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Abstract

The censored regression model and the Tobit model are standard tools in economet-
rics. This paper provides a formal asymptotic theory for dynamic time series censored
regression when lags of the dependent variable have been included among the regres-
sors. The central analytical challenge is to prove that the dynamic censored regression
model satisfies stationarity and weak dependence properties if a condition on the lag
polynomial holds. We show the formal asymptotic correctness of conditional maximum
likelihood estimation of the dynamic Tobit model, and the correctness of Powell’s least
absolute deviations procedure for the estimation of the dynamic censored regression
model. The paper is concluded with an application of the dynamic censored regression
methodology to temporary purchases of the Open Market Desk.

1 Introduction

The censored regression model and the Tobit model are standard tools in econometrics. In
a time series framework, censored variables arise when the dynamic optimization behavior
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of a firm or individual leads to a corner response for a significant proportion of time. In
addition, right-censoring may rise due to truncation choices made by the analysts in the
process of collecting the data (i.e., top coding). Censored regression models apply to vari-
ables that are left-censored at zero, such as the level of open market operations or foreign
exchange intervention carried out by a central bank, and in the presence of an intercept in
the specification they also apply to time series that are censored at a non-zero point, such
as the clearing price in commodity markets where the government imposes price floors, the
quantity of imports and exports of goods subject to quotas, and numerous other series.

The asymptotic theory for the Tobit model in cross-section situations has long been
understood; see for example the treatment in Amemiya (1973). In recent years, asymp-
totic theory for the dynamic Tobit model in a panel data setting has been established using
large-N asymptotics; see Arellano and Honoré (1998) and Honoré and Hu (2004). However,
there is no result in the literature that shows stationarity properties of the dynamic cen-
sored regression model, leaving the application of cross-section techniques for estimating the
dynamic censored regression model in a time series setting formally unjustified. This paper
seeks to fill this gap. After all, a justication of standard inference in dynamic nonlinear
models requires laws of large numbers and a central limit theorem to hold. Such results
require weak dependence and stationarity properties.

While in the case of linear AR models it is well-known that we need the roots of the
lag polynomial to lie outside the unit circle in order to have stationarity, no such result
is known for nonlinear dynamic models in general and the dynamic regression model in
particular. The primary analytical issue addressed in this paper is to show that under some
conditions, the dynamic censored regression model as defined below satisfies stationarity and
weak dependence properties. This proof is therefore an analogue to well-known proofs of
stationarity of ARMA models under conditions on the roots of the AR lag polynomial. The
dynamic censored regression model under consideration is

yt = max(0,

p∑

i=1

ρiyt−i + γ′xt + εt), (1)

where xt denotes the regressor, εt is a regression error, we assume that γ ∈ R
q, and we

define σ2 = Eε2
t . One feature of the treatment of the censored regression model in this

paper is that εt is itself allowed to be a linear process (i.e., an MA(∞) process driven by
an i.i.d. vector of disturbances), which means it displays weak dependence and is possibly
correlated. While stationarity results for general nonlinear models have been derived in e.g.
Meyn and Tweedie (1994), there appear to be no results for the case where innovations are
not i.i.d. (i.e. weakly dependent or heterogeneously distributed). The reason for this is that
the derivation of results such as those of Meyn and Tweedie (1994) depends on a Markov
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chain argument, and this line of reasoning appears to break down when the i.i.d. assumption
is dropped. This means that in the current setting, Markov chain techniques cannot be used
for the derivation of stationarity properties, which complicates our analysis substantially,
but also puts our analysis on a similar level of generality as can be achieved for the linear
model.

A second feature is that no assumption is made on the lag polynomial other than that
ρmax(z) = 1 −

∑p
i=1 max(0, ρi)z

i has its roots outside the unit circle. Therefore, in terms
of the conditions on ρmax(z) and the dependence allowed for εt, the aim of this paper is to
analyze the dynamic Tobit model on a level of generality that is comparable to the level of
generality under which results for the linear model AR(p) model can be derived. Note that
intuitively, negative values for ρj can never be problematic when considering the stationarity
properties of yt, since they “pull yt back to zero”. This intuition is formalized by the fact
that only max(0, ρj) shows up in our stationarity requirement.

An alternative formulation for the dynamic censored regression model could be

yt = y∗t I(y
∗
t > 0) where ρ(B)y∗t = γ′xt + εt, (2)

where B denotes the backward operator. This model will not be considered in this paper,
and its fading memory properties are straightforward to derive. The formulation considered
in this paper appears the appropriate one if the 0 values in the dynamic Tobit are not
caused by a measurement issue, but have a genuine interpretation. In the case of a model for
the difference between the price of an agricultural commodity and its government-instituted
price floor, we may expect economic agents to react to the actually observed price in the
previous period rather than the latent market clearing price, and the model considered in this
paper appears more appropriate. However, if our aim is to predict tomorrow’s temperature
from today’s temperature as measured by a lemonade-filled thermometer that freezes at zero
degrees Celsius, we should expect that the alternative formulation of the dynamic censored
regression model of Equation (2) is more appropriate.

The literature on the dynamic Tobit model appears to mainly consist of (i) theoretical
results and applications in panel data settings, and (ii) applications of the dynamic Tobit
model in a time series setting without providing a formal asymptotic theory. Three notewor-
thy contributions to the literature on dynamic Tobit models are Honoré and Hu (2004), Lee
(1999), and Wei (1999). Honoré and Hu (2004) considers dynamic Tobit models and deals
with the problem of the endogeneity of lagged values of the dependent variable in panel data
setting, where the errors are i.i.d., T is fixed and large-N asymptotics are considered. In fact,
the asymptotic justification for panel data Tobit models is always through a large-N type
argument, which distinguishes this work from the treatment of this paper. For a treatment
of the dynamic Tobit model in a panel setting, the reader is referred to Arellano and Honoré
(1998, section 8.2).
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Lee (1999) and Wei (1999) deal with dynamic Tobit models where lags of the latent
variable are included as regressors. Lee (1999) considers likelihood simulation for dynamic
Tobit models with ARCH disturbances in a time series setting. The central issue in this paper
is the simulation of the log likelihood in the case where lags of the latent variable (in contrast
to the observed lags of the dependent variable) have been included. Wei (1999) considers
dynamic Tobit models in a Bayesian framework. The main contribution of this paper is the
development of a sampling scheme for the conditional posterior distributions of the censored
data, so as to enable estimation using the Gibbs sampler with a data augmentation algorithm.

In related work, de Jong and Woutersen (2003) consider the dynamic time series binary
choice model and derive the weak dependence properties of this model. This paper also con-
siders a formal large-T asymptotic theory when lags of the dependent variable are included as
regressors. Both this paper and de Jong and Woutersen (2003) allow the error distribution to
be weakly dependent. The proof in de Jong and Woutersen (2003) establishes a contraction
mapping type result for the dynamic binary choice model; however, the proof in this paper
is completely different, since other analytical issues arise in the censored regression context.

As we mentioned above, a significant body of literature on the dynamic Tobit model con-
sists of applications in a time series setting without providing a formal asymptotic theory.
Inference in these papers is either conducted in a classical framework, by assuming the max-
imum likelihood estimates are asymptotically normal, or by employing Bayesian inference.
Papers that estimate censored regression models in time series cover diverse topics. In the fi-
nancial literature, prices subject to price limits imposed in stock markets, commodity future
exchanges, and foreign exchange futures markets have been treated as censored variables.
Kodres (1988, 1993) uses a censored regression model to test the unbiasedness hypothesis
in the foreign exchange futures markets. Wei (2002) proposes a censored-GARCH model
to study the return process of assets with price limits, and applies the proposed Bayesian
estimation technique to Treasury bill futures.

Censored data are also common in commodity markets where the government has histor-
ically intervened to support prices or to impose quotas. An example is provided by Chavas
and Kim (2006) who use a dynamic Tobit model to analyze the determinants of U.S. butter
prices with particular attention to the effects of market liberalization via reductions in floor
prices. Zangari and Tsurumi (1996), and Wei (1999) use a Bayesian approach to analyze the
demand for Japanese exports of passenger cars to the U.S., which were subject to quotas
negotiated between the U.S. and Japan after the oil crisis of the 1970’s.

Applications in time series macroeconomics comprise open market operations and foreign
exchange intervention. Dynamic Tobit models have been used by Demiralp and Jordà (2002)
to study the determinants of the daily transactions conducted by the Open Market Desk,
and Kim and Sheen (2002) and Frenkel, Pierdzioch and Stadtmann (2003) to estimate the
intervention reaction function for the Reserve Bank of Australia and the Bank of Japan,
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respectively.
The structure of this paper is as follows. Section 2 present our weak dependence results

for (yt, xt) in the censored regression model. In Section 3, we show the asymptotic validity of
the dynamic Tobit procedure. Powell’s LAD estimation procedure for the censored regres-
sion model, which does not assume normality of errors, is considered in Section 4. Section
5 studies the determinants of temporary purchases of the Open Market Desk. Section 6
concludes. The Appendix contains all proofs of our results.

2 Main results

We will prove that yt as defined by the dynamic censored regression model satisfies a weak
dependence concept called Lr-near epoch dependence. Near epoch dependence of random
variables yt on a base process of random variables ηt is defined as follows:

Definition 1 Random variables yt are called Lr-near epoch dependent on ηt if

sup
t∈Z

E|yt − E(yt|ηt−M , ηt−M+1, . . . , ηt+M)|r = ν(M)r → 0 as M → ∞. (3)

The base process ηt needs to satisfy a condition such as strong or uniform mixing or
independence in order for the near epoch dependence concept to be useful. For the definitions
of strong (α-) and uniform (φ-) mixing see e.g. Gallant and White (1988, p. 23) or Pötscher
and Prucha (1997, p. 46). The near epoch dependence condition then functions as a device
that allows approximation of yt by a function of finitely many mixing or independent random
variables ηt.

For studying the weak dependence properties of the dynamic censored regression model,
assume that yt is generated as

yt = max(0,

p∑

i=1

ρiyt−i + ηt). (4)

Later, we will set ηt = γ′xt + εt in order to obtain weak dependence results for the general
dynamic censored regression model that contains regressors.

When postulating the above model, we need to resolve the question as to whether there
exists a strictly stationary solution to it and whether that solution is unique in some sense.
See for example Bougerol and Picard (1992) for such an analysis in a linear multivariate set-
ting. In the linear model yt = ρyt−1+ηt, these issues correspond to showing that

∑∞
j=0 ρ

jηt−j

is a strictly stationary solution to the model that is unique in the sense that no other function
of (ηt, ηt−1, . . .) will form a strictly stationary solution to the model.
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An alternative way of proceeding to justify inference could be by considering arbitrary
initial values (y1, . . . , yp) for the process instead of starting values drawn from the stationary
distribution, but such an approach will be substantially more complicated.

The idea of the strict stationarity proof of this paper is to show that by writing the
dynamic censored regression model as a function of the lagged yt that are sufficiently remote
in the past, we obtain an arbitrarily accurate approximation of yt. Let B denote the backward
operator, and define the lag polynomial ρmax(B) = 1−

∑p
i=1 max(0, ρi)B

i. The central result
of this paper, the formal result showing the existence of a unique backward looking strictly
stationary solution that satisfies a weak dependence property for the dynamic censored
regression model is now the following:

Theorem 1 If the linear process ηt satisfies ηt =
∑∞

i=0 aiut−i, where a0 > 0, ut is a sequence
of i.i.d. random variables with density fu(.), E|ut|

r <∞ for some r ≥ 2,
∫ ∞

−∞

|fu(y + a) − fu(y)|dy ≤M |a|

for some constant M whenever |a| ≤ δ for some δ > 0,
∑∞

t=0G
1/(1+r)
t < ∞ where Gt =

(
∑∞

j=t a
2
j)

r/2, ρmax(z) has all its roots outside the unit circle, and for all x ∈ R,

P (ut ≤ x) ≥ F (x) > 0 (5)

for some function F (.), then (i) there exists a solution yt to the model of Equation (4) such
that (yt, ηt) is strictly stationary; (ii) if zt = f(ηt, ηt−1, . . .) is a solution to the model, then
yt = zt a.s.; and (iii) yt is L2-near epoch dependent on ηt. If in addition, ai ≤ c1 exp(−c2i)
for positive constants c1 and c2, then the near epoch dependence sequence ν(M) satisfies
ν(M) ≤ c1 exp(−c2M

1/3) for positive constants c1 and c2.

Our proof is based on the probability of yt reaching 0 given the last p values of ηt always
being positive. This property is the key towards our proof and is established using the linear
process assumption in combination with the condition of Equation (5). Note that by the
results of Davidson (1994, p. 219), our assumption on ηt implies that ηt is also strong mixing

with α(m) = O(
∑∞

t=m+1 G
1/(1+r)
t ). Also note that for the dynamic Tobit model where errors

are i.i.d. normal and regressors are absent, the condition of the above theorem simplifies to
the assumption that ρmax(z) has all its roots outside the unit circle.

One interesting aspect of the condition on ρmax(z) is that negative ρi are not affecting
the strict stationarity of the model. The intuition is that because yt ≥ 0 a.s., negative ρi

can only “pull yt back to zero” and because the model has the trivial lower bound of 0 for
yt, unlike the linear model, this model does not have the potential for yt to tend to minus
infinity.
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3 The dynamic Tobit model

Define β = (ρ′, γ′, σ)′, where ρ = (ρ1, . . . , ρp), and define b = (r′, c′, s)′ where r is a (p × 1)
vector and c is a (q × 1) vector. The scaled Tobit loglikelihood function conditional on
y1, ..., yp under the assumption of normality of the errors equals

LT (b) = LT (c, r, s) = (T − p)−1
T∑

t=p+1

lt(b), (6)

where

lt(b) = I(yt > 0) log(s−1φ((yt −

p∑

i=1

riyt−i − c′xt)/s))

+I(yt = 0) log(Φ((−

p∑

i=1

riyt−i − c′xt)/s)). (7)

In order for the loglikelihood function to be maximized at the true parameter β, it ap-
pears hard to achieve more generality than to assume that εt is distributed normally given
yt−1, . . . , yt−p, xt. This assumption is close to assuming that εt given xt and all lagged yt

is normally distributed, which would then imply that εt is i.i.d. and normally distributed.
Therefore in the analysis of the dynamic Tobit model below, we will not attempt to consider
a situation that is more general than the case of i.i.d. normal errors. Alternatively to the
result below, we could also find conditions under which β̂T converges to a pseudo-true value
β∗. Such a result can be established under general linear process assumptions on (x′t, εt), by
the use of Theorem 1. It should be noted that even under the assumption of i.i.d. errors, no
results regarding stationarity of the dynamic Tobit model have been derived in the literature
thus far.

Let β̂T denote a maximizer of LT (b) over b ∈ B. Define wt = (yt−1, . . . , yt−p, x
′
t, 1)′. The

“1” at the end of the definition of wt allows us to write “b′wt”. For showing consistency, we
need the following two assumptions. Below, let |.| denote the usual matrix norm defined as
|M | = (tr(M ′M))1/2, and let ‖ X ‖r= (E|X|r)1/r.

Assumption 1 The linear process zt = (x′t, εt)
′ satisfies zt =

∑∞
j=0 Πjvt−j, where the vt are

i.i.d. (k × 1) vectors, ‖ vt ‖r< ∞ for some r ≥ 1, the coefficient matrices Πj satisfy and∑∞
t=0 G

1/(1+r)
t <∞ where Gt = (

∑∞
j=t |Πj |

2)r/2, xt ∈ R
q, and

yt = max(0,

p∑

i=1

ρiyt−i + γ′xt + εt). (8)
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Assumption 2

1. The linear process zt = (x′t, εt)
′ satisfies zt =

∑∞
j=0 Πjvt−j, where the vt are i.i.d.,

‖ vt ‖r< ∞, and the coefficient matrices Πj satisfy
∑∞

t=0G
1/(1+r)
t < ∞ where Gt =

(
∑∞

j=t |Πj |
2)r/2.

2. Conditional on (x1, . . . , xT ), εt is independently normally distributed with mean zero
and variance σ2 > 0.

3. β ∈ B, where B is a compact subset of R
p+q+1, and B = Γ × R× Σ where inf Σ > 0.

4. Ewtw
′
tI(

∑p
i=1 ρiyt−i + γ′xt > δ) is positive definite for some positive δ.

Theorem 2 Under Assumption 1 and 2, β̂T
p

−→ β.

For asymptotic normality, we need the following additional assumption.

Assumption 3

1. β is in the interior of B.

2. I = E(∂/∂b)lt(β)(∂/∂b′)lt(β) = −E(∂/∂b)(∂/∂b′)lt(β) is invertible.

Theorem 3 Under Assumptions 1, 2, and 3, T 1/2(β̂T − β)
d

−→ N(0, I−1).

4 Powell’s LAD for dynamic censored regression

For this section, define β = (ρ′, γ′)′, where ρ = (ρ1, . . . , ρp), define b = (r′, c′)′ where r is
a (p × 1) vector and c is a (q × 1) vector, and wt = (yt−1, . . . , yt−p, x

′
t)

′. This redefines the
b and β vectors such as to not include s and σ respectively; this is because Powell’s LAD
estimator does not provide a first-round estimate for σ2. Powell’s LAD estimator β̃T of the
dynamic censored regression model is defined as a minimizer of

ST (b) = ST (c, r, s) = (T − p)−1
T∑

t=p+1

s(yt−1, . . . , yt−p, xt, εt, b)

= (T − p)−1

T∑

t=p+1

|yt − max(0,

p∑

i=1

riyt−i + c′xt)| (9)

over a compact set subset B of R
p+q. We can prove consistency of Powell’s LAD estimator

of the dynamic time series censored regression model under the following assumption.
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Assumption 4

1. β ∈ B, where B is a compact subset of R
p+q.

2. The conditional distribution F (εt|wt) satisfies F (0|wt) = 1/2, and f(ε|wt) = (∂/∂ε)F (ε|w)
is continuous in ε on a neighborhood of 0 and satisfies c2 ≥ f(0|wt) ≥ c1 > 0 for con-
stants c1, c2 > 0.

3. E|xt|
3 <∞, and Ewtw

′
tI(

∑p
i=1 ρiyt−i + γ′xt > δ) is nonsingular for some positive δ.

Theorem 4 Under Assumptions 1 and 4, β̃T
p

−→ β.

For asymptotic normality, we need the following additional assumption. Below, let

ψ(wt, εt, b) = I(b′wt > 0)(1/2 − I(εt + (β − b)′wt > 0))wt. (10)

ψ(., ., .) can be viewed as a “heuristic derivative” of s(., .) with respect to b.

Assumption 5

1. β is in the interior of B.

2. Defining G(z, b, r) = EI(|w′
tb| ≤ |wt|z)|wt|

r, we have for z near 0, for r = 0, 1, 2,

sup
|b−β|<ζ0

|G(z, b, r)| ≤ K1z. (11)

3. The matrix

Ω = lim
T→∞

E(T−1/2
T∑

t=1

ψ(wt, εt, β))(T−1/2
T∑

t=1

ψ(wt, εt, β))′ (12)

is well-defined, and N = Ef(0|wt)I(w
′
tβ > 0)wtw

′
t is invertible.

4. For some r ≥ 2, E|xt|
2r < ∞, E|εt|

2r < ∞, and |Πj| ≤ c1 exp(−c2j) for positive
constants c1 and c2.

5. The conditional density f(ε|wt) satisfies, for a nonrandom Lipschitz constant L0,

|f(ε|wt) − f(ε̃|wt)| ≤ L0|ε− ε̃|. (13)
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Theorem 5 Under Assumptions 1, 4 and 5, T 1/2(β̃T − β)
d

−→ N(0, N−1ΩN−1).

Assumption 5.1 is identical to Powell’s Assumption P.2, and Assumption 5.2 is the same
as Powell’s Assumption R.2. Theorem 5 imposes moment conditions of order 4 or higher. The
conditions imposed by Theorem 5 are moment restrictions that involve the dimensionality
p+ q of the parameter space. These conditions originate from the stochastic equicontinuity
proof of Hansen (1996), which is used in the proof. One would expect that some progress
in establishing stochastic equicontinuity results for dependent variables could aid in relaxing
condition 4 imposed in Theorem 5.

5 Simulations

In this section, we evaluate the consistency of the Tobit and CLAD estimators of the dynamic
censored regression model. We consider the data generating process

yt = max(0, γ1 + γ2xt +

p∑

i=1

ρiyt−i + εt)

where

xt = α1 + α2xt−1 + vt,

εt ∼ N(0, σ2
ε ), and vt ∼ N(0, σ2

v). For our simulations, we consider the cases p = 1 and p = 2.
Many configurations for α1, α2, γ1, γ2, σ

2
v , and σ2

ε were considered. To conserve space, we
only report results for γ1 = 1, γ2 = 1, α1 = α2 = 0.5, σ2

ε = σ2
v = 1.

For p = 1, simulations were conducted for ρ ∈ {0, 0.3, 0.6, 0.9}, whereas for p = 2 we
conducted simulations for (ρ1, ρ2) ∈{(0.2, 0.1) , (0.5, 0.1) , (0.8, 0.1) , (0,−0.3) , (0.3,−0.3) ,
(0.6,−0.3) , (0.9,−0.3)}. Note that, in contrast with Honore and Hu (2004), in our simu-
lations the values of ρi are not restricted to be non-negative. For both the case p = 1 and
the case p = 2 the number of replications used to compute the bias reported in the tables is
10,000.

Tables 4 reports simulation results for the dynamic Tobit model where estimates of
β = (ρ′, γ′, σε) , with ρ′ = ρ if p = 1, ρ′ = (ρ1, ρ2) if p = 2, and γ′ = (γ1, γ2) are obtained via
maximum likelihood. Results for Powell’s LAD estimates of the dynamic censored regression
model are reported in Table 5 where β = (ρ′, γ′) , with ρ′ = ρ if p = 1, ρ′ = (ρ1, ρ2) if p = 2,
and γ′ = (γ1, γ2) . As we mentioned in section 4, because Powell’s LAD estimator does not
provide a first-round estimator of σε we redefine β as to not include σε. Estimates in this
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case are obtained using the BRCENS algorithm proposed by Fitzenberger (1997a,b). We
report results for T = 100, 300, 600, 1000, 2000.

The simulations reveal that the maximum likelihood estimator for the dynamic Tobit
model and Powell’s LAD estimator of the dynamic censored regression model perform well
for T ≥ 300 (see Tables 4 and 5). As expected, the bias decreases as the sample size increases.
For the same number of observations, the bias does not seem to vary much over the different
values for ρ and (ρ1,ρ2) that were considered.

6 Empirical Application

In a time series framework, censored variables can arise when the dynamic optimization
behavior of a firm, individual or policy maker leads to a corner response for a significant
proportion of time. Thus, is not surprising that dynamic Tobit models have been estimated
to study a number of variables such as open market operations (Demiralp and Jordà, 2002)
and central bank intervention in foreign exchange markets (Kim and Sheen, 2002). What is
surprising is that inference is conducted using the t-statistic critical values, without having
considered formal issues of stationarity. As we have noted before, strict stationarity and
ergodicity of the dynamic censored regression model is required to show asymptotic normality
and consistency of the maximum likelihood estimator of the dynamic Tobit model and of
Powell’s LAD estimator of the dynamic censored regression.

In what follows we discuss an application of the dynamic censored regression model
to the Open Market Desk reaction function. Although there are a significant number of
papers that model and estimate the Federal Open Market Committee’s reaction function
(e.g. Feinman, 1993, Demiralp and Farley, 2005), we are only aware of a recent study
where lags of the dependent variable (i.e. open market operations) are included among the
regressors. Without having considered formal issues of stationarity, Demiralp and Jordà
(2002) estimated a dynamic Tobit model to analyze whether the February 4, 1994, Fed
decision to publicly announce changes in the federal funds rate target affected the manner
in which the Open Market Desk conducts operations. In the following section we re-evaluate
their findings.

6.1 Data and Summary of Previous Results

The data used by Demiralp and Jordà (2002) to study the announcement effect on the
Open Market Desk reaction function are daily and span the period between April 25, 1984
and August 14, 2000. They divide the sample in three subsamples. The first subsample
corresponds to the period preceding the Fed decision to publicly announce changes in the
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federal fund rate target on February 4, 1994. The second period spans the days between
February 4, 1994 and the decision to shift from contemporaneous reserve accounting (CRA)
to lagged reserves accounting (LRA) system in August 17, 1998. The last subsample covers
the period following the shift to the CRA system.

Demiralp and Jordà (2002) classify open market operations in six groups according to
whether they inject or drain liquidity and to the permanence of the operation. Operations
that add liquidity can be grouped into overnight reversible repurchase agreements (OB), term
repurchase agreements (TB), and permanent purchases (PB), which include T-bill purchases
and coupon purchases. Operations that drain liquidity can be grouped into overnight sales
(OS), term matched-sale purchases (TS), and permanent sales (PS), which comprise T-bill
sales and coupon sales.

Because the computation of reserves is based on a 14-day maintenance period that starts
on Thursday and finishes on the ”Settlement Wednesday” two weeks later, the maintenance-
period average is the object of attention of the Open Market Desk. Thus, all operations
are adjusted according to the number of days spanned by the transaction, and standardized
by the aggregate level of reserves held by depository institutions in the maintenance period
previous to the execution of the transaction.

Demiralp and Jordà (2002) separate deviations of the federal funds rate from the target
into three components:

NEEDt = ft −
[
f ∗

m(t)−1 + wtEm(t)−1

(
∆f ∗

m(t)

)]
(14)

EXPECTt = Em(t)−1

(
∆f ∗

m(t)

)
(15)

SURPRISEt = ∆f ∗
t − Em(t)−1

(
∆f ∗

m(t)

)
(16)

where the maintenance period to which observation in day t belongs is denoted by m(t),
ft denotes the federal funds rate in day t; f ∗

m(t)−1 denotes the value of the target in the

maintenance period previous to the one to which observation t belongs; Em(t)−1(∆f
∗
m(t))

denotes the expectation of a target change in day t, conditional on the information available
at the beginning of the 14-day maintenance period; and wt denotes the probability of a target
change on date t. Both the expected change in the target, Em(t)−1(∆f

∗
m(t)), and the weights

wt are calculated by Demiralp and Jordà (2002) using the ACH model of Hamilton and Jordà
(2002). This decomposition is intended to reflect three different motives for open market
purchases: (1) to add or drain liquidity in order to accommodate shocks to the demand for
reserves; (2) to accommodate expectations of future changes in the target; and (3) to adjust
to a new target level. Thus, NEEDt represents a proxy for the projected reserve need, and
changes in the federal funds rate are separated into an expected component, EXPECTt,
and a surprise component, SURPRISEt. The latter takes a non-zero value for the 115 days
in the sample when there was a change in the target, and zero otherwise.

12



Because the Desk engages in open market operations only on 60% of the days in the
sample, and even the most common operation only takes place on 35% of the days (i.e., the
data is censored at zero during a large number of days), Demiralp and Jordà (2002) use a
Tobit model to analyze the reaction function of the Open Market Desk. Furthermore, to
allow for a different response of sales and purchases –with varying degrees of permanence–
to changes in the explanatory variables they estimate separate regressions for each of the
six types of operation and each of the periods of interest. Because very few term and
permanent sales were carried out during the 1998-2000 and 1984-1994 periods, no regressions
are estimated for this type of operation in these subsamples. Hence, a total of sixteen
regression are estimated. Demiralp and Jordà (2002) use the following dynamic Tobit model
to describe open market operations carried out by the Open Market Desk:

yt = max(0,
10∑

m=1

γα
mDAYtm +

3∑

j=1

ρjyt−j +
3∑

j=1

υ
′

jzt−j +
10∑

m=1

γN
mNEEDt−m ×DAYtm

+
10∑

m=1

γE
mEXPECTt−m ×DAYtm +

3∑

j=0

γS
j SURPRISEt−j + εt) (17)

where yt denotes one of the open market operation of interest, that is, yt equals either
overnight purchases (OBt), term purchases (TBt), permanent purchases (PBt), overnight
sales (OSt), term sales (TSt), or permanent sales (PSt). zt denotes a vector containing the
remaining five types of operations. For instance, if yt = OBt (overnight purchases), then
zt = [TBt, PBt, OSt, TSt, PSt] . DAYtm denotes a vector of maintenance-day dummies, and
εt is a stochastic disturbance.

We thus start our empirical analysis by re-estimating Demiralp and Jordà’s (2002) spec-
ifications under the assumption of normality. That is, we follow their lead in assuming the
dynamic Tobit model is correctly specified. We report the coefficient estimates for the lags of
the dependent variable in Table 1. See Tables A.1 and A.2 in the Appendix for the complete
set of parameter estimates. Because we are interested in whether the roots of the polyno-
mial ρmax(z) = 1 −

∑3
i=1 max(0, ρi)z

i are outside the unit circle we report the smallest of
the moduli of the roots of this lag polynomial.

Note that 10 out of the 16 regressions estimated by Demiralp and Jordà (2002) appear
to have at least one root that falls on or inside the unit circle. One may wonder whether this
result stems from nonstationarity issues or from misspecification in the error distribution. To
investigate this issue, we test for normality of the Tobit residuals and report the Jarque-Bera
statistics in Table 1; these results lead us to reject the null that the underlying disturbances
are normally distributed. Thus, we proceed in the following section to estimate the Open
Desk’s reaction function using Powell’s LAD estimator, which is robust to unknown error
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distributions. If the problem is one of nonstationarity, one would then expect the roots of
the ρmax(.) polynomial to be on or inside the unit circle. However, in what follows we will
see that CLAD estimates for temporary Open Market purchases indicate that the roots of
the ρmax(.) polynomial are outside the unit circle. That finding suggests that the results
of Demiralp and Jordà (2002) suffer from misspecification in the error distribution, but not
from nonstationarity issues.

6.2 Model and estimation procedure

From here on we will restrict our attention to the Desk’s reaction function for temporary
open market purchases over the whole 1984-2000 sample. We focus on temporary purchases
because overnight and term RPs are the most common operations carried out by the Open
Market Desk; thus, they are informative regarding the Desk’s reaction function. In fact,
daily values of temporary purchases plotted in Figure 1 reveal that the Open Market Desk
engaged in temporary purchases on 37% of the days between April 25, 1984 and August 14,
2000. In contrast, permanent purchases, temporary sales, and permanent sales were carried
out, respectively, on 24%, 7%, and 2% of the days in the sample.

Thus, in contrast with Demiralp and Jordà (2002) we re-classify open market operations
in four groups: (a) temporary purchases, which comprise overnight reversible repurchase
agreements (RP) and term RP, OTBt = OBt+TBt; (b) permanent purchases, which include
T-bill purchases and coupon purchases, PBt; (c) temporary sales, which include overnight
and term matched sale-purchases, OTSt = OSt + TSt; and (d) permanent sales, which
comprise T-bill sales and coupon sales, PSt. In brief, we group overnight and term operations
and restrict our analysis to the change in the maintenance-period-average level of reserves
brought about by temporary purchases of the Open Market Desk, OTBt.

We employ the following dynamic censored regression model to describe temporary pur-
chases by the Open Market Desk:

OTBt = max(0, γ +

4∑

m=1

γα
mDtm +

3∑

j=1

ρjOTBt−j +

3∑

j=1

γTS
j OTSt−j +

3∑

j=1

γPB
j PBt−j

+

3∑

j=1

γPS
j PSt−j +

10∑

m=1

γN
mNEEDt−m ×DAYtm +

10∑

m=1

γE
mEXPECTt−m ×DAYtm

+

3∑

j=0

γS
j SURPRISEt−j + εt) (18)
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where OTBt denotes temporary purchases, OTSt denotes temporary sales, PBt denotes
permanent purchases, PSt denotes permanent sales, DAYtm denotes a vector of maintenance-
day dummies, Dtm is such that Dt1 = DAYt1 (First Thursday), Dt2 = DAYt2 (First Friday),
Dt3 = DAYt7 (Second Friday), and Dt4 = DAYt,10 (Settlement Wednesday), and εt is a
stochastic disturbance.

This model is a restricted version of (17) in that it does not include dummies for all days
in the maintenance period. Instead, to control for differences in the reserve levels that the
Federal Reserve might want to leave in the system at the end of the day, we include only
dummies for certain days of the maintenance period where the target level of reserves is
expected to be different from the average (see Demiralp and Farley, 2005). However, we do
allow the response of temporary purchases to reserve needs and expected changes in the fed
funds rate to vary across all days of the maintenance period.

Regarding the estimation procedure, Tobit estimates b̂ are obtained in the usual manner
via maximum likelihood estimation, whereas the CLAD estimates b̃ are obtained by using the
BRCENS algorithm proposed by Fitzenberger (1997a,b). Extensive Monte Carlo simulations
by Fitzenberger (1997a) suggest that this algorithm, which is an adaptation of the Barrodale-
Roberts algorithm for the censored quantile regression, performs better than the iterative
linear programming algorithm (ILPA) of Buchinsky (1994) and the modified ILPA algorithm
(MILPA) of Fitzenberger (1994), in terms of the percentage of times it detects the global
minimum of a censored quantile regression. In fact, for our application, a grid search over
1000 points in the neighborhood of the estimates b̃ indicates both the ILPA and MILPA
algorithms converge to a local minimum. In contrast, the BRCENS algorithm is stable and
appears to converge to a global minimum.

Because the CLAD does not provide a first-round estimate for the variance, N−1ΩN−1,
we compute it in the following manner. Ω̃ is calculated as the long-run variance of ψ̃(wt, b̃) =

I (̃b′wt > 0)[1
2
− I(yt < b̃′wt)]wt, following the suggestions of Andrews (1991) to select the

bandwidth for the Bartlett kernel. To compute Ñ , we estimate f(0|wt) using a higher-order
Gaussian kernel with the order and bandwidth selected according to Hansen (2003, 2004).

6.3 Estimation Results

Maximum likelihood estimates of the dynamic Tobit model for the entire sample, and
corresponding standard errors are presented in the first two columns of Table 2.1 Be-
fore we comment on the estimation results, it is important to inspect whether the roots
of the lag polynomial ρmax(z) lie outside the unit circle. The three roots of ρ̂max(z) =
1 − 0.2639z − 0.2916z2 − 0.3054z3 lie all outside the unit circle, and the smallest modulus

1The reported standard errors for the Tobit estimates are the quasi-maximum likelihood standard errors.
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of these roots equals 1.075. Because this root is near the unit circle and because we do not
have the tools to test if it is statistically greater than one, we should proceed with caution.

Of interest is the presence of statistically significant coefficients on the lags of the depen-
dent variable, TBt−j . This persistence suggests that in order to attain the desired target,
the Open Market Desk had to exercise pressure on the fed funds market in a gradual man-
ner, on consecutive days. The negative and statistically significant coefficients on lagged
temporary sales, TSt−j , imply that temporary sales constituted substitutes for temporary
purchases. In other words, in the face of a reserve shortage the Open Market Desk could
react by conducting temporary purchases and/or delaying temporary sales. The positive and
statistically significant coefficients on the NEEDt−1×DAYtm variables is consistent with an
accommodating behavior of the Fed to deviations of the federal funds rate from its target.
The Tobit estimates suggest that expectations of target changes were accommodated in the
first days of the maintenance period, and did not significantly affect temporary purchases
on most of the remaining days. As for the effect of surprise changes in the target, the es-
timated coefficients are statistically insignificant. According to Demiralp and Jordà (2002),
statistically insignificant coefficients on SURPRISEt−j can be interpreted as evidence of
the announcement effect.2 This suggests that the Fed did not require temporary purchases
to signal the change in the target, once it had been announced (or inferred by the markets).

However, it is well known that the Tobit estimates are inconsistent if the underlying
disturbances are heteroskedastic or non-normal (Greene, 2000). Thus, to assess whether the
Tobit specification of the reaction function is appropriate, we conduct tests for homoskedas-
ticity and normality. A Lagrange multiplier test of heteroskedasticity obtained by assuming
V ar(εt|wt) = σ2 exp(δ′zt), where zt is a vector that contains all elements in wt but the con-
stant, rejects the null H0 : δ = 0 at the 1% level. In addition, the Jarque-Bera statistic leads
us to reject the null that the residuals are normally distributed at a 1% level. This is clearly
illustrated in Figure 2, which plots the histogram for the Tobit residuals.

Summing up, the finding of a root that is close to the unit circle in conjunction with
the rejection of the normality and homoskedasticity assumptions suggest that the Tobit
estimates could be biased. Hence, our finding of a root near the unit circle may stem ei-
ther from misspecification of the error term or from non-stationarity of the dynamic Tobit
model. To further investigate this issue, we consider the CLAD estimator, which is robust to
heteroskedasticity and nonnormality and is consistent in the presence of weakly dependent
errors (see Section 4). Finding a root close to unity for the CLAD estimates would be indica-

2Even though the federal funds target has only been announced since the February 3-4 FOMC meeting,
Demiralp and Jordà (2004) provide evidence that, since late 1989, financial markets were able to decode
changes in the target from the pattern of open market operations. Furthermore, research by Cook and Hahn
(1988) suggests that even in earlier periods, market participants were able to read signals of a target change
in the Fed’s behavior.
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tive of nonstationarity in the dynamic censored regression model driving the test results. In
contrast, finding roots that are outside the unit circle would point towards misspecification
of the error distribution being the cause of the bias in the Tobit estimates.

CLAD estimates and corresponding standard errors are reported in the third and fourth
column of Table 2, respectively3. Notice that, in this case, the smallest root of the lag
polynomial ρ̃max(z) = 1 − 0.068z − 0.093z2 − 0.073z3 appears to be clearly outside the
unit circle. Here the smallest modulus of the roots equals 1.928. Given that the roots are
far from the unit circle, standard inference techniques seem to be asymptotically justified.
Furthermore, this suggest that our finding of roots that are near the unit circle for the Tobit
model is a consequence of misspecification in the error term as normal and homoskedastic.

Comparing the CLAD and the Tobit estimates reveals some differences regarding the
Desk’s reaction function. First, the CLAD estimates imply a considerably smaller degree of
persistence in temporary purchases. The magnitude of the ρj , j = 1, 2, 3, parameter estimates
is at most 1/3 of the Tobit estimates. Consequently, the roots of the lag polynomial ρ̃max(z)
implied by the CLAD estimates are larger, giving us confidence regarding stationarity of the
censored regression model.

Second, although both estimates imply a similar reaction of the Fed to reserve needs,
there are some differences in the magnitude and statistical significance of the parameters.
In particular, the CLAD estimates suggest a pattern in which the Fed is increasingly less
reluctant to intervene during the first three days of the maintenance period; then, no sig-
nificant response is apparent for the following four days (with the exception of Day5, the
first Wednesday); and finally, the response to reserve needs becomes positive and significant
for the last three days of the period. Furthermore, on Mondays (Day3 and Day8), the Desk
appears to be more willing to accommodate shocks in the demand for reserves in order to
maintain the federal funds rate aligned with the target.

The expectation of a change in the target seldom triggers temporary open market pur-
chases. The coefficient on EXPECT is statistically significant on the first and eight day
of the maintenance period, and marginally significant on the second and sixth day. This
suggest the Fed in only seldom willing to accommodate (or profit) from anticipated changes
in the target. Moreover, even though both estimation methods point towards a larger effect
on the first day, the CLAD estimate (40.5) suggest an impact that is about 67% smaller
than the Tobit estimate (121.5).

The majority of the coefficients on the contemporaneous and lagged SURPRISE have
a negative sign, which is consistent with the liquidity effect. That is, in order to steer the

3Our estimate for Ω was calculated with an HAC estimator using the Bartlett kernel, and the bandwidth
was selected using the data-driven method suggested by Andrews (1991). The density function f(0|wt) was
estimated using a higher-order Gaussian kernel with the order and bandwidth selected according to Hansen
(2003, 2004).
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federal funds rate towards a new lower target level the Desk would add liquidity by using
temporary purchases. Yet, the fact that none of the coefficients are statistically significant
suggests that once the target was announced (or inferred by the financial markets) little
additional pressure was needed to enforce the new target.

Finally, to further explore the “announcement effect” we redo the estimation using only
the observations after the Fed started announcing the new target level in February 4, 1994
(see Table 3)4. There appears to be a somewhat smaller but still significant degree of
persistence in temporary open market purchases after the decision to announce the target
level. This suggest the Fed still had to exert some pressure on the market to drive the fed
funds rate towards the new target level.5 In brief, we find the coefficients on the current and
lagged values of SURPRISE to be statistically insignificant whether we include or not the
observations that predate the Fed decision to announce the target level.

7 Conclusions

This paper shows stationarity properties of the dynamic censored regression model in a time
series framework. It then provides a formal justification for maximum likelihood estimation of
the dynamic Tobit model and for Powell’s LAD estimation of the dynamic censored regression
model, showing consistency and asymptotic normality of both estimators. Two important
features of the treatment of the censored regression model in this paper is that no assumption
is made on the lag polynomial other than that ρmax(z) = 1−

∑p
i=1 max(0, ρi)z

i has its roots
outside the unit circle and that the error term, εt, is itself allowed to be potentially correlated.
Hence, in terms of the conditions on ρmax(z) and the dependence allowed for εt, this paper
analyzes the dynamic censored regression model on a level of generality that is comparable to
the level of generality under which results for the linear model AR(p) model can be derived.

The censored regression model is then applied to study the Open Market Desk’s re-
action function. Robust estimates for temporary purchases using Powell’s CLAD suggest
that maximum likelihood estimates of the dynamic Tobit model may lead to overestimating
the persistence of temporary purchases, as well as the effect of demand for reserves and
expectations of future changes in the federal funds target on temporary purchases. More-
over, a comparison of the Tobit and CLAD estimates suggests that temporary purchases are
stationary, but that the error normality assumed in the Tobit specification does not hold.

4Due to the stationarity issues discussed in the previous section, we do not use the same subsamples as
Demiralp and Jordà (2002).

5Similar conclusions are drawn if we use the futures federal funds rate (Kuttner, 2001) to decompose
anticipated and unanticipated changes in policy.
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Variable Estimate Std. Err. Estimate Std. Err.

Constant -18.742 *** 1.753 -1.252 *** 0.341
First Thursday 16.962 *** 2.833 1.814 *** 0.502
First Friday -17.046 *** 2.917 -3.595 *** 1.393
Second Friday -12.051 *** 2.683 -3.466 *** 1.262
Settlement Wednesday 4.456 *** 1.553 2.811 *** 0.464
OTB(-1) 0.264 *** 0.035 0.068 *** 0.008
OTB(-2) 0.292 *** 0.042 0.093 *** 0.007
OTB(-3) 0.305 *** 0.049 0.073 *** 0.007
OTS(-1) -1.726 *** 0.611 -3.941 3.666
OTS(-2) -0.865 * 0.447 -1.025 1.554
OTS(-3) -1.895 *** 0.408 -0.558 * 0.359
PB(-1) -0.018 0.085 -0.164 *** 0.065
PB(-2) -0.065 0.074 -0.045 0.038
PB(-3) -0.073 0.072 -0.022 0.031
PS(-1) 0.146 0.253 -0.033 0.116
PS(-2) -0.151 0.245 -0.067 0.092
PS(-3) -0.198 0.223 0.065 * 0.045
SURPRISE -14.046 15.387 -0.659 4.441
SURPRISE(-1) 11.516 13.044 -0.268 3.898
SURPRISE(-2) -14.619 17.648 0.735 3.849
SURPRISE(-3) -7.259 14.832 -1.755 4.08
NEED(-1)*Day1 -0.501 2.974 1.742 *** 0.526
NEED(-1)*Day2 11.645 ** 4.691 3.433 *** 0.794
NEED(-1)*Day3 24.030 *** 8.595 9.163 *** 2.108
NEED(-1)*Day4 -7.489 7.775 -1.868 1.822
NEED(-1)*Day5 21.671 *** 7.612 5.884 *** 2.012
NEED(-1)*Day6 5.312 10.941 -0.593 2.478
NEED(-1)*Day7 33.429 *** 10.471 1.367 2.362
NEED(-1)*Day8 6.842 7.789 9.616 *** 2.213
NEED(-1)*Day9 13.402 *** 4.953 5.206 *** 1.248
NEED(-1)*Day10 3.972 * 2.083 1.144 ** 0.52
EXPECT*Day1 121.451 ** 53.231 40.461 *** 5.499
EXPECT*Day2 48.599 34.018 13.107 * 8.277
EXPECT*Day3 -14.656 38.828 1.884 6.077
EXPECT*Day4 -25.528 29.346 3.586 5.711
EXPECT*Day5 -54.997 * 29.859 -1.924 7.271
EXPECT*Day6 51.573 * 30.636 8.856 * 5.449
EXPECT*Day7 -37.603 36.721 1.632 12.704
EXPECT*Day8 39.313 * 20.515 12.535 ** 5.454
EXPECT*Day9 -48.249 * 24.666 -11.71 9.445
EXPECT*Day10 16.269 16.363 7.958 * 5.168
SCALE 1094.099 *** 104.478

Smallest root 1. 0750 2. 0315

Note: ***, ** and * denote significance at the 1, 5 and 10% level, respectively. "Smallest root"
denotes the smallest modulus of the roots of the  ρmax (B)  lag polynomial.
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Variable Estimate Std. err. Estimate Std. Err.

Constant -3.856 ** 1.904 3.318 *** 0.379
First Thursday 24.899 *** 4.520 10.248 *** 0.766
First Friday -13.723 *** 4.013 -4.162 *** 1.145
Second Friday -9.781 *** 3.389 -3.006 *** 0.885
Settlement Wednesday 1.914 1.771 2.443 *** 0.750
OTB(-1) 0.146 *** 0.040 0.015 * 0.010
OTB(-2) 0.142 *** 0.043 0.037 *** 0.009
OTB(-3) 0.219 *** 0.053 0.023 *** 0.009
OTS(-1) -0.904 0.563 -3.435 * 2.091
OTS(-2) -0.561 0.440 -1.144 ** 0.570
OTS(-3) -2.068 *** 0.710 -3.851 *** 1.233
PB(-1) -0.109 0.117 -0.028 0.042
PB(-2) 0.030 0.108 0.008 0.027
PB(-3) -0.082 0.103 -0.049 * 0.036
PS(-1) 0.135 0.255 0.335 *** 0.092
PS(-2) 0.398 0.244 0.586 *** 0.085
PS(-3) -0.212 0.270 -0.008 0.081
SURPRISE 19.230 * 10.688 1.898 5.521
SURPRISE(-1) -18.989 15.698 -1.063 5.790
SURPRISE(-2) -42.791 34.819 -0.654 8.035
SURPRISE(-3) -42.019 * 23.901 -12.702 12.600
NEED(-1)*Day1 -1.260 11.661 7.145 *** 1.624
NEED(-1)*Day2 24.978 15.438 11.032 *** 4.263
NEED(-1)*Day3 22.241 ** 10.014 26.737 *** 5.221
NEED(-1)*Day4 -11.121 10.667 2.232 3.159
NEED(-1)*Day5 42.804 *** 12.427 17.637 *** 4.020
NEED(-1)*Day6 -14.788 19.240 -28.351 *** 6.376
NEED(-1)*Day7 20.849 19.487 10.726 *** 3.831
NEED(-1)*Day8 8.298 14.080 11.127 *** 4.187
NEED(-1)*Day9 0.540 7.724 2.384 2.055
NEED(-1)*Day10 10.502 * 5.679 0.945 2.493
EXPECT*Day1 93.199 68.418 33.119 *** 7.166
EXPECT*Day2 27.979 38.112 0.933 10.344
EXPECT*Day3 -12.791 38.854 -3.585 7.963
EXPECT*Day4 -43.710 31.953 -13.921 ** 7.604
EXPECT*Day5 -77.641 ** 33.233 -18.657 ** 9.407
EXPECT*Day6 7.185 30.834 9.525 * 6.507
EXPECT*Day7 -51.883 37.008 -8.995 17.458
EXPECT*Day8 -9.313 21.748 6.363 6.739
EXPECT*Day9 -98.467 *** 29.943 -18.863 ** 11.178
EXPECT*Day10 -15.402 16.353 0.078 7.091
SCALE 983.513 *** 132.711

Smallest root 1.353 3.001

Note: ***, ** and * denote significance at the 1, 5 and 10% level, respectively. "Smallest root"
denotes the smallest modulus of the roots of the  ρ max (B)  lag polynomial.
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T=100 T=300 T=600 T=1000 T=2000

  γ 1 1 0.0157 0.0046 0.0030 0.0017 0.0011
  γ 2 1 0.0076 0.0027 0.0007 0.0007 0.0005
  ρ 0 -0.0098 -0.0031 -0.0013 -0.0009 -0.0007
  σ 2 1 -0.0307 -0.0099 -0.0049 -0.0035 -0.0016

  γ 1 1 0.0285 0.0074 0.0042 0.0023 0.0012
  γ 2 1 0.0099 0.0037 0.0019 0.0013 0.0007
  ρ 0.3 -0.0105 -0.0033 -0.0019 -0.0011 -0.0007
  σ 2 1 -0.0294 -0.0105 -0.0038 -0.0035 -0.0014

  γ 1 1 0.0428 0.0111 0.0072 0.0051 0.0019
  γ 2 1 0.0131 0.0040 0.0025 0.0009 0.0003
  ρ 0.6 -0.0086 -0.0025 -0.0015 -0.0008 -0.0005
  σ 2 1 -0.0302 -0.0095 -0.0058 -0.0030 -0.0015

  γ 1 1 0.1091 0.0324 0.0156 0.0091 0.0101
  γ 2 1 0.0077 0.0018 0.0018 0.0006 0.0004
  ρ 0.9 -0.0036 -0.0010 -0.0006 -0.0003 -0.0005
  σ 2 1 -0.0295 -0.0095 -0.0050 -0.0031 -0.0017

Model: yt = max(0, γ 1  + γ 2 *xt + ρ *yt-1+ ε t)
xt = 0.5 + 0.5xt-1 +vt

Table 4
Bias: Tobit model with p=1

Observations

Ana Maria Herrera
Text Box
27



T=100 T=300 T=600 T=1000 T=2000

  γ 1 1 0.0394 0.0125 0.0071 0.0044 0.0018
  γ 2 1 0.0070 0.0027 0.0004 0.0007 0.0000
  ρ 1 0.2 -0.0062 -0.0018 -0.0008 -0.0006 -0.0002
  ρ 2 0.1 -0.0099 -0.0034 -0.0018 -0.0012 -0.0004
  σ 2 1 -0.0408 -0.0129 -0.0067 -0.0044 -0.0020

  γ 1 1 0.0613 0.0169 0.0095 0.0053 0.0028
  γ 2 1 0.0058 0.0022 0.0012 0.0009 0.0004
  ρ 1 0.5 -0.0072 -0.0023 -0.0011 -0.0009 -0.0004
  ρ 2 0.1 -0.0062 -0.0015 -0.0011 -0.0004 -0.0003
  σ 2 1 -0.0394 -0.0138 -0.0054 -0.0044 -0.0018

  γ 1 1 0.2140 0.0647 0.0330 0.0230 0.0087
  γ 2 1 0.0076 0.0022 0.0016 0.0002 0.0005
  ρ 1 0.8 -0.0091 -0.0024 -0.0016 -0.0005 -0.0005
  ρ 2 0.1 -0.0020 -0.0010 -0.0001 -0.0006 0.0001
  σ 2 1 -0.0411 -0.0131 -0.0076 -0.0041 -0.0020

  γ 1 1 0.0161 0.0054 0.0023 0.0025 0.0014
  γ 2 1 0.0058 -0.0001 0.0015 -0.0001 0.0001
  ρ 1 0 -0.0068 -0.0006 -0.0011 -0.0002 -0.0007
  ρ 2 -0.3 -0.0069 -0.0026 -0.0016 -0.0010 -0.0002
  σ 2 1 -0.0380 -0.0121 -0.0067 -0.0043 -0.0022

  γ 1 1 0.0167 0.0066 0.0017 0.0024 0.0012
  γ 2 1 0.0061 0.0022 0.0006 0.0007 0.0003
  ρ 1 0.3 -0.0064 -0.0029 -0.0012 -0.0009 -0.0004
  ρ 2 -0.3 -0.0055 -0.0016 -0.0004 -0.0007 -0.0002
  σ 2 1 -0.0369 -0.0139 -0.0061 -0.0040 -0.0017

  γ 1 1 0.0220 0.0060 0.0035 0.0016 0.0010
  γ 2 1 0.0075 0.0016 0.0008 0.0010 0.0003
  ρ 1 0.6 -0.0072 -0.0020 -0.0008 -0.0007 -0.0005
  ρ 2 -0.3 -0.0030 -0.0007 -0.0007 -0.0004 0.0001
  σ 2 1 -0.0399 -0.0124 -0.0059 -0.0044 -0.0020

  γ 1 1 0.0332 0.0128 0.0055 0.0030 0.0011
  γ 2 1 0.0074 0.0026 0.0014 0.0003 0.0005
  ρ 1 0.9 -0.0081 -0.0031 -0.0015 -0.0007 -0.0003
  ρ 2 -0.3 -0.0001 -0.0001 0.0002 0.0000 0.0000
  σ 2 1 -0.0391 -0.0130 -0.0056 -0.0042 -0.0023

Model: yt = max(0, γ 1  + γ 2 *xt + ρ 1 *yt-1 +ρ 2 *yt-2 +ε t)
xt = 0.5 + 0.5xt-1 +vt

Observations

Table 5
Bias: Tobit model with p=2

Ana Maria Herrera
Text Box
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T=100 T=300 T=600 T=1000 T=2000

  γ 1 1 -0.0027 0.0008 0.0004 0.0005 0.0008
  γ 2 1 0.0112 0.0043 0.0026 0.0009 0.0001
  ρ 0 -0.0071 -0.0032 -0.0021 -0.0011 -0.0007

  γ 1 1 0.0130 0.0072 0.0024 0.0020 0.0020
  γ 2 1 -0.0012 0.0034 0.0015 0.0003 0.0005
  ρ 0.3 -0.0090 -0.0039 -0.0012 -0.0010 -0.0007

  γ 1 1 0.0414 0.0168 0.0063 0.0045 0.0030
  γ 2 1 0.0077 0.0033 0.0005 0.0005 0.0006
  ρ 0.6 -0.0100 -0.0040 -0.0014 -0.0011 -0.0008

  γ 1 1 0.1939 0.0592 0.0248 0.0189 0.0086
  γ 2 1 0.0063 0.0029 0.0002 0.0007 0.0004
  ρ 0.9 -0.0100 -0.0031 -0.0013 -0.0010 -0.0004

Model: yt = max(0, γ 1  + γ 2 *xt + ρ *yt-1+ ε t)
xt = 0.5 + 0.5xt-1 +vt

Table 6
Bias: CLAD with p=1

Observations

Ana Maria Herrera
Text Box
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T=100 T=300 T=600 T=1000 T=2000

  γ 1 1 0.0309 0.0101 0.0036 0.0031 0.0020
  γ 2 1 0.0078 0.0037 0.0009 0.0008 -0.0003
  ρ 1 0.2 -0.0050 -0.0018 -0.0005 -0.0007 -0.0002
  ρ 2 0.1 -0.0091 -0.0031 -0.0014 -0.0007 -0.0004

  γ 1 1 0.0588 0.0170 0.0101 0.0045 0.0029
  γ 2 1 0.0075 0.0027 0.0002 0.0006 -0.0002
  ρ 1 0.5 -0.0091 -0.0015 -0.0011 -0.0007 -0.0003
  ρ 2 0.1 -0.0041 -0.0024 -0.0010 -0.0003 -0.0003

  γ 1 1 0.2206 0.0657 0.0323 0.0181 0.0094
  γ 2 1 0.0065 0.0029 0.0003 0.0007 -0.0002
  ρ 1 0.8 -0.0107 -0.0025 -0.0015 -0.0010 -0.0003
  ρ 2 0.1 -0.0007 -0.0009 -0.0001 0.0000 -0.0002

  γ 1 1 -0.0035 0.0008 0.0008 0.0009 0.0002
  γ 2 1 0.0195 0.0055 0.0017 0.0013 0.0008
  ρ 1 0 -0.0063 -0.0015 -0.0009 -0.0008 -0.0001
  ρ 2 -0.3 -0.0115 -0.0039 -0.0018 -0.0011 -0.0005

  γ 1 1 0.0066 0.0029 0.0022 0.0010 0.0008
  γ 2 1 0.0126 0.0044 0.0011 0.0009 -0.0002
  ρ 1 0.3 -0.0078 -0.0012 -0.0008 -0.0007 -0.0001
  ρ 2 -0.3 -0.0041 -0.0027 -0.0014 -0.0004 -0.0003

  γ 1 1 0.0142 0.0054 0.0027 0.0015 0.0013
  γ 2 1 0.0093 0.0036 0.0016 0.0008 -0.0002
  ρ 1 0.6 -0.0078 -0.0014 -0.0010 -0.0008 -0.0003
  ρ 2 -0.3 -0.0012 -0.0019 -0.0007 -0.0001 -0.0001

  γ 1 1 0.0321 0.0117 0.0039 0.0030 0.0018
  γ 2 1 0.0072 0.0031 0.0010 0.0007 -0.0003
  ρ 1 0.9 -0.0077 -0.0023 -0.0017 -0.0009 -0.0003
  ρ 2 -0.3 -0.0003 -0.0006 0.0005 0.0001 0.0000

Model: yt = max(0, γ 1  + γ 2 *xt + ρ 1 *yt-1 +ρ 2 *yt-2 +ε t)
xt = 0.5 + 0.5xt-1 +vt

Table 7
Bias: CLAD with p=2

Observations

Ana Maria Herrera
Text Box
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Appendix

Define ŷm
t = 0 for m ≤ 0 and ŷm

t = max(0, ηt +
∑p

i=1 ρiŷ
m−i
t−i ). Therefore, ŷm

t is the approx-
imation for yt that presumes yt−m, . . . , yt−m−p = 0. We can obtain an almost surely finite
upper bound for yt and ŷm

t :

Lemma 1 If the lag polynomial (1−max(0, ρ1)B−. . .−max(0, ρp)B
p) has all its roots outside

the unit circle and supt∈Z
Emax(0, ηt) <∞, then for an almost surely finite random variable

ft = f(ηt, ηt−1, . . .) =
∑∞

j=0L
j
1 max(0, ηt−j), and Lj

1 that are such that Lj
1 ≤ c1 exp(−c2j) for

positive constants c1 and c2,

ŷm
t ≤ ft.

Proof of Lemma 1:

Note that, by successive substitution of the definition of ŷm
t for the ŷm

t that has the largest
value for t,

ŷm
t ≤ max(0, ηt) +

p∑

i=1

max(0, ρi)ŷ
m−i
t−i

= max(0, ηt) +

p∑

i=1

L1
i ŷ

m−i
t−i

≤ max(0, ηt) +

p∑

i=2

max(0, ρi)ŷ
m−i
t−i + max(0, ρ1)(max(0, ηt−1) +

p∑

i=1

max(0, ρi)ŷ
m−i−1
t−i−1 )

= max(0, ηt) + L1
1 max(0, ηt−1) +

p∑

i=1

L2
i ŷ

m−i−1
t−i−1

≤ max(0, ηt) + L1
1 max(0, ηt−1) + L2

1 max(0, ηt−2) +

p∑

i=1

L3
i ŷ

m−i−2
t−i−2

≤

∞∑

j=0

Lj
1 max(0, ηt−j).

31



The Lj
i satisfy, for j ≥ 2,

Lj
1 = Lj−1

2 + max(0, ρ1)L
j−1
1 ,

Lj
2 = Lj−1

3 + max(0, ρ2)L
j−1
1 ,

...

Lj
p−1 = Lj−1

p + max(0, ρp−1)L
j−1
1 ,

Lj
p = max(0, ρp)L

j−1
1 .

From these equations it follows that we can write, for the backward operator B that is such
that B(Lj

i ) = Lj−1
i ,

(1 −

p∑

j=1

max(0, ρj)B
j)Lj

1 = 0.

From the fact that the above lag polynomial has all its roots outside the unit circle by
assumption, it follows that Lj

1 ≤ c1 exp(−c2j) for positive constants c1 and c2. Also, if
supt∈Z

Emax(0, ηt) <∞, then
∑∞

j=0L
j
1 max(0, ηt−j) is an a.s. finite random variable. �

We will first proceed by deriving a moment bound for yt. The following theorem provides
such a result:

Lemma 2 If ηt is strictly stationary, ρmax(B) has all its roots outside the unit circle, and
‖ max(0, ηt) ‖r<∞ for some r ≥ 1, then supt∈Z

‖ ft ‖r<∞.

Proof of Lemma 2:

The result Lemma 2 follows by noting that, by Lemma 1,

‖ ft ‖r≤

∞∑

j=0

Lj
1 ‖ max(0, ηt−j) ‖r<∞.

�

We will also need an exponential inequality:
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Lemma 3 If xt is L1-near epoch dependent on vt, where vt is α-mixing and α(m)+ ν(m) ≤
C1 exp(−C2m) for positive constants C1 and C2, and |xt| ≤ 1, then for all δ > 0,

P (|m−1
m∑

t=1

xt| > δ) ≤ c1 exp(−c2δ
2m1/3)

for positive constants c1 and c2 possibly depending on δ.

Proof of Lemma 3:

Observe that for all k > 0,

xt =
k−1∑

j=−k

(E(xt|vt−j , . . .) −E(xt|vt−j−1, . . .)) + E(xt|vt−k, . . .) + (xt − E(xt|vt+k, . . .)),

and therefore for all k > 0,

P (|m−1

m∑

t=1

xt| > δ)

≤ δ−1 ‖ E(xt|vt−k−1, . . .) ‖1 +δ−1 ‖ xt −E(xt|vt+k, . . .) ‖1

+
k∑

j=−k

P (m−1
m∑

t=1

(E(xt|vt−j , . . .) − E(xt|vt−j−1, . . .)) > δ/(2k + 1)).

By the L1-near epoch dependence condition, boundedness and the L1-mixingale property of
xt (see Andrews (1988) ),

δ−1 ‖ E(xt|vt−k−1, . . .) ‖1 +δ−1 ‖ xt −E(xt|vt+k, . . .) ‖1≤ δ−1C1 exp(−C2k),

and by Azuma’s inequality (see Azuma (1967)),

P (m−1
m∑

t=1

(E(xt|vt−j , . . .) − E(xt|vt−j−1, . . .)) > δ/(2k))

≤ 2 exp(−δ2m/8k2).

By choosing k = [m1/3] and collecting terms, the result now follows. �
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The following lemma is needed for the stationarity proof of Theorem 1. For ζ > 0, let

Hζ(x) = −ζ−1xI(−ζ ≤ x ≤ 0) + I(x ≤ −ζ).

Itl =

p−1∏

j=0

I(ηt−l−j ≤ −

p∑

i=1

ρjft−l−j−i)

and

Iζ
tl =

p−1∏

j=0

Hζ(ηt−l−j +

p∑

i=1

ρjft−l−j−i).

Lemma 4 Assume that ηt is strictly stationary and strong mixing and satisfies ‖ max(0, ηt) ‖2<
∞. Then for all t ∈ Z and δ > 0, as m→ ∞,

(m− p)−1

m−p∑

l=1

(Iζ
tl log(δ) + log(1 + δ)(1 − Iζ

tl))
p

−→ E(Iζ
tl log(δ) + log(1 + δ)(1 − Iζ

tl)).

Proof of Lemma 4:

Note that we can write

(m− p)−1

m−p∑

l=1

(Iζ
tl log(δ) + log(1 + δ)(1 − Iζ

tl))

= (m− p)−1

m−p∑

l=1

(Iζ
t,m−p+1−l log(δ) + log(1 + δ)(1 − Iζ

t,m−p+1−l)).

Note that

Iζ
t,m−p+1−l =

p−1∏

j=0

Hζ(ηt−(m−p+1−l)−j +

p∑

i=1

ρift−(m−p+1−l)−j−i),

and for all t and j,

ηt−(m−p+1−l)−j +

p∑

i=1

ρift−(m−p+1−l)−j−i
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= ηt−(m−p+1−l)−j +

p∑

i=1

∞∑

k=0

ρiL
k
1 max(0, ηt−(m−p+1−l)−j−i−k)

= ηt−(m−p+1−l)−j +
∞∑

k=0

max(0, ηt−(m−p+1−l)−j−i−k)

p∑

i=1

ρiL
k−i
1 I(i ≤ k) = wt−(m−p+1−l)−j

is strictly stationary (as a function of l) and L2-near epoch dependent on ηt−(m−p+1−l)−j , and
that ν(M) decays exponentially. This is because for M ≥ 1,

‖ wt−(m−p+1−l)−j −E(wt−(m−p+1−l)−j |ηt−(m−p+1−l)−j−M , . . . , ηt−(m−p+1−l)−j) ‖2

≤‖ max(0, ηt) ‖2

∞∑

k=M+1

p∑

i=1

ρiL
k−i
1 I(i ≤ k),

and the last expression converges to 0 as M → ∞ at exponential rate because Lk
1 converges

to zero at an exponential rate. Therefore, because Hζ(·) is Lipschitz-continuous,

Hζ(ηt−(m−p+1−l)−j +

p∑

i=1

ρift−(m−p+1−l)−j−i)

is also L2-near epoch dependent on ηt with an exponentially decreasing ν(·) sequence, and
so is

p−1∏

j=0

Hζ(ηt−(m−p+1−l)−j +

p∑

i=1

ρift−(m−p+1−l)−j−i).

See Pötscher and Prucha (1997) for more information about these manipulations with near
epoch dependent processes. The result of this lemma then follows from the weak law of large
numbers for L2-near epoch dependent processes of Andrews (1988).

�

Lemma 5 Under the assumptions of Theorem 1, for all ζ > 0,

E

p∏

j=1

I(ηt−j +

p∑

i=1

ρift−i−j ≤ −ζ) > 0.
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Proof of Lemma 5:

Note that, under our assumptions, for some c > 0 and a ∈ (0, 1),

ηt +

p∑

i=1

ρift−i ≤ ut + c

∞∑

j=0

|a|j|ut−j|.

Noting that

E

p∏

j=1

I(ηt−j +

p∑

i=1

ρift−i−j ≤ −ζ) > 0

= E(P (ηt−1 +

p∑

i=1

ρift−1−j ≤ −ζ)

p∏

j=2

I(ηt−j +

p∑

i=1

ρift−i−j ≤ −ζ))

≥ E(P (ut−1 + c

∞∑

j=1

|a|j|ut−1−j| ≤ −ζ)

p∏

j=2

I(ηt−j +

p∑

i=1

ρift−i−j ≤ −ζ))

= E(F (−c
∞∑

j=0

|a|j|ut−j| − ζ)

p∏

j=2

I(ηt−j +

p∑

i=1

ρift−i−j ≤ −ζ))

where F (.) is as defined in Equation (5), and observing that for random variables X such
that X ≥ 0, we can have EX = 0 only if P (X = 0) = 1, it can be seen that it suffices to
show that

F (−c
∞∑

j=0

|a|j|ut−j| − ζ)

p∏

j=2

I(ηt−j +

p∑

i=1

ρift−i−j ≤ −ζ)

exceeds zero with probability 1. Because of positivity of F (.), this means it suffices that

E

p∏

j=2

I(ηt−j +

p∑

i=1

ρift−i−j ≤ −ζ) > 0

(that is, the product is over j = 2 instead of j = 1 now.) By repeating this reasoning p times
and because of the finiteness of random variables such as

∑∞
j=0 |a|

j|wt−j|, it now follows that
for all ζ > 0,

E

p∏

j=1

I(ηt−j +

p∑

i=1

ρift−i−j ≤ −ζ) > 0.
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Lemma 6 For some almost surely finite random variable yt such that (yt, ηt) is strictly
stationary,

ŷm
t

as
−→ yt as m→ ∞.

Proof of Lemma 6:

We will use the Cauchy criterion to show that ŷm
t converges almost surely, and we will define

yt to be this limit. By the Cauchy criterion, ŷm
t converges a.s. if maxk≥m |ŷk

t − ŷm
t | converges

to zero in probability as m→ ∞. Now, note that for all m ≥ k,

ŷk
t = ŷm

t = 0 if ηt ≤ −

p∑

i=1

ρiyt−i and ηt ≤ −

p∑

i=1

ρiŷ
k−i
t−i ,

so certainly,

ŷk
t = ŷm

t = 0 if ηt ≤ −

p∑

i=1

ρift−i,

and therefore maxk≥m |ŷk
t − ŷ

m
t | = 0 for all m > p if there can be found p consecutive “small”

ηt−l that are negative and large in absolute value in the range l = 1, . . . , m− 1; i.e. if

ηt−l ≤ −

p∑

i=1

ρift−l−i

for all l ∈ {a, a+1, . . . , a+p−1} for some a ∈ {1, . . . , m−p}. Therefore, for all 1/2 > δ > 0,
ζ > 0, and c > 0,

P [max
k≥m

|ŷk
t − ŷm

t | > 0]

≤ P [there are no p consecutive “small” ηt]

≤ E

m−p∏

l=1

(1 − I(there are p consecutive “small” ηt starting at t− l))
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≤ E

m−p∏

l=1

(1 −

p−1∏

j=0

I(ηt−l−j ≤ −

p∑

i=1

ρjft−l−j−i))

= E exp[(m− p)(m− p)−1

m−p∑

l=1

log(1 −

p−1∏

j=0

I(ηt−l−j ≤ −

p∑

i=1

ρift−l−j−i))]

≤ exp(−(m− p)c)) + P [(m− p)−1

m−p∑

l=1

log(1 −

p−1∏

j=0

I(ηt−l−j ≤ −

p∑

i=1

ρift−l−j−i)) > −c]

≤ exp(−(m− p)c)) + P [(m− p)−1

m−p∑

l=1

(Itl log(δ) + log(1 + δ)(1 − Itl)) > −c]

≤ exp(−(m− p)c)) + P [(m− p)−1

m−p∑

l=1

(Iζ
tl log(δ) + log(1 + δ)(1 − Iζ

tl)) > −c], (19)

where

Itl =

p−1∏

j=0

I(ηt−l−j ≤ −

p∑

i=1

ρjft−l−j−i)

and

Iζ
tl =

p−1∏

j=0

Hζ(ηt−l−j +

p∑

i=1

ρjft−l−j−i)

for

Hζ(x) = −ζ−1xI(−ζ ≤ x ≤ 0) + I(x ≤ −ζ).

Note that Itl ≥ Iζ
tl because I(x ≤ 0) ≥ Hζ(x). Both terms in Equation (19) now converge

to zero as m→ ∞ for a suitable choice of ζ , c and δ if

E(m− p)−1

m−p∑

l=1

(Iζ
tl log(δ) + log(1 + δ)(1 − Iζ

tl))

= E(Iζ
tl log(δ) + log(1 + δ)(1 − Iζ

tl)) < 0 (20)
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and

(m− p)−1

m−p∑

l=1

(Iζ
tl log(δ) + log(1 + δ)(1 − Iζ

tl))

satisfies a weak law of large numbers as m→ ∞. This weak law of large numbers is proven
in Lemma 4. Now if EIζ

tl > 0, we can pick δ > 0 small enough to satisfy the requirement of
Equation (20). Now,

EIζ
tl = E

p∏

j=1

Hζ(ηt−l−j −

p∑

i=1

ρjft−l−j−i)

≥ E

p∏

j=1

I(ηt−l−j +

p∑

i=1

ρjft−l−j−i ≤ −ζ),

and the last term is positive by Lemma 5.
Since ŷm

t = fm(ηt, . . . , ηt−m) is strictly stationary because it depends on a finite numbers of
ηt, limm→∞(ŷm

t , ηt) = (yt, ηt) is also strictly stationary. �

Proof of Theorem 1:

Noting that yt as constructed in Lemma 6 is a solution to the dynamic censored regression
model, part (i) of Theorem 1 follows. Also, by the reasoning of Lemma 6 it follows that
any zt = f(ηt, ηt−1, . . .) that is a solution to the model also satisfies maxk≥m |ŷk

t − zt| = 0,
implying that zt = yt a.s., thereby showing part (ii) of Theorem 1. To show part (iii), note
that, by strict stationarity of (yt, ηt) and by noting that the conditional expectation is the
best L2-approximation,

sup
t∈Z

E|yt − E(yt|ηt−m, ηt−m+1, . . . , ηt)|
2

= E|yt − E(yt|ηt−m, ηt−m+1, . . . , ηt)|
2

≤ E|yt − ŷm
t |2,

and because |yt| + |ŷm
t | ≤ 2ft, it now follows by the dominated convergence theorem that yt

is L2-near epoch dependent because E|ft|
2 <∞ by assumption and by Lemma 1.

In order to obtain the explicit bound for ν(M) of the last part of Theorem 1, note that

ν(m) = E(yt − E(yt|ηt−m, . . . , ηt))
2 ≤ E(yt − ŷm

t )2I(|ŷm
t − yt| > 0)
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≤ (E|2ft|
2p)1/p(P (|ŷm

t − yt| > 0))1/q

for p ≥ 1 and q ≥ 1 such that p−1 + q−1 = 1. Now by choosing p small enough, E|ft|
2p <∞

by assumption and by Lemma 1. Therefore, it suffices to show that P (|ŷm
t − yt| > 0) decays

as c1 exp(−c2m
1/3) with m. By the earlier reasoning,

P [max
k≥m

|ŷk
t − yt| > 0]

≤ exp(−(m− p)c)) + P [(m− p)−1

m−p∑

l=1

(Iζ
tl log(δ) + log(1 + δ)(1 − Iζ

tl)) > −c],

and the last probability will decay as c1 exp(−c2m
1/3) by Lemma 2. This is because earlier,

it was established that the summands are near epoch dependent with an exponentially de-
creasing ν(·) sequence. The observations that L2-near epoch dependent processes are also
L1-near epoch dependent and that α(M) decays exponentially by assumption now complete
the proof. �

The consistency proofs for this paper rest upon the following lemma.

Lemma 7 Assume that zt is strictly stationary and L2-near epoch dependent on a strictly
stationary strong mixing process ηt, and assume that q(z, b) is continuous on R

a ×B, where
B is a compact subset of R

c. Then if E supb∈B |q(zt, b)| <∞,

sup
b∈B

|T−1
T∑

t=1

(q(zt, b) − Eq(zt, b))|
p

−→ 0.

Proof of Lemma 7:

See Lemma A.2 of Pötscher and Prucha (1986). �

Proof of Theorem 2:

For convergence in probability, we check the conditions of Theorem 2.7 of Newey and Mc-
Fadden (1994). As is well-known (see e.g. Greene (2000)), the objective function is concave
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in (b/s, r/s, 1/s). The assumptions of Theorem 1 are met, and the conclusion of the theorem
implies ergodicity; see White (2001, theorem 3.34). This and the moment conditions of
Assumption 2 imply the pointwise convergence of the objective function. Assumption 2.4 and
the condition that inf Σ > 0 imply that the limit objective function is uniquely maximized.
Therefore, all conditions of Theorem 2.7 of Newey and McFadden (1994) are satisfied, and
consistency follows.

Lemma 8 Under the conditions of Theorem 3,

(T − p)1/2(∂LT (b)/∂b)|b=β
d

−→ N(0, I).

Proof of Lemma 8:

Note that by assumption, E((∂lt(b)/∂b)|b=β |yt−1, . . . , xt) = 0 so that E(∂lt(b)/∂b)|b=β = 0,
implying that (∂lt(b)/∂b)|b=β is a martingale difference sequence. In particular, by noting
that (yt, xt) has a “strong mixing base” in Bierens’ (2004) terminology, asymptotic normality
now follows from the version of Bierens (2004, Theorem 7.11) of a central limit theorem of
McLeish (1974). Applying the information matrix equality yields the result. �

Proof of Theorem 3:

We prove Theorem 3 by checking the conditions of Newey and McFadden (1994, Theorem
3.1). Consistency was shown in Theorem 2. Condition (i) was assumed. Condition (ii),
twice differentiability of the loglikelihood, follows from the Tobit specification. Condition
(iii) was shown in Lemma 8. Note that stationarity and the strong mixing base imply
ergodicity. Condition (iv) follows from the result of Lemma 7, the Tobit specification, and
the assumption of finite second moments for |xt| and εt. Condition (v) is assumed. �

Proof of Theorem 4:

Under Assumption 4, it follows from the discussion in Powell (1984, p. 318) that ST (b) is
uniquely minimized at β = (ρ′, γ′)′. From Assumption 4 it follows thatE supb∈B |s(yt−1, . . . , yt−p, xt, εt, b)| <
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∞, and therefore the uniform law of large numbers of Lemma 7 applies. Therefore, all con-
ditions of the consistency result of Theorem A1 of Wooldridge (1994) are satisfied. �

For the asymptotic normality result, we use the following lemma, which provides a suitable
analogue to Powell’s lemma A3. For strictly stationary (wt, εt), let

λ(b) = Eψ(wt, εt, b).

Lemma 9 Assume that (wt, εt) is strictly stationary and that |β̂T − β| = op(1). In addition
assume that

T−1/2

T∑

t=1

ψ(wt, εt, β̂T ) = op(1),

and assume that

T−1/2

T∑

t=1

(ψ(wt, εt, b) − Eψ(wt, εt, b))

is stochastically equicontinuous on B. Then

T 1/2λ(b)|b=β̂T
= −T−1/2

T∑

t=1

ψ(wt, εt, β) + op(1).

Proof of Lemma 9:

This follows by writing

op(1) = T−1/2

T∑

t=1

ψ(wt, εt, β̂T )

= T−1/2

T∑

t=1

(ψ(wt, εt, β̂T ) −Eψ(wt, εt, β̂T ) − ψ(wt, εt, β) + Eψ(wt, εt, β))

+T−1/2
T∑

t=1

ψ(wt, εt, β) + T 1/2λ(β̂T ),
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and noting that by the stochastic equicontinuity assumption, the first term in the last ex-
pression is op(1) if |β̂T − β| = op(1). �

Remember that wt = (yt−1, . . . , yt−p, x
′
t)

′ and b = (c′, r′, s)′. To show the stochastic equicon-

tinuity of T−1/2
∑T

t=1(ψ(wt, εt, b)−Eψ(wt, εt, b)) and thereby obtain our analogue of Powell’s
Lemma A3, we first need the following results.

Lemma 10 Assume u1t ∈ and u2t ∈ R
q, and assume that (u1t, u

′
2t)

′ is strictly stationary and
Lr-near epoch dependent, r ≥ 2, on ηt with a ν(·) sequence satisfying ν(m) ≤ c1 exp(−c2m

1/3)
for c1, c2 > 0. Then if |u1t| ≤ 1 and ‖ u2t ‖r+δ<∞ for δ < r/(r− 1), u1tu2t is Lr-near epoch
dependent on ηt with a ν(·) sequence that satisfies ν(m) ≤ c1 exp(−c2m

1/3) for constants
c1, c2 > 0 (that are not necessarily identical to the earlier c1 and c2).

Proof of Lemma 10:

This follows by noting that

‖ u1tu2t − E(u1tu2t|ηt−M , . . . , ηt) ‖r

≤‖ u1tu2t −E(u1t|ηt−M , . . . , ηt)E(u2t|ηt−M , . . . , ηt) ‖r

≤‖ u1t(u2t −E(u2t|ηt−M , . . . , ηt)) ‖r + ‖ E(u2t|ηt, . . . , ηt−m)(u1t −E(u1t|ηt−M , . . . , ηt)) ‖r

≤‖ u2t − E(u2t|ηt−M , . . . , ηt) ‖r

+ ‖ E(u2t|ηt−M , . . . , ηt) ‖r+δ‖ u1t − E(u1t|ηt−M , . . . , ηt) ‖r(1+r/δ)

≤‖ u2t − E(u2t|ηt−M , . . . , ηt) ‖r

+ ‖ E(u2t|ηt−M , . . . , ηt) ‖r+δ‖ u1t − E(u1t|ηt−M , . . . , ηt) ‖
r/(1+r/δ)
r ,

and all terms in the last expression decay with m as specified. �

We also need the following result.

Lemma 11 Under Assumption 5 and the conditions of Theorem 1, for all η > 0, I(b′wt >
0), I(b′wt > −η|wt|), I(b

′wt ≤ η|wt|), and I(εt+(β−b)′wt > 0)), I(εt+(β−b)′wt > −η|wt|),
I(εt + (β − b)′wt ≤ η|wt|) are Lr-near epoch dependent on ηt with a ν(·) sequence satisfying
ν(m) ≤ c1 exp(−c2m

1/3) for c1, c2 > 0.
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Proof of Lemma 11:

We will show this for one case; the other cases are analogous. Note that wt is near epoch
dependent on ηt = γ′xt +εt with ν(·) sequence satisfying ν(m) ≤ c1 exp(−c2m

1/3) for c1, c2 >
0 by Theorem 1. In addition, for any δ > 0, let Tδ(·) be a continuously differentiable function
such that Tδ(x) = I(x > 0) for |x| > δ and sup|x|≤δ |(∂/∂x)T (x)| = K/δ <∞. Then

‖ I(b′wt + η|wt| > 0) − E(I(b′wt + η|wt| > 0)|ηt−M , . . . , ηt) ‖r

≤ 2 ‖ I(b′wt + η|wt| > 0) − Tδ(b
′wt + η|wt|) ‖r

+ ‖ Tδ(b
′wt + η|wt| > 0) − E(Tδ(b

′wt + η|wt| > 0)|ηt−M , . . . , ηt) ‖r

≤ 2 ‖ I(|b′wt + η|wt|| ≤ δ) ‖q +C2δ
−1 ‖ b′wt −E(b′wt|ηt−M , . . . , ηt) ‖r

+C2δ
−1 ‖ wt − E(wt|ηt−M , . . . , ηt) ‖r

≤ C1δ + C3ν(M)δ−1

because b′wt + η|wt| has a uniformly bounded density, which follows from the assumption
that the density of εt|wt is uniformly bounded. Therefore by setting δ = ν(M)1/2, it follows
that I(b′wt + η|wt| > 0) is near epoch dependent on ηt with a ν(·) sequence satisfying
ν(m) ≤ c1 exp(−c2m

1/3) for c1, c2 > 0 as well. �

Lemma 12 Under Assumption 5, T−1/2
∑T

t=1(ψ(wt, εt, b) − Eψ(wt, εt, b)) is stochastically
equicontinuous on B.

Proof of Lemma 12:

Note that for ψ(wt, εt, b) we have that

µt(b, δ) = sup
b̃:|b−b̃|<δ

|ψ(wt, εt, b) − ψ(wt, εt, b̃)|

satisfies

Eµt(b, δ) ≤ Cδ

for some C > 0 under Assumption 5.2; see Equation (A.22) of Powell (1984) for this result.
Therefore, we can cover B by O(δp+q) balls with center bj and radius η and we can define
the bracketing functions as

fL
j (wt) = I(b′jwt > 0)(1/2 − I(εt + (β − bj)

′wt > 0))wt
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−I(b′jwt > −δ|wt|)|1/2 − I(εt + (β − bj)
′wt > −δ|wt|)||wt|

and

fU
j (wt) = I(b′jwt > 0)(1/2 − I(εt + (β − bj)

′wt > 0))wt

+I(b′jwt > −δ|wt|)|1/2 − I(εt + (β − bj)
′wt > −δ|wt|)||wt|.

By the result of Lemma 11, the bracketing functions fL
j (·) and fU

j (·) as well as the ψ(wt, εt, β)
are Lr-near epoch dependent on ηt with an exponentially decreasing ν(·) sequence. By
Equation (2) of Andrews (1988), Lr-near epoch dependent processes are also Lr-mixingales
with mixingale numbers ν(M) + α(M)1/r−1/(2r) and uniformly bounded mixingale numbers.
We will now apply Theorem 3 of Hansen (1996); note that while Hansen’s smoothness
condition with respect to the parameter on the function class under consideration does not
hold in our situation, his argument will still go through, because his cover number and
weak dependence conditions hold in exactly the same way as for his proof. For Hansen’s
proof to work, we set Hansen’s constants γ, q and s equal to 1/2, r and 2r respectively,
and we note that the bracketing functions fL

j (·) and fU
j (·) as well as ψ(wt, εt, β) are also

Lr-mixingales with mixingale numbers ν(M)1/2 + α(M)1/(2r)−1/(4r) and mixingale numbers

ct =‖ fL
j (wt) ‖

1/2
2r , ct =‖ fL

j (wt) ‖
1/2
2r , or ct =‖ fL

j (wt) ‖
1/2
2r respectively. The condition

∞∑

M=0

(ν(M)1/2 + α(M)1/(4r)) <∞

now corresponds to Hansen’s (1996) condition 2 of his Assumption 1, and Hansen’s condition
q > a/(λγ) now corresponds to, in our notation, r > (p+ q)/(1/2) = 2(p+ q). �

Proof of Theorem 5:

We follow the asymptotic normality proof of Powell (1984). The strategy of our proof is to
replace Powell’s Lemma A3 by the result of Lemma 9, and we note that under the conditions
of Theorem 5, the stochastic equicontinuity condition of Lemma 9 follows from the result of
Lemma 12. The remainder argument of Powell’s proof can be cast into the current framework
in the following manner. It follows from the argument in Powell (1984, p.320) that, under
Assumption 4 and 5 (because Powell’s E.1, R.1, and R.2 are met),

T−1/2
T∑

t=1

ψ(wt, εt, β̃T ) = op(1).
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By Lemma 9 and Lemma 12, for λ(b) = Eψ(wt, εt, b),

T 1/2λ(b)|b=β̃T
= −T−1/2

T∑

t=1

ψ(wt, εt, β) + op(1).

It now follows from Lemma 10 and Lemma 11 that ψ(wt, εt, b) is L2-near epoch dependent
on ηt with an exponentially decreasing ν(·) sequence. Therefore by the central limit theorem
of Theorem 2 of de Jong (1997), it follows that

T−1/2
T∑

t=1

ψ(wt, εt, β)
d

−→ N(0,Ω).

Since λ(β) = 0 by assumption, for some mean value β∗
T ,

T 1/2λ(b)|b=β̃T
= op(1) + (∂/∂b)λ(b)|b=β∗

T
T 1/2(β̃T − β),

and identically to the discussion in Powell (1984, p. 320-321, equations A.16-A.19), it now
follows that, under Assumptions 4.3, 5.2, and 5.5, (i.e. the analogues of Powell’s E.2, R.1,
and R.2),

(∂/∂b)λ(b)|b=β∗

T
= op(1) +N.

Therefore, it now follows that

T 1/2(β̃T − β)
d

−→ N(0, N−1ΩN−1),

as asserted by the theorem. �
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