has become common since Kilian (2008). However, whereas there appears to be

an agreement regarding the usefulness of such econometric tool, there is considerable disagreement

concerning the size of the effect of oil supply shocks on real oil prices and economic activity. For

instance, among the studies reviewed in this paper, estimates of the effect on the real oil price of

an unexpected decline in world oil supply —scaled to imply a 1% reduction in monthly world oil

production—vary from 0.05% to 4.27% with the peak occurring at four and two months after the

shock, respectively. In turn, estimates of the cumulative four-quarter loss in U.S. real GDP a year

after the shock range from -0.14% to -0.51%.

Consider a researcher who is interested in estimating the effect of oil supply shocks on real oil

prices or a policy maker who wants to assess the impact of oil supply disruptions on economic

activity. How should he or she model the global market for crude oil? How would different

modeling choices affect the estimated response of real oil prices and U.S. real GDP and inform

policy decisions? Can recent micro-level estimates of the oil supply elasticity inform the researcher’s

prior on the short-run elasticity of supply and, if so, how would relying on different estimates of

this elasticity affect his or her inference regarding the effect of oil supply disruptions on the U.S.

real GDP?

To answer these questions, we start by estimating four alternative structural vector autore-

gressive (SVAR) models for the global crude oil market that have shaped the recent literature1

and have been used by practitioners to inform policy (i.e., Kilian 2009; Kilian and Murphy 2012,

2014; Baumeister and Hamilton 2018). We then evaluate how alternative modelling strategies (e.g.,

identification assumptions, period spanned by the data, lag length) map into different conclusions

regarding the effect of oil supply shocks on real oil prices and U.S. real GDP. We complement our

analysis by re-evaluating two additional VAR specifications (Lippi and Nobili 2012; Baumeister and

Peersman 2013b) aimed at tackling two additional questions: (a) What do we learn from separating

shocks stemming from the U.S. from the rest-of-the-world? (b) What does a time-varying parameter

VAR tell us about the responsiveness of U.S. economic activity to oil supply disturbances?

The reader may ask, why focus on the role of oil supply shocks? First, in the last decade

1When this paper was written, the Google Scholar citation count was 2270 for Kilian (2009), 291 for Kilian and
Murphy (2012), 759 for Kilian and Murphy (2014), 314 for Baumeister and Peersman (2013b), 217 for Lippi and
Nobili (2012) and 62 for Baumeister and Hamilton (2018).
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a consensus had emerged regarding the smaller role of supply relative to demand driven shocks

(Baumeister and Kilian, 2016). Nevertheless, recent work by Baumeister and Hamilton (2018)

has prompted academics and policy makers to revisit the way prior information is used to conduct

inference in structural vector autoregressive models of the oil market. Indeed, they obtain estimates

of the effect of oil supply shocks that are considerably larger than suggested by earlier studies (e.g.,

Kilian 2009, Kilian and Murphy 2012, 2014) and larger than any microeconometric estimates of that

elasticity (e.g., Anderson et al. 2018, Bjørnland et al. 2017, Newell and Prest 2018). Hence, our

interest in analyzing how alternative modeling assumptions map into different conclusions regarding

the importance of oil supply shocks. Second, the surge of U.S. shale oil production —and the

corresponding reduction in U.S. net oil imports—led energy pundits and journalists to hypothesize

that U.S. oil security had improved and, thus, that the macroeconomic costs of unanticipated oil

supply shocks on U.S. economic activity had decreased. Yet, the International Energy Agency has

recently warned that U.S. shale oil forecasts might have been too optimistic and that the world’s

reliance on the U.S. shale oil potential is risky (Bloomberg, November 12, 2018).2

Our paper makes several contributions. First, we show that imposing a larger bound on —or

allowing for a prior that places a greater probability on large values of—the short-run price elasticity

of oil supply results in smaller estimates of the short-run price elasticity of demand in production

and a larger response of real oil prices to oil supply disruptions.3 Second, we document how

alternative identification assumptions map into significant differences in the size and persistence

of the response of U.S. real GDP to oil supply disturbances. Third, we show that using larger

dimension VARs —without imposing adequate restrictions— might lead to larger, yet imprecise,

estimates of the cumulative loss in U.S. real GDP. Fourth, we examine the role of using pre-1973

data, longer lag lengths, using the median response function instead of the modal structural model,

and using alternative measures of aggregate economic activity in accounting for the differences in

the response of real oil prices and U.S. real GDP to oil supply shocks. Last but not least, we

show that allowing for a prior that attaches considerable probability mass to larger values of the

short-run elasticity of oil supply leads the researcher to infer a more elastic one-month oil supply, a

less elastic short-run demand, a more responsive real oil price, and a larger one-year cumulative loss

in U.S. real GDP. That is, if the researcher is willing to condition on a prior that has support on a

range of supply elasticities that is backed by microeconometric evidence, the disagreements in the

2See also Kilian (2016, 2017).
3These results confirm the findings of Kilian and Murphy (2012) for their sign-identified model.
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literature regarding the response or real oil prices are much smaller than they initially appear and

closer to the original conclusions of Kilian (2009) and Kilian and Murphy (2012, 2014). Moreover,

use of the same measure of economic activity diminishes the differences in the response of real oil

price and U.S. real GDP across models.

This paper unfolds as follows. The next section describes the SVAR models used to analyze

the role of oil supply and demand shocks on real oil prices and economic activity. Section 3 briefly

describes the data. The following section discusses the effects of oil supply shocks real oil prices.

Section 5 analyzes the response of U.S. real GDP. Section 6 explores the role of alternative priors

on the short-run price elasticity of oil supply. The next section investigates the sensitivity of the

results to ignoring the pre-1973 data, increasing the lag length, summarizing the estimation results

under alternative loss functions, and using alternative measures of world economic activity. Section

8 summarizes and concludes.

2 SVAR models for the world crude oil market

This section revisits the SVAR specifications of the world oil market evaluated in this paper.

2.1 Kilian (2009)

Barsky and Kilian (2001, 2004) and Kilian (2008, 2009) first underscored the importance of sepa-

rately identifying the effect of supply and demand driven shocks on the real price of oil. In the years

preceding these studies it was common to estimate responses to oil price shocks that implicitly were

a composite of demand and supply driven innovations. Work by Kilian (2009) suggested that this

thought experiment needed to be reevaluated.

Kilian (2009) —hereafter K09—specified a model for the global oil market as follows. Let yt

represent a vector of observable monthly variables assumed to be governed by the structural vector

autoregression:

B0yt =

24∑
i=1

Biyt−i + εt (1)

where yt =
[
qt reat pt

]′
, qt is the percentage change in global oil production, reat is a suitable

index of real global economic activity, pt is the real price of oil, εt is a vector of serially and mutually

uncorrelated structural innovations, B0 is a 3 × 3 matrix of contemporaneous coeffi cients and the
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Bi are 3× 3 matrices of lagged coeffi cients.4

Identification is obtained by assuming that B−1
0 has a recursive structure. Crude oil supply is

assumed not to respond contemporaneously (within a month) to innovations in the demand for oil.

In addition, innovations in real oil prices that are driven by shocks to the oil market are assumed to

have no contemporaneous effect on global economic activity. These restrictions imply a structural

model of the form

ut ≡


u∆prod
t

ureat

urpot

 =


b11 0 0

b21 b22 0

b31 b32 b33




εoil supply shockt

εaggregate demand shockt

εoil-market-specific demand shockt

 = B−1
0 εt (2)

Two modeling choices are key forK09′s identification scheme. First, having the oil supply shock

first in the Wold causal chain implies that the short-run supply curve is vertical. This assumption

is supported by (a) anecdotal evidence regarding the response of oil producers to demand-induced

price shocks, (b) theoretical work by Anderson, Kellogg, and Salant (2018) who show that oil

producers should respond by changing investment, but not current production, and (c) direct

estimates of the price elasticity of supply close to zero. We will return to the importance of the

short-run price elasticity of supply in section 6. Second, oil-market specific demand shocks are

assumed to have no contemporaneous effect on real economic activity, which is consistent with

Kilian and Zhou’s (2018a) evidence that the real economic activity index is not driven by changes

in the real price of oil.

2.2 Kilian and Murphy (2012)

Kilian and Murphy (2012) —hereafter KM12—use the tri-variate VAR setup in (1) but, instead

of imposing exclusion restrictions as in K09, they attain identification via sign restrictions. They

show that agnostic sign-restrictions on their own are not enough to infer the response of real oil

prices to structural shocks. Instead, they find that sign restrictions combined with bounds on the

short-run price elasticity of oil supply are required for identification. Their approach consists of the

following steps. First, they impose sign restrictions on the impact responses (see Table A.1 in the

online appendix). These imply that: (a) in response to an unanticipated oil supply decrease, oil

production falls, the real oil price increases, and global economic activity falls; (b) in response to

an unanticipated aggregate demand increase, global oil production, global real economic activity

4We exclude the constant for simplicity.
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and the real oil price increase, and (c) in response to an unanticipated increase in oil-specific

demand, global real activity falls whereas oil production and prices increase. Second, they impose

an upper bound of 0.0258 on the short-run oil supply elasticity.5 This restriction is motivated by

the presence of adjustment costs, which would prevent crude oil production from responding to

unexpected demand shifts within the month.

Our identification strategy departs slightly from KM12 and follows instead Inoue and Kilian

(2013) in imposing additional dynamic sign restrictions on the response of the real oil price to the

structural shocks. Namely, the response of the real oil price to oil supply disruptions, positive

aggregate demand and oil-specific demand shocks is assumed to be non-negative for twelve months.

2.3 Kilian and Murphy (2014)

Kilian and Murphy (2014) —hereafter KM14—refined the framework of their earlier study by adding

changes in global crude oil inventories to the VAR model and by modifying the identifying restric-

tions accordingly. These modifications allowed them to identify the effect of storage demand shocks

driven by oil price expectations and to quantify the short-run price elasticity of demand, which

was not explicitly defined in the previous models. Their identification strategy is summarized as

follows. First, they impose the following sign restrictions on the impact multiplier (see Table A.1 in

the online appendix): (a) An unanticipated flow supply shock causes oil production to decline, the

real price of oil to increase, and global real economic activity to fall; (b) An unanticipated increase

in flow demand causes oil production, global real economic activity and the real oil price to increase

on impact; (c) A positive speculative (or storage) demand shock raises world oil production, the

real price of oil, and crude oil inventories; yet it leads to a decline in real economic activity. Second,

they impose an upper bound on the impact price elasticity of oil supply (0.0258 in the baseline

model). Third, KM14 limit the impact elasticity of oil demand in use to lie between -0.8 and

0. This amounts to imposing the restriction that the short-run price elasticity of demand cannot

exceed the long-run elasticity as estimated by Hausman and Newey (1995) and Yatchew and No

(2001). Fourth, they limit the response of the real oil price to a negative oil supply shock to be

non-negative for 12 months and the response of oil production and global real economic activity to

the same shock to be non-positive for 12 months.

5As mentioned in the previous section, recent estimates of the oil supply elasticity vary from numbers close to zero
(Anderson, Kellogg and Salant, 2018) to numbers closer to 0.04. In that sense, Kilian and Murphy’s (2012) bound
would seem conservative relative to the first studies but too small for the latter. While we return to this issue later
in the paper, it is worth noting here that Kilian and Murphy (2012) show that their results are robust to imposing a
less restrictive bound of 0.09.
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2.4 Baumeister and Hamilton (2018)

The baseline model of Baumeister and Hamilton (2018) —hereafter BH18—is given by:

B0yt =
12∑
i=1

Biyt−i + εt, (3)

where

yt =
[
qt zt pt ∆it

]′
, B0 =


1 0 −αqp 0

0 1 −αyp 0

1 −βqy −βqp −χ−1

−ψ1 −ψ2 −ψ3 1

 , εt =


ε∗1t

ε∗2t

ε∗3t − χ−1et

χε∗4t + et

 ,

∆it = χ∆i∗t + et (4)

z, is the world industrial production index, ∆it represents a measure of the change in OECD

crude-oil inventories as a percentage of the previous month’s world oil production, χ < 1, and et

is a classical additive Gaussian measurement error. Note that the number of lags included in this

specification is considerably smaller than in previous models (i.e., 12 instead of 24). BH18 note

that the system in (4) needs to be modified because the elements in εt are contemporaneously

correlated due to the assumption of the measurement error, et. Uncorrelated structural shocks are

obtained by premultiplying the system in (4) by

Γ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 ρ 1

 where ρ = χ−1σ2e
d∗33+χ−2σ2e

and D =


d∗11 0 0 0

0 d∗22 0 0

0 0 d∗33 + χ−2σ2
e −χ−1σ2

e

0 0 −χ−1σ2
e χ2d∗44 + σ2

e

 .
To attain identification, explicit Bayesian priors are imposed on parameters of B0. The re-

searcher’s information and/or beliefs about the contemporaneous coeffi cients are summarized in

terms of a prior distribution on the elements of B0, p [B0] . Table A.2 in the online appendix

summarizes the priors for the main variables of interest (e.g., short-run price elasticity of supply,

short-run price elasticity of demand in production). We refer the reader to BH18 for a complete

description of restrictions imposed on the model, which include —but are not limited to— setting

ψ2 = 0, and defining prior distributions for ρ, χ, h2 =
det(B−10 )−αypβqy

det(B−10 )
and det(B0). Note that

BH18, unlike earlier studies, construct some of their priors based on estimating their model on

pre-1973 data. While we follow their strategy and specify the priors in the same manner, it is worth
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noting that using pre-1973 data to estimate the effect of oil supply shocks on the U.S. economy

could be problematic as prices were controlled by the Texas Railroad Commission until the early

1970s and no integrated global oil market existed.

We conclude this section by highlighting important differences in the identification schemes

described above. K09, KM12, and KM14 impose exclusion or inequality restrictions on the

elements of B−1
0 . In contrast, BH18 impose Bayesian priors and zero restrictions on the el-

ements of B0. Therefore, the strategy used by BH18 does not impose the same identification

assumptions as KM12 or KM14; more specifically, it does not impose any cross-equation re-

strictions or dynamic sign restrictions (see Kilian and Lütkepohl (2017) and Kilian and Zhou

(2018) for an in-depth discussion). However, the priors used by BH18 imply prior distribu-

tions and probable signs6 for the elements of B−1
0 = 1

det(B0) × adjugate(B0) = 1
det(B0) × C where

det(B0) = χ−1
(
−ψ3 + χαpq − χβpq − ψ1αpq − χαpyβqy

)
and

C =


− 1
χ

(
ψ3 + χβqp + χαypβqy

)
αqpβqy αqp

1
χαqp

− 1
χ (χαyp − ψ1αyp) − 1

χ (ψ3 + ψ1αqp) +
(
βpq − αqp

)
αyp

1
χαyp

− 1
χ (χ− ψ1) βqy 1 1

χ

−ψ3 − ψ1βpq − ψ1αypβqy ψ3βqy + ψ1αqpβqy ψ3 + ψ1αqp αqp − βpq − αypβqy

 .
In addition, a key difference between BH18 and previous studies is that they specify a prior

for the price elasticity of oil supply that assigns a 94% probability mass to values that exceed

the 0.0258 of KM12 and KM14 or the 0.04 bound considered by Zhou (2019) when replicating

KM14’s findings.

2.5 Lippi and Nobili (2012)

Lippi and Nobili’s (2012) —hereafter LN12—identification strategy is similar to KM12 in the use

of sign restrictions. However, they deviate in three important ways. First, their SVAR includes —in

addition to real oil prices and oil production—real prices in the U.S. economy, the U.S. industrial

production index, and a measure of the business cycle in the rest of the world (RoW output).

Second, in contrast with KM12 and KM14, no bounds or dynamic sign restrictions are imposed

(see Table A.1 in the online appendix for impact sign restrictions). Third, they build a theoretical

three-country model derived from Backus and Crucini (2000), which allows them to map five

fundamental shocks to the observed responses of relative prices and production.

6See Table 2 of Baumeister and Hamilton (2018) for prior and posterior probabilities that the impact of a particular
structural shock on the VAR variables is positive.
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2.6 Baumeister and Peersman (2013)

Baumeister and Peersman (2013b) —hereafter BP13—were the first to use a time-varying coeffi cients

SVAR. Three modeling choices are key in BP13′s. First, quarterly, instead of monthly, data is used.

Second, they employ the rate of growth of U.S. real GDP as a measure of economic activity, real oil

prices are expressed in rates of growth and U.S. CPI inflation is included in the SVAR. This model

allows for direct estimation of the effect of oil supply shocks on U.S. real GDP. However, it does not

capture movements in demand stemming from the rest-of-the-world that are not reflected in the

latter. Third, the identification of oil supply shocks is "based on the sign restrictions that (these

shocks move) oil prices and oil production in the opposite direction" for four quarters following the

shock. No additional sign restrictions are imposed. This SVAR is partially identified as only the

supply shock has a structural interpretation.7 For this reason, and to economize space, we have

opted to report the results in the online appendix.8

3 Data

Although the data for the above-described studies are available from the data repository or from

the authors, we reconstruct the series using the original sources and apply the same transformations

as in the original studies. To facilitate the comparison across alternative specifications, the monthly

data used in all SVARs cover the same sample period of January 1973 to December 2016.

World oil production is obtained from the Monthly Energy Review published by the Energy

Information Agency (EIA) and is measured in thousands of barrels per day. Kilian’s (2009) index

of global economic activity is computed as the cumulative average rate of increase in bulk dry cargo

ocean freight rates, deflated by the U.S. CPI and linearly detrended.9 The log of the real oil price

is measured as the log difference between the refiners’acquisition cost (RAC) of imported crude

oil and the U.S. CPI. The refiners acquisition cost is provided by the EIA starting in January of

1974. We extrapolate the data from January 1974 until January 1973 following Barsky and Kilian

(2002). Data for the CPI are obtained from the St. Louis Fed FRED database. In all SVAR

7 In a separate paper, Baumeister and Peersman (2013a) identify both supply and demand driven shocks in a
model for the world oil market. Given our interest in supply disruptions, and for the sake of brevity, we will not
re-visit the latter. However, we note here that the results for both models are qualitatively similar.

8See http://gattonweb.uky.edu/faculty/herrera/documents/HRoilAppendix.pdf.
9The updated time series for this index is available from Lutz Kilian’s website at http://www-

personal.umich.edu/~lkilian/reaupdate.txt.See Kilian (2009) and Kilian and Zhou (2018a) for a detailed description
of the methodology employed to compute the index and a comparison with alternative indicators of global real
economic activity.
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models the world oil production enters as a log growth rate. RoW output for LN12 is calculated

as global exports to the world net of global imports from the U.S. and from oil exporting countries.

These data are obtained from the IMF. RoW output is expressed in real terms and measured in

logarithms.

Because data for inventories are not available for countries other than the US, we follow KM14

in using data from the EIA for total US crude oil inventories, as well as US and OECD petroleum

stocks to compute a proxy. The inventory proxy is calculated by multiplying US crude oil inventories

by the ratio of OECD to US petroleum stocks. This ratio ranges from 2.23 to 2.61 in our sample,

which is almost identical to the 2.23 to 2.59 range in the original KM14 sample (1973:1-2009:8).

Although KM14 and BH18 use the same proxy for the level of world crude oil inventories, they

use a different transformation of the series in their SVAR. We preserve the transformations used in

each paper and, thus, include the change in the inventory proxy for KM14 model and the change

in world inventories as a fraction of last month’s world oil production for the BH18 model. In

addition, BH18 measure global economic activity as the log change in the industrial production

index for the OECD and the six major non-member economies (Brazil, China, India, Indonesia, the

Russian Federation and South Africa) instead of using Kilian’s index of real economic activity.10

4 The Effect of Oil Supply Shocks on Real Oil Prices

This section describes the effects of oil supply shocks on real oil prices implied by alternative SVAR

specifications.

4.1 Preliminaries

The procedures for estimating the impulse response functions from VAR models with a recursive

structure are straightforward. In contrast, inference in sign-identified models warrants some dis-

cussion. Until recently, the convention in summarizing the results of sign-identified models was to

report the vector of pointwise posterior medians of the impulse responses in conjunction with the

pointwise 100(1− α)% posterior error bands. However, there are two concerns with that practice.

First, as noted by Fry and Pagan (2011), KM12 and Inoue and Kilian (2013), these point esti-

mates do not correspond to one particular admissible model. Hence the median response has no

10Note that data on industrial production is not available for the whole sample period for the non-member countries.
Data become available in January 1975 for Brazil, April 1994 for India, January 1986 for Indonesia, January 1993 for
Russia, January 1999 for China, and January 1990 for South Africa.
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structural interpretation. Second, the vector of pointwise medians is not an appropriate measure of

central tendency for the impulse response functions (see Inoue and Kilian 2013). To address these

concerns, Inoue and Kilian (2013) suggest reporting the impulse responses for the modal model

among the admissible models. The modal model is defined as the admissible model that maximizes

the joint posterior density of the admissible SVAR models. In addition, Inoue and Kilian (2013)

propose conducting joint inference by reporting the 100(1− α)% highest posterior density (HPD)

credible sets for the admissible models. These joint credible sets are constructed by ranking the

admissible models based on the value of the joint density and taking the set contained in the first

(1 − α)Q sorted pairs of response functions and joint densities, where Q denotes the number of

admissible models among the total draws used to compute the response functions.

Hence, we deviate from KM12 who report the impulse response functions for all the admissible

models and from KM14 who depict the model with an impact price elasticity in oil demand use

that is closest to the posterior median of the elasticity among admissible models. Instead, we follow

Inoue and Kilian (2013) in reporting the responses for the modal model as well as the 95% pointwise

HPD credible sets.11 For ease of comparison, we report the posterior median for all models butK09,

noting that these summary statistics have to be interpreted with caution for the reasons outlined

above.

BH18 report the pointwise posterior median response function and the pointwise 95% posterior

credible sets.12 Their methodology does not allow for the construction of joint credible sets as pro-

posed by Inoue and Kilian (2013). Thus, for the Bayesian VAR of BH18 we follow their estimation

procedure and report the same statistics.

4.2 Estimation Results: From exclusion restrictions to Bayesian analysis

Figure 1a reports the responses of oil production and real oil prices to an oil supply disruption

normalized to represent the effect of an unexpected 1% decline in monthly world oil production. The

top panels of Figure 1a depict the responses for K09′s specification and the one and two standard

deviation error bands computed via a recursive-design wild bootstrap. World oil production remains

below its trend for more than twelve months after the shock, but the increase in the real oil price

11We refer the reader to Inoue and Kilian (2013, 2018) for a step-by—step description of the computation procedure.
We use M = 5000 draws from the joint posterior distribution of the reduced-form VAR parameters with N = 20, 000
rotations each.
12Baumeister and Hamilton (2018) justify reporting the median response function because it corresponds to the

solution to a loss function involving the sum of the absolute loss of the vector of structural responses. As noted
in Kilian and Lütkepohl (2017), this loss function assumes the user does not care about dependence of the impulse
response across horizons and variables and, hence, is not likely to reflect the preferences of typical VAR users.
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is small and short-lived. For instance, six months after the shock the real oil price has increased

by only 0.05%. These results are very similar to the original estimates obtained by Kilian (2009)

using data spanning the period between January 1973 and December 2007.

Figure 1a illustrates the responses of oil production and the real price of oil obtained from

KM12’s sign-identified SVAR. The black and blue lines represent the pointwise posterior median

and the structural modal model, respectively. The red area corresponds to the 95% HPD credible

set. The response of oil production is persistently negative and very similar to that implied by K09.

As for the real oil price, the response function for the modal model reveals a significant increase

for the first twelve months. The increase in the real oil price is considerably larger than in K09.

For instance, six months after the shock the real oil price is estimated to rise 1.4% instead of the

less than 0.05% increase in K09. Although imprecisely estimated, the response in the modal model

peaks at 2.1% sixteen months after the shock.

Figure 1a displays the responses for KM14. Modeling storage demand leads to a somewhat less

persistent response of oil production but larger increase in real oil prices than in KM12. The real

price of oil rises for two months, reaches a peak increase of 2.38% and then starts to decline. Eight

months after the shock, the real oil price has returned to its initial level.

The responses for BH18 are plotted in Figure 1a. The black line represents the pointwise

posterior median and the red area depicts the 95% posterior credible sets. The dynamic response

of oil production is similar to the previous specifications. However, the response of the real oil

price is quite distinct. For instance, an unexpected 1% decline in world oil production raises the

real price of oil by 4.27% at the peak (2 months after the shock). Contrast this with the 2.38%

increase (two months after the shock) in KM14′s modal model, the alternative specification with

the largest effect and the only other model that includes inventories.

How do differences in the response of the real oil price relate to the underlying SVAR specifi-

cation? To answer this question Panel A of Table 1 reports the short-run (impact) elasticities of

supply and demand implied by the SVARs.13 Recall that the short-run elasticity of oil supply is

assumed to be zero in K09, and bounded above by 0.0258 in KM12 and KM14. The estimated

supply elasticity in the modal model for KM12 and KM14 is not very different from zero (0.019

and 0.017, respectively) and very close to the state-of-the-art microeconometric estimate of the

U.S. oil supply elasticity in Newell and Prest (2018). In contrast, for BH18 where a Student-t

prior distribution is assumed for αqp, which puts substantial probability weight on larger elasticity

13For reference, estimates obtained using the original samples are reported in the online appendix.
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values than permitted in KM12 and KM14, the posterior median (0.144) is considerably larger

than current microeconometric elasticity estimates.

The traditional approach to computing the short-run price elasticity of oil demand has been to

divide the impact response of oil production to an oil supply shock by the impact response of the

real oil price to the same shock. As Table 1 shows, the smaller the price elasticity of oil supply, the

larger the corresponding traditional price elasticity of oil demand. Under the recursive identification

scheme of K09, we obtain an estimate of -3.131, and of -1.723 in the sign-identified model of KM12.

However, because storage demand is not modeled in K09, or KM12, the traditional measure of

the short-run price elasticity of oil demand is invalid (see KM14). In fact, the price elasticity of

oil demand is not well-defined in models excluding oil inventories (For an in-depth discussion see

Kilian and Zhou, 2018a).

KM14 emphasize the importance of distinguishing between the price elasticity of oil demand in

production and in use in a world where crude oil inventories change over time. The latter measures

the change in the quantity of oil brought about by an oil supply shock as the change in the flow of

oil production plus the change in crude oil inventories. KM14 show that traditional estimates of

the price elasticity of oil demand can be quite misleading. Indeed, the short-run demand elasticity

in production for the modal model in KM14 equals -0.546, whereas the corresponding demand

elasticity in use is -0.260. In addition, extending the sample used by KM14 leaves the estimate of

the demand elasticity in use virtually unchanged (see Table A.3 of the online appendix for estimates

obtained with the original sample).

While BH18′s setup does not allow for the computation of the oil demand elasticity in use (see

Kilian and Zhou, 2018b) —the relevant elasticity when accounting for storage demand- we are able

to compare the demand elasticity in production. Note that the posterior median for the demand

elasticity in production in BH18 equals -0.356 and the 95% posterior credible set covers (-0.803

-0.152). The posterior median for BH18 is considerably smaller than the demand elasticity in

production estimated for K09 and KM12.

These results confirm that modeling storage demand is key for pinning down the relevant elas-

ticity of demand and is linked to a larger and more persistent response of oil prices to supply

disruptions. Hence, practitioners interested in estimating the effect of oil supply (and demand)

shocks on the real oil price should give serious consideration to the role of storage demand in the

world oil market as indicated by KM14.

Finally, differences in the impulse response functions can be traced to differences in the estimated

13



impact multiplier, B−1
0 . Panel C of Table 1 reports the estimates of B−1

0 for the structural modal

model in KM14 and the posterior median for BH18, the two models with the largest divergence

in response functions and similar definitions of yt.14 Three discrepancies emerge. First, whereas

KM14 specification offers little evidence against the null of a vertical oil supply curve —all but the

first element of the first row are very close to zero—, BH18’s specification would not support an

inelastic supply. Second, the first column indicates very different impact responses to oil supply

disturbances. KM14 model implies a large impact on real economic activity and a muted impact

response of real oil prices —see (2,1) and (3,1) elements of B−1
0 , respectively—whereas BH18 entails

a small impact of world IP and a large initial response of real oil prices. Third, a large discrepancy is

evident in the impact of oil supply disturbances on inventories inKM14 and BH18. The estimate of

5.088 in KM14′s modal model indicates a large impact on inventories whether the median estimate

of -0.022 in BH18 is very close to zero. All in all, while both identification schemes imply the

same posterior probabilities that the impact of a structural shock is positive (see Table A.6 in the

online appendix), they do entail different estimates of B−1
0 and, thus, discrepancies in the impulse

response functions.

4.3 Disentangling the effects of U.S. and rest-of-the-world shocks?

We now turn to LN12 who seek to disentangle the effects of U.S. and rest-of-the world driven

shocks. The Figure 1a and the fifth column of Table 1 show that the impact effect of an oil supply

disturbance is larger for this specification than all other models. An unexpected 1% decline in world

oil supply leads to an impact increase in monthly oil prices of 12.07%. This increase is persistent

(a year after the shock the price is estimated to have risen 7.15%), but imprecisely estimated. The

posterior median for the short-run price elasticity of supply is very large (0.447) while the estimated

short-run elasticity of demand is close to zero, reflecting the absence of supply elasticity bounds,

which were only introduced by KM12 after LN12 was written.

In brief, adding additional variables to the sign-identified VAR might shed some light into

the role of U.S. versus rest-of-the-world demand shocks. Yet, without additional restrictions, the

estimated elasticities fall way off the magnitudes found in the literature. Moreover, the number of

unrestricted parameters that can be estimated with precision appears to be limited.

14Estimates of B−10 for the other models can be found in Table A.4 of the online appendix.
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5 Oil Supply Shocks and Aggregate Economic Activity

This section evaluates how alternative SVAR models for the global oil market affect our inference

regarding the effect of oil supply shocks on U.S. real GDP. The main hurdle in tackling this question

is that data on GDP are only available at the quarterly frequency. The practitioner might thus

consider constructing an analogous VAR for the world oil market at the quarterly frequency. Yet

the use of quarterly data would invalidate identification schemes that impose restrictions on the

impact multiplier matrix. Instead, we follow a two-step method similar to K09 whereby we first

extract a measure of structural oil supply shocks from the SVAR models, use these series to compute

a quarterly measure of oil supply shocks and then project the real GDP growth on the shocks.

5.1 Empirical Strategy

The first step in estimating the effect of oil supply shocks on U.S. real GDP is to extract the monthly

series of structural supply shocks from the SVAR models.15 For the recursive VAR of Kilian (2009),

an estimate of the structural impact multiplier matrix, B̂−1
0 , is obtained via Cholesky decomposition

of the estimated variance-covariance matrix Ω = E [utu
′
t] where ut = B−1

0 εt. The series of monthly

structural supply shocks (ε1t) corresponds to the first column of the (3× T − p) matrix B0ut. For

KM12 and KM14 we retain the series of structural supply shocks for all admissible models. This

allows us to compute the response of the modal model and the (1 − α)% pointwise HPD credible

sets. For BH18 and LN12 we retain the posterior distribution for the structural VAR model

parameters and the corresponding posterior distribution of monthly structural supply shocks ε∗1t in

(4). This allows us to compute the pointwise posterior median as well as credible regions for the

GDP response.

We construct quarterly measures of oil supply shocks by averaging the monthly structural inno-

vations derived from the SVARs for each quarter (see Kilian 2009). Let ε̂istj denote the estimated

supply shock in month j of the tth quarter implied by each of the i = K09, KM2012, KM2014,

BH18, LN12 SVAR specifications.16 Then, for each specification i, the quarterly measure of oil

15See online appendix for a detailed description of the methodology.
16The structural supply shocks series for K09, KM12, KM14, and BH18 exhibit very similar patterns. In fact,

the correlations range between 0.96 for K09/KM12 and 0.77 for K09/BH18. In contrast, the correlation between
LN12 and the other models ranges from 0.26 for K09 to 0.44 for BH18. Very similar correlations are obtained when
the quarterly measures are used.
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supply shocks is given by

ξ̂
i

st =
1

3

3∑
j=1

ε̂istj , i = K09, KM2012, KM2014, BH18, LN12. (5)

Under the identifying assumption that the quarterly measure of oil supply shocks, ξ̂
i

st, does not

respond to changes in U.S. GDP (∆yt) within the quarter, we may treat ξ̂
i

st as predetermined

with respect to ∆yt. As Kilian (2009) notes the assumption that the series of quarterly shocks are

predetermined with respect to U.S. real GDP growth is not testable. Nevertheless, a correlation

with the innovations that is close to zero would suggest that unanticipated changes in crude oil

supply are not associated with contemporaneous changes in real GDP growth. Examination of

the empirical correlation between the autoregressive residuals of GDP growth and the different

measures of oil supply shocks reveals that the correlations are quite small,17 thus leading credence

to the assumption that the supply shock is predetermined with respect to US real GDP growth.

It is important to note that ξ̂
i

st does not denote the actual decrease in production in a quarter.

Instead, it is an average of the j estimated monthly structural supply shocks in a quarter t.

The third step involves estimating the effect of oil supply shocks on U.S. real GDP, yt, and real

oil prices, opt, via OLS according to the following equations

∆yt = α1,k +
12∑
j=0

β1,j ξ̂
i

st−j + v1,t. (6)

∆opt = α2,k +

12∑
j=0

β2,j ξ̂
i

st−j + v2,t. (7)

where ∆yt and ∆opt represent quarter-to-quarter rates of growth.18 Impulse response coeffi cients

at horizon h are given by the βij’s and, therefore, the number of lags (p = 12) is determined by the

maximum horizon of the impulse response function.19 Standard errors for the recursive VAR are

computed using a block bootstrap (Kilian, 2009) to control for serial correlation in the error term.

To conduct inference on the impulse response functions for KM12 and KM14 we retain the

vector of structural supply innovations for all admissible models. For each of these models, we

17The correlation coeffi cients for all the models are statistically insignificant.
18The use of quarter-to-quarter rates of growth differs from Kilian (2009) who uses an annualized rate of growth

for real GDP.
19This estimation approach was originally applied by Kilian (2009). To ensure that lagged values of ∆yt have no

explanatory power we include up to four lags ∆yt and find no individual or joint significance.
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compute the quarterly measure of oil supply shocks and estimate the effect of the supply shocks

on U.S. real GDP. This allows us to report the response for the modal model as well as 95% joint

HPD credible sets that are consistent with the admissible SVAR models. For ease of comparison,

we also report the pointwise posterior median.

For BH18 and LN12, we retain the series of estimated monthly structural supply shocks for all

the draws or admissible models, respectively. Then, for each replication we compute the quarterly

measure as in (5) and estimate the OLS model in (6). We report the pointwise median response

function as well as the 95% pointwise credible sets.

5.2 The Effect of Oil Supply Shocks on U.S. GDP

Figure 1b summarizes the cumulative responses of the real oil price and the U.S. real GDP to a

one unit increase in ξ̂
i

st for each time-invariant model. The top panels report the responses for

the K09 specification, as well as one and two-standard error bands. The second and third panels

illustrate the posterior median response in black, the response for the modal model in blue, and

the responses for the 95% HPD credible sets for KM12 and KM14, respectively. For BH18 and

LN12 we report the posterior median response and the 95% credible sets.

Figure 1b shows the response of real GDP to an unexpected decrease in world oil production is,

as expected, negative for all specifications. Differences in the SVAR methodology lead to dissimilar

conclusions regarding the response of real GDP to an oil supply shock. First, the magnitude and

shape of the response functions is very similar for the two models that exclude inventories. However,

whereas K09 and KM12 suggest a moderate impact on GDP, the response for KM12 implies a

long-lasting contraction. Second, modeling storage demand in the sign-identified setup of KM14

would lead the researcher to downplay the importance of oil supply shocks.20 The response of real

GDP in KM14 is considerably muted in the short-run relative to KM12 and estimated with a

lower degree of precision. Third, the median impact (-0.454) and one-year (-0.515) responses of

U.S. GDP is largest for LN12 (see Panel B in Table 1).

Nevertheless, the response of the real oil price to a one unit increase in ξ̂
i

st also differs con-

siderably across models (see Figure 1b). Hence, to evaluate the response of U.S. real GDP to a

one percent increase in real oil prices, we calculate the dynamic GDP-oil price multiplier. This

multiplier is computed as the ratio of the cumulative impulse response of these two variables to the

20This result is consistent with the findings in Kilian and Murphy (2014).
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oil supply shock ξ̂
i

st at horizons h :21

Φi
t (h) =

∑h

k=0

∂∆yt+k

∂ξ̂
i
st∑h

k=0

∂∆opt+k

∂ξ̂
i
st

(8)

Panel B of Table 1 reports the dynamic multiplier on impact and one year after the shock

conditional on an oil supply shock, as well as the corresponding median (modal in bold) responses for

real GDP.22 Three results stand out. First, as expected, the impact multipliers for all specifications

are negative, which is consistent with oil supply shocks moving U.S. real GDP and real oil prices

in opposite directions. Second, the impact multiplier is somewhat larger for K09 than KM14 or

BH18. In K09 a negative oil supply shock that drives the oil price down by one percentage point

simultaneously reduces (quarterly) real GDP by about 0.1 percentage points whereas in KM14 and

BH18GDP declines 0.02 percentage points (0.04 in the modal model) and 0.01, respectively.23 Last

but not least, note that the one-year dynamic multiplier suggests that the effect of an oil supply

shock that leads to a 10% increase in real oil prices is of similar magnitude across specifications:

the estimated contraction of U.S. real GDP four quarters after the shock ranges between 0.1% and

0.6% for KM14 and LN12, respectively.

We note here that estimates from a time-varying model (BP13) suggest the cumulative loss in

U.S. GDP growth induced by a 1% decline in world oil production is considerably larger in the 2000s

than in the earlier part of the sample (see top right panel of Figure A.2 in the online appendix).

The largest losses occur in the early 2010s when real oil prices became more responsive and the

short-run price elasticity of demand increased. Yet, the degree of precision is considerably lower in

the later part of the sample. In fact, estimates of the four-quarter GDP loss for the TVP-BVAR

model could be positive or negative for most of the sample.24

Summarizing, we find that SVAR models that place a larger probability on values of the short-

run (one-month) price elasticity of supply away from zero imply a somewhat greater response

of U.S. real GDP to oil supply disturbances a year after the shock. However, once we account

21See Galí and Gambetti (2019) and Ramey and Zubairy (2018) for the computation of dynamic multipliers in
alternative setups.
22Note that the definition of the dynamic multiplier here differs from the multiplier in macroeconomic textbooks

where all else is held equal. Here, except for K09, an unexpected change in oil production does not leave all variables
unchanged.
23Note that the responses for the modal model are very similar in magnitude to the pointwise median.
24See Figure A.1 in the appendix for the median impact response of the real GDP associated 68% and 95% credible

sets.
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for differences in the responsiveness of real oil prices to the quarterly supply shocks, we obtain

similar estimates of the dynamic GDP-oil price multiplier. Including more variables in the SVAR

to disentangle U.S. versus ROW driven shocks results in larger but rather imprecise estimates of

the GDP loss. Finally, while allowing for time-varying parameters suggest some variation in the

response of GDP over time, the estimates lose precision in the last two decades.

We conclude this section by noting that the main insights derived in this section are robust to

using an estimation method that takes into account the mixed-frequency nature of the structural

shocks and U.S. real GDP (see Figure A.5 of the online appendix ). If we use a series of mixed data

sampling (MIDAS) regressions to estimate the GDP responses using local projections (see Jordá

2005 and Ferrara and Guerin 2018), the GDP responses for K09 and KM12 are very similar to

those obtained without accounting the mixed-frequency nature of the data. The only noticeable

differences are that the MIDAS regressions suggest a less persistent and smaller response of oil

supply shocks for KM14 and a more persistent and pronounced response for BH18.

6 The role of the prior on the short-run supply elasticity

Estimation results presented in the previous sections suggest that the researcher’s prior beliefs

regarding the short-run price elasticity of supply are key to estimating the impact of oil supply

shocks on real oil prices and U.S. GDP. To dig deeper into this question, we re-estimate the baseline

model proposed by BH18 imposing a modified prior on αqp. We employ a Student t(cαqp, σ
α
qp, υ

α
qp)

with mode at cαqp = 0.1, scale parameter σαqp = 0.2 and truncated to be positive as in BH18;

however, we truncate the prior to impose a tighter upper bound. First, we truncate our prior at

0.0258 to impose the same upper bound as in KM14. This moves probability mass away from the

right tail of the prior and towards the support αqp ∈ (0, 0.0258]. Note that in BH18′s benchmark

specification the prior probability that the elasticity exceeds the 0.0258 bound imposed in KM14

equals 94%.25

Table 2 reports the posterior median and the 68% credible regions (in parenthesis) for the

short-run price elasticities of oil supply, αqp, and demand, βqp for BH18′s benchmark and the

doubly truncated Student-t prior. Imposing this upper bound on the support results in posterior

median estimates of 0.019 and -1.386 for the supply and demand elasticities, respectively. That

is, the posterior median for the short-run elasticity of supply is an order of magnitude smaller and

25The reader should note that we only change the prior on αqp and do not explore interactions between this prior
and other priors (e.g., the priors on the lagged coeffi cients of the structural equation).
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the short-run elasticity of demand in production is an order of magnitude larger than in BH18′s

benchmark (αqp =0.144, βqp = -0.356), highlighting other important differences between theKM14

and BH18 specifications besides this bound.

Figure 2a illustrates the responses of oil production and real oil prices for the benchmark and

the alternative prior. The only noticeable difference in the response of oil production is a narrower

credible region for the impact response, consistent with the smaller support for the prior. In

contrast, the increase in real oil prices is quite smaller when the prior is bounded above by 0.0258.

The median response of the real oil price twelve months after the shock equals 1.421% instead of

3.685%.

KM12 and KM14 motivate the bound of 0.0258 by appealing to extraneous information. On

the one hand, they cite Kellogg(2011), who uses monthly well-level oil production data from Texas

and finds that oil production does not respond to changes in spot or futures oil prices. On the other

hand, they argue that —even in the presence of spare capacity due to the existence of adjustment

costs—, oil production would barely respond to changes in oil prices within a month. Recent empir-

ical studies would seem to suggest that the price elasticity for conventional oil production is indeed

low. Anderson, Kellogg and Salant (2018) find that oil production from existing wells in Texas does

not respond to changes in oil production. Using data for North Dakota, Bjørnland, Nordvik and

Rohrer (2017) estimate an elasticity of 0.035 for conventional wells and 0.041 for shale oil wells.26

Motivated by the estimates in Bjørnland, Nordvik and Rohrer (2017), we evaluate the sensitivity

of the results a prior for αqp where we impose an upper bound of 0.04 on the supply elasticity

(αqp ∈ (0, 0.04]). This bound is justified as follows. Given that shale oil production amounted to

4% of world oil production in recent years, Bjørnland, Nordvik and Rohrer (2017) short-run price

elasticity estimates (0.076 and 0.035 for shale and conventional wells, respectively, in the model with

fixed effects) suggest a short-supply elasticity of 0.04× 0.076 + 0.96× 0.035 = 0.04 for the world oil

production. Moreover, if we assume that shale oil accounts for 10% of the world oil production —i.e.,

the Energy Information Agency’s (2018) estimate of the percentage of world’s crude oil technically

recoverable from shale oil resources in the United States and 137 shale formations in 41 other

countries—, then we obtain the same the world short-run supply elasticity (0.9×0.035+0.1×0.072 =

0.04). This bound is still an order of magnitude smaller than the benchmark estimate in BH18.

In fact, for most of our sample the production of unconventional wells was negligible; hence, this

26Note that a higher estimate of 0.072 is obtained for the short-run elasticity of shale oil wells when year and well
fixed effects (FE) are excluded. However, neither estimate (with or without FE) is statistically different from zero.
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bound of 0.04 is rather generous. Indeed, using drilling and production data from wells in Texas,

Oklahoma, North Dakota, California and Colorado, Newell and Prest (2018) estimate the elasticity

of oil supply for conventional and unconventional wells to equal -0.02 and 0.12, respectively. These

estimates would suggest a world elasticity of supply of 0.01, which is even smaller than the 0.0258

bound of KM12 and KM14.

In related work, Caldara, Cavallo and Iacoviello (2018) infer higher oil supply elasticities than

KM12 and KM14. They first identify episodes of large country-specific drops in oil production.

Narrative records are then used to classify these episodes as endogenous or exogenous. Finally, for

each country and month, all the exogenous declines in other countries are used to construct an

instrument. Estimates of the short-run elasticity of supply vary from 0.054 for narrow set of IV to

0.081 for a broader IV set. A larger supply elasticity of 0.10 is implied by their baseline VAR when

a pair of short-run supply and demand (in production) elasticities is selected by minimizing the

Euclidean distance between the VAR admissible elasticities and the target elasticities (αqp = 0.081

and βqp = −0.080). Thus, for our last thought experiment we bound the prior above by 0.10,

αqp ∈ (0, 0.10].27 Of course, unlike the micro estimates discussed earlier, this estimate cannot be

considered extraneous evidence since it was derived from a model and data set similar to that of

BH18 in several dimensions, nor is it based on micro-level evidence. Thus, our analysis of this oil

supply elasticity value is only exploratory.

Table 2 reports the results obtained with these two alternative priors .The estimation results

confirm that when the upper bound on the support of αqp increases, the responsiveness of real oil

prices to oil supply shocks rises while that of the world industrial production decreases. As Figure

2a illustrates, the median response of oil production varies little while, not surprisingly, a tighter

bound on the prior results in a tighter 95% credible set for the impact response. Regarding the real

oil price, a tighter upper bound on the prior leads to a smaller response on impact and overtime.

Indeed, significant differences are observed across alternative priors in the response of the real oil

price twelve months after the shock (see Figure 2a). As for real GDP, imposing a prior that attaches

a larger probability mass to values of αqp away from zero, would lead to infer that the recessionary

effect of oil supply shocks is somewhat smaller (see Figure 2b). This result is consistent with the

decreasing responsiveness of the world industrial production index as the prior is relaxed (see last

column of Table 2). In brief, the prior on αqp plays a key role in the estimated responsiveness of

27Because the baseline VAR of Caldara, Cavallo and Iacoviello (2018) does not include inventories, the target for
βqp is akin to a demand elasticity in production and not in use. Hence, the pair of admissible elasticities is not
directly comparable to Kilian and Murphy (2014).
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real oil prices and U.S. real economic activity to oil supply shocks.

We conclude this section with a caveat. We have restricted ourselves to investigate alterna-

tive priors on the short-run supply elasticity by maintaining the prior Student t distribution with

location parameter, cαqp = 0.1, scale parameter σαqp = 0.2, and υαqp = 3 degrees of freedom, but

truncating it above at different values suggested by the existing literature.28 Exploring the role of

alternative prior distributions is a research question that we leave for future work. For example,

imposing an exponential prior would have been more economically appealing than the Student-t

prior. However, this section shows that for any prior that is consistent with state-of-the-art micro-

economic estimates, the impulse response estimates for BH18 imply effects on real oil prices and

U.S. real GDP that are very similar to the earlier studies of K09, K12, and K14.

7 Other differences in specification

Additional specification differences between BH18 and their predecessors comprise the use of earlier

data, the VAR lag length, the loss function —median response function vs. modal structural model—,

and the measure of real economic activity. We discuss the role of these differences here, but relegate

the figures to the online appendix (see Figure A.3).

Before 1973 the price of oil was regulated in the U.S. by the Texas Railroad Commission (see

e.g., Hamilton 1983, 1985). A new regime in the global oil market seems to have begun in the early

1970s as the U.S. dependence on oil imports increased and oil prices became more responsive to

supply and demand movements. It has been noted that there was a major break in the process

governing the price of oil in late 1973 as well as a major break in the correlation between growth

in real GDP and the real price of oil (see, e.g., Alquist, Kilian and Vigfusson 2013). These changes

in the global oil market motivated K09, KM12, and KM14′s choice to restrict the sample to the

post-1973 period. In contrast, BH18 use earlier data to construct their prior but assumed the

pre-1973 data to be 1/2 or 1/4 less informative (µ = 0.5, 0.25) than the later data. We further

investigate the sensitivity of BH18 and our results by setting µ = 0, which amounts to using the

post-1973 data only to form the priors. Table 2 reveals only minimal changes in the estimated

short-run elasticities of demand and supply when µ = 0. Yet, the researcher would infer that oil

supply shocks have a somewhat smaller effect on the world’s industrial production. We find that

real oil prices are slightly more responsive to oil supply shocks and inference regarding the U.S.

28Estimation results using a location parameter of 0.01 result only in a slight reduction in the posterior median for
the short-run elasticity of supply.
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real GDP differs only slightly from the baseline. In brief, the impact of reducing µ to 0 is small.

BH18′s SVAR model includes 12 lags. To explore the sensitivity of the results to the larger

number of lags included in previous studies, we re-estimate BH18 including 24 lags but maintaining

all other features of BH18’s model.29 Increasing the number of lags results in a slight decrease in

the short-run price elasticity of demand, and a very small increase in the effect of oil supply shocks

on world industrial production 12 months after the shock (see Table 2). The researcher would

infer a slightly larger increase in real oil prices. Increasing the number of lags suggest oil supply

shocks have no effect on U.S. real GDP in the short run and have a similar effect in the long run.

Summarizing, the only noticeable change of increasing the number of lags is the smaller impact

response of U.S. real GDP to oil supply shocks.

As for the loss function, comparing the median pointwise responses and the response for the

modal model in KM14 reveals a slightly larger and more persistent increase in oil prices and a

somewhat bigger reduction in U.S. real GDP in the long run in the modal model (see Figure 1b).

However, the divergences between the modal model response function and the pointwise median

for KM12, and KM14, are small. That is, the results do not appear to be very sensitive to using

the pointwise median or the structural modal model to conduct inference.

Finally, to investigate how alternative measures of real economic activity affect the inferences

derived from alternative models we re-estimate KM09, KM12 and KM14 replacing Kilian’s real

economic activity measure with the world IP used by BH18.30 More specifically, we use a linearly

detrended world IP series in the K09, KM12, and KM14 specifications. In addition, we investigate

the role of the real activity measure in BH18 by replacing the world IP with Kilian’s Index of real

economic activity and re-estimating the model. Because the real activity index starts in the 1970s

we set up µ = 0; as we showed earlier, down-weighting the earlier data has virtually no effect on

the responses.

On the one hand, estimation results reported in Table 3 indicate that using the world IP results

in a larger increase in real oil prices a year after the shock as well as a bigger loss in U.S. real

GDP in K09, KM12, and KM14 (see Figure A.4 in the online appendix). Yet, estimates of the

supply and demand elasticities in these models are rather robust to the change in the measure of

real economic activity. On the other hand, when we use Kilian’s real economic activity index in

BH18, we find that the pointwise posterior median for the short-run elasticity of supply is about

29 In particular, we use the same informative prior on the lags used by BH18.
30We useM = 5000 draws from the joint posterior distribution of the reduced-form VAR parameters with N = 2000

rotations each for KM12and KM14 models.
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half of that in the benchmark model (0.071 instead of 0.144). In turn, the elasticity of demand in

production is almost twice as large (-0.604 instead of -0.356). As a result, the impact response of

the real oil price to an unexpected 1% decline in world oil supply is considerably smaller than in the

benchmark model (1.692% instead of 2.561%), as is the one-year loss in U.S. real GDP (-0.140%

instead of -0.212%). In brief, the use of alternative measures of real economic activity plays an

important role in explaining the differences in the estimated response of real oil prices and U.S. real

GDP. If we condition on the same measure of global economic activity and we consider the dynamic

GDP-real oil multiplier, the differences in the responses are considerably smaller than they initially

appear.

8 Conclusions

Estimates of the dynamic effect of oil supply disruptions on real oil prices differ greatly across

studies. The source for these dissimilarities can be traced to differences in methodology, especially

alternative identification schemes and model specification. This paper reviewed recent SVAR mod-

els used to study the world oil market and evaluated the effect of the implied structural supply

shocks on U.S. real GDP.

We found that models that impose a prior that attaches a large probability mass to large values

of the short-run price elasticity of oil supply such as Baumeister and Hamilton (2018) result in

larger estimates of the short-run price elasticity of oil supply and smaller estimates of the short-run

price elasticity of demand in production. They also imply a larger response of real oil prices to

oil supply disruptions and a larger and longer-lived contraction in U.S. real GDP. We also found

that LN12, a sign-identified model that separates U.S. and rest-of-the-world demand and supply

shocks, leads to estimates that fall outside the ballpark magnitudes obtained by the above listed

studies. The credible bands attached to these estimates are large, which suggests sign restrictions

are not enough to pin down the quantities of interest.

The GDP-oil price dynamic multiplier conditional on an oil supply shock is estimated to fall in

a range between -0.01 and -0.06. Thus, the effect of an oil supply shock that leads to a 10% increase

in real oil prices is estimated to result in a contraction of U.S. real GDP four quarters after the

shock ranges between 0.1% and 0.6% for KM14 and LN18, respectively. In addition, estimation

results reported in the appendix show that extending the sample period for the TVP-BVAR model

of BP13 implies a larger impact response of oil prices and a greater one-year GDP loss following the

Great Recession than in earlier years. Nevertheless, the estimates obtained for the later samples
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are rather imprecise.

To further investigate the role of the prior on the short-run price elasticity of oil supply, αqp, we

re-estimated BH18 after truncating the prior on αqp in a manner that shifted probability mass closer

to zero. Specifically, we first truncated the prior at the 0.0258 bound imposed in K12 and KM14;

we then allowed for larger bounds motivated by recent microeconomic studies (e.g., Bjørnland,

Nordvik and Rohrer 2017). We found that imposing a tighter prior on αqp, which rules out the

possibility that the elasticity could be very large, considerably reduces the differences between the

estimated short-run price elasticity of supply obtained in BH18 and KM14, yet it considerably

increases the estimate of the elasticity of demand in production for BH18. Moreover, imposing a

tighter prior on αqp in BH18 reduces the responsiveness of real oil prices to oil supply disruptions,

but has little impact on the response of U.S. real GDP.

We also found that the responsiveness of real oil prices and U.S. real GDP is somewhat affected

by the SVAR lag length and the measure of world economic activity. Namely, a researcher would

infer a smaller contraction in BH18, if she doubled the lag length in line with earlier studies or,

especially, if she replaced the world IP with Kilian’s real economic activity index. In contrast, the

researcher would infer a larger contraction if she replaced Kilian’s real economic activity index with

the world IP measure used by BH18 in K09, KM12, or KM14.

What have we learned? First, future investigations into the role of oil supply (and demand)

shocks on real oil prices should heed the advice of Kilian and Murphy (2014) model storage demand

in SVAR models for the crude oil market. Doing so is key in modeling the short-run comovement

between oil production and prices. Second, even if inventories are accounted for and the short-run

price elasticity of demand has been pinned down, the importance of oil supply shocks in generating

recessions hinges heavily on the value of the short-run price elasticity of oil supply.

The question is whether to consider priors that assign a high probability mass to values of the

short-run price elasticity of supply far away from zero. For example, the analysis in BH18 allowed

for a positive probability mass on elasticity values approaching infinity and assigned 94% prior

probability mass to elasticity values larger than the bound of imposed by KM14. This approach

is diffi cult to support based on extraneous evidence. Both the economic theory in Anderson et

al. (2018) and extraneous microeconometric estimates argue against priors with large probability

mass on higher values of the price elasticity of oil supply. Estimates based only on data from North

Dakota by Bjørnland, Nordvik and Rohrer (2017) imply a slightly higher global price elasticity of

0.04 whereas those of Newell and Prest (2018) imply an elasticity of 0.01. The highest plausible
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bound is distinctly smaller than the posterior elasticity estimate of 0.15 reported by Baumeister

and Hamilton (2018). We conclude that the apparent disagreements in the literature regarding the

effect of oil supply shocks on real oil prices are not nearly as large as they seem if we are willing to

condition on a range of supply elasticity values that is supported by external evidence.
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Table 2. Sensitivity Analysis for BH18

Short-run price Short-run price elasticity Effect of supply shock that
elasticity of supply of demand in production raises real oil price by 10% on

economic activity 12 months later
Benchmark 0.144 -0.356 -0.503

(0.094, 0.222) (-0.508, -0.242) (-0.908, -0.168)
Alternative support for prior on αqp
αqp∈(0, 0.0258] 0.019 -1.386 -1.601

(0.011, 0.024) (-1.779, -1.115) (-2.692, -0.665)
αqp∈(0, 0.04] 0.033 -1.014 -1.239

(0.022, 0.038) (-1.406, -0.815) (-2.097, -0.516)
αqp∈(0, 0.10] 0.082 -0.533 -0.758

(0.062 0.094) (-0.460 -0.654) (-1.244 -0.313)
Down-weighting the earlier sample
µ = 0 0.140 -0.350 -0.163

(0.088, 0.223) (-0.499, -0.238) (-0.524, 0.156)
Increasing the number of lags
p = 24 0.141 -0.311 -0.520

(0.094, 0.214) (-0.440, -0.213) (-0.908, -0.192)

Notes: This table reports the posterior median and the 68% credible sets (in parenthesis) implied
by the modified BH18 specification.
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