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Abstract

This paper investigates the time delay in the transmission of oil price shocks using
disaggregated manufacturing data on inventories and sales. VAR estimates indicate that
industry-level inventories and sales respond faster to an oil price shock than aggregate
GDP, especially in industries that are energy intensive. In response to an unexpected oil
price increase, sales drop and inventories are accumulated. This leads to future reduc-
tions in production. We estimate a modified linear-quadratic inventory model to inquire
whether the patterns observed in the VAR impulse responses are consistent with rational
behavior by the firms. Estimation results suggest that three mechanisms play a role in
the industry-level dynamics. First, oil prices act as a negative demand shock. Second,
the shock catches manufacturers by surprise resulting in higher than anticipated inven-
tories. Third, because of their desire to smooth production, manufacturers deviate from
the target level of inventories and spread the decline in production over various quarters,
hence the delay in the response of aggregate output.
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1 Introduction

A puzzling aspect of the historical correlation between oil prices and the macroeconomy is the

substantial time delay in the transmission of an oil price innovation (see Hamilton and Herrera
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2004, Kilian and Lewis 2011, among others). In contrast with the rather fast propagation of

monetary policy or technology shocks, a slowdown in real GDP growth typically has not shown

up until four quarters after an unexpected oil price increase.1 This paper uses disaggregate

manufacturing data to empirically investigate this puzzle.

We begin our analysis by estimating a vector autoregression on the real oil price change,

sales growth and the inventory-sales ratio for 21 manufacturing industries (19 two-digit and

2 three-digit SIC industries) plus three aggregates (total manufacturing, nondurables and

durables). We find that sales in energy intensive industries (e.g., transportation equipment,

petroleum products) respond to an unexpected oil price increase in less than a year, faster than

the response of GDP to the same innovation. In addition, the initial effect on industry-level

output is less pronounced due to an increase in finished goods inventories. These inventories

are gradually worked down by a continuing period of curtailed production. This pattern is

suggestive of the classic inventory-accelerator model of the business cycle.

To inquire whether this account of the oil price dynamics is consistent with a model of

firm behavior, we estimate and test a linear-quadratic model of inventory accumulation. This

model was originally developed by Holt, Modigliani, Muth, and Simon (1960), and has been

extensively used in empirical analysis of inventory behavior.2 Although this literature is im-

pressively broad, it has not been very successful in producing economically plausible parameter

values. In particular, parameter estimates are seldom statistically significant, sometimes have

the wrong sign, and are often unsupportive of the underlying model (Fuhrer, Moore and Schuh,

1Estimates based on multivariate VARs indicate a two-quarter lag in the response of output to monetary
policy shocks (Christiano, Eichenbaum and Evans, 2000) and an immediate response to technology shocks
(Christiano, Eichenbaum and Vigfusson, 2003).

2See for example Blanchard (1983), West (1986), Eichenbaum (1989), Ramey (1991), Krane and Braun
(1991), Kashyap and Wilcox (1993), Durlauf and Maccini (1995), Fuhrer, Moore, and Schuh (1995), and West
and Wilcox (1994, 1996), and —for excellent surveys—West (1995) and Ramey and West (1999).
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1995).

In this paper we estimate a modified version of the linear-quadratic inventory model in

which we introduce two generalizations. First, we model the shock to the marginal cost of

production as an I(1) variable cointegrated with sales as suggested by Hamilton (2002).3 This

departure from the common assumption that the cost shock is stationary has the benefit of

accounting for stochastic trends in sales and inventories, while ensuring that both marginal

costs of production and inventory carrying costs are stationary along the long-run equilibrium

path. Second, we allow for a more general specification of the cost and demand shocks faced

by the firm than commonly assumed in the empirical literature.4

Estimates of this modified linear-quadratic inventory model are shown to produce industry-

level impulse responses that resemble those implied by the VARmodel. Moreover, the dynamics

entailed by our estimates are consistent with two stylized facts about inventory behavior:

procyclicality and persistence (Ramey and West, 1999). In the wake of an oil price shock

economic activity contracts and inventories are drawn down. The rise in the inventory-sales

ratio, resulting from a smaller decline in inventories relative to sales, is slowly worked down as

adjustment to the steady state takes place.

This paper is organized as follows. Section 2 discusses the data as well as some measurement

choices. Section 3 uses a VAR framework to study the dynamics of oil price innovations at the

industry level. In section 4 we inquire whether the uncovered dynamics are consistent with

rational behavior of the firms by estimating and testing a modified version of the linear-

3Note that whereas the term shock usually refers to an i.i.d. innovation in the VAR literature, the inventory
literature defines a cost shock, Uc,t, as a stochastic exogenous variation in the cost of production. This stochastic
process may have a unit root and could have both observed and unobserved components (see, e.g., Ramey and
West 1999 and Hamilton 2002).

4Although the methods for estimating models with more general cost structures are well-known (Anderson,
Hansen, McGrattan and Sargent, 1996), they are usually not implemented in the inventory literature due to
their higher computational burden.
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quadratic inventory model. Section 5 concludes.

2 Data and measurement

To investigate the nature of the time lag in the propagation of oil price innovations we use data

on manufacturing sales and finished goods inventories (hereafter inventories) from the Bureau

of Economic Analysis (BEA). The series span the period between January 1959 and March

2000, are measured in chained dollars of 1996 and comprise three manufacturing aggregates

(total manufacturing, durables and nondurables), nineteen 2-digit SIC industries and two 3-

digit SIC sectors (motor vehicles and other transportation equipment).5

Although the data is available at a monthly frequency from the BEA, we choose to transform

monthly data into quarterly series by aggregating monthly sales and using end of the quarter

inventories. Whereas this time aggregation constitutes a deviation from the inventory literature

and a loss of higher frequency information, it significantly diminishes the computational burden

involved in the estimation of our inventory model and it facilitates the comparison to the oil

price shocks-macroeconomy literature.

The first data choice to be made here is how to characterize the data generating process

of inventories and sales. The leading approach in the inventory literature has been to model

inventories and sales as stationary around a deterministic trend. However, results from a DF-

GLS test reported in Table A.1 of the online appendix6 indicate that we cannot reject the null

hypothesis of a unit root at a 5% significance level for all sectors except tobacco inventories

5To convert the inventory data from cost to market prices we follow West (1983). Due to the change in
industry classification from SIC to NAICS in the late 1990s, there is no concordance between the older 2-digit
SIC data and the newer NAICS data. Hence we are not able to expand our sample beyond 2000:Q1.

6The online appendix is available at http://gatton.uky.edu/faculty/herrera/documents/OilAppendix.pdf
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and sales. Furthermore, residual based cointegration tests suggest that inventories and sales

are cointegrated for more than half of the industries. Therefore, in our analysis we consider

an industry where sales, inventories and production have a stochastic trend7 and the first two

series are cointegrated.

A second choice is the measure of oil prices. We follow Mork (1989) and Lee and Ni

(2002) in measuring oil prices by the refiners’acquisition cost (RAC) instead of the PPI when

possible and make adjustments to account for the price controls of the 1970s. We deflate the

RAC by the consumer price index (CPI) and then compute the rate of growth by taking the

first difference in the logarithm of the real oil price.

3 Dynamics of oil price innovations at the industry level

Consider the data generating process for a particular industry to be given by a three dimen-

sional V AR(4) where xt contains the log growth of the real oil price, the log growth of quarterly

real sales, and the log difference between inventories and sales. The V AR is assumed to have

a linear moving average representation given by

xt = A (L)ut, A (0) = A0 (1)

where wt = [uo,t, us,t, uh,t]
′ is a vector of white noise structural innovations. The process in

(1) is consistent with evidence of cointegration (see Table A.1 in the online appendix) and

7Because output, Yt, is defined as the sum of sales, St, and inventory investment, ∆Ht, if St ∼ I(1) and
Ht ∼ I(1), then Yt ∼ I(1).
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can be directly mapped into the usual error correction model.8 For identification purposes

we assume A0 is a lower triangular matrix. The ordering of the real oil price change before

the manufacturing variables imposes the reasonable restriction that oil prices do not respond

contemporaneously to changes in industry-level sales or inventories (see Kilian and Vega, 2011).

Note that, given the responses for the level of sales and inventories, we can infer the

production response using the inventory identity:

Qt = St +Ht −Ht−1 (2)

whereQt denotes output, St denotes sales, andHt denotes inventories.9 Figures 1a-1b illustrate

the impulse responses to an unexpected 10% increase in the real oil price. The 90% confidence

intervals are computed using Kilian’s (1998) bootstrap-after-bootstrap method. For the sake of

brevity we relegate the cumulative impulse response to the appendix (see Figures A.1a-A.1c).

Four important features of oil price innovations dynamics are apparent:

• Industry level sales decline in response to an oil price increase. In particular, for in-

dustries that are energy intensive in production (e.g., chemicals, rubber and plastics,

petroleum products) or consumption (e.g. motor vehicles, other transportation equip-

ment) a decline in sales occurs during the first year. Significant reductions follow in the

remaining sectors and aggregate manufacturing.

8Let

 ∆ot
∆st
ht − st

 =

 1 0 0
0 1 0
0 −1 1

 ∆ot
∆st
∆ht

+

 0
0
1

 (ht−1 − st−1) , then the system in (1) can be rewritten

as

 ∆ot
∆st
∆ht

 =

 1 0 0
0 1 0
0 1 1

A (L)

 uo,t
us,t
uh,t

−
 0

0
1

 (ht−1 − st−1) .

9Note that when using chain-aggregated data, the arithmetic sum of real sales and real investment in finished
goods inventories constitutes only an approximate measure of output given that the price deflators of the two
series might differ (Whelan, 2000).
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• Industry level output declines in response to an oil price increase. Declines in produc-

tion are observed within a year for chemicals, petroleum products, rubber and plastics,

lumber, furniture and fixtures, stone, clay and glass, fabricated metal products, motor

vehicles and the three manufacturing aggregates. A decline in the remaining industries

is not evident until a year later. The timing of the contraction for total manufacturing is

consistent with the time delay in the response of aggregate GDP to oil price innovations..

• Inventories usually decline at a slower pace than sales, leading to a hump-shaped response

of the inventory-sales ratio. Significant deviations from the benchmark inventory-sales

ratio are observed for chemicals, petroleum products, rubber and plastics, lumber, fur-

niture and fixtures, stone, clay and glass, fabricated metal products, and motor vehicles.

These are industries that either use petroleum intensively as an input or for which the

automobile industry constitutes an important demand source.10 A similar pattern is

observed for the three manufacturing aggregates.

• The contractionary effect is largest for motor vehicles but is also significant for industries

that are energy-intensive or for which motor vehicles constitute an important demand fac-

tor. The long-run elasticity of sales to oil prices is about twice as large for motor vehicles

(-0.36) than for furniture and fixtures (-0.17), the sector with the second largest effect.

Moreover, a year later when the economic slowdown spreads to aggregate manufacturing

(and real GDP), the 10% increase in oil prices has resulted in a 4.2% decline in motor

vehicles production and contractions of 0.7%, 0.6%, 1.0%, 2.0% and 1.5% in apparel,

chemicals, petroleum products, rubber and plastics, and stone, clay and glass products,

respectively.

10See Tables A.2 and A.3 of the online appendix.
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4 Can the dynamics of oil price innovations be rigor-

ously reconciled with rational behavior by firms?

The above described patterns are suggestive of the classic inventory-accelerator model of the

business cycle. An increase in oil prices leads consumers to abstain from new purchases. Partly

because the shock catches manufacturers by surprise, and partly out of a desire to smooth

output fluctuations, manufacturers deviate from their target level of inventories and spread

the decline in production over several quarters. By the fourth quarter, curtailed production

in energy-intensive sectors has resulted in lower sales and income for other industries, thus

leading the economy into a recession.

Although this account of the dynamics of an oil price innovation seems intuitively plau-

sible, can it be rigorously reconciled with profit maximizing behavior by firms and apparent

production-cost schedules? To answer this question we estimate and test a linear-quadratic

inventory model. Our model relies on the traditional quadratic approximation to the costs

faced by the firm but we introduce two important changes.

First, we modify the setup to account for the presence of stochastic trends and comovement

in inventories, sales, and the stochastic cost shock. The motivation for this modification is

twofold: (a) statistical tests indicate inventories and sales have a unit root and are cointegrated

(see Table A.1 of the online appendix); (b) when sales have a unit root and the cost shock

is stationary, the marginal production cost tends to infinity; thus the firm minimizes costs by

letting inventory management cost go to infinity (Hamilton, 2002). Such a problem can be

avoided by assuming that both the cost shock and sales have a unit root and are cointegrated.

This assumption is motivated on the grounds that cost saving technological progress generates
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an upward trend in sales.

Second, we use a less restrictive specification of the demand disturbances than is common

in applications of the linear-quadratic inventory model. In particular, we assume that real

oil prices have a direct effect on sales’growth. The rationale for this modification is twofold.

Although in the linear quadratic literature energy prices are commonly modeled as an observ-

able cost shifter, previous studies have rarely found energy prices to be statistically significant

(Ramey and West, 1999). In addition, VAR estimation results uncovered a statistically signif-

icant effect of oil price innovations on sales.

4.1 A model of inventory behavior

Consider the following decision problem, similar to Hamilton (2002):11

max
{Qt,Ht}∞t=0

E0

{ ∞∑
t=0

βt(PtSt − Ct)
}

(3)

subject to:

Ct = (1/2)[a0(∆Qt)
2 + a1(Qt − Uc,t)2 + a2(Ht−1 − a3St)2] (4)

Qt = St +Ht −Ht−1 (5)

where Pt is the price of the good in period t, St is real sales during period t, Ct is the cost of

production, Qt is the quantity produced during period t, Ht are inventories of finished goods

at the end of period t, β is the discount rate, and Uc,t is a stochastic exogenous shock to the

11The specification here is similar to Ramey and West (1999). However, the notation differs from theirs
in that here production costs are given by (1/2)a1Q

2
t − a1QtUc,t + U2c,t, whereas Ramey and West specify

production costs as (1/2)a1Q
2
t +QtU

∗
c,t. From the point of view of the firm, the term U2c,t is a constant that

does not affect the first-order conditions. The normalization −a1QtUc,t = QtU
∗
c,t only simplifies the algebra.
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marginal cost of production.

The first order condition for cost minimization is derived by differentiating the objective

function (3) with respect to Ht:

Et[a0(∆Qt − 2β∆Qt+1 + β2∆Qt+2) + a1(Qt − Uc,t) (6)

−βa1(Qt+1 − Uc,t+1) + βa2(Ht − a3St+1)] = 0.

Consider the case where inventories and sales have a unit root and are cointegrated with

cointegrating vector (1,−a3). Further assume that the unobserved shock to the marginal cost

of production, Uc,t, has a unit root and is cointegrated with sales so that:

Uc,t − St − kc = vc,t ∼ I(0) (7)

where

vc,t = θc1vc,t−1 + θc2vc,t−2 + εc,t, (8)

kc is a constant term and the innovation εc,t has a zero mean normal distribution with variance

σ2c . As we mentioned before, cointegration between Uc,t and St can be motivated by the

presence of an unobserved technology shock (an upward trend in Uc,t or a downward trend in

U∗c,t) that generates an upward trend in sales and, given the inventory accumulation equation

(5), also in production.12

12See Hamilton (2002) for a detailed discussion on the interpretation of cointegration in the linear-quadratic
model.
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We consider the data generating process for sales of a particular industry to be given by

∆St = ks + λs1∆St−1 + λs2∆St−2 + λo1ot−1 + λo2ot−2 + λo3ot−3 + λo4ot−4 + es,t (9)

where ∆St = vs,t ∼ I(0), and ot is simply the change in real oil prices. In turn, the process for

ot is given by

ot = ko + ωo1ot−1 + ωo2ot−2 + eo,t (10)

and

 es,t

eo,t

 =

 1 λo0

0 1


 εs,t

εo,t


where the innovations εs,t, and εo,t are uncorrelated normally distributed processes. The con-

stant terms ks, kc, and ko are not separately identified, in that they only affect the constant

term in the expression for the firm’s optimal level of inventories. Hence, without loss of gen-

erality, we can solve the firm’s optimal inventory problem with all constants set to zero, and

then add the constants at the final step of the maximum likelihood estimation.

The optimization problem can be stated as

min
{ut}∞t=0

E


∞∑
t=0

βt
[
ut x

′
t

]
G

 ut

xt

 | F0
 (11)

subject to

xt+1 = Axt +But +Cwt+1. (12)

where xt = (Ht−1, Ht−2, St−1, vc,t, vc,t−1, vs,t, vs,t−1, ot, ot−1, o,t−2, o,t−3)
′ denotes the state vector
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that summarizes the information relevant for the firm’s decision, ut = Ht denotes the control

variable, and F0 denotes the information set at t = 0.13 The solution to this optimization

problem takes the form

ut = −Fxt, (13)

where F can be computed following Anderson, Hansen, McGrattan, and Sargent (1996).

Equation (13) -with the constant term, kh, added back in-

Ht = kh − f1Ht−1 − f2Ht−2 − f3St−1 − f4vc,t − f5vc,t−1 − f6vs,t − f7vs,t−1 (14)

−f8ot − f9ot−1 − f10ot−2 − f11ot−3,

together with equations (8), (9), and (10) constitute an observable state-space model in which

(8) is the state equation and (9), (10) and (14) are the observation equations. After setting

the discount factor β = 0.98 and normalizing the coeffi cient a1 = 1,14 we obtain estimates of

the structural parameters via maximmum likelihood. Then, these estimates and the Kalman

filter are used to trace the response of sales, inventories and output to an innovation in the

real oil price, εo,t.

4.2 Inventories, oil price shocks, and industry dynamics

The model of optimal inventory behavior just described is most appropriate for the six indus-

tries identified as ’production-to-stock’(food, tobacco, apparel, chemicals, petroleum products,

rubber and plastics). Nevertheless, to the extent that the so called ’production-to-order’in-

13A detailed description of the optimization problem in the matrix form can be found in the on-line appendix.
14The parameters a0, a1 and a2 in the cost function (4) are only identified to a scale, thus the need for the

normalization.
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dustries hold substantial inventories of finished goods, the desire to smooth production might

explain movements in inventories. In this section we focus our discussion on the six production-

to-stock industries, the motor vehicles sector, and the three manufacturing aggregates.

4.2.1 Inventories and production costs: magnitude and interpretation of the cost

parameters

The usual linear-quadratic inventory model embodies two different motives for holding inven-

tories. The cost of adjusting production, a0∆Qt, and the cost of producing, a1Qt, represent a

production smoothing motive. That is, a firm may hold inventories because they facilitate the

intertemporal allocation of production. A second motive for holding inventories is reflected

in the term a2 (Ht−1 − a3St), which is the accelerator term. This term reflects the trade-off

between the physical cost of holding inventories and the cost of avoiding stock outs. Yet, an

important implication of assumption (7) is that now the quadratic cost is directly associated

with inventory investment. Hence, with the exception that here a0 6= 0, the model is closer to

the flexible accelerator model than the usual linear quadratic setup. As a result, larger values

of a1 imply greater output flexibility.

Table 1 reports maximum likelihood estimates and associated asymptotic standard errors

under the heading "Structural model". The magnitudes of a0 and a2 relative to a1 —which we

normalize to 1—suggests that output should track sales closely in response to a demand shock.

Note how a0 and a2 are estimated to be positive but less than 1 for all sectors. Interestingly,

the degree of precision of these cost estimates seems to be higher for sectors where the oil

price shock enters significantly in the sales process (e.g., chemicals, petroleum products, motor

vehicles, manufacturing and durable manufactures). In addition, whereas the assumption of
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cointegration between inventories and sales allows us to estimate the cointegration parameter,

a3, precisely for all industries but tobacco, the remaining cost parameters are statistically

significant only for some sectors. All in all, these results point towards a strong accelerator

motive in all the aggregates and most of the industries. The only possible exception is tobacco,

where the cost of holding inventories, a2, exceeds that of adjusting production, a0, however the

estimates are not statistically significant.

As for the role of the cost shock, the data seems to fit our specification where vc,t affects

the cost of production in four industries and two manufacturing aggregates. We reject the null

that θc1 and θc2 are jointly insignificant for food, motor vehicles, manufacturing and durables

(see p− value for LR test in row "Unobserved cost" of Table 1). In addition, our finding that

θc1 + θc2 < 1, θc2− θc1 < 1 and |θc2| < 1 for all sectors supports our assumption that vc,t in (7)

is stationary.

To conclude this section, let us compare our parameter estimates with those found in

the literature for the linear-quadratic inventory model. To do so, we divide the parameters

estimates reported in Table 1 by the second derivative of the objective function (4) with respect

to Ht (i.e., c =
(
1 + 4β + β2

)
a0 + (1 + β) a1 + βa2) evaluated at the estimated values â0,, â2

and the value of a1 = 1 corresponding to our normalization. We then compute the median

across the sectors and compare it to the estimates reported by Ramey and West (1999). First,

note that the estimated slope of the marginal production cost is found to be positive (see the

third column of Table 2). This is consistent with all studies but Ramey (1991). Second, as

found by previous studies, the cost of adjustment a0 contributes only slightly to this upward

slope. Finally, estimates of a3 are consistent with observable patterns of average inventory-

sales ratios across industries and are comparable to estimates obtained by other authors. For
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instance, a3 is smaller for industries with lower average inventory-sales ratios such as motor

vehicles (average inventory-sales ratio = 0.057), and petroleum products (0.162) but larger

for industries with higher ratios such as apparel (0.256), chemicals (0.293), and rubber and

plastics (0.319). Not surprisingly, our results are more in line with studies that allow for serially

correlated cost variables.

In summary, existing parameter estimates of the linear quadratic inventory model cover a

wide range (see Table 2), are seldom statistically significant, change with the normalization,

sometimes have the wrong sign, and are often unsupportive of the underlying model (Fuhrer,

Moore and Schuh, 1995; Ramey and West, 1999). Our estimates of the cost function are

invariant to normalization and almost always have the correct sign, yet they are statistically

insignificant in a few cases.

4.2.2 Oil price increases as negative demand shocks

Estimates of the structural model suggest that an unexpected oil price increase has a con-

tractionary effect on sales. Note the negative sign and the statistical significance of the λoi

(i = 1, ..., 4) for petroleum products, rubber and plastics, motor vehicles, manufacturing, non-

durables and durables. For these industries —as well as apparel and chemicals—we reject the

null that the coeffi cients on the oil prices lags. λoi, are jointly insignificant (see p − value for

the LR test in the row "Oil price" of Table 1).

To develop intuition about how oil price shocks are transmitted to inventories and output,

we first relate the industries’estimated cost patterns with their response to a negative demand

shock. Table 1 shows that we can classify the industries in two groups according to the

magnitude of the inventory holding cost, a2, relative to the cost of adjusting production, a0.
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For instance, the motor vehicles industry is more resistant to deviations from its target level of

inventories, as suggested by the large value of a2 relative to a0. (That is, adjusting production,

a0, is less costly than adjusting inventories, a2). The estimated value of a3 suggests that motor

vehicles reduce inventories by $43 for every $100 drop in quarterly sales. In contrast, the

larger value of a0 —relative to a2, which is statistically equal to zero—for petroleum products

suggests that the costs of adjusting production exceed those of adjusting inventories. As for

the aggregates, durables and total manufacturing exhibit costs of adjusting production that

exceed those of holding inventories.

Even though the production smoothing motive appears to be operative in some industries

(a0 > 0), recall that there is evidence of a strong accelerator influence. Hence, with small

positive values of a3 and a2 relative to a1, we would expect an increase in oil prices to result in

a decline in sales, production cutbacks and procyclical movements in inventories. With convex

production costs, the latter would be the upshot of the accelerator motive dominating the

incentive to smooth production.

4.2.3 Industry-level dynamics

We now turn to the question posed earlier: can our recount of the dynamics of an oil price

innovation be rigorously reconciled with rational behavior by firms and apparent production-

cost schedules? To address this issue we use the Kalman filter to trace the impact of a one-time

10% increase in oil prices on sales, St+j, inventories, Ht+j, and output, Qt+j. Figure 2 illustrates

the impulse responses computed using this structural model (dashed green line) as well as the

cumulative responses generated by the VAR (solid blue line). The structural responses of

sales and output roughly resemble those implied by the VAR estimates. Nevertheless, some
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differences are evident at long horizons. More specifically:

• Industry-level sales decline in response to an oil price increase. This negative correlation

is evidenced in the sales contraction implied by the structural model. The negative sign

and statistical significance of the oil price coeffi cients λoi in the sales equation, and the

likelihood ratio test (see "Oil price" row in Table 1), provide additional evidence of this

relationship. For tobacco, apparel, chemicals, petroleum products and durables, the

structural model generates a larger medium-run response of sales than the VAR.

• Industry-level output declines in response to an oil price increase. A slowdown in pro-

duction is apparent for all industries and the manufacturing aggregates. Because output

traces sales closely, the structural model generates larger output medium-run responses

than the VAR for tobacco, apparel, chemicals, petroleum products and durables.

• Inventories usually decline at a slower pace than sales, leading to a ’hump-shaped response

of the inventory-sales ratio. This buildup is slowly worked down as inventories and

sales adjust to their new steady state level. For some industries, inventories appear to

exacerbate the negative effect of oil price innovations on output relative to that on sales.

As we mentioned above, this pattern is consistent with a strong accelerator motive.

• The contractionary effect is largest for motor vehicles but is also significant for industries

that are energy-intensive or for which motor vehicles constitute an important demand

factor. According to the structural model, sales (production) of new motor vehicles

decline about 2.5% by the 4th quarter. This contraction is more than twice as large as

the drop experienced by rubber and plastics (0.86%), the ’production-to-stock’industry

with the second largest contraction. The corresponding contraction in the production of
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chemicals, petroleum products, rubber and plastics and apparel is considerably smaller

(0.68%, 0.98%, 0.86% and 0.48%, respectively).

On the whole, the structural results are consistent with the VAR responses and suggestive

of the old inventory-accelerator model of the business cycle. Consumer anxiety about oil prices

leads households to cut back purchases. The firms’optimal policy response is to deviate from

their target level of inventories and spread the decline in production over several quarters. In

turn, the magnitude of this deviation is a function of the cost of holding inventories a2, the

strength of the accelerator motive a3, and the cost of adjusting production a0, relative to the

marginal production cost a1. Further, notice that this framework implies a permanent effect

on the output level, although the growth rate of output returns to normal about two years

after the innovation.

It is worth noting here that for all industries where oil price increases lead to a decline in

sales, the response of inventories is consistent with two stylized facts documented in Ramey

and West (1999): procyclicality and persistence of inventories. First, in the wake of an oil

price innovation, sales fall and inventories are depleted. Second, the buildup in the inventory-

sales ratio is worked down over a period of roughly two years. What leads to this procyclical

movement of inventories and the persistence in the inventory-sales ratio? Given a convex

cost function, a positive cost of adjusting production a0 > 0 and a positive production cost

a1 > 0, the accelerator motive dominates the incentive to smooth production and thus leads

to procycical inventories. Similarly, by allowing for a strong accelerator motive, the response

of the inventory-sales ratio to a negative demand shock is persistent.
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4.3 Can unanticipated changes in inventories exacerbate the slow-

down in economic activity?

Even though there are great similarities between the structural model and the VAR responses,

there are also some differences. First, the structural estimates imply that firms respond im-

mediately by reducing inventories, as both inventories and production smoothly decline to

the new steady-state values. Thus, the structural responses exhibit a larger initial decline in

inventories than estimated by the VARs for chemicals, rubber and plastics and non durables.

Second, in the medium run, the structural responses of output appear to be slightly smaller

than implied by the VAR, especially for food, apparel rubber and plastics, and motor vehicles.

These differences suggest the possibility of an unanticipated and undesired accumulation of

inventories, accompanied by a larger output drop in the following quarters. Yet, this scenario

is ruled out by construction in the structural model. One possibility worth considering is

that firms do not correctly anticipate the effect that oil price innovations would have on sales.

For instance, firms may rely on a simple rule-of-thumb when forecasting sales and making

production decisions. Hence, they ignore factors believed to have only a small effect on profits

(Akerlof, 2002). We estimate a model where the process for sales, ∆St = vs,t, is given by

∆St = λ∗s1∆St−1 + λ∗s2∆St−2 + εs,t. (15)

In contrast with (9), here oil prices do not enter directly in the equation for sales. Note that

the firm will eventually respond to the effects of an oil price innovation simply by adapting

to the observed values of sales; they use (15) rather than (9) to form future sales forecasts.

Instead, the econometrician uses (15) and (9) to construct the matrix A in (12) and from this
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finds the implied value of F(λ∗s1, λ
∗
s2). This corresponds to an econometric perspective in which

oil prices really do matter for sales, but firms do not use this fact in making their production

and inventory plans.

Maximum-likelihood estimates and associated standard errors for this modified framework

are reported in Table 1 under the heading "Behavioral model". The two new parameters

lead to a significant increase in the log likelihood for food, chemicals, and nondurables (see

p − values for the LR test in Table 1 on the row labeled "Behavioral"). Additional evidence

that this behavioral story is consistent with the observed data can be gathered by comparing

the impulse response functions in Figure 2. Note that for all sectors, except food and tobacco,

the behavioral model (dotted red line) implies a more sluggish initial response of inventories

to an oil price innovation. As these inventories are liquidated, they amplify the effect of the

oil price innovation on production.

We conclude this section with a caveat. Clearly, the behavioral model is not the only

alternative to the linear-quadratic inventory model. For some industries, other specifications

might fit the data better. For instance, the assumption that sales are exogenous might be too

strong for some firms as could be the assumption of quadratic adjustment costs. We leave the

study of alternative modifications for future research.

5 Conclusions

A puzzling aspect of the historical correlation between oil prices and aggregate economic activ-

ity is the substantial time lag between the increase of crude oil prices and the slowdown in real

GDP growth. Typically, a decline in economic activity does not show up until four quarters

after an unexpected oil price increase. This paper uses disaggregated manufacturing data to
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inquire into the causes of this time delay.

Using a VAR framework we uncovered four features of the dynamics of oil price innovations

at the industry-level: (1) oil price innovations lead to a faster slowdown in industry-level output

than in aggregate GDP; (2) industry-level sales decline in response to an oil price increase;

(3) the response of the inventory-sales ratio is ’hump shaped’with inventories exhibiting a

procyclical behavior; (4) the negative effect of an oil price increase is largest for motor vehicles

output, yet significant contractions also occur in industries that are energy-intensive and for

which motor vehicles constitute an important demand factor.

We then inquired whether these patterns were consistent with a model of firm behavior.

Estimates of a modified linear-quadratic inventory model revealed a potential role for oil price

innovations as negative demand shifter. With convex costs and a strong accelerator motive,

firms respond to this negative demand shock by depleting inventories and curtailing production.

Partly because the shock catches manufacturers by surprise and partly because of their desire

to balance the accelerator and production smoothing incentives, manufacturers deviate from

the target level of inventories and spread the decline in output over various quarters. By the

end of the first year, further declines in production are evident across various industries thus

leading the economy into a recession.
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Table 2. Comparison of Industry and Median Point Estimates of Cost Parameters

a0/c a1/c [(1+β)a0+a1]/c a2/c a3
 (c) Number of

industries

Own  Estimates (a)

   Food 0.00 0.50 0.50 0.01 0.17
   Tobacco 0.01 0.36 0.39 0.20 -0.09
   Apparel 0.06 0.28 0.41 0.06 0.44   Apparel 0.06 0.28 0.41 0.06 0.44
   Chemicals 0.06 0.32 0.44 0.00 0.37
   Petroleum products 0.01 0.45 0.48 0.02 0.08
   Rubber and plastics 0.00 0.50 0.50 0.01 0.20
   Motor vehicles 0.00 0.48 0.49 0.02 0.04
   Manufacturing 0.03 0.40 0.47 0.01 0.21
   Nondurables 0.01 0.48 0.50 0.00 0.24
   Durables 0.02 0.45 0.49 0.01 0.19

Median estimates (b)

   Models with serially correlated cost variables
      Herrera (2015) 0.01 0.45 0.48 0.02 0.17 7
      Durlauf and Maccini (1995) 0 0.43 0.43 0.15 0.55 5
      Eichenbaum (1989) 0 0.21 0.21 0.58 1.15 7
      Kollintzas (1995) -0.16 0.83 0.64 -0.09 1.14 6
      Ramey (1991) 0.15 -0.63 -0.43 1.69 0.4 6
Models without serially correlated cost variables
      Fuhrer, Moore and Schuh (1995) 0.13 0.12 0.38 0 0.67 1
      West (1986) 0.05 0.34 0.44 0.01 1.12 10

Notes:
(a)  Calculations are based on the estimates reported in Table 1. In the column definitions c = (1 +4β +β2)a0 +(1+β)a1 +βa2.
(b) Herrera (2015) denotes the median point estimates for all 2 and 3-digit industries reported in Table 1. The median estimates for
other studies are taken from Table 10 in Ramey and West (1999).
(c) Estimates in all studies but Herrera (2015) use monthly inventories and sales instead of quarterly sales and end of quarter 
inventories.
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