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Abstract

The identification and estimation of conditional quantile functions for count
responses using longitudinal data are considered. The approach is based on a
continuous approximation to distribution functions for count responses within
a class of parametric models that are commonly employed. It is first shown
that conditional quantile functions for count responses are identified in zero-
inflated models with subject heterogeneity. Then, a simple three-step approach
is developed to estimate the effects of covariates on the quantiles of the response
variable. A simulation study is presented to show the small sample performance
of the estimator. Finally, the advantages of the proposed estimator in relation
to some existing methods is illustrated by estimating a model of annual visits
to physicians using data from a health insurance experiment.

Key words: Zero-inflated count data, Quantile models, Subject heterogeneity,
Generalized linear mixed models

1. Introduction

Quantile regression, as originally introduced by Koenker and Bassett (1978),
is a widely-used approach to estimate flexible models in economics and statis-
tics. When the response is continuous, quantile regression allows practitioners
to estimate conditional quantile functions. While theoretical and methodologi-
cal research over the last 40 years have addressed important generalizations of
the original approach (Koenker, 2017), the literature on the analysis of discrete
data remains open to challenges and possibilities. In many applications, prac-
titioners face the limitations of classical parametric models, where the effect of
a treatment variable can be heterogeneous throughout the conditional distribu-
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Figure 1: Number of visits to physicians in the RAND Health Insurance Experiment data.
The distribution of the number of visits for three subjects whose observed counts were mostly
in the tail of this distribution (the right panel) are overlaid.

tion of the count variable, but policy recommendations can only be based on
average effects.

An important exception in the literature is the recent work by Chernozhukov,
Fernández-Val, Melly, and Wüthrich (2020), who investigate inference for quan-
tile functions, offering simultaneous confidence bands for discrete response vari-
ables. While they consider the analysis of cross-sectional data instead of longitu-
dinal data, their work illustrates the increasing importance of flexible methods
for count data. An illustrative example includes the number of visits to physi-
cians and the demand for medical services. Using the RAND Health Insurance
Experiment data (Deb and Trivedi, 2002), Figure 1 shows that the proportion
of zero visits to physicians exceeds 30% for patients with no greater than 15
visits per year. Moreover, the distribution of the count response has a long tail
reaching a maximum of 77 visits, while the average is 2.86. As discussed in Sec-
tion 5, over 90% of the participants in this experiment are observed over either
3 or 5 years. The distributions of the number of visits for three subjects are
also highlighted in Figure 1. These subjects were highlighted as they noticeably
contributed to the tail of this distribution, thus suggesting the appropriateness
of reflecting latent subject heterogeneity in any proposed model for these data.
As in many other applications, it is immediately apparent the need for a flex-
ible approach that simultaneously addresses zero inflation and latent subject
heterogeneity, while allowing estimation of the effects of covariates across the
conditional distribution of the count response variable.
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In order to address these challenges, this paper investigates estimation of
conditional quantile functions and covariate effects for longitudinal count re-
sponses. Our approach is based on a continuous approximation to distribu-
tion functions for count data within a class of parametric models commonly
employed in the literature. We adopt an approach based on interpolation of
functions for count responses as in Ilienko (2013) and Padellini and Rue (2019),
which can be viewed as an alternative smoothing method to the jittering ap-
proach proposed by Machado and Santos Silva (2005) and adopted by Harding
and Lamarche (2019). We develop a three-step estimation procedure using a
generalized linear mixed model (GLMM) procedure, which provides a flexible
statistical framework to handle over/underdispersion, shrinkage estimation, and
smoothing of regression relationships. In the first step, we consider estimation
of the conditional mean model. In the second step, we obtain a conditional
quantile variate as the solution of a nonlinear moment condition defined for the
conditional mean. We show that the solution exists and it is unique. Finally, in
the third step, a flexible GLMM is employed for a model of conditional quantile
responses. The finite sample performance of the estimator is investigated using
a simulation study, and we find that the estimator has satisfactory performance
for the estimation of quantile effects under different degrees of zero inflation.

Our work is related to the recent research that has contributed to the gen-
eralization of conditional quantile models for count data. The original work of
Machado and Santos Silva (2005) introduced a jittering approach to smooth
the count response variable. Lee and Neocleous (2010) proposed a Bayesian
approach, and Chernozhukov, Fernández-Val, and Weidner (2021) developed an
approach based on distribution regression. The literature on panel quantiles
includes just a few papers. Harding and Lamarche (2019) extend the jittering
approach to longitudinal data without zero inflation and Wang, Wu, Zhao, and
Zhou (2020) propose an estimator for time-varying coefficients using a quadratic
inference function approach within a quantile framework. The estimator pro-
posed in this paper is different than existing approaches, including distributional
regression (Kneib et al., 2021), for two important reasons. First, existing quan-
tile regression approaches have not been developed for zero-inflated (ZI) models
for longitudinal data. Second, we consider estimation of the conditional mean
model in the first step, rather than considering a quantile regression model
as in Padellini and Rue (2019). Therefore, the proposed methodology allows
practitioners to estimate a class of models with subject heterogeneity, without
considerations on the minimum number of repeated observations per subject as
in panel data quantile regression models (Harding and Lamarche, 2019).

As highlighted in the preceding discussion, one of the contributions of this
work is how we address zero inflation in longitudinal data. Zero inflation occurs
when zero counts arise from one of two possible states: a degenerate state or
from a discrete probability distribution. This structure is easily modeled using
a two-component mixture model. The seminal work by Lambert (1992) is the
earliest paper to thoroughly develop the ZI Poisson (ZIP) regression model as a
way to characterize zero defects in a manufacturing process that manifest from
one of two states: a perfect state where defects are extremely rare or an imperfect
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state where defects are possible. Since then, numerous extensions to the ZIP
regression model have been developed; see Young et al. (2021b) and Young
et al. (2021a) for a contemporary review, and Cameron and Trivedi (2013) for
a summary of econometric analysis with count data. In particular, just like
in non-ZI models, random effects have been included in ZI models to capture
various features of the data, such as subject heterogeneity (Zhu et al., 2017),
serial dependency between successive responses (Yau et al., 2004), and spatial
association (Agarwal et al., 2002). Our work is consistent with the spirit of such
contributions in that we use random individual intercepts to account for subject
heterogeneity when estimating conditional quantiles for longitudinal data with
ZI count responses.

This paper is organized as follows. In Section 2, we formalize the develop-
ment of quantiles for ZI count regression models by transferring the problem to
one that utilizes the continuous version of the discrete model under consider-
ation. In Section 3, we provide details of GLMMs with an emphasis on panel
count outcomes, how to incorporate zero inflation, and pose the problem of
performing quantile regression in such ZI GLMMs. We note that our focus is
strictly on ZI GLMMs with count responses and excludes the setting of semi-
continuous responses, such as the ZI gamma and ZI lognormal distributions. In
Section 4, we provide an extensive simulation study to assess the performance of
our approach in estimating mean and quantile effects. In Section 5, we analyze
data from the RAND Health Insurance Experiment and provide new insights
using our modeling paradigm. We end with a discussion in Section 6.

2. Conditional Quantiles of Count Responses

Suppose that we randomly sample N subjects where the ith unit has Ti mea-
sured count outcomes, which are collectively represented by the Ti-dimensional
vector yi = (yi1, . . . , yiTi)

>, i = 1, . . . , N . Note that the Ti need not be the
same for all units, however, the setting where Ti ≡ T is considered balanced.
Henceforth, we only consider the balanced setting to keep notation simple, but
everything discussed extends to the unbalanced setting. Associated with the tth

measurement on the ith unit is a vector of p observed independent variables,
given by xit = (xit1, . . . , xitp)

>. We also define wit = (wit1, . . . , witd)
> to be

a vector of d observed independent variables, which will be used to model the
0 counts in our models discussed below. Note that wit can simply be xit, it
may contain a subset of the variables in xit along with some independent vari-
ables not included in xit, or it may be an entirely different set of independent
variables from those in xit. Assume further that with the tth measurement on
the ith unit is a vector of q design variables for the random effects, given by
zit = (zit1, . . . , zitq)

>. The zit have a specific structure (typically) composed of
0s and 1s to reflect the subject-specific quantities in the model. For example, if
interested in subject-specific intercepts (a random effect), then zit will just be
univariate and simply equal to 1.

Let θit = E[yit|xit, zit] denote the conditional mean of the parametric dis-
tribution Fyit of the count response, yit. Specifically, Fyit is the cumulative
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distribution for a parametric discrete distribution, such as the Poisson or neg-
ative binomial. Let Gyit be the cumulative distribution function of a ZI count
variable,

Gyit(y) = πit + (1− πit)Fyit(y), (1)

for y ∈ N, where πit is the probability that the outcome variable has a degenerate
distribution at zero. This characterizes the extra zeros and the probability πit
can be influenced by covariates, as shown below.

We propose to consider the following continuous counterpart to the ZI count
distribution (1):

Gy′it(y) = πit + (1− πit)k(y, θit), (2)

where k(y, θit) = Fy′it(y) is the cumulative distribution function of y′it, which is
defined as the continuous version of yit. The function k(·, θit) is continuous and
increasing in its first argument, and it satisfies k(byc, θit) = Fyit(y), where the
floor function bxc := max{y ∈ Z : y ≤ x}. See Ilienko (2013) and Padellini and
Rue (2019) for similar derivations in models without zero inflation.

The approximation (2) can be used on the two leading distributions for count
models: ZIP and zero-inflated negative binomial (ZINB). If yit ∼ ZIP (θ, π),
then

Gyit(y) = πit + (1− πit)
Γ(byc+ 1, θit)

Γ(byc+ 1)
,

where Γ(x, θ) =
∫∞
θ
e−ssx−1ds denotes the upper incomplete gamma function.

It follows that, for y > −1,

Gy′it(y) = πit + (1− πit)
Γ(y + 1, θit)

Γ(y + 1)
. (3)

On the other hand, if yit ∼ ZINB(r, pit), where r is the number of failures in
a series of Bernoulli trials and pit ∈ (0, 1) is the probability of success, we have

Gy′it(y) = πit+ (1−πit)I1−pit(r, y+ 1) = πit+ (1−πit)
B(r, y + 1, 1− pit)

B(r, y + 1)
, (4)

where I1−pit(r, y + 1) is the regularized incomplete beta function and B(r, y +

1) =
∫ 1

0
sr(1− s)−yds is the beta function. This leads us to our first result.

Proposition 1. The continuous zero-inflated distributions functions (3) and
(4) are well-defined distribution functions.

Using the previous expressions, we have a recursive model and the parame-
ters of the model are identified. For instance, in the case of a ZIP model with
a logit link generalized linear model used for the zero-inflation probability, we
have,

πit =
exp(w>itγ)

(1 + exp(w>itγ))
,

θit = (1− πit) exp(x>itβ + z>itui) =
exp(x>itβ + z>itui)

(1 + exp(w>itγ))
,
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and

τ = πit + (1− πit)
Γ(y + 1, θit)

Γ(y + 1)
,

where wit is a vector of independent variables, possibly different than xit, and
τ ∈ (0, 1) is a quantile of the distribution of the continuous approximation to the
discrete distribution for all natural numbers y. The unknowns are the param-
eters (γ>,β>,u>i )>, and the τ th quantile of the continuous response variable,
y′, in a model with mean θit and probability πit.

Let Kit(y, τ) = (τ−πit)−(1−πit)k(y, θit). While identification of πit and θit
is standard in the literature (see, for example, Li, 2012), the next result shows
how to obtain conditional quantile values of the response variable.

Proposition 2. Let τ ∈ (0, 1) and k(y, θit) be a continuous increasing variable
in its first argument. For τ > πit for all i, t, the solution to Kit(y, τ) = 0, say,
yτit, exists and it is unique.

Having identification of the triple (θit, πit, y
τ
it), we obtain the quantile-specific

effects on the count response variable as the argument that minimizes the ex-
pected loss,

E{L(yτit − h(ηit))}, (5)

where L(·) is a loss function, h(·) is an inverse link function, and ηit is a (linear)
predictor variable which is determined by regressors and individual intercepts.
Specifically, the ηit are implicitly a function of the β and ui presented in the
above discussion. While (5) offers a general formulation of the problem that
can be accommodated for other models, the next section offers specific forms
for the loss function, link function, and the predictor variables employed in the
empirical sections.

3. Model Specification and Estimation

Let the x>it form the rows of the T×p design matrix Xi. Moreover, let the z>it
form the rows of the T × q design matrix Zi, which can be, for example, simple
basis functions of a time index. Both Xi and Zi typically include a column of
1s to permit estimation of, respectively, an overall intercept and a subject-level
intercept.

In GLMMs, the link function g(·) is used to relate yi to the linear predictor

ηi = Xiβ + Ziui, (6)

where β ∈ Rp and ui ∈ Rq are, respectively, fixed-effects coefficient and random-
effects coefficient vectors in the mixed models literature. Letting µi|ui denote
the mean of the (conditional) distribution of yi|ui, the link function is de-
fined such that E[yi|ui] = (µi|ui) = g−1(Xiβ + Ziui|ui) = g−1(ηi|ui), where
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h(·) := g−1(·) is used to write the inverse link function. Typically, the preced-
ing setup assumes that the ui are independent and identically distributed (iid)
Nq(0,G), where G is positive definite. Such an assumption is often done for
mathematical and computational convenience, but typically performs well in
practice. Alternatively, Zhang and Davidian (2001) thoroughly treat relaxing
the normality assumption with emphasis on the “semi-nonparametric” represen-
tation of Gallant and Nychka (1987), followed by the effective use of information
criteria to choose the final distribution on the random effects. Regardless, to
further solidify the form of the random component of (6), especially with re-
spect to the application presented in Section 5, consider the case where only a
random intercept is present. In that setting, Zi ≡ 1T and ui = ui, which is a
scalar. Therefore, q = 1. However, framing our discussion using the more gen-
eral form of Zi and ui in the GLMM linear predictor reflects that our proposed
methodology has the capacity to handle more complex mixed-effects structures.
Notably, the development of conditional quantile functions for count responses
in the GLMM framework differs from existing quantile methods that have been
developed in the linear mixed model (LMM) framework (Geraci and Bottai,
2014; Battagliola et al., 2021). Moreover, the ability to handle zero-inflation in
the count responses is also part of our contribution.

The GLMM is a type of hierarchical model where the hierarchical structure is
characterized through the random effects. Thus, GLMMs allow a natural frame-
work to reflect blocks of units, such as repeated measures on the same subject
or multiple households measured within defined levels of geography; e.g., census
blocks. The framework also accommodates intrasubject correlation, a statistical
feature leveraged in the modeling of panel data as in the focus of the present
work. The present work is also focused on the setting where the response values
of the panel data are counts. Thus, the primary distributions studied for yit|ui,
for which we will generically denote the probability mass function (pmf) as
pyit|ui , will be the Poisson and the negative binomial. Specifically, the gamma-
Poisson mixture representation is used for the negative binomial (also known as
the NB2 model in Hilbe, 2011), which results in a parameterization that also
includes the presence of a dispersion parameter, say, φ. We strictly use the NB2
model in the present work, so henceforth it will be understood that any discus-
sion about the negative binomial distribution is in terms of the NB2 parameter-
ization. One challenge with maximum likelihood estimation of such GLMMs is
that the marginal likelihood involves integration over a (generally) messy prod-
uct of Gaussian and exponential family likelihoods (or quasi-likelihoods) due to
the random effects. Direct maximization is generally not possible, however, inte-
gral approximations via Gauss-Hermite quadrature or Laplace approximations
typically perform very well. In R (R Core Team, 2019), both approximations
are options in the glmer() function (and glmer.nb() function for estimating
negative binomial mixed models) within the lme4 package (Bates et al., 2015),
while only the Laplace approximation is available in the glmmTMB() function
within the glmmTMB package (Brooks et al., 2017). For a thorough treatment of
GLMM methodology, we refer to the text by Stroup (2013).

We next present the model details for ZI GLMMs when the count distribution
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is either ZIP or ZINB, followed by highlighting some of the relevant estimation
details. For G, the variance-covariance matrix of the random effects ui, let
vech(G) ∈ Λ, where Λ is an open subset of Rq(q+1)/2, such that the dimension
is determined by the half-vectorization of G. Let ξ ∈ Ξ generically denote
the s-dimensional parameter vector for either the Poisson GLMM or negative
binomial GLMM. Specifically, ξ = β for the Poisson GLMM and ξ = (β>, φ)>

for the negative binomial GLMM, thus resulting in s ∈ {p, p + 1}. Here, Ξ is
the parameter space, which is an open subset of Rs. Suppose now that the
zeros in our count outcomes are generated from one of two possible processes: a
degenerate distribution (“perfect” state) with probability πit ≡ d(w>itγ) or the
count distribution pyit|ui (“imperfect” state) with probability 1−πit. Therefore,

yit|ui ∼

{
0, with probability πit;

pyit|ui , with probability 1− πit.
(7)

Here, πit is again a probability that determines how we choose between the two
states. Thus, d−1(·) is taken as a logit link function as it is the natural link that
linearizes such Bernoulli probabilities of “success.” The linearization involves an
r-dimensional vector of regressors, wit, and a parameter vector γ ∈ Γ, where Γ
is an open subset of Rr. Note that wit1 ≡ 1 also to accommodate an intercept.
The pmf for the ZI count variable defined in (7) is thus

fyit|ui(yit;xit,wit, zit,ui,ϑ) =

{
πit + (1− πit)pyit|ui(0; ξ,G), if yit = 0;

(1− πit)pyit|ui(yit; ξ,G), if yit ∈ N+,
(8)

where N+ = N \ {0} and ϑ = (ξ>,γ>, vech(G)>)> ∈ Θ = Ξ × Γ × Λ. The
above framework defines the model for a ZI GLMM and our immediate concern
is obtaining estimates of this model.

The classic ZI count regression models (e.g., ZIP regression and ZINB regres-
sion) define the conditional distribution of the ZI GLMM. The ZI GLMM follows
the same setup as the GLMM presentation given around Equation (6), but us-
ing the ZI distribution given in (7). Estimation can be performed a number of
different ways, each carrying their own set of challenges. A seemingly natural
approach is to first consider maximum likelihood estimation. The loglikelihood
function for which we need to maximize is as follows:

`(ϑ; x,y, z,u,w) =
∑∑
(it):yit=0

log
{
πit + (1− πit)pyit|ui(yit; ξ,G)

}
+
∑∑
(it):yit>0

{
log(1− πit) + log(pyit|ui(yit; ξ,G))

}
.

(9)

The above is clearly difficult to directly optimize, especially given the presence
of the random effects ui. One way to proceed is to consider augmenting the
above observed loglikelihood with Vit, which is an indicator variable equal to 1 if
observation (it) belongs to the degenerate state and 0 otherwise. This augmen-
tation results in the complete data loglikelihood. Treating both the Vit and ui as
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missing data, optimization of the complete data loglikelihood can thus be done
via an expectation-maximization (EM) algorithm (Dempster et al., 1977). This
setup affords us the luxury of the complete data loglikelihood separating out into
a term involving γ and another term involving log(pyit|ui(yit; ξ,G)), however,
we still have to deal with the integration over the random effects space. This can
be accomplished through, for example, (adaptive) Gauss-Hermite quadrature,
which is implemented by the glmer() function in lme4 (Bates et al., 2015).

Another approach is to attempt the direct optimization of the observed log-
likelihood in (9). The challenge, again, is how the integration is performed over
the random effects. A popular approach is to use the Laplace approximation to
calculate the marginal likelihood that results from integrating over the random
effects space. Let q(u,ϑ) = −`(ϑ; x,y, z,u,w) and

L(ϑ) =

∫
· · ·
∫

Rq

exp{−q(u,ϑ))}du.

The maximum likelihood estimate for ϑ is then

ϑ̂ = arg max
ϑ

L(ϑ). (10)

Moreover, the minimizer of q(u,ϑ) with respect to u is

û(ϑ) = arg min
u

q(u,ϑ).

The Hessian of q(u,ϑ) is then calculated with respect to u evaluated at û(ϑ):

H(ϑ) = ∇2
uu>q(û(ϑ),ϑ).

Finally, the Laplace approximation for the marginal likelihood is

L∗(ϑ) = (2π)q/2|H(ϑ)|−1/2 exp{−q(û(ϑ),ϑ))}. (11)

The above approximation is quite flexible beyond ZI GLMMs and is imple-
mented in the TMB package (Kristensen et al., 2016). Maximum likelihood of ZI
GLMMs can be done via TMB in the glmmTMB package, which is how we proceed.
In particular, we are able to obtain point estimates of all parameters, which are
best linear unbiased estimators (BLUEs), as well as the best linear unbiased
predictors (BLUPs) of the ui.

3.1. Three-Step Estimator

We now state the three-step procedure for constructing the estimated quan-

tile effects, β̂
τ
, followed by a detailed discussion of the third step.

1. For the assumed ZI GLMM having pmf of the form in (8), find the maxi-

mum likelihood estimate for ϑ, ϑ̂, using L∗(ϑ), the Laplace approximation
for the marginal likelihood as defined in (11).
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2. Let τ ∈ (0, 1) be a quantile of the estimated ZI GLMM based on the

maximum likelihood estimate ϑ̂. Appealing to Proposition 2, for each i, t,
find yτit|(xit,wit, zit), which is the solution to Kit(y, τ) = 0.

3. Letting yτi = (yτi1, . . . , y
τ
iT )>, find the quantile-specific effects β̂

τ
using the

risk function
E{L(yτi − h(ητi ))}. (12)

The loss function L(·) can be, for example, a (penalized) L2-loss, such as
the one used later in (17).

In order to obtain the estimated quantile effects β̂
τ

in Step 3 above, we begin
by specifying the following nonlinear mixed model (NLMM):

yτi = h(ητi ) + εi

ητi = Xiβ
τ + Ziu

τ
i ,

(13)

where h(·) is the same inverse log link function used for our ZI GLMMs and the
εi are iid NT (0, σ2IT ). Here, IT is the T × T identity matrix. Notice that we
find ourselves in the same situation as when performing maximum likelihood
estimation for the ZI GLMM. The random effects are again unobserved quanti-
ties, so maximum likelihood estimation is based on the marginal density of the
responses yτ ,

p(yτ |βτ , σ2τ ,Gτ ) =

∫
· · ·
∫

Rq

p(yτ |uτ ,βτ , σ2τ )p(uτ |Gτ )duτ , (14)

where p(yτ |βτ , σ2τ ,Gτ ) is the marginal density of the conditional quantile yτ

given all of the parameters, p(yτ |uτ ,βτ , σ2τ ) is the conditional density of yτ ,
given the random effects uτ , and p(uτ |Gτ ) is the marginal distribution of uτ .
Note that all of these quantities are explicitly written to show their dependency
on the quantile τ since the NLMM being estimated has the conditional quantile
yτi as the response.

Following the presentation in Chapter 7 of Pinheiro and Bates (2000), we
first note that the variance-covariance matrix Gτ of the random effects uτ can
be rewritten in terms of the precision factor ∆τ , so that (Gτ )

−1
= σ−2τ∆τ>∆τ .

We further note that if Gτ > 0, as is assumed for our setting, then such a ∆τ

exists, but need not be unique. Rewriting the marginal density in (14) in terms
of ∆τ , the loglikelihood of our NLMM in (13) is, thus,

`(βτ , σ2τ ,∆τ |yτ ) =

N∑
i=1

p(yτi |βτ , σ2τ ,∆τ ). (15)

Estimation of the above loglikelihood can now be accomplished using penalized
iteratively reweighted least squares using the two steps outlined in Lindstrom
and Bates (1990): a penalized nonlinear least squares (PNLS) step and an
LMM estimation step. See Section B in the Appendix for details on the imple-
mentation of the approach. It is important to emphasize that the use of the
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Laplace approximation for maximum likelihood estimation of ZI GLMMs, and
the alternating algorithm of Lindstrom and Bates (1990) for maximum likeli-
hood estimation of NLMMs, are both necessitated by the presence of random
effects. Both approaches provide mechanisms to estimate the random effects,
which in-turn are used in the calculation of the maximum likelihood estimates
of the model parameters.

As noted in the abstract of their paper, Machado and Santos Silva (2005)
state “Given the discreteness of the data, some smoothness must be artifi-
cially imposed on the problem.” We believe that our paradigm is in the same
spirit. Specifically, our three-step estimation procedure leverages the contin-
uous (smooth) approximation to find the quantile according to Proposition 2.
The appeal with our approach is that we use a parametric model (which one
can show is appropriate based on formal tests and model selection criteria when
comparing across multiple candidate models) to develop the conditional quantile
estimates. Moreover, our approach is model-aware, which affords us the flex-
ibility to explicitly account for zero-inflation and subject heterogeneity. This
is accomplished using ZI GLMMs. However, we have the added complexity
of needing to approximate the quantiles, which is common under more com-
plex models like the ZI GLMMs. We further note that this is a commonplace
strategy to estimate the quantiles from complex models via simulation, and is
addressed in, for example, Breidt (2004). Even though the estimated βτ are
heavily-informed by a numerical procedure, they still retain their interpretation
as quantile effects in the respective count regression model.

3.2. Remarks on large sample results

The validity of asymptotic results depends on conditions that are specific
to the assumed parametric distribution for count data, although the theory of
maximum-likelihood estimation and mixed models provide guidance; see, e.g.,
Newey and McFadden (1994) and Demidenko (2004). In terms of ZIP models,
Min and Czado (2010) introduce conditions and establish asymptotic results
for maximum likelihood estimation, and He, Xue, and Shi (2010) derive results

for sieve maximum likelihood estimation. The consistency of ϑ̂ in (11) follows
from large sample results for mixed effects models (Breslow and Clayton, 1993;
Hui, Müller, and Welsh, 2017). Under Assumptions A1–A8 in Appendix C, the

conditions of Proposition 2, and the continuous mapping theorem, ŷτit
p−→ yτit.

Finally, the consistency and asymptotic normality of β̂τ in (15) follow from
existing theoretical work, as we employ an NLMM model similar to the ones
in Ibrahim, Zhu, Garcia, and Guo (2011) and Hui, Müller, and Welsh (2017).
Furthermore, under regularity assumptions similar to the ones in Appendix C,
including that the random effects are not allowed to grow, Theorem 2.5 and
Theorem 3.3 in Newey and McFadden (1994) can be employed to obtain large
sample results. We emphasize the main differences are relative to routine con-
ditions, such as compactness of the parameter space, smoothness of the loglike-
lihood function, and conditions on the Fisher information matrix. Consistent
with (13), ετit := yτit − h(ητit) has zero conditional mean and bounded variance
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for all i and t, and the inverse log link function h(·) and the distribution of yit
belong to a class of models satisfying the conditions of Propositions 1 and 2.

3.3. Statistical inference

The estimation of the asymptotic covariance matrix of multi-step methods
can suffer from finite sample biases; see Chen, Chen, and Zhou (2004) and
Windmeijer (2005) for similar problems. The estimated asymptotic variance of

β̂τ can exhibit similar biases, because it relies on the consistency of the first- and
second-step estimators. This is an important practical consideration in a wide
range of applications as it could lead to inaccurate inference and size distortions.

In this paper, we do not offer a finite-sample correction, but instead we
turn to the bootstrap for statistical inference for the three-step estimator. The
estimation is carried out by employing a bootstrap strategy similar to the one
considered in Chernozhukov, Fernández-Val, and Weidner (2021). They propose
the multiplier bootstrap in the case of a Poisson model. In our version of the
bootstrap, we multiply the objective functions in the multiple steps by weights
drawn from an exponential distribution with mean and variance equal to one.
In results presented in the next section, we find that the coverage probabilities
of the multiplier bootstrap confidence intervals tend to give results close to the
nominal probabilities under the ZIP and the ZINB distributions. Moreover,
using the bootstrap procedure, we provide confidence intervals for the empirical
application in Section 5.

While this paper focuses on identification and estimation of quantile func-
tions for ZIP and ZINB distributions, we continue to investigate improvements
in terms of statistical inference as, for example, exploring the use of bootstrap
calibration to improve coverages of bootstrap-based confidence intervals (Loh,
1991).

4. Numerical Study

We next conduct a simulation study designed to evaluate the finite-sample
performance of our method proposed in Section 3. We first present results for
models with a fixed proportion of zero inflation, and then we include simulations
for the case where the model generates a proportion of zeros that varies by
subject and time. The estimates obtained for these models using the three-step
estimator are benchmarked against the results obtained using jittering. Jittering
is performed according to Section 3.6 of Machado and Santos Silva (2005), where
a log-linear quantile regression model is fit using the jittered data. This is
implemented using the rq.counts() function of the R package Qtools (Geraci,
2016).

We follow data generating processes similar to those considered in Machado
and Santos Silva (2005), and extend them to the panel data setting. We con-
sider that the response vector yi for the ith subject is generated from a count
distribution subject to zero inflation. That is, yit is generated from a degen-
erate distribution at zero with probability πit and from a count distribution

12



N T βj
ZIP ZINB ZIP ZINB

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
πit = 0 πit = 0.30

150 5
β1 0.000 0.025 0.001 0.038 -0.002 0.034 0.000 0.051
β2 0.000 0.015 0.000 0.018 0.001 0.018 0.000 0.021

150 10
β1 0.001 0.017 0.000 0.026 0.000 0.023 0.000 0.036
β2 0.000 0.014 0.000 0.015 0.000 0.015 0.000 0.015

250 5
β1 0.000 0.020 0.001 0.030 0.000 0.026 0.000 0.040
β2 0.000 0.012 0.000 0.014 0.000 0.014 0.000 0.017

250 10
β1 0.000 0.013 0.000 0.020 0.000 0.017 0.000 0.027
β2 0.000 0.011 0.000 0.012 0.000 0.012 0.000 0.013

πit = 0.15 Varying πit

150 5
β1 -0.001 0.029 0.001 0.044 -0.001 0.030 0.001 0.039
β2 0.000 0.017 0.000 0.019 0.000 0.015 0.000 0.018

150 10
β1 0.001 0.021 -0.001 0.030 0.000 0.020 0.000 0.026
β2 0.000 0.014 0.001 0.016 0.000 0.015 0.000 0.015

250 5
β1 0.001 0.024 0.002 0.035 0.001 0.023 0.001 0.031
β2 0.000 0.014 0.000 0.015 0.000 0.013 0.001 0.015

250 10
β1 0.000 0.016 -0.001 0.023 0.000 0.015 0.000 0.021
β2 0.000 0.011 0.000 0.012 0.000 0.011 0.000 0.012

Table 1: Bias and RMSE of β1 and β2 using the first-step estimator for the mean model.

pyit|ui with probability 1−πit. In our numerical work, the Poisson and negative
binomial portions of the ZI models each have the following conditional mean:

µit = exp{β0 + β1xit + β2xi + ui},

where xit = r0+r1ζi+r2ζit, and the variables ζi and ζit are iid Gaussian random
variables. The variable ui is iid N (0, σ2

u), where σ2
u = 0.2. The values for the

time-invariant regressor xi are chosen as equally-spaced design points over the
interval [0, 10]. In all the simulation settings, β0 = 0.75, β1 = r1 = 0.25,
β2 = r0 = 0, and r2 = 1.

We considerN ∈ {150, 250} and T ∈ {5, 10}. The aforementioned simulation
settings allow us to identify and estimate mean effects and quantile effects at τ ∈
{0.50, 0.75, 0.90}. We evaluate the small sample performance of our approach
by calculating the bias and root mean square error (RMSE) of the first-step
and third-step estimators. The results for the parameters β1 and β2 of the
conditional mean model estimated in the first step for the ZIP and ZINB models
are given in Table 1. These biases and RMSEs of the mean effect are calculated
with respect to the parameter values β1 = 0.25 and β2 = 0. Clearly, both
estimates are quite accurate and practically unbiased, regardless of the amount
of zero inflation and the count model used.

These first-step estimators for the conditional mean model are then used
to produce the third-step estimators for βτ1 and βτ2 using the quantile response
variable that was found as a solution of the nonlinear equation specified in the
second step. However, the values corresponding to βτ1 and βτ2 are not known.
The strategy we employ is to determine pseudo-true parameter values via simu-
lation using large samples and considering the latent variable ui as a regressor.
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N T Method
τ = 0.50 τ = 0.75 τ = 0.90

Bias RMSE Bias RMSE Bias RMSE
πit = 0

150 5
TS 0.002 0.028 -0.001 0.024 -0.002 0.021
JIT 0.003 0.039 0.019 0.040 0.025 0.044

150 10
TS 0.000 0.019 -0.001 0.016 -0.001 0.014
JIT 0.003 0.027 0.018 0.031 0.025 0.037

250 5
TS 0.002 0.021 -0.001 0.018 -0.002 0.016
JIT 0.004 0.029 0.019 0.032 0.025 0.038

250 10
TS 0.000 0.014 -0.001 0.012 -0.001 0.011
JIT 0.004 0.022 0.019 0.027 0.025 0.033

πit = 0.15

150 5
TS 0.003 0.032 -0.001 0.027 -0.002 0.024
JIT 0.028 0.060 0.027 0.048 0.029 0.049

150 10
TS -0.001 0.022 -0.002 0.019 -0.003 0.017
JIT 0.026 0.045 0.026 0.039 0.028 0.040

250 5
TS 0.003 0.025 -0.001 0.021 -0.002 0.018
JIT 0.028 0.049 0.028 0.041 0.029 0.042

250 10
TS 0.001 0.017 -0.001 0.014 -0.001 0.013
JIT 0.028 0.040 0.027 0.035 0.028 0.036

πit = 0.30

150 5
TS 0.003 0.036 -0.002 0.031 -0.003 0.027
JIT 0.078 0.116 0.041 0.063 0.032 0.053

150 10
TS 0.001 0.024 -0.001 0.021 -0.002 0.019
JIT 0.083 0.103 0.040 0.054 0.033 0.046

250 5
TS 0.004 0.028 -0.001 0.024 -0.003 0.021
JIT 0.084 0.107 0.042 0.056 0.034 0.048

250 10
TS 0.002 0.019 -0.001 0.016 -0.001 0.014
JIT 0.086 0.098 0.042 0.049 0.034 0.041

Varying πit

150 5
TS 0.002 0.032 -0.002 0.027 -0.003 0.024
JIT 0.026 0.056 0.027 0.047 0.028 0.048

150 10
TS 0.001 0.021 -0.001 0.018 -0.001 0.016
JIT 0.028 0.046 0.027 0.039 0.028 0.039

250 5
TS 0.004 0.025 -0.001 0.021 -0.002 0.018
JIT 0.028 0.048 0.028 0.041 0.028 0.041

250 10
TS 0.001 0.016 -0.001 0.014 -0.001 0.013
JIT 0.027 0.039 0.027 0.034 0.029 0.037

Table 2: Bias and RMSE of βτ1 estimators when the response is distributed as ZIP. The
jittering approach is denoted by JIT and the three-step approach is denoted by TS.

The values for {βτ=0.50
1 , βτ=0.75

1 , βτ=0.90
1 } are {0.265, 0.223, 0.197} for the Pois-

son distribution and {0.268, 0.238, 0.225} for the negative binomial distribution.
As expected, βτ2 is equal to zero at different quantiles and distributions. Albeit
our strategy to calculate the pseudo-true parameter values is simulation-based,
it is done so in a spirit similar to the notion of pseudo-true parameter values as
defined in the context of model selection; see Sawa (1978) and Vuong (1989).

Table 2 shows the small sample performance of the estimator for βτ1 when yit
is distributed as ZIP. The top three-quarters of the table give the results when
a constant proportion of zero inflation is assumed for the model. We consider
πit ∈ {0, 0.15, 0.30}, corresponding to no zero inflation, moderate zero inflation,
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N T Method
τ = 0.50 τ = 0.75 τ = 0.90

Bias RMSE Bias RMSE Bias RMSE
πit = 0

150 5
TS 0.004 0.039 -0.001 0.036 -0.003 0.034
JIT 0.002 0.052 0.012 0.048 0.012 0.052

150 10
TS -0.001 0.028 -0.002 0.025 -0.003 0.024
JIT 0.000 0.038 0.011 0.036 0.012 0.038

250 5
TS 0.004 0.031 -0.001 0.028 -0.003 0.027
JIT 0.000 0.040 0.012 0.039 0.014 0.041

250 10
TS -0.001 0.022 -0.001 0.020 -0.003 0.019
JIT 0.000 0.029 0.012 0.029 0.012 0.031

πit = 0.15

150 5
TS 0.002 0.049 -0.004 0.045 -0.006 0.042
JIT 0.024 0.085 0.017 0.060 0.013 0.058

150 10
TS 0.000 0.032 -0.002 0.030 -0.003 0.028
JIT 0.026 0.062 0.019 0.044 0.014 0.042

250 5
TS 0.006 0.036 -0.001 0.033 -0.003 0.031
JIT 0.027 0.067 0.020 0.047 0.016 0.045

250 10
TS 0.001 0.026 -0.001 0.024 -0.003 0.022
JIT 0.026 0.051 0.020 0.037 0.015 0.034

πit = 0.30

150 5
TS 0.007 0.053 -0.001 0.049 -0.004 0.046
JIT 0.044 0.117 0.034 0.077 0.020 0.064

150 10
TS 0.003 0.036 0.000 0.033 -0.002 0.031
JIT 0.049 0.088 0.036 0.060 0.020 0.047

250 5
TS 0.007 0.041 -0.002 0.037 -0.005 0.036
JIT 0.047 0.094 0.033 0.061 0.018 0.050

250 10
TS 0.003 0.029 -0.001 0.027 -0.003 0.026
JIT 0.053 0.077 0.034 0.053 0.019 0.039

Varying πit

150 5
TS 0.005 0.046 -0.001 0.042 -0.003 0.040
JIT 0.027 0.081 0.019 0.058 0.015 0.056

150 10
TS 0.000 0.031 -0.001 0.028 -0.003 0.027
JIT 0.024 0.060 0.019 0.043 0.015 0.041

250 5
TS 0.005 0.036 -0.003 0.033 -0.005 0.032
JIT 0.024 0.065 0.019 0.047 0.014 0.045

250 10
TS 0.001 0.025 -0.001 0.023 -0.002 0.021
JIT 0.026 0.050 0.020 0.037 0.015 0.033

Table 3: Bias and RMSE of βτ1 estimators when the response is distributed as ZINB. The
jittering approach is denoted by JIT and the three-step approach is denoted by TS.

and high zero inflation, respectively. The results for the three-step estimator
are given in the rows labeled “TS” under the “Method” column. The results
indicate that the method performs quite well, yielding negligible biases for the
quantile effects. For each combination of subjects and time, the table shows
negligible biases and excellent RMSE performance. Moreover, the table high-
lights that the proposed approach is robust to zero inflation. The performance
of the proposed approach is stable as the proportion of zero inflation increases.
The biases are almost unchanged, while the RMSEs only slightly increase for
the respective cases. We also compared our results to those obtained using jit-
tering. These results are given in the corresponding rows labeled “JIT” under
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the “Method” column. For each data generating process, the results for the
three-step estimator are consistently better in terms of bias and RMSE than
the jittering result. This provides clear empirical evidence of the improved esti-
mation of the quantile effects obtained under our three-step estimator over the
jittering approach. When we turn our attention to the case of ZINB shown in
Table 3, we find similar results. The three-step estimator again performs well,
the results do not seem to vary across the different proportions of zero infla-
tion, and there is consistently better performance over the jittering estimator.
Finally, similar conclusions in terms of the RMSE are also drawn about the
estimator for βτ2 , thus the results are not presented here to save space.

Next, we consider a scenario with varying proportions of zero inflation. The
response variable yit is now generated from the degenerate distribution at zero
with probability πit specified via the following logistic regression model:

logit(πit) = γ0 + γ1wit, (16)

where wit are iid U(0, 1) random variables and γ0 = −2 and γ1 = 0.45. This
model specification generates a sequence of πit that ranges over the interval
(0.12, 0.17) with an average of 0.145. In the first step, these probabilities are
estimated using maximum likelihood estimation, but are not reported to save
space.

The bottom quarter of Tables 2 and 3 show the small sample performance of
the estimators for the slope parameters when yit is distributed as ZIP and ZINB,
respectively, where πit is generated according to Equation (16). Once again,
excellent performance of the three-step estimator is found in each setting with
noticeable improvement over the jittering estimator. These results also indicate
that the proposed approach is robust to different models of zero inflation, as
indicated by the similar performance of the first-step and third-step estimators
compared to their performance under constant zero inflation. As expected, the
bias of the estimator is small and the RMSE tends to decrease as the sample
size increases.

Lastly, we offer results on the validity of the bootstrap procedure employed
in the next section. Table 4 provides empirical coverage probabilities obtained
by the bootstrap for a nominal 95% confidence interval. The probabilities are
calculated based on asymptotic Gaussian confidence intervals. The coverage
probabilities for βτ1 are close to the nominal level of 0.95 in the case of the
ZIP model, but they appear to be more liberal for the ZINB model. In most
variants of the model, we observe a similar coverage performance across the
different degrees of zero inflation.

5. An Application using the RAND Health Insurance Experiment

Using data from Deb and Trivedi (2002), this section investigates how med-
ical care utilization measured by the number of visits to a medical doctor (MD)
is affected by health insurance plans, demographic characteristics, and health
status of patients. Over 30% of the observations are zeros, motivating the use
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N T πit
τ = 0.5 τ = 0.75 τ = 0.90

ZIP ZINB ZIP ZINB ZIP ZINB

150 5
0.00 0.925 0.915 0.915 0.907 0.915 0.897
0.15 0.940 0.910 0.938 0.890 0.935 0.887
0.30 0.948 0.925 0.935 0.910 0.935 0.905

150 10
0.00 0.935 0.932 0.938 0.920 0.938 0.915
0.15 0.938 0.935 0.930 0.945 0.922 0.943
0.30 0.948 0.948 0.927 0.935 0.930 0.927

250 5
0.00 0.927 0.920 0.938 0.915 0.927 0.917
0.15 0.943 0.922 0.940 0.910 0.940 0.905
0.30 0.932 0.935 0.927 0.915 0.930 0.907

250 10
0.00 0.945 0.930 0.935 0.935 0.925 0.925
0.15 0.932 0.935 0.932 0.930 0.930 0.930
0.30 0.932 0.900 0.927 0.905 0.935 0.900

Table 4: Coverage probability for βτ1 under different degrees of zero inflation when the response
is distributed as ZIP and ZINB.

of the proposed approach. From a health policy viewpoint, it is important to
understand how policies affect the participants who need health care. Hence, a
distinction between non-users and users helps characterize the effect of policy
more precisely. Overall, the conditional quantile functions and effects reported
in this section contribute to an informative discussion that goes beyond mean
effects. We find that the effect of insurance variables and demographics vary
across the conditional distribution of medical care utilization, while revealing
interesting differences with respect to results obtained by existing methods that
ignore subject heterogeneity and zero inflation.

5.1. Data

In the 1970s, the RAND Corporation initiated the 15-year, multimillion-
dollar social experiment in health care research. This remains the largest and
longest controlled experiment on health policy in U.S. history. The RAND
Health Insurance Experiment (RHIE) was originally designed to study how
multiple factors affected the usage of medical care and the corresponding par-
ticipants’ health consequences. During the study, data were collected from
participants of 2823 families, where each family was enrolled in the insurance
plans for 3 or 5 years.

In this paper, we analyzed one subset of data from the RHIE as in Deb and
Trivedi (2002), where the participants were only enrolled in the fee-for-service
plans. This particular dataset consists of 5908 participants with 20,186 obser-
vations in total. The vast majority of participants are observed either 3 or 5
times, and each observation corresponds to data collected for the participant in
a given year. The response variable MDU is the yearly count of outpatient visits
to physicians, which represents the health care utilization for the experimental
subject for a specific year. These counts comprise the vector yi, i = 1, . . . , 5908
for the GLMMs estimated below. The insurance variables were randomly as-
signed and include a coinsurance rate (LC), an indicator variable for plans with
a deductible (IDP), a maximum dollar-expenditure function (FMDE), and a
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participation-incentive payment function (LPI). Other covariates include factors
representing the participants’ socioeconomic status, demographic information,
and health status. These covariates comprise the vector of independent vari-
ables xit. For detailed variable definitions and summary statistics, see Table 6
in Appendix D.

The use of a ZI count model is also supported by some features of the RHIE.
As mentioned in Section 1, the distribution of the response shows medium-to-
high proportion of zero utilization. Moreover, while a number of people are
healthy during the period and they have no need to visit hospitals at all, a
number of patients are unhealthy and have the need to visit physicians. De-
pending on the severeness and the practical considerations (for example, the
possible payment to the health care service), some patients might not go to the
physician while others have multiple visits. Under this circumstance, a random
zero count could be observed, but a positive integer-valued count is also possible.

5.2. Model specification

In the first step, we model the conditional mean considering four different
specifications: Poisson, negative binomial, ZIP, and ZINB. We then investigate
the best parametric model for the RHIE. We begin by assessing the randomized
quantile residuals of the four models (Dunn and Smyth, 1996). The randomized
quantile residual plot provides a visual illustration that can be used for assess-
ing a (ZI) count regression model’s fit. The comparison presented in Figure 2
reveals important differences between models. Clearly, the Poisson regression
model yields the worst fit because it fails to capture the presence of zero-inflation
and certain large values. ZIP regression shows some improvement over Poisson
regression, but still fails to adequately capture the overdispersion. On the other
hand, both negative binomial regression and ZINB regression provide satisfac-
tory fits to the data. We then employed a boundary-corrected likelihood ratio
test to evaluate ZINB versus negative binomial. We obtained a test statistic of
227, which is significant at standard levels and it favors the specification with
zero inflation. Finally, to complement the analysis, we calculated the Akaike
information criterion (AIC) and Bayesian information criterion (BIC) for each
model fit, and the comparison of models favored the ZINB, consistent with our
previous analysis and Deb and Trivedi (2002). The above results, combined
with the existence of both zero inflation and a long tail to the right, suggest
that the ZINB model provides the best fit.

In the second step, we estimate a ZINB regression model for the number
of visits to a medical doctor considering the vector of treatment variables and
covariates used by Deb and Trivedi (2002). We estimate πit as a function of a
covariate vector wit that includes LC, LPI, an indicator for children under the
age of 18, an indicator for race, and the number of years of education of the
head of the household. Moreover, the conditional mean and conditional quantile
functions are augmented by individual specific intercepts. Thus, the design vari-
able to predict the random effects will simply be zit = 1, and zit and the vector
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Figure 2: Randomized quantile residuals for the estimated Poisson, zero-inflated Poisson
(ZIP), negative binomial, and zero-inflated negative binomial (ZINB) regression models.

of predictor variables xit will be used to define the linear predictor ηit as defined
in (6). Modeling individual specific intercepts as random effects is consistent
with the use of experimental data, and a key advantage of the RHIE data is
that insurance plans were randomly assigned and, consequently, the treatment
variables are not correlated with individual specific latent characteristics.

5.3. Empirical Results

Table 5 presents results for the conditional mean effects and quantile effects
corresponding to insurance, demographics, and health status parameters. The
first column presents point estimates for the mean parameters, and the last
three columns show results for the quantile parameters estimated at the 0.50,
0.75, and 0.90 quantiles. The table also includes standard errors obtained by
employing the bootstrap.

The point estimates corresponding to the first step shown in column 1 of
Table 5 are similar to the estimates in Table 4 in Deb and Trivedi (2002),
although the estimates presented here are estimated more precisely. The sign of
the coefficients are consistent with expectations and standard economic theory.
For instance, the coefficient of LC can be interpreted as a price effect, and it is
negative and significant at standard levels. We expect the effect of LC on the
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Variables Mean τ = 0.50 τ = 0.75 τ = 0.90

LC -0.059 (0.020) -0.109 (0.006) -0.051 (0.006) -0.046 (0.007)
IDP -0.165 (0.038) -0.281 (0.013) -0.151 (0.013) -0.142 (0.017)
LPI 0.013 (0.006) 0.024 (0.002) 0.012 (0.002) 0.011 (0.002)
FMDE -0.020 (0.012) -0.026 (0.004) -0.019 (0.003) -0.018 (0.003)
LINC 0.079 (0.014) 0.140 (0.005) 0.085 (0.003) 0.063 (0.004)
LFAM -0.125 (0.028) -0.126 (0.019) -0.119 (0.012) -0.111 (0.011)
AGE 0.001 (0.001) 0.001 (0.001) 0.0000 (0.001) 0.001 (0.001)
FEMALE 0.411 (0.036) 0.569 (0.017) 0.377 (0.020) 0.343 (0.020)
CHILD 0.359 (0.050) 0.390 (0.052) 0.340 (0.045) 0.316 (0.039)
FEMCHILD -0.383 (0.053) -0.395 (0.029) -0.369 (0.029) -0.339 (0.025)
BLACK -0.538 (0.050) -1.160 (0.018) -0.490 (0.014) -0.438 (0.022)
EDUCDEC 0.023 (0.006) 0.042 (0.002) 0.020 (0.002) 0.019 (0.002)
PHYSLIM 0.297 (0.046) 0.427 (0.023) 0.275 (0.017) 0.243 (0.018)
NDISEASE 0.028 (0.002) 0.044 (0.001) 0.025 (0.001) 0.023 (0.001)
HLTHG 0.019 (0.031) 0.013 (0.015) 0.020 (0.011) 0.014 (0.009)
HLTHF 0.208 (0.058) 0.249 (0.018) 0.194 (0.017) 0.177 (0.018)
HLTHP 0.537 (0.115) 0.802 (0.042) 0.514 (0.041) 0.448 (0.038)

Table 5: Estimated regression coefficients, β̂ and β̂
τ
, for the RAND Health Insurance Exper-

iment dataset. Standard errors are in parentheses.

count variable to be negative because the cost shared by the patient is higher
as the rate of coinsurance increases. Also, as expected, the number of visits to
an MD increases with the natural logarithm of income (LINC).

When we examine the effects across quantiles, we observe some interesting
differences in LC, LINC, and the indicator for race of the head of the household
(BLACK). We find that the mean effect of these variables are quantitatively
similar to the estimated effects at the 0.75 and 0.90 quantiles, revealing not
only the importance of distributional effects, but also that the mean effect offers
an incomplete description of the effect of some insurance, demographic, and
socioeconomic variables. To examine this claim in more detail, we estimate the
model as in Table 5, but now considering 13 equally-spaced quantiles τ in the
interval [0.3, 0.9]. We then concentrate our attention on some of the variables
considered in Table 5.

Figure 3 shows the estimated mean effects (dashed lines) and quantile effects
(continuous lines) obtained from our proposed method. In order to examine the
importance of accommodating the large number of zeros in the RHIE, we also
report estimates obtained by the jittering approach of Machado and Santos
Silva (2005) and Harding and Lamarche (2019). The figure reveals some inter-
esting new findings. First, we find that the health insurance option associated
with coinsurance (LC) significantly reduce medical care utilization, particularly
among those with conditionally low number of visits to a medical doctor. While
the effect at the mean is -0.05, the effect at the 0.3 quantile is about three times
smaller, revealing increasing price sensitivity at the lower tail. Interestingly, we
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Figure 3: Estimated regression coefficients, β̂
τ

, for policy variables, socio-economic variables,
and demographic variables. The dotted line is the estimated value of β for the mean structure,
obtained by a ZI GLMM model in the first step with ZINB specification.

also find a significant black-white gap in terms of utilization, and the estimates
reveal that the gap widens as we move from the center of the conditional dis-
tribution to the lowest quantiles. Lastly, the comparison of the quantile effects
for LINC and BLACK obtained by different methods reveal non-negligible dif-
ferences arising from simultaneously addressing subject heterogeneity and zero
inflation.

6. Discussion

The primary aim of this work is to study identification and estimation of con-
ditional quantile functions for count responses with zero inflation in the longitu-
dinal data setting. Our approach is based on using a continuous approximation
to the discrete distribution for the count model under consideration. This ap-
proach has been developed in Ilienko (2013) and Padellini and Rue (2019), with
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the latter leveraging this approximation to perform quantile regression for count
data. We extended to the longitudinal setting where the count responses are
also subject to zero inflation. Another important distinction from Padellini and
Rue (2019) is that we first consider estimation of the conditional mean rather
than considering a quantile regression model. This important innovation allows
consistent estimation of a class of models with subject heterogeneity, without
restrictions on the minimum number of repeated observations per subject.

The class of models used in our first step are ZI GLMMs, which affords the
practitioner considerable flexibility regarding the structural form of the model
for their application. The class of ZI GLMMs are, of course, predicated on
classic GLMs, which formally require the dependent variable to be from a dis-
tribution in the exponential family. However, the ZI GLMMs are much broader
in that one can model some, or all, of the parameters in a ZI model (including
the mixing proportion) as a function of covariates. This includes distributions
that are not part of the exponential family, like the negative binomial with un-
known dispersion parameter. Having this broad class of distributions at our
disposal allows for effective exploration of reasonable and meaningful structures
to consider for the conditional mean structure for the application at hand. Max-
imum likelihood estimation is accomplished using the Laplace approximation to
calculate the marginal likelihood, which is able to be performed using the R

package glmmTMB (Brooks et al., 2017).
The BLUEs and BLUPs from our estimated ZI GLMM are used in our

second step to obtain a conditional quantile variate as a solution of a nonlinear
moment condition defined for the conditional mean. The material presented in
Section 2 shows that the solution exists and is unique. Then, a flexible NLMM
is employed for a model of conditional quantile responses. We demonstrated
through extensive simulation work in Section 4 that the proposed estimator has
satisfactory performance for the estimation of quantile effects under different
degrees of zero inflation.

The efficacy of our procedure is highlighted by analyzing data from the
RAND Health Insurance Experiment. While these data have been analyzed
in the literature using count regression models, we have provided a through
examination of quantile effects while capturing subject heterogeneity as well
as the fact that the data are longitudinal and subject to zero inflation. Our
analysis provides a more nuanced view that can inform health policy experts
about how certain policies affect the participants who need health care. Overall,
the empirical results obtained for this data analysis, combined with the extensive
simulation results, suggest the benefit of our novel approach to understand
quantile effects when modeling ZI longitudinal count responses.
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Appendix A. Proofs

Proof of Proposition 1. For πit = 0, Gy′it(y) = k(y, θit) where k(y, θit) = Fy′it(y)
is a valid cumulative distribution function (Ilienko, 2013; Padellini and Rue,
2019).

For πit > 0, Gy′it(y) = πit + (1 − πit)k(y, θit). Since k(y, θit) is a valid
cumulative distribution function, functions (3) and (4) satisfy the following:

lim
y→−∞

Gy′it(y) = lim
y→−∞

[πit + (1− πit)k(y, θit)] I{y≥0} = 0

and

lim
y→∞

Gy′it(y) = lim
y→∞

[πit + (1− πit)k(y, θit)] · I{y≥0}

= πit + (1− πit) · lim
y→∞

k(y, θit)

= πit + (1− πit) = 1.

Moreover, Gy′it(y) is non-decreasing since k(y, θit) is non-decreasing and (1 −
πit) ≥ 0, and Gy′it(y) is right-continuous since k(y, θit) is right-continuous.

Proof of Proposition 2. The existence of the solution can be shown as a direct
application of Bolzano’s theorem. Let Kit(y, τ) = ait − bitk(y, θit), where ait =
τ − πit > 0, and bit = 1 − πit > 0. Because k(y, θit) is an increasing function
over [0, 1], Kit(0, τ) = ait > 0, and limy→∞Kit(y, τ) = τ − 1 < 0. Therefore,
we have two points y0 and y1 such that Kit(y0, τ) > 0 and Kit(y1, τ) < 0, and
thus a root exists. The uniqueness result follows because k(y, θit) is increasing
in y.

Appendix B. Implementation details

In the PNLS step, the current estimate of ∆τ is held fixed. The conditional
modes of the random effects uτi and the conditional estimates of the fixed effects
βτ are obtained by minimizing a PNLS objective function:

β̂
τ

= arg min
{βτ |∆τ}

N∑
i=1

{
‖yτi − h(ητi )‖2 + ‖∆τuτi ‖2

}
. (17)

The LMM step updates the estimate of ∆τ based on a first-order Taylor ex-
pansion of the model function h(·) around the current estimates of βτ and the

conditional modes of the random effects uτi , which we will denote by β̂
τ(w)

and

û
τ(w)
i , respectively. Let

X̂
(w)

i =
∂h(ητi )

∂βτ>

∣∣∣∣
β̂
τ(w)

,û
τ(w)
i

, Ẑ
(w)

i =
∂h(ητi )

∂uτ>

∣∣∣∣
β̂
τ(w)

,û
τ(w)
i

,

v̂
τ(w)
i = yτi − h(η

τ(w)
i ) + η

τ(w)
i ,
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where

η
τ(w)
i = X̂

(w)

i β̂
τ(w)

+ Ẑ
(w)

i û
τ(w)
i .

The quantity v̂
τ(w)
i is a modified response vector with fixed-effects and random-

effects design matrices X̂
(w)

i and Ẑ
(w)

i , respectively. Finally, let Σi(∆
τ ) =

IT + Ẑ
(w)

i (∆τ )−1(∆τ )−>Ẑ
(w)>
i . The approximate loglikelihood then used to

estimate ∆τ is

`∗(βτ , σ2τ ,∆τ |yτ ) = −N
2

log(2πσ2τ )− 1

2

N∑
i=1

{
log |Σi(∆τ )|

+ σ−2τ
[
v̂(w) − X̂

(w)

i βτ
]>

Σ−1i (∆τ )
[
v̂(w) − X̂

(w)

i βτ
]]
.

The above PNLS routine just described is implemented using the nlmer() func-
tion. Note that a restricted maximum likelihood estimator for ∆τ can also be
found by using the following restricted loglikelihood:

`∗R(βτ , σ2τ ,∆τ |yτ ) = `∗(βτ , σ2τ ,∆τ |yτ )−1

2

N∑
i=1

log
∣∣∣σ−2τ X̂(w)>

i Σ−1i (∆τ )X̂
(w)

i

∣∣∣ .
Appendix C. Regularity Conditions

In this appendix, we outline the necessary regularity conditions for the con-

sistency and asymptotic normality of ϑ̂ and β̂
τ
. For the asymptotic results

on ϑ̂, we adapt the regularity conditions found across Newey and McFadden
(1994), Gan (2000), and Demidenko (2004) for our ZI GLMM setting. For ease
of notation in what follows, we will let fy|u(y;ϑ) ≡ fyit|ui(yit; xit,wit, zit,ui,ϑ)

for the ZI GLMM pmf given in Equation (8). Moreover, let d∗ = dim(ϑ), Cl be
the space of continuous functions with l continuous derivatives, and Ba(δ) be
the open ball of radius a > 0 centered at the point δ.

A1. For y ∈ N and each ϑ ∈ Θ, fy|u(y;ϑ) > 0, where Θ is a connected subset

in Rd∗ .
A2. For each y ∈ N+, fy|u(y; ·) as a function of ϑ is the constant 0 on the

boundary ∂ϑ of Θ, and it is in C2 on Θ; i.e., the second derivative of
fy|u(y; ·) is continuous on Θ.

A3. For each y ∈ N, fy|u(y; ·) as a function of ϑ is in C0, C1, and C2 on Θ; i.e.,
fy|u(y; ·) and its first two derivatives are each continuous on Θ.

A4. For each y ∈ N+, fy|u(y;ϑ) as a function of ϑ is in C3 on Θ.

A5. If for each pair of ϑ1 and ϑ2 there is a constant c(ϑ1,ϑ2), which might
depend on ϑ1 and ϑ2, such that fy|u(y;ϑ1) = c(ϑ1,ϑ2)fy|u(y;ϑ2) for
y ∈ N+, then ϑ1 = ϑ2.

A6. For ϑ0, the true parameter, there exists a > 0 such that Ba(ϑ0) ⊂ Θ and
the following hold:
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(a) For each y ∈ N+, fy|u(y;ϑ) as a function of ϑ is in C1 and C2 on
Ba(ϑ0).

(b)
∑∞
i=0

∥∥∥∂fy|u(i;ϑ0)

∂ϑ

∥∥∥ <∞.

(c) There is a sequence of nonnegative numbers, Mi, i = 0, 1, . . . , such

that
∑∞
i=0Mi < ∞ and for any ϑ ∈ Ba(ϑ0),

∥∥∥∂fy|u(0;ϑ)∂ϑ

∥∥∥ ≤ Mi and∥∥∥∂fy|u(0;ϑ)
∂ϑ∂ϑ>

∥∥∥ ≤Mi.

A7. Let y have the ZI GLMM pmf fy|u(·;ϑ0). Then, the following are true:

(a) Eϑ0

∥∥∥∂ log fy|u(y;ϑ0)

∂ϑ

∥∥∥2 <∞.

(b) The information matrix Iϑ0
= Varϑ0

[
∂ log fy|u(y;ϑ0)

∂ϑ

]
is positive defi-

nite.

A8. There is a positive number a and a nonnegative measurable function on
the set of nonnegative integers, M(·), where Eϑ0M(y) <∞ such that for
any ϑ ∈ Ba(ϑ0),∣∣∣∣∂3 log fy|u(y;ϑ)

∂ϑi∂ϑj∂ϑk

∣∣∣∣ ≤M(y), for i, j, k = 1, . . . , d∗.

Note that the previous assumptions imply Assumption (C1) in Ibrahim,
Zhu, Garcia, and Guo (2011). Under the previous conditions and regularity
conditions on the penalty function and tuning parameter, Theorem 1 in Ibrahim,
Zhu, Garcia, and Guo (2011) states the consistency and asymptotic normality
of the maximum penalized likelihood estimator for mixed-effects models.

Appendix D. Definitions and summary statistics for the RHIE data
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Variables Definition Mean Min Quantile Max
0.25 0.50 0.75

MDU Yearly number of outpatient visits to physicians 2.86 0 0 1 4 77
LC ln(coinsurance+1), 0 ≤ coinsurance rate ≤ 100 2.38 0 0 3.26 4.56 4.56
IDP Indicator for individual deductible plan 0.26 0 0 0 1 1
LPI ln(max(1,annual participation incentive payment)) 4.71 0 4.06 6.11 6.62 7.16
FMDE log(max(medical deductible expenditure)) 4.03 0 0 6.09 6.96 8.29
PHYSLIM Indicator for physical limitations 0.12 0 0 0 0 1
NDISEASE Index of chronic diseases 11.24 0 6.90 10.58 13.73 58.60
LINC ln(annual family income) in US dollars 8.71 0 8.58 8.98 9.26 10.28
LFAM ln(family size) 1.25 0 1.10 1.39 1.61 2.64
EDUCDEC Education of head of household in years 11.97 0 11 12 13 25
AGE Age in years 25.72 0 11.46 24.19 37.40 64.28
FEMALE Indicator for female 0.52 0 0 1 1 1
CHILD Indicator for age less than 18 0.40 0 0 0 1 1
FEMCHILD FEMALE*CHILD 0.19 0 0 0 0 1
BLACK 1 if race of household head is black 0.18 0 0 0 0 1
HLTHG 1 if self-rated health is good 0.36 0 0 0 1 1
HLTHF 1 if self-rated health is fair 0.08 0 0 0 0 1
HLTHP 1 if self-rated health is poor 0.02 0 0 0 0 1

Table 6: Variable definitions and summary statistics for the RAND Health Insurance Experiment dataset.
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