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Abstract

The censored regression model and the Tobit model are standard tools in economet-
rics. This paper provides a formal asymptotic theory for dynamic time series censored
regression when lags of the dependent variable have been included among the regres-
sors. The central analytical challenge is to prove that the dynamic censored regression
model satisfies stationarity and weak dependence properties if a condition on the lag
polynomial holds. We show the formal asymptotic correctness of conditional maximum
likelihood estimation of the dynamic Tobit model, and the correctness of Powell’s least
absolute deviations procedure for the estimation of the dynamic censored regression
model. The paper is concluded with an application of the dynamic censored regression
methodology to temporary purchases of the Open Market Desk.

1 Introduction

The censored regression model and the Tobit model are standard tools in econometrics. In
a time series framework, censored variables arise when the dynamic optimization behavior
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of a firm or individual leads to a corner response for a significant proportion of time. In
addition, right-censoring may arise due to truncation choices made by the analysts in the
process of collecting the data (i.e., top coding). Censored regression models apply to vari-
ables that are left-censored at zero, such as the level of open market operations or foreign
exchange intervention carried out by a central bank, and in the presence of an intercept in
the specification they also apply to time series that are censored at a non-zero point, such
as the clearing price in commodity markets where the government imposes price floors, the
quantity of imports and exports of goods subject to quotas, and numerous other series.

The asymptotic theory for the Tobit model in cross-section situations has long been
understood; see for example the treatment in Amemiya (1973). In recent years, asymp-
totic theory for the dynamic Tobit model in a panel data setting has been established using
large-N asymptotics; see Arellano and Honoré (1998) and Honoré and Hu (2004). However,
there is no result in the literature that shows stationarity properties of the dynamic cen-
sored regression model, leaving the application of cross-section techniques for estimating the
dynamic censored regression model in a time series setting formally unjustified. This paper
seeks to fill this gap. After all, a justication of standard inference in dynamic nonlinear
models requires laws of large numbers and a central limit theorem to hold. Such results
require weak dependence and stationarity properties.

While in the case of linear AR models it is well-known that we need the roots of the
lag polynomial to lie outside the unit circle in order to have stationarity, no such result
is known for nonlinear dynamic models in general and the dynamic regression model in
particular. The primary analytical issue addressed in this paper is to show that under some
conditions, the dynamic censored regression model as defined below satisfies stationarity and
weak dependence properties. This proof is therefore an analogue to well-known proofs of
stationarity of ARMA models under conditions on the roots of the AR lag polynomial. The
dynamic censored regression model under consideration is

yt = max(0,
p∑

i=1

ρiyt−i + γ′xt + εt), (1)

where xt denotes the regressor, εt is a regression error, we assume that γ ∈ Rq, and we
define σ2 = Eε2

t . One feature of the treatment of the censored regression model in this
paper is that εt is itself allowed to be a linear process (i.e., an MA(∞) process driven by
an i.i.d. vector of disturbances), which means it displays weak dependence and is possibly
correlated. While stationarity results for general nonlinear models have been derived in e.g.
Meyn and Tweedie (1994), there appear to be no results for the case where innovations are
not i.i.d. (i.e. weakly dependent or heterogeneously distributed). The reason for this is that
the derivation of results such as those of Meyn and Tweedie (1994) depends on a Markov
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chain argument, and this line of reasoning appears to break down when the i.i.d. assumption
is dropped. This means that in the current setting, Markov chain techniques cannot be used
for the derivation of stationarity properties, which complicates our analysis substantially,
but also puts our analysis on a similar level of generality as can be achieved for the linear
model.

A second feature is that no assumption is made on the lag polynomial other than that
ρmax(z) = 1 −

∑p
i=1 max(0, ρi)zi has its roots outside the unit circle. Therefore, in terms

of the conditions on ρmax(z) and the dependence allowed for εt, the aim of this paper is to
analyze the dynamic Tobit model on a level of generality that is comparable to the level
of generality under which results for the linear AR(p) model can be derived. Note that
intuitively, negative values for ρj can never be problematic when considering the stationarity
properties of yt, since they “pull yt back to zero”. This intuition is formalized by the fact
that only max(0, ρj) shows up in our stationarity requirement.

An alternative formulation for the dynamic censored regression model could be

yt = y∗t I(y∗t > 0) where ρ(B)y∗t = γ′xt + εt, (2)

where B denotes the backward operator. This model will not be considered in this paper,
and its fading memory properties are straightforward to derive. The formulation considered
in this paper appears the appropriate one if the 0 values in the dynamic Tobit are not
caused by a measurement issue, but have a genuine interpretation. In the case of a model for
the difference between the price of an agricultural commodity and its government-instituted
price floor, we may expect economic agents to react to the actually observed price in the
previous period rather than the latent market clearing price, and the model considered in this
paper appears more appropriate. However, if our aim is to predict tomorrow’s temperature
from today’s temperature as measured by a lemonade-filled thermometer that freezes at zero
degrees Celsius, we should expect that the alternative formulation of the dynamic censored
regression model of Equation (2) is more appropriate.

The literature on the dynamic Tobit model appears to mainly consist of (i) theoretical
results and applications in panel data settings, and (ii) applications of the dynamic Tobit
model in a time series setting without providing a formal asymptotic theory. Three notewor-
thy contributions to the literature on dynamic Tobit models are Honoré and Hu (2004), Lee
(1999), and Wei (1999). Honoré and Hu (2004) considers dynamic Tobit models and deals
with the problem of the endogeneity of lagged values of the dependent variable in panel data
setting, where the errors are i.i.d., T is fixed and large-N asymptotics are considered. In fact,
the asymptotic justification for panel data Tobit models is always through a large-N type
argument, which distinguishes this work from the treatment of this paper. For a treatment
of the dynamic Tobit model in a panel setting, the reader is referred to Arellano and Honoré
(1998, section 8.2).
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Lee (1999) and Wei (1999) deal with dynamic Tobit models where lags of the latent
variable are included as regressors. Lee (1999) considers likelihood simulation for dynamic
Tobit models with ARCH disturbances in a time series setting. The central issue in this paper
is the simulation of the log likelihood in the case where lags of the latent variable (in contrast
to the observed lags of the dependent variable) have been included. Wei (1999) considers
dynamic Tobit models in a Bayesian framework. The main contribution of this paper is the
development of a sampling scheme for the conditional posterior distributions of the censored
data, so as to enable estimation using the Gibbs sampler with a data augmentation algorithm.

In related work, de Jong and Woutersen (2003) consider the dynamic time series binary
choice model and derive the weak dependence properties of this model. This paper also con-
siders a formal large-T asymptotic theory when lags of the dependent variable are included as
regressors. Both this paper and de Jong and Woutersen (2003) allow the error distribution to
be weakly dependent. The proof in de Jong and Woutersen (2003) establishes a contraction
mapping type result for the dynamic binary choice model; however, the proof in this paper
is completely different, since other analytical issues arise in the censored regression context.

As we mentioned above, a significant body of literature on the dynamic Tobit model con-
sists of applications in a time series setting without providing a formal asymptotic theory.
Inference in these papers is either conducted in a classical framework, by assuming the max-
imum likelihood estimates are asymptotically normal, or by employing Bayesian inference.
Papers that estimate censored regression models in time series cover diverse topics. In the fi-
nancial literature, prices subject to price limits imposed in stock markets, commodity future
exchanges, and foreign exchange futures markets have been treated as censored variables.
Kodres (1988, 1993) uses a censored regression model to test the unbiasedness hypothesis
in the foreign exchange futures markets. Wei (2002) proposes a censored-GARCH model
to study the return process of assets with price limits, and applies the proposed Bayesian
estimation technique to Treasury bill futures.

Censored data are also common in commodity markets where the government has histor-
ically intervened to support prices or to impose quotas. An example is provided by Chavas
and Kim (2006) who use a dynamic Tobit model to analyze the determinants of U.S. butter
prices with particular attention to the effects of market liberalization via reductions in floor
prices. Zangari and Tsurumi (1996), and Wei (1999) use a Bayesian approach to analyze the
demand for Japanese exports of passenger cars to the U.S., which were subject to quotas
negotiated between the U.S. and Japan after the oil crisis of the 1970’s.

Applications in time series macroeconomics comprise determinants of open market opera-
tions and foreign exchange intervention. Dynamic Tobit models have been used by Demiralp
and Jordà (2002) to study the determinants of the daily transactions conducted by the Open
Market Desk, and Kim and Sheen (2002) and Frenkel, Pierdzioch and Stadtmann (2003) to
estimate the intervention reaction function for the Reserve Bank of Australia and the Bank
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of Japan, respectively.
The structure of this paper is as follows. Section 2 presents our weak dependence results

for (yt, xt) in the censored regression model. In Section 3, we show the asymptotic validity
of the dynamic Tobit procedure. Powell’s (1984) LAD estimation procedure for the censored
regression model, which does not assume normality of errors, is considered in Section 4.
Section 5 studies the determinants of temporary purchases of the Open Market Desk. Section
6 concludes.

2 Main results

We will prove that yt as defined by the dynamic censored regression model satisfies a weak
dependence concept called Lr-near epoch dependence. Near epoch dependence of random
variables yt on a base process of random variables ηt is defined as follows:

Definition 1 Random variables yt are called Lr-near epoch dependent on ηt if

sup
t∈Z

E|yt − E(yt|ηt−M , ηt−M+1, . . . , ηt+M)|r = ν(M)r → 0 as M →∞. (3)

The base process ηt needs to satisfy a condition such as strong or uniform mixing or
independence in order for the near epoch dependence concept to be useful. For the definitions
of strong (α-) and uniform (φ-) mixing see e.g. Gallant and White (1988, p. 23) or Pötscher
and Prucha (1997, p. 46). The near epoch dependence condition then functions as a device
that allows approximation of yt by a function of finitely many mixing or independent random
variables ηt.

For studying the weak dependence properties of the dynamic censored regression model,
assume that yt is generated as

yt = max(0,
p∑

i=1

ρiyt−i + ηt). (4)

Later, we will set ηt = γ′xt + εt in order to obtain weak dependence results for the general
dynamic censored regression model that contains regressors.

When postulating the above model, we need to resolve the question as to whether there
exists a strictly stationary solution to it and whether that solution is unique in some sense.
See for example Bougerol and Picard (1992) for such an analysis in a linear multivariate set-
ting. In the linear model yt = ρyt−1+ηt, these issues correspond to showing that

∑∞
j=0 ρjηt−j

is a strictly stationary solution to the model that is unique in the sense that no other function
of (ηt, ηt−1, . . .) will form a strictly stationary solution to the model.
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An alternative way of proceeding to justify inference could be by considering arbitrary
initial values (y1, . . . , yp) for the process instead of starting values drawn from the stationary
distribution, but such an approach will be substantially more complicated.

The idea of the strict stationarity proof of this paper is to show that by writing the
dynamic censored regression model as a function of the lagged yt that are sufficiently remote
in the past, we obtain an arbitrarily accurate approximation of yt. Let B denote the backward
operator, and define the lag polynomial ρmax(B) = 1−

∑p
i=1 max(0, ρi)Bi. The central result

of this paper, the formal result showing the existence of a unique backward looking strictly
stationary solution that satisfies a weak dependence property for the dynamic censored
regression model is now the following:

Theorem 1 If the linear process ηt satisfies ηt =
∑∞

i=0 aiut−i, where a0 > 0, ut is a sequence
of i.i.d. random variables with density fu(.), E|ut|r < ∞ for some r ≥ 2,

∫ ∞

−∞
|fu(y + a)− fu(y)|dy ≤ M |a|

for some constant M whenever |a| ≤ δ for some δ > 0,
∑∞

t=0 G1/(1+r)
t < ∞ where Gt =

(
∑∞

j=t a
2
j)

r/2, ρmax(z) has all its roots outside the unit circle, and for all x ∈ R,

P (ut ≤ x) ≥ F (x) > 0 (5)

for some function F (.), then (i) there exists a solution yt to the model of Equation (4) such
that (yt, ηt) is strictly stationary; (ii) if zt = f(ηt, ηt−1, . . .) is a solution to the model, then
yt = zt a.s.; and (iii) yt is L2-near epoch dependent on ηt. If in addition, ai ≤ c1 exp(−c2i)
for positive constants c1 and c2, then the near epoch dependence sequence ν(M) satisfies
ν(M) ≤ c1 exp(−c2M1/3) for positive constants c1 and c2.

Our proof is based on the probability of yt reaching 0 given the last p values of ηt always
being positive. This property is the key towards our proof and is established using the linear
process assumption in combination with the condition of Equation (5). Note that by the
results of Davidson (1994, p. 219), our assumption on ηt implies that ηt is also strong mixing

with α(m) = O(
∑∞

t=m+1 G1/(1+r)
t ). Also note that for the dynamic Tobit model where errors

are i.i.d. normal and regressors are absent, the condition of the above theorem simplifies to
the assumption that ρmax(z) has all its roots outside the unit circle.

One interesting aspect of the condition on ρmax(z) is that negative ρi are not affecting
the strict stationarity of the model. The intuition is that because yt ≥ 0 a.s., negative ρi

can only “pull yt back to zero” and because the model has the trivial lower bound of 0 for
yt, unlike the linear model, this model does not have the potential for yt to tend to minus
infinity.

6



3 The dynamic Tobit model

Define β = (ρ′, γ′, σ)′, where ρ = (ρ1, . . . , ρp), and define b = (r′, c′, s)′ where r is a (p × 1)
vector and c is a (q × 1) vector. The scaled Tobit loglikelihood function conditional on
y1, ..., yp under the assumption of normality of the errors equals

LT (b) = LT (c, r, s) = (T − p)−1
T∑

t=p+1

lt(b), (6)

where

lt(b) = I(yt > 0) log(s−1φ((yt −
p∑

i=1

riyt−i − c′xt)/s))

+I(yt = 0) log(Φ((−
p∑

i=1

riyt−i − c′xt)/s)). (7)

In order for the loglikelihood function to be maximized at the true parameter β, it ap-
pears hard to achieve more generality than to assume that εt is distributed normally given
yt−1, . . . , yt−p, xt. This assumption is close to assuming that εt given xt and all lagged yt

is normally distributed, which would then imply that εt is i.i.d. and normally distributed.
Therefore in the analysis of the dynamic Tobit model below, we will not attempt to consider
a situation that is more general than the case of i.i.d. normal errors. Alternatively to the
result below, we could also find conditions under which β̂T converges to a pseudo-true value
β∗. Such a result can be established under general linear process assumptions on (x′t, εt), by
the use of Theorem 1. It should be noted that even under the assumption of i.i.d. errors, no
results regarding stationarity of the dynamic Tobit model have been derived in the literature
thus far.

Let β̂T denote a maximizer of LT (b) over b ∈ B. Define wt = (yt−1, . . . , yt−p, x′t, 1)′. The
“1” at the end of the definition of wt allows us to write “b′wt”. For showing consistency, we
need the following two assumptions. Below, let |.| denote the usual matrix norm defined as
|M | = (tr(M ′M))1/2, and let ‖ X ‖r= (E|X|r)1/r.

Assumption 1 The linear process zt = (x′t, εt)′ satisfies zt =
∑∞

j=0 Πjvt−j, where the vt are
i.i.d. (k × 1) vectors, ‖ vt ‖r< ∞ for some r ≥ 1, the coefficient matrices Πj satisfy and∑∞

t=0 G1/(1+r)
t < ∞ where Gt = (

∑∞
j=t |Πj|2)r/2, xt ∈ Rq, and

yt = max(0,
p∑

i=1

ρiyt−i + γ′xt + εt). (8)
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Assumption 2

1. The linear process zt = (x′t, εt)′ satisfies zt =
∑∞

j=0 Πjvt−j, where the vt are i.i.d.,

‖ vt ‖r< ∞, and the coefficient matrices Πj satisfy
∑∞

t=0 G1/(1+r)
t < ∞ where Gt =

(
∑∞

j=t |Πj|2)r/2.

2. Conditional on (x1, . . . , xT ), εt is independently normally distributed with mean zero
and variance σ2 > 0.

3. β ∈ B, where B is a compact subset of Rp+q+1, and B = Γ×R× Σ where inf Σ > 0.

4. Ewtw′
tI(

∑p
i=1 ρiyt−i + γ′xt > δ) is positive definite for some positive δ.

Theorem 2 Under Assumption 1 and 2, β̂T
p−→ β.

The proofs of this and the theorems to follow (i.e., all proofs except for that of Theorem 1) can
be found in a full length version of this paper that is available on the websites of both authors
(http://www.clas.wayne.edu/herrera and http://www.econ.ohio-state.edu/dejong).

For asymptotic normality, we need the following additional assumption.

Assumption 3

1. β is in the interior of B.

2. I = E(∂/∂b)lt(β)(∂/∂b′)lt(β) = −E(∂/∂b)(∂/∂b′)lt(β) is invertible.

Theorem 3 Under Assumptions 1, 2, and 3, T 1/2(β̂T − β)
d−→ N(0, I−1).

4 Powell’s LAD for dynamic censored regression

For this section, define β = (ρ′, γ′)′, where ρ = (ρ1, . . . , ρp), define b = (r′, c′)′ where r is
a (p × 1) vector and c is a (q × 1) vector, and wt = (yt−1, . . . , yt−p, x′t)

′. This redefines the
b and β vectors such as to not include s and σ respectively; this is because Powell’s LAD
estimator does not provide a first-round estimate for σ2. Powell’s LAD estimator β̃T of the
dynamic censored regression model is defined as a minimizer of

ST (b) = ST (c, r, s) = (T − p)−1
T∑

t=p+1

s(yt−1, . . . , yt−p, xt, εt, b)
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= (T − p)−1
T∑

t=p+1

|yt −max(0,
p∑

i=1

riyt−i + c′xt)| (9)

over a compact subset B of Rp+q. We can prove consistency of Powell’s LAD estimator of
the dynamic time series censored regression model under the following assumption.

Assumption 4

1. β ∈ B, where B is a compact subset of Rp+q.

2. The conditional distribution F (εt|wt) satisfies F (0|wt) = 1/2, and f(ε|wt) = (∂/∂ε)F (ε|w)
is continuous in ε on a neighborhood of 0 and satisfies c2 ≥ f(0|wt) ≥ c1 > 0 for con-
stants c1, c2 > 0.

3. E|xt|3 < ∞, and Ewtw′
tI(

∑p
i=1 ρiyt−i + γ′xt > δ) is nonsingular for some positive δ.

Theorem 4 Under Assumptions 1 and 4, β̃T
p−→ β.

For asymptotic normality, we need the following additional assumption. Below, let

ψ(wt, εt, b) = I(b′wt > 0)(1/2− I(εt + (β − b)′wt > 0))wt. (10)

ψ(., ., .) can be viewed as a “heuristic derivative” of s(., .) with respect to b.

Assumption 5

1. β is in the interior of B.

2. Defining G(z, b, r) = EI(|w′
tb| ≤ |wt|z)|wt|r, we have for z near 0, for r = 0, 1, 2,

sup
|b−β|<ζ0

|G(z, b, r)| ≤ K1z. (11)

3. The matrix

Ω = lim
T→∞

E(T−1/2
T∑

t=1

ψ(wt, εt, β))(T−1/2
T∑

t=1

ψ(wt, εt, β))′ (12)

is well-defined, and N = Ef(0|wt)I(w′
tβ > 0)wtw′

t is invertible.
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4. For some r ≥ 2, E|xt|2r < ∞, E|εt|2r < ∞, and |Πj| ≤ c1 exp(−c2j) for positive
constants c1 and c2.

5. The conditional density f(ε|wt) satisfies, for a nonrandom Lipschitz constant L0,

|f(ε|wt)− f(ε̃|wt)| ≤ L0|ε− ε̃|. (13)

Theorem 5 Under Assumptions 1, 4 and 5, T 1/2(β̃T − β)
d−→ N(0, N−1ΩN−1).

Assumption 5.1 is identical to Powell’s Assumption P.2, and Assumption 5.2 is the same as
Powell’s Assumption R.2. Theorem 5 imposes moment conditions of order 4 or higher. The
conditions imposed by Theorem 5 are moment restrictions that involve the dimensionality
p + q of the parameter space. These conditions originate from the stochastic equicontinuity
proof of Hansen (1996), which is used in the proof. One would expect that some progress
in establishing stochastic equicontinuity results for dependent variables could aid in relaxing
condition 4 imposed in Theorem 5.

5 Simulations

In this section, we evaluate the consistency of the Tobit and CLAD estimators of the dynamic
censored regression model. We consider the data generating process

yt = max(0, γ1 + γ2xt +
p∑

i=1

ρiyt−i + εt)

where

xt = α1 + α2xt−1 + vt,

εt ∼ N(0, σ2
ε), and vt ∼ N(0, σ2

v). For our simulations, we consider the cases p = 1 and p = 2.
Many configurations for α1, α2, γ1, γ2, σ2

v , and σ2
ε were considered. To conserve space, we

only report results for p = 2, γ1 = 1, γ2 = 1, α1 = α2 = 0.5, σ2
ε = σ2

v = 1. We conducted
simulations for (ρ1, ρ2) ∈{(0.2, 0.1) , (0.5, 0.1) , (0.8, 0.1) , (0,−0.3) , (0.3,−0.3) , (0.6,−0.3) ,
(0.9,−0.3)}. Note that, in contrast with Honoré and Hu (2004), in our simulations the values
of ρi are not restricted to be non-negative. The number of replications used to compute the
bias reported in the tables is 10,000.
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Table 1 reports the simulation results. For the dynamic Tobit model estimates of
β = (ρ′, γ′, σε) , with ρ′ = (ρ1, ρ2), and γ′ = (γ1, γ2) are obtained via maximum likeli-
hood. Powell’s LAD estimates of the dynamic censored regression model where β = (ρ′, γ′) ,
with ρ′ = (ρ1, ρ2), and γ′ = (γ1, γ2) are obtained using the BRCENS algorithm proposed
by Fitzenberger (1997a,b). As we mentioned in section 4, because Powell’s LAD estimator
does not provide a first-round estimator of σε we redefine β as to not include σε. We report
results for T = 100, 300, 600, 1000, 2000.

The simulations reveal that the maximum likelihood estimator for the dynamic Tobit
model and Powell’s LAD estimator of the dynamic censored regression model perform well
for T ≥ 300 (see Table 1). As expected, the bias decreases as the sample size increases.

6 Empirical Application

Without having considered formal issues of stationarity, Demiralp and Jordà (2002) esti-
mated a dynamic Tobit model to analyze whether the February 4, 1994, Fed decision to
publicly announce changes in the federal funds rate target affected the manner in which the
Open Market Desk conducts operations. In what follows we re-evaluate their findings.

6.1 Data and Summary of Previous Results

The data used by Demiralp and Jordà (2002) are daily and span the period between April
25, 1984 and August 14, 2000. They divide the sample in three subsamples: (i) the period
preceding the Fed decision to publicly announce changes in the federal fund rate target on
February 4, 1994; (ii) the days between February 4, 1994 and the decision to shift from
contemporaneous reserve accounting (CRA) to lagged reserves accounting (LRA) system in
August 17, 1998; and (iii) the period following the shift to the CRA system.

Open market operations are classified in six groups. Operations that add liquidity are
overnight reversible repurchase agreements, term repurchase agreements, and permanent
purchases (i.e., T-bill purchases and coupon purchases). Operations that drain liquidity
are overnight sales, term matched-sale purchases, and permanent sales (i.e., T-bill sales and
coupon sales). Because the computation of reserves is based on a 14-day maintenance period
that starts on Thursday and finishes on the “Settlement Wednesday two weeks later, the
maintenance-period average is the object of attention of the Open Market Desk. Thus,
all operations are adjusted according to the number of days spanned by the transaction,
and standardized by the aggregate level of reserves held by depository institutions in the
maintenance period previous to the execution of the transaction.
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Demiralp and Jordà (2002) separate deviations of the federal funds rate from the tar-
get into three components: NEEDt = ft − [f∗m(t)−1 + wtEm(t)−1(∆f ∗m(t))]; EXPECTt =
Em(t)−1(∆f ∗m(t)); SURPRISEt = ∆f∗t −Em(t)−1(∆f∗m(t)). m(t) denotes the maintenance pe-
riod to which observation in day t belongs, ft is the federal funds rate in day t; f ∗m(t)−1 is the
value of the target in the previous maintenance period; Em(t)−1(∆f ∗m(t)) is the expectation
of a target change in day t, conditional on the information available at the beginning of the
maintenance period; and wt is the probability of a target change on date t. (Em(t)−1(∆f ∗m(t)),
and wt are both calculated using the ACH model of Hamilton and Jordà, 2002). This de-
composition reflects three different motives for open market purchases: (1) to add or drain
liquidity in order to accommodate shocks to the demand for reserves; (2) to accommodate
expectations of future changes in the target; and (3) to adjust to a new target level. Thus,
NEEDt represents a proxy for the projected reserve need, and changes in the federal funds
rate are separated into an expected component, EXPECTt, and a surprise component,
SURPRISEt.

Because the Open Market Desk engaged in open market operations on 60% of the days
in the sample (i.e., the data is censored at zero during a large number of days), Demiralp
and Jordà (2002) use a Tobit model to analyze the reaction function of the Open Market
Desk. To allow for a different response of sales and purchases –with varying degrees of
permanence– to changes in the explanatory variables they estimate separate regressions for
each of the six types of operation and each of the periods of interest. Very few term and
permanent sales were carried out during the 1998-2000 and 1984-1994 periods respectively,
thus no regressions are estimated for this type of operation in these subsamples. Demiralp
and Jordà (2002) estimate the following model:

yt = max(0,
10∑

m=1

γα
mDAYtm +

3∑

j=1

ρjyt−j +
3∑

j=1

υ
′

jzt−j +
10∑

m=1

γN
mNEEDt−m ×DAYtm

+
10∑

m=1

γE
mEXPECTt−m ×DAYtm +

3∑

j=0

γS
j SURPRISEt−j + εt) (14)

where yt denotes one of the open market operation of interest, that is, yt equals either
overnight purchases (OBt), term purchases (TBt), permanent purchases (PBt), overnight
sales (OSt), term sales (TSt), or permanent sales (PSt). zt denotes a vector containing the
remaining five types of operations. For instance, if yt = OBt (overnight purchases), then
zt = [TBt, PBt, OSt, TSt, PSt] . DAYtm denotes a vector of maintenance-day dummies, and
εt is a stochastic disturbance.

We start our empirical analysis by re-estimating Demiralp and Jordà’s (2002) specifi-
cations under the assumption of normality. That is, we follow their lead in assuming the
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dynamic Tobit model is correctly specified. We report the coefficient estimates for the lags
of the dependent variable in Table 2. (For the complete set of parameter estimates, see Ta-
bles A.1 and A.2 in the full version of this paper at http://www.clas.wayne.edu/herrera/
and http://www.econ.ohio-state.edu/dejong.) Because we are interested in whether the
roots of the polynomial ρmax(z) = 1−

∑3
i=1 max(0, ρi)zi are outside the unit circle we report

the smallest of the moduli of the roots of this lag polynomial.
Note that 10 out of the 16 regressions estimated by Demiralp and Jordà (2002) appear

to have at least one root that falls on or inside the unit circle. One may wonder whether this
result stems from nonstationarity issues or from misspecification in the error distribution. To
investigate this issue, we test for normality of the Tobit residuals and report the Jarque-Bera
statistics in Table 1; these results lead us to reject the null that the underlying disturbances
are normally distributed. Thus, we proceed in the following section to estimate the Open
Market Desk’s reaction function using Powell’s LAD estimator, which is robust to unknown
error distributions. If the problem is one of nonstationarity, one would then expect the roots
of the ρmax(.) polynomial to be on or inside the unit circle.

6.2 Model and estimation procedure

From here on we will restrict our attention to the Open Market Desk’s reaction function for
temporary open market purchases over the whole 1984-2000 sample. We focus on temporary
purchases because overnight and term RPs are the most common operations; thus, they are
informative regarding the Open Market Desk’s reaction function. The Open Market Desk
engaged in temporary purchases on 37% of the days between April 25, 1984 and August 14,
2000. In contrast, permanent purchases, temporary sales, and permanent sales were carried
out, respectively, on 24%, 7%, and 2% of the days in the sample.

In contrast with Demiralp and Jordà (2002) we re-classify open market operations in four
groups: (a) temporary purchases, which comprise overnight reversible repurchase agreements
(RP) and term RP, OTBt = OBt + TBt; (b) permanent purchases, which include T-bill
purchases and coupon purchases, PBt; (c) temporary sales, which include overnight and
term matched sale-purchases, OTSt = OSt + TSt; and (d) permanent sales, which comprise
T-bill sales and coupon sales, PSt. In brief, we group overnight and term operations and
restrict our analysis to the change in the maintenance-period-average level of reserves brought
about by temporary purchases of the Open Market Desk, OTBt.

We employ the following dynamic censored regression model to describe temporary pur-
chases by the Open Market Desk:

OTBt = max(0, γ +
4∑

m=1

γα
mDtm +

3∑

j=1

ρjOTBt−j +
3∑

j=1

γTS
j OTSt−j +

3∑

j=1

γPB
j PBt−j
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+
3∑

j=1

γPS
j PSt−j +

10∑

m=1

γN
mNEEDt−m ×DAYtm +

10∑

m=1

γE
mEXPECTt−m ×DAYtm

+
3∑

j=0

γS
j SURPRISEt−j + εt) (15)

where OTBt denotes temporary purchases, OTSt denotes temporary sales, PBt denotes
permanent purchases, PSt denotes permanent sales, DAYtm denotes a vector of maintenance-
day dummies, Dtm is such that Dt1 = DAYt1 (First Thursday), Dt2 = DAYt2 (First Friday),
Dt3 = DAYt7 (Second Friday), and Dt4 = DAYt,10 (Settlement Wednesday), and εt is a
stochastic disturbance.

This model is a restricted version of (14) in that it does not include dummies for all days
in the maintenance period. Instead, to control for differences in the reserve levels that the
Federal Reserve might want to leave in the system at the end of the day, we include only
dummies for certain days of the maintenance period where the target level of reserves is
expected to be different from the average (see Demiralp and Farley, 2005).

Regarding the estimation procedure, Tobit estimates b̂ are obtained in the usual manner
via maximum likelihood estimation, whereas the CLAD estimates b̃ are obtained by using the
BRCENS algorithm proposed by Fitzenberger (1997a,b). Extensive Monte Carlo simulations
by Fitzenberger (1997a) suggest that this algorithm, which is an adaptation of the Barrodale-
Roberts algorithm for the censored quantile regression, performs better than the iterative
linear programming algorithm (ILPA) of Buchinsky (1994) and the modified ILPA algorithm
(MILPA) of Fitzenberger (1994), in terms of the percentage of times it detects the global
minimum of a censored quantile regression. In fact, for our application, a grid search over
1000 points in the neighborhood of the estimates b̃ indicates both the ILPA and MILPA
algorithms converge to a local minimum. In contrast, the BRCENS algorithm is stable and
appears to converge to a global minimum.

Because the CLAD does not provide a first-round estimate for the variance, N−1ΩN−1,
we compute it in the following manner. Ω̃ is calculated as the long-run variance of ψ̃(wt, b̃) =
I (̃b′wt > 0)[12 − I(yt < b̃′wt)]wt, following the suggestions of Andrews (1991) to select the

bandwidth for the Bartlett kernel. To compute Ñ , we estimate f(0|wt) using a higher-order
Gaussian kernel with the order and bandwidth selected according to Hansen (2003, 2004).

6.3 Estimation Results

Maximum likelihood estimates of the dynamic Tobit model and corresponding quasi-maximum
likelihood standard errors are presented in the first two columns of Table 3. Before we com-
ment on the estimation results, it is important to inspect whether the roots of the lag
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polynomial ρmax(z) lie outside the unit circle. The three roots of ρ̂max(z) = 1 − 0.2639z −
0.2916z2 − 0.3054z3 lie all outside the unit circle, and the smallest modulus of these roots
equals 1.075. Because this root is near the unit circle and because we do not have the tools
to test if it is statistically greater than one, we should proceed with caution.

Of interest is the presence of statistically significant coefficients on the lags of the depen-
dent variable, TBt−j. This persistence suggests that in order to attain the desired target,
the Open Market Desk had to exercise pressure on the fed funds market in a gradual man-
ner, on consecutive days. The negative and statistically significant coefficients on lagged
temporary sales, TSt−j, imply that temporary sales constituted substitutes for temporary
purchases. In other words, in the face of a reserve shortage the Open Market Desk could
react by conducting temporary purchases and/or delaying temporary sales. The positive and
statistically significant coefficients on the NEEDt−1×DAYtm variables is consistent with an
accommodating behavior of the Fed to deviations of the federal funds rate from its target.
The Tobit estimates suggest that expectations of target changes were accommodated in the
first days of the maintenance period, and did not significantly affect temporary purchases
on most of the remaining days. As for the effect of surprise changes in the target, the es-
timated coefficients are statistically insignificant. According to Demiralp and Jordà (2002),
statistically insignificant coefficients on SURPRISEt−j can be interpreted as evidence of
the announcement effect. This suggests that the Fed did not require temporary purchases
to signal the change in the target, once it had been announced (or inferred by the markets;
see Demiralp and Jordà, 2004).

However, it is well known that the Tobit estimates are inconsistent if the underlying
disturbances are heteroskedastic or non-normal (Greene, 2000). Thus, to assess whether the
Tobit specification of the reaction function is appropriate, we conduct tests for homoskedas-
ticity and normality. A Lagrange multiplier test of heteroskedasticity obtained by assuming
V ar(εt|wt) = σ2 exp(δ′zt), where zt is a vector that contains all elements in wt but the con-
stant, rejects the null H0 : δ = 0 at the 1% level. In addition, the Jarque-Bera statistic leads
us to reject the null that the residuals are normally distributed at a 1% level.

The finding of a root that is close to the unit circle in conjunction with the rejection of
the normality and homoskedasticity assumptions suggest that the Tobit estimates could be
biased. Hence, our finding of a root near the unit circle may stem either from misspecification
of the error term or from non-stationarity of the dynamic Tobit model. To further investi-
gate this issue, we consider the CLAD estimator, which is robust to heteroskedasticity and
nonnormality and is consistent in the presence of weakly dependent errors (see Section 4).
Finding a root close to unity for the CLAD estimates would be indicative of nonstationarity
in the dynamic censored regression model driving the test results. In contrast, finding roots
that are outside the unit circle would point towards misspecification of the error distribution
being the cause of the bias in the Tobit estimates.
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CLAD estimates and corresponding standard errors are reported in the third and fourth
column of Table 3, respectively. Notice that, in this case, the smallest root of the lag
polynomial ρ̃max(z) = 1 − 0.068z − 0.093z2 − 0.073z3 appears to be clearly outside the
unit circle. Here the smallest modulus of the roots equals 1.928. Given that the roots are
far from the unit circle, standard inference techniques seem to be asymptotically justified.
Furthermore, this suggest that our finding of roots that are near the unit circle for the Tobit
model is a consequence of misspecification in the error term as normal and homoskedastic.

Comparing the CLAD and the Tobit estimates reveals some differences regarding the
Open Market Desk’s reaction function. First, the CLAD estimates imply a considerably
smaller degree of persistence in temporary purchases. The magnitude of the ρj, j = 1, 2, 3,
parameter estimates is at most 1/3 of the Tobit estimates. Consequently, the roots of the lag
polynomial ρ̃max(z) implied by the CLAD estimates are larger, giving us confidence regarding
stationarity of the censored regression model.

Second, although both estimates imply a similar reaction of the Fed to reserve needs,
there are some differences in the magnitude and statistical significance of the parameters.
In particular, the CLAD estimates suggest a pattern in which the Fed is increasingly less
reluctant to intervene during the first three days of the maintenance period; then, no signif-
icant response is apparent for the following four days (with the exception of Day5); finally,
the response to reserve needs becomes positive and significant for the last three days of the
period. Furthermore, on Mondays (Day3 and Day8), the Open Market Desk appears to be
more willing to accommodate shocks in the demand for reserves in order to maintain the
federal funds rate aligned with the target.

The expectation of a change in the target seldom triggers temporary open market pur-
chases. The coefficient on EXPECT is only statistically significant on the first and eight
day of the maintenance period. This suggests the Fed is only seldom willing to accommodate
(or profit) from anticipated changes in the target. Although both estimation methods reveal
a larger effect on the first day, the CLAD estimate (40.5) suggest an impact that is about
67% smaller than the Tobit estimate (121.5).

Most of the coefficients on the contemporaneous and lagged SURPRISE are negative,
which is consistent with the liquidity effect. That is, in order to steer the federal funds
rate towards a new lower target level the Open Market Desk would add liquidity by using
temporary purchases. Yet, the fact that none of the coefficients are statistically significant
suggests that once the target was announced (or inferred by the financial markets) little
additional pressure was needed to enforce the new target.
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7 Conclusions

This paper shows stationarity properties of the dynamic censored regression model in a time
series framework. It then provides a formal justification for maximum likelihood estimation of
the dynamic Tobit model and for Powell’s LAD estimation of the dynamic censored regression
model, showing consistency and asymptotic normality of both estimators. Two important
features of the treatment of the censored regression model in this paper is that no assumption
is made on the lag polynomial other than that ρmax(z) = 1−

∑p
i=1 max(0, ρi)zi has its roots

outside the unit circle and that the error term, εt, is itself allowed to be potentially correlated.
Hence, in terms of the conditions on ρmax(z) and the dependence allowed for εt, this paper
analyzes the dynamic censored regression model on a level of generality that is comparable to
the level of generality under which results for the linear model AR(p) model can be derived.

The censored regression model is then applied to study the Open Market Desk’s re-
action function. Robust estimates for temporary purchases using Powell’s CLAD suggest
that maximum likelihood estimates of the dynamic Tobit model may lead to overestimating
the persistence of temporary purchases, as well as the effect of demand for reserves and
expectations of future changes in the federal funds target on temporary purchases. More-
over, a comparison of the Tobit and CLAD estimates suggests that temporary purchases are
stationary, but that the error normality assumed in the Tobit specification does not hold.
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Hamilton, J.D. and O. Jordà (2002), A Model for the Federal Funds Rate Target, Journal
of Political Economy, 110, 1135-1167.

Hansen, B. E. (1996), Stochastic equicontinuity for unbounded dependent heterogeneous ar-
rays, Econometric Theory, 12, 347-359.

Hansen, B.E. (2003), Exact mean integrated square error of higher-order kernel estimators,
Working Paper, University of Wisconsin.

Hansen, B.E. (2004), Bandwidth selection for nonparametric kernel estimation, Working Pa-

18



per, University of Wisconsin.
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Variable Estimate Std. Err. Estimate Std. Err.

Constant -18.742 *** 1.753 -1.252 *** 0.341
First Thursday 16.962 *** 2.833 1.814 *** 0.502
First Friday -17.046 *** 2.917 -3.595 *** 1.393
Second Friday -12.051 *** 2.683 -3.466 *** 1.262
Settlement Wednesday 4.456 *** 1.553 2.811 *** 0.464
OTB(-1) 0.264 *** 0.035 0.068 *** 0.008
OTB(-2) 0.292 *** 0.042 0.093 *** 0.007
OTB(-3) 0.305 *** 0.049 0.073 *** 0.007
OTS(-1) -1.726 *** 0.611 -3.941 3.666
OTS(-2) -0.865 * 0.447 -1.025 1.554
OTS(-3) -1.895 *** 0.408 -0.558 * 0.359
PB(-1) -0.018 0.085 -0.164 *** 0.065
PB(-2) -0.065 0.074 -0.045 0.038
PB(-3) -0.073 0.072 -0.022 0.031
PS(-1) 0.146 0.253 -0.033 0.116
PS(-2) -0.151 0.245 -0.067 0.092
PS(-3) -0.198 0.223 0.065 * 0.045
SURPRISE -14.046 15.387 -0.659 4.441
SURPRISE(-1) 11.516 13.044 -0.268 3.898
SURPRISE(-2) -14.619 17.648 0.735 3.849
SURPRISE(-3) -7.259 14.832 -1.755 4.08
NEED(-1)*Day1 -0.501 2.974 1.742 *** 0.526
NEED(-1)*Day2 11.645 ** 4.691 3.433 *** 0.794
NEED(-1)*Day3 24.030 *** 8.595 9.163 *** 2.108
NEED(-1)*Day4 -7.489 7.775 -1.868 1.822
NEED(-1)*Day5 21.671 *** 7.612 5.884 *** 2.012
NEED(-1)*Day6 5.312 10.941 -0.593 2.478
NEED(-1)*Day7 33.429 *** 10.471 1.367 2.362
NEED(-1)*Day8 6.842 7.789 9.616 *** 2.213
NEED(-1)*Day9 13.402 *** 4.953 5.206 *** 1.248
NEED(-1)*Day10 3.972 * 2.083 1.144 ** 0.52
EXPECT*Day1 121.451 ** 53.231 40.461 *** 5.499
EXPECT*Day2 48.599 34.018 13.107 * 8.277
EXPECT*Day3 -14.656 38.828 1.884 6.077
EXPECT*Day4 -25.528 29.346 3.586 5.711
EXPECT*Day5 -54.997 * 29.859 -1.924 7.271
EXPECT*Day6 51.573 * 30.636 8.856 * 5.449
EXPECT*Day7 -37.603 36.721 1.632 12.704
EXPECT*Day8 39.313 * 20.515 12.535 ** 5.454
EXPECT*Day9 -48.249 * 24.666 -11.71 9.445
EXPECT*Day10 16.269 16.363 7.958 * 5.168
SCALE 1094.099 *** 104.478

Smallest root 1. 0750 2. 0315

Note: ***, ** and * denote significance at the 1, 5 and 10% level, respectively. Smallest root
denotes the smallest root of the !max (z)  polynomial; for complex roots the modulus is reported.

Table 3

Tobit CLAD

1986-2000
Tobit and CLAD Estimates for Open Market Temporary Purchases 
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Appendix

Define ŷm
t = 0 for m ≤ 0 and ŷm

t = max(0, ηt +
∑p

i=1 ρiŷ
m−i
t−i ). Therefore, ŷm

t is the approx-
imation for yt that presumes yt−m, . . . , yt−m−p = 0. We can obtain an almost surely finite
upper bound for yt and ŷm

t :

Lemma 1 If the lag polynomial (1−max(0, ρ1)B−. . .−max(0, ρp)Bp) has all its roots outside
the unit circle and supt∈Z E max(0, ηt) < ∞, then for an almost surely finite random variable
ft = f(ηt, ηt−1, . . .) =

∑∞
j=0 Lj

1 max(0, ηt−j), and Lj
1 that are such that Lj

1 ≤ c1 exp(−c2j) for
positive constants c1 and c2,

ŷm
t ≤ ft.

Proof of Lemma 1:

Note that, by successive substitution of the definition of ŷm
t for the ŷm

t that has the largest
value for t,

ŷm
t ≤ max(0, ηt) +

p∑

i=1

max(0, ρi)ŷ
m−i
t−i

= max(0, ηt) +
p∑

i=1

L1
i ŷ

m−i
t−i

≤ max(0, ηt) +
p∑

i=2

max(0, ρi)ŷ
m−i
t−i + max(0, ρ1)(max(0, ηt−1) +

p∑

i=1

max(0, ρi)ŷ
m−i−1
t−i−1 )

= max(0, ηt) + L1
1 max(0, ηt−1) +

p∑

i=1

L2
i ŷ

m−i−1
t−i−1

≤ max(0, ηt) + L1
1 max(0, ηt−1) + L2

1 max(0, ηt−2) +
p∑

i=1

L3
i ŷ

m−i−2
t−i−2

≤
∞∑

j=0

Lj
1 max(0, ηt−j).

The Lj
i satisfy, for j ≥ 2,

Lj
1 = Lj−1

2 + max(0, ρ1)L
j−1
1 ,
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Lj
2 = Lj−1

3 + max(0, ρ2)L
j−1
1 ,

...

Lj
p−1 = Lj−1

p + max(0, ρp−1)L
j−1
1 ,

Lj
p = max(0, ρp)L

j−1
1 .

From these equations it follows that we can write, for the backward operator B that is such
that B(Lj

i ) = Lj−1
i ,

(1−
p∑

j=1

max(0, ρj)B
j)Lj

1 = 0.

From the fact that the above lag polynomial has all its roots outside the unit circle by
assumption, it follows that Lj

1 ≤ c1 exp(−c2j) for positive constants c1 and c2. Also, if
supt∈Z E max(0, ηt) < ∞, then

∑∞
j=0 Lj

1 max(0, ηt−j) is an a.s. finite random variable. !

We will first proceed by deriving a moment bound for yt. The following theorem provides
such a result:

Lemma 2 If ηt is strictly stationary, ρmax(B) has all its roots outside the unit circle, and
‖ max(0, ηt) ‖r< ∞ for some r ≥ 1, then supt∈Z ‖ ft ‖r< ∞.

Proof of Lemma 2:

The result Lemma 2 follows by noting that, by Lemma 1,

‖ ft ‖r≤
∞∑

j=0

Lj
1 ‖ max(0, ηt−j) ‖r< ∞.

!

The following lemma is needed for the stationarity proof of Theorem 1. For ζ > 0, let

Hζ(x) = −ζ−1xI(−ζ ≤ x ≤ 0) + I(x ≤ −ζ).
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Itl =
p−1∏

j=0

I(ηt−l−j ≤ −
p∑

i=1

ρjft−l−j−i)

and

Iζ
tl =

p−1∏

j=0

Hζ(ηt−l−j +
p∑

i=1

ρjft−l−j−i).

Lemma 3 Assume that ηt is strictly stationary and strong mixing and satisfies ‖ max(0, ηt) ‖2<
∞. Then for all t ∈ Z and δ > 0, as m →∞,

(m− p)−1
m−p∑

l=1

(Iζ
tl log(δ) + log(1 + δ)(1− Iζ

tl))
p−→ E(Iζ

tl log(δ) + log(1 + δ)(1− Iζ
tl)).

Proof of Lemma 3:

Note that we can write

(m− p)−1
m−p∑

l=1

(Iζ
tl log(δ) + log(1 + δ)(1− Iζ

tl))

= (m− p)−1
m−p∑

l=1

(Iζ
t,m−p+1−l log(δ) + log(1 + δ)(1− Iζ

t,m−p+1−l)).

Note that

Iζ
t,m−p+1−l =

p−1∏

j=0

Hζ(ηt−(m−p+1−l)−j +
p∑

i=1

ρift−(m−p+1−l)−j−i),

and for all t and j,

ηt−(m−p+1−l)−j +
p∑

i=1

ρift−(m−p+1−l)−j−i

= ηt−(m−p+1−l)−j +
p∑

i=1

∞∑

k=0

ρiL
k
1 max(0, ηt−(m−p+1−l)−j−i−k)

25



= ηt−(m−p+1−l)−j +
∞∑

k=0

max(0, ηt−(m−p+1−l)−j−i−k)
p∑

i=1

ρiL
k−i
1 I(i ≤ k) = wt−(m−p+1−l)−j

is strictly stationary (as a function of l) and L2-near epoch dependent on ηt−(m−p+1−l)−j, and
that ν(M) decays exponentially. This is because for M ≥ 1,

‖ wt−(m−p+1−l)−j − E(wt−(m−p+1−l)−j|ηt−(m−p+1−l)−j−M , . . . , ηt−(m−p+1−l)−j) ‖2

≤‖ max(0, ηt) ‖2

∞∑

k=M+1

p∑

i=1

ρiL
k−i
1 I(i ≤ k),

and the last expression converges to 0 as M →∞ at exponential rate because Lk
1 converges

to zero at an exponential rate. Therefore, because Hζ(·) is Lipschitz-continuous,

Hζ(ηt−(m−p+1−l)−j +
p∑

i=1

ρift−(m−p+1−l)−j−i)

is also L2-near epoch dependent on ηt with an exponentially decreasing ν(·) sequence, and
so is

p−1∏

j=0

Hζ(ηt−(m−p+1−l)−j +
p∑

i=1

ρift−(m−p+1−l)−j−i).

See Pötscher and Prucha (1997) for more information about these manipulations with near
epoch dependent processes. The result of this lemma then follows from the weak law of large
numbers for L2-near epoch dependent processes of Andrews (1988). !

Lemma 4 Under the assumptions of Theorem 1, for all ζ > 0,

E
p∏

j=1

I(ηt−j +
p∑

i=1

ρift−i−j ≤ −ζ) > 0.

Proof of Lemma 4:

Note that, under our assumptions, for some c > 0 and a ∈ (0, 1),

ηt +
p∑

i=1

ρift−i ≤ ut + c
∞∑

j=0

|a|j|ut−j|.
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Noting that

E
p∏

j=1

I(ηt−j +
p∑

i=1

ρift−i−j ≤ −ζ) > 0

= E(P (ηt−1 +
p∑

i=1

ρift−1−j ≤ −ζ)
p∏

j=2

I(ηt−j +
p∑

i=1

ρift−i−j ≤ −ζ))

≥ E(P (ut−1 + c
∞∑

j=1

|a|j|ut−1−j| ≤ −ζ)
p∏

j=2

I(ηt−j +
p∑

i=1

ρift−i−j ≤ −ζ))

= E(F (−c
∞∑

j=0

|a|j|ut−j| − ζ)
p∏

j=2

I(ηt−j +
p∑

i=1

ρift−i−j ≤ −ζ))

where F (.) is as defined in Equation (5), and observing that for random variables X such
that X ≥ 0, we can have EX = 0 only if P (X = 0) = 1, it can be seen that it suffices to
show that

F (−c
∞∑

j=0

|a|j|ut−j| − ζ)
p∏

j=2

I(ηt−j +
p∑

i=1

ρift−i−j ≤ −ζ)

exceeds zero with probability 1. Because of positivity of F (.), this means it suffices that

E
p∏

j=2

I(ηt−j +
p∑

i=1

ρift−i−j ≤ −ζ) > 0

(that is, the product is over j = 2 instead of j = 1 now.) By repeating this reasoning p times
and because of the finiteness of random variables such as

∑∞
j=0 |a|j|wt−j|, it now follows that

for all ζ > 0,

E
p∏

j=1

I(ηt−j +
p∑

i=1

ρift−i−j ≤ −ζ) > 0.

!
Lemma 5 For some almost surely finite random variable yt such that (yt, ηt) is strictly
stationary,

ŷm
t

as−→ yt as m →∞.
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Proof of Lemma 5:

We will use the Cauchy criterion to show that ŷm
t converges almost surely, and we will define

yt to be this limit. By the Cauchy criterion, ŷm
t converges a.s. if maxk≥m |ŷk

t − ŷm
t | converges

to zero in probability as m →∞. Now, note that for all m ≥ k,

ŷk
t = ŷm

t = 0 if ηt ≤ −
p∑

i=1

ρiyt−i and ηt ≤ −
p∑

i=1

ρiŷ
k−i
t−i ,

so certainly,

ŷk
t = ŷm

t = 0 if ηt ≤ −
p∑

i=1

ρift−i,

and therefore maxk≥m |ŷk
t − ŷm

t | = 0 for all m > p if there can be found p consecutive “small”
ηt−l that are negative and large in absolute value in the range l = 1, . . . , m− 1; i.e. if

ηt−l ≤ −
p∑

i=1

ρift−l−i

for all l ∈ {a, a+1, . . . , a+p−1} for some a ∈ {1, . . . , m−p}. Therefore, for all 1/2 > δ > 0,
ζ > 0, and c > 0,

P [max
k≥m

|ŷk
t − ŷm

t | > 0]

≤ P [there are no p consecutive “small” ηt]

≤ E
m−p∏

l=1

(1− I(there are p consecutive “small” ηt starting at t− l))

≤ E
m−p∏

l=1

(1−
p−1∏

j=0

I(ηt−l−j ≤ −
p∑

i=1

ρjft−l−j−i))

= E exp[(m− p)(m− p)−1
m−p∑

l=1

log(1−
p−1∏

j=0

I(ηt−l−j ≤ −
p∑

i=1

ρift−l−j−i))]

≤ exp(−(m− p)c)) + P [(m− p)−1
m−p∑

l=1

log(1−
p−1∏

j=0

I(ηt−l−j ≤ −
p∑

i=1

ρift−l−j−i)) > −c]
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≤ exp(−(m− p)c)) + P [(m− p)−1
m−p∑

l=1

(Itl log(δ) + log(1 + δ)(1− Itl)) > −c]

≤ exp(−(m− p)c)) + P [(m− p)−1
m−p∑

l=1

(Iζ
tl log(δ) + log(1 + δ)(1− Iζ

tl)) > −c], (16)

where

Itl =
p−1∏

j=0

I(ηt−l−j ≤ −
p∑

i=1

ρjft−l−j−i)

and

Iζ
tl =

p−1∏

j=0

Hζ(ηt−l−j +
p∑

i=1

ρjft−l−j−i)

for

Hζ(x) = −ζ−1xI(−ζ ≤ x ≤ 0) + I(x ≤ −ζ).

Note that Itl ≥ Iζ
tl because I(x ≤ 0) ≥ Hζ(x). Both terms in Equation (16) now converge

to zero as m →∞ for a suitable choice of ζ, c and δ if

E(m− p)−1
m−p∑

l=1

(Iζ
tl log(δ) + log(1 + δ)(1− Iζ

tl))

= E(Iζ
tl log(δ) + log(1 + δ)(1− Iζ

tl)) < 0 (17)

and

(m− p)−1
m−p∑

l=1

(Iζ
tl log(δ) + log(1 + δ)(1− Iζ

tl))

satisfies a weak law of large numbers as m →∞. This weak law of large numbers is proven
in Lemma 3. Now if EIζ

tl > 0, we can pick δ > 0 small enough to satisfy the requirement of
Equation (17). Now,

EIζ
tl = E

p∏

j=1

Hζ(ηt−l−j −
p∑

i=1

ρjft−l−j−i)
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≥ E
p∏

j=1

I(ηt−l−j +
p∑

i=1

ρjft−l−j−i ≤ −ζ),

and the last term is positive by Lemma 4.
Since ŷm

t = fm(ηt, . . . , ηt−m) is strictly stationary because it depends on a finite numbers of
ηt, limm→∞(ŷm

t , ηt) = (yt, ηt) is also strictly stationary. !

Proof of Theorem 1:

Noting that yt as constructed in Lemma 5 is a solution to the dynamic censored regression
model, part (i) of Theorem 1 follows. Also, by the reasoning of Lemma 5 it follows that
any zt = f(ηt, ηt−1, . . .) that is a solution to the model also satisfies maxk≥m |ŷk

t − zt| = 0,
implying that zt = yt a.s., thereby showing part (ii) of Theorem 1. To show part (iii), note
that, by strict stationarity of (yt, ηt) and by noting that the conditional expectation is the
best L2-approximation,

sup
t∈Z

E|yt−E(yt|ηt−m, ηt−m+1, . . . , ηt)|2 = E|yt−E(yt|ηt−m, ηt−m+1, . . . , ηt)|2 ≤ E|yt− ŷm
t |2,

and because |yt| + |ŷm
t | ≤ 2ft, it now follows by the dominated convergence theorem that yt

is L2-near epoch dependent because E|ft|2 < ∞ by assumption and by Lemma 1.
In order to obtain the explicit bound for ν(M) of the last part of Theorem 1, note that

ν(m) = E(yt − E(yt|ηt−m, . . . , ηt))
2 ≤ E(yt − ŷm

t )2I(|ŷm
t − yt| > 0)

≤ (E|2ft|2p)1/p(P (|ŷm
t − yt| > 0))1/q

for p ≥ 1 and q ≥ 1 such that p−1 + q−1 = 1. Now by choosing p small enough, E|ft|2p < ∞
by assumption and by Lemma 1. Therefore, it suffices to show that P (|ŷm

t − yt| > 0) decays
as c1 exp(−c2m1/3) with m. By the earlier reasoning,

P [max
k≥m

|ŷk
t − yt| > 0]

≤ exp(−(m− p)c)) + P [(m− p)−1
m−p∑

l=1

(Iζ
tl log(δ) + log(1 + δ)(1− Iζ

tl)) > −c],

and the last probability will decay as c1 exp(−c2m1/3) by Lemma 2. This is because earlier,
it was established that the summands are near epoch dependent with an exponentially de-
creasing ν(·) sequence. The observations that L2-near epoch dependent processes are also
L1-near epoch dependent and that α(M) decays exponentially by assumption now complete
the proof. !
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