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Abstract

This paper estimates the impact of dynamic pricing on utility operating costs and emissions

using household-level electricity consumption data from a randomized control trial. We find

that household responses to treatment results in savings for the utility, but the emissions

impacts are ambiguous. While dynamic pricing has been touted as a means to control

generation costs and pollution, price-induced reallocation of electricity consumption within

a day may actually increase net emissions depending on the source-generation mix of a

region. Our findings highlight the unintended overall and distributional consequences of

time-varying pricing schemes.
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1 Introduction

The increasing prevalence of time-varying pricing for residential electricity reflects grow-

ing interest in market-based demand side management among both regulators and utilities.1

Proponents of dynamic pricing argue that time-varying electricity rates help consumers

better manage their energy consumption while reducing utility production costs (Public

Utilities Commission of the State of California, 2016). Additionally, these price schemes, by

reducing energy demand, may improve air quality and yield significant health benefits since

electricity generation is a major source of both global and local air pollutants. Electricity

production accounted for 27 percent of U.S. greenhouse gas emissions in 2018, primarily

Carbon Dioxide (CO2).2 Power plants are also major sources of Sulfur Dioxide (SO2) and

Nitrogen Oxides (NOx), which impose considerable health costs (Burtraw and Mansur,

1999; Deschenes et al., 2017; Chan et al., 2018).3

The magnitudes of production cost savings and environmental benefits, however, are

likely to vary significantly with the design of the dynamic pricing program and by geogra-

phy. Cost savings depend importantly on consumer price elasticity, and various features of

program design have been shown to moderate household response to price changes (Jessoe

and Rapson, 2014; Harding and Lamarche, 2016; Harding and Sexton, 2017; Fowlie et al.,

2017). Geographic variation in local population, temperature/atmospheric conditions, and

source of power generation can also alter the marginal damage of emissions (Graff-Zivin et

al., 2014; Holland et al., 2016). In addition, there is concern from regulators that allowing

the market to completely determine prices could be risky.4 Skeptics also raise distributional

concerns about the costs imposed by TOU rates, citing evidence from pilot programs that

low-income customers are less price-elastic and thus less able to respond to periods of high

1The California Public Utilities Commission has ordered the state’s three investor-owned utilities
to transition most of their customers to time of use (TOU) electricity rates beginning in 2019. Nearly
seven million households will face the new rate structures (Roth, 2019). Similarly, major utilities such
as ComEd, which serves approximately 3.5 million customers, are in various stages of implementing
TOU rates (Thill, 2019).

2Source: https://www.epa.gov/ghgemissions.
3SO2 contributes to smog and acid rain, and NOx, combined with Volatile Organic Compounds

(VOCs), heat, and sunlight, creates ozone. Both are also important sources of particulate matter
(PM).

4Winter storms that affected parts of Texas in 2021 yielded public outcry as electricity rates
climbed to $9/kWh in some areas (McDonnell Nieto del Rio et al., 2021).
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electricity prices (Alexander, 2010).5 Given the active discussion about time-varying pricing

among utilities and regulators, it is therefore crucial to understand the impacts of dynamic

pricing on emissions and generation costs.

This paper evaluates the causal effect of time-varying electricity rates on short term op-

erating costs and emissions. We investigate these impacts using high frequency observations

of household electricity consumption from a randomized control trial (RCT) for dynamic

pricing, data on utility generation costs, and data on grid-level, power plant emissions of

SO2, NOx, and CO2. Specifically, we evaluate the behavioral response of households who

are randomly assigned to face higher electricity rates during peak-demand hours and given a

programmable communicating thermostat (PCT) relative to households in a control group

who remained on a standard block tariff without any form of automation technology. The

PCT in conjunction with an app and website provide information on current prices and

quantities of electricity, but also enables households to automate their responses to price

changes. The behavioral responses of treated households are then evaluated in terms of

their emissions impact and operating cost savings for the utility conducting the experiment

using estimates of marginal emissions and marginal generation costs.

We find that households indeed respond to higher prices, with average energy savings

ranging from 22 to 46 percent depending on the peak to off-peak price ratio. Moreover,

households, with the aid of automation technology, shift consumption from peak to off-

peak hours, but do not engage in strategic pre-cooling before periods of elevated prices.

These results are similar to and complement Harding and Lamarche (2016), which analyzes

a different treatment in the same experimental program. This is an important finding

because peak demand hours, when marginal production costs are highest, coincide with

the lowest marginal rate of emissions in the region of the experiment. Such load shifting

behavior that reallocates energy use to off-peak hours implies that while the utility may

see generation cost savings, the overall benefits of dynamic prices could be tempered by net

emissions increases. Our results, when scaling our estimated treatment effects by marginal

emissions and marginal production costs, reflect the tradeoff between reducing operating

5There are likely to be impacts on other domains. For example, high electricity bills have been
associated with increased odds of food insecurity for households below the poverty line, as has been
found during seasonally elevated energy costs under traditional flat rates for electricity (Nord and
Kantor, 2006).
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expenses and pollution.

We find that operating costs fall by roughly 20 cents per household per day in response

to the highest peak price increase (about 10 times the non-peak rate). Assuming that 5

million households, which roughly corresponds to the population served by the NERC region

containing the experiment, are treated with the current price scheme, our mean treatment

effect estimates imply aggregate cost savings of $24.1 million (in 2011 dollars) during the

four months of the experiment from June to September of 2011. In contrast to claims of

blanket environmental benefits, we find that the emissions impacts are varied: we estimate

net decreases in NOx on average (213 tons during the treatment period), but net increases

in SO2 (561 tons) and CO2 (119,000 tons).

We present back-of-the-envelope net benefit calculations after monetizing the impact

from emissions using PM2.5-induced premature mortality for SO2 and NOx (both precur-

sors to PM2.5), and a range of Social Cost of Carbon (SCC) values for CO2. Reductions

in NOx emissions increase overall benefits by $1.2 million, but the net benefits of the pro-

gram are largely tempered by losses from increased SO2 emissions ($21 million) and CO2

emissions ($1.4 to $14 million, depending on the SCC used). Overall, we find impacts

that range from a net benefit of $2.8 million (SCC=$12/ton) to a net cost of $10.1 million

(SCC=$120/ton).

To our knowledge, this is the first paper to use household-level electricity consumption

data to demonstrate the impacts of time-varying electricity rates on short term operating

costs and emissions associated with power generation. We contribute to recent work using

experiments to understand the ways in which energy consumption responds to dynamic

electricity pricing (Allcott, 2011; Burkhardt et al., 2019; Faruqui et al., 2013; Jessoe and

Rapson, 2014; Harding and Lamarche, 2016; Bollinger et al., 2015; Wolak, 2010; Fowlie et al.,

2017).6 To date, there is limited evidence of intentional load shifting. Our findings confirm

this result for Variable Peak Price (VPP) price schemes and highlights the importance of

unintentional load shifting and default settings associated with automation technology: on

the one hand, automation may increase consumer sensitivity to prices and help mitigate

generation costs (shown in previous work); on the other hand, it may increase emissions in

regions where off-peak marginal emissions are high relative to peak hour marginal emissions.

6See Harding and Sexton (2017) for a comprehensive review of this literature.
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Furthermore, the overall net benefits we calculate mask considerable heterogeneity in the

response to different price levels, which emphasizes the important role for optimal pricing

design.

Second, this paper contributes to a growing literature that evaluates the environmental

effects of supplying energy to the electricity grid (Holland and Mansur, 2008; Cullen, 2013;

Graff-Zivin et al., 2014; Callaway et al., 2018; Holland et al., 2016, 2020). Holland and

Mansur (2008) is the first to demonstrate that the emissions impact of real-time electricity

pricing is ambiguous; the ambiguity stems from the heterogeneity in the source of power

generation and the way in which generating plants meet electricity demand at different

parts of the country at different parts of the day.7 In contrast to Holland and Mansur

(2008), which uses quasi-experimental variation from aggregated electricity demand data,

this paper identifies environmental impacts as a result of consumer load-shifting behavior

induced by random variation from a large-scale RCT.

Third, we add to the body of work investigating the incidence and distributional effects

of policies. By increasing emissions at the source of power generation where vulnerable

communities are more likely to reside, we demonstrate how a policy aimed at improving

economic efficiency may unintentionally burden the disadvantaged. Distributional issues

associated with environmental policies are of increasing concern (Banzhaf et al., 2019),

including for cap-and-trade programs (Shadbegian et al., 2007; Fowlie et al., 2012), adoption

of energy efficient technology (Holland et al., 2019; Levinson, 2019), and federal legislation,

e.g. the Clean Air Act Amendments (Bento et al., 2015). Equity concerns may similarly

apply to time-varying electricity pricing.

This study provides valuable insights for energy planning, although our conclusions

should be extrapolated with caution. The experiment was implemented in a state in the

south central region of the US. This region has been experiencing significant changes in

terms of how electricity is generated in the last decade, with coal declining and natural gas

7That variation in marginal emissions moderates environmental effects has also been shown in
the context of electric vehicle adoption (Graff-Zivin et al., 2014), subsidies for wind power (Cullen,
2013), and investments in renewable energy generation and energy efficiency (Callaway et al., 2018).
A recent literature also demonstrates how unanticipated natural gas price decreases from the shale
boom changed the generation mix of electricity production and impacted carbon emissions (Cullen
and Mansur, 2017; Fell and Kaffine, 2018; Linn and Muehlenbachs, 2018; Holladay and LaRiviere,
2017).
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and renewable resources such as wind becoming increasingly more important. In addition,

the population affected by the randomized control trial, although large, is not necessarily

representative of the east and west of the U.S. Moreover, we employ electricity records over

the summer, when temperatures are high and the majority of households use air condi-

tioning. We believe that this can explain the shift in consumption at later hours in the

day, as well as the relatively high consumption at night. In light of these limitations, the

size and design of the experiment offer important evidence that we hope helps policy mak-

ing by highlighting the issues that need to be taken into account when dealing with the

heterogeneity of treatment effects across the US.

Section 2 presents our data sources and preliminary evidence of behavioral responses

from the RCT. We also provide evidence that there are no systematic differences between

households in the treatment and control groups before the implementation of the program.

Section 3 presents models and methods, describing the empirical strategy for estimating

residential household electricity demand and the associated impacts on emissions and op-

erating costs. Section 4 reports the results, and Section 5 concludes.

2 Data and Preliminary Evidence

Data on emissions, production costs, and electricity consumption come from the fol-

lowing sources: (1) emissions data are from the Environmental Protection Agency’s (EPA)

Continuous Emission Monitoring System (CEMS), (2) regional electricity demand comes

from Federal Energy Regulatory Commission (FERC), (3) data on electricity production

costs are reported by the utility implementing the RCT, and (4) household consumption

data are recorded from the RCT. The first two sources of data on emissions and electricity

demand are available at the electricity-grid level for each hour; electricity generation costs

are available for each hour at each node controlled by the utility; finally, the RCT provides

household-level consumption in 15-minute intervals. We first provide an overview of each

source of data, and follow with summary statistics and preliminary evidence to motivate

our investigation.
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2.1 Data Sources

Emissions: The EPA’s Continuous Emission Monitoring System (CEMS) provides grid-

wide emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOx)

from all fossil fuel generating plants with at least 25 megawatts of generating capacity

(U.S. EPA, 2011). Hourly emissions of each pollutant are reported at the generating unit

level. We average hourly emissions from all generating units in the NERC region between

12:01 a.m. July 1, 2011 and 11:59 p.m. September 30, 2011.

Region-wide Electricity Demand: The Federal Energy Regulatory Commission

(FERC) mandates that balancing authorities and planning regions report grid electricity

demand for each hour of every day via FERC form 714 (FERC, 2011). The sum of hourly

demand for the NERC region containing the experiment is computed for each hour. To

simplify the relationship between consumption and emissions, the amount of energy traded

between regions is assumed to be zero. Identification of grid-wide emissions per marginal

megawatt of electricity demand follows from this simplification.

Marginal Generation Costs: The utility that implemented the randomized exper-

iment makes data available data on the marginal costs of electricity generation, or the

“locational marginal price” (LMP). The LMP is a measure of the cost to provide an ad-

ditional megawatt of electricity to the grid. The cost varies between nodes of the grid

according to the time of day, distance to the nearest type of generating plant (e.g. coal vs.

wind), and the amount of loss or congestion along the physical transmission infrastructure.

In addition, the LMP reflects balancing authorities’ attempts to vary dispatch order to

minimize costs, where cheaper generating units are employed before more expensive ones.

LMPs are computed in five-minute increments. We average the LMP over each hour and

across all nodes operated by the utility running the experiment.

Household-level Electricity Consumption: Household consumption data are from

a large-scale randomized controlled trial (RCT) for a dynamic pricing scheme in the residen-

tial market for electricity. Due to a confidentiality agreement, the organization running the

trial will be referred to as ‘the Utility’. The Utility tested how a new price regime impacted
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the daily profile of residential electricity consumption. Consumers facing the new price

regime were also provided with technologies designed to facilitate information access and

price change responses. Household energy use for the months of June through September

of 2011 was subsequently monitored with smart meters that report consumption in fifteen

minute intervals. We aggregate household-level energy consumption over each hour to match

the temporal frequency of emissions and generation costs. In addition to consumption data,

measures of household income and age/family structure are available. Households are cat-

egorized into ‘low,’ ‘middle,’ and ‘high’ groups, where low income households have yearly

earnings below $30,000, median income households have yearly earnings averaging around

$50,000, and high income households have yearly earnings above $75,000.8 In the Online

Appendix, we use this information to investigate the impact of dynamic pricing among low-

and high-income households.

The price treatment studied in this paper exposed a subset of households (i.e., the

treatment group) to a variable peak price (VPP) pricing scheme, where a flat rate of $0.045

per kilowatt (kW) hour, or simply 4.5¢/kWh, is charged during off peak hours and higher

rates are charged during the peak hours of 2 p.m. through 7 p.m. on weekdays (excluding

Independence Day and Labor Day). The peak rates, based on generation costs, could

be low (4.5¢/kWh), medium (11.3¢/kWh), high (23¢/kWh), or critical (46¢/kWh), and

are announced by 5 p.m. on the previous day. Households have multiple observations

of consumption at each hour for each price level because there are multiple days of each

price type observed throughout the summer. Specifically, there were respectively 52, 24,

and 12 medium, high, and critical price days during the treatment period. The remaining

households (i.e., the control group) remained on a standard block tariff, which charged

8.4¢/kWh for the first 1400 kW used in a month and 9.68¢/kWh for usage above that level.

To better inform households about the peak price period, members of the treatment

group were given automation technology. All treated households were provided with a

programmable communicating thermostat (PCT), which allowed households to automate

adjustments to interior temperature in response to price changes. Households also had

access to a web portal that reported the amount of electricity that was consumed during

8Households are also categorized into a family-structure and age group: ‘young’ households are
those under the age of 45 with no children, ‘family’ households consist of middle-aged families with
children, and ‘mature’ households consist of older empty nest households, who are age 65 or older.
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the previous fifteen minute usage interval, as well as the current price of electricity. Control

households did not receive any type of technology intervention.

Assignment to treatment was based on a randomization after opt-in design.9 Assignment

to the treatment group was enforced successfully in most cases, although a few households

changed treatment status because of technical difficulties. In total, 1,461 households in the

RCT are examined in this analysis, 978 of which belonged to the control group and 483 of

which belonged to the treatment group. Table 1 presents a breakdown of the sample by

household characteristics and treatment status.

Our sample of households is older and has higher income than the national average.10

However, a comparison of the share of households in each income or family structure cate-

gory across treatment groups suggests that demographic characteristics are fairly balanced.

In subsequent analysis, we take our main treatment effects specification to pre-treatment

consumption data to assess balance in baseline energy consumption by treatment status.

2.2 Descriptive Evidence

Figure 1 compares the average hourly consumption of treated with control households for

different VPP levels (medium, high, and critical). These raw data reveal several important

features of consumer behavior. First, higher prices yield larger reductions in electricity use.

The average peak-hour reduction in electricity consumption for treatment groups (relative

to the control group) is 0.25 kW under a medium rate, and increases to 0.63 and 0.81

kW under high and critical rates, respectively. Variation in marginal peak prices within

households enables us to assess the price responsiveness of individual households.

Second, there is clear visual evidence of load shifting: households facing VPP rates

consume less electricity during peak periods, but relatively more during the following hours.

Third, while treated households shift consumption to post-peak hours, there is little evidence

of strategic pre-cooling, which is consistent with previous work examining consumption

of customers of the same utility in a parallel experiment (Harding and Lamarche, 2016).

9Based on a pilot study during the previous year, demographics predicted to have low partici-
pation rates received additional advertising.

10For instance, between 44 to 52 percent of households in the RCT have an annual income above
$75,000, compared to 32 percent nationally (based on the 2010 Current Population Survey). See
www.census.gov/data/tables/time-series/demo/income-poverty/cps-hinc/hinc-01.2010.html.
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Households do not appear to take advantage of low prices during the morning to proactively

reduce temperatures before the high peak price in the afternoon. Prior work has found

that marginal CO2 emissions are higher during off-peak hours compared to on-peak hours,

particularly for the Eastern interconnection (Graff-Zivin et al., 2014). This reflects the use

of coal to meet base-level electricity demand and cleaner natural gas to meet additional

demand during peak hours. Taken together with Figure 1, this makes clear how load-

shifting as a result of dynamic pricing and automation can reduce the overall net benefits of

these programs given the tradeoff between utility generation costs and emissions impacts.

We also note that behavior at the mean masks considerable heterogeneity in price re-

sponses across the consumption distribution. Figure 1 also reports the 10th and 90th

percentiles of the distribution of electricity usage by hour and treatment status. While

the evidence reveals a similar pattern in terms of savings during the peak hours with con-

siderable load shifting, it is interesting to see that medium and high price levels seem to

affect low-usage households proportionally more than high-usage households. These het-

erogeneous effects may imply that dynamic pricing schemes entail important distributional

consequences.

2.3 A Falsification Exercise

The RCT employed in our study allows us to examine the differences in electricity usage

by treatment status before the implementation of the program, as we have access to the

2010 data for the month of September. The data collected before the implementation of

the program does not include information for all households considered in the 2011 sample

due to a variety of technical reasons at the time of the pilot implementation.

With these caveats in mind, we employ 2010 data to compare the average hourly con-

sumption of treated with control households as in Figure 1. The left panel of Figure 2

shows hourly usage, and in contrast to the 2011 data, we see similar average consumption

behavior between households in the treatment and control group, as expected. To examine

systematic differences more rigorously, we estimate a model for the logarithm of electricity

usage on a treatment variable indicating whether the household was in the treatment group

in 2011 and weather variables, which are described in the next section. We estimate the

model by hour and report the effect of the treatment variable on electricity usage in the
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right panel of Figure 2. We provide point-wise confidence intervals obtained by clustering

the standard errors at the household level. We see, as expected, that the estimated treat-

ment effect fluctuates around zero when we consider different hours of the day, including

the period from 2 p.m. to 7 p.m. The evidence convincingly shows that the use of dynamic

pricing and the enabling technology in 2011 do not lead to energy reductions in 2010. We

interpret this as strong evidence in favor pre-treatment balance.

3 Models and Methods

Consider emissions Et,h at hour h on day t by Et,h = f(v(Yt,h),Wt,h), where Yt,h is

electricity consumption at the household level and Wt,h is a vector of weather variables.

The function v(·) aggregates individual consumption into a region specific measure (e.g.,

mean load). Consider also that electricity consumption at the household level is Yt,h =

g(Pt,h,Wt,h, Xt,h), where Pt,h denotes the price of electricity and the vector Xt,h includes

exogenous factors that affect individual consumption but not directly emissions in the region

(e.g., income, air conditioning, etc.). The effect of an increase in the price of electricity on

emissions is Ψt,h := ∂Et,h/∂Pt,h = fY ·gP , where fY is the partial derivative of the composite

function f ◦ v with respect to usage, and gP is the partial effect of the rate on usage.

Alternatively, the change in emissions due to the change in prices can be obtained simply

by evaluating emissions Et,h at two different price levels:

∆Et,h = f(v(g(Pt,1,Wt,h, Xt,h),Wt,h)− f(v(g(Pt,0,Wt,h, Xt,h),Wt,h), (3.1)

where Pt,0 denotes a standard rate and Pt,1 denotes a peak price. Importantly, equation

(3.1) states clearly the main identification issue. The change in emission ∆Et,h cannot

be estimated directly using observational data because one cannot simultaneously observe

emissions and household consumption at the standard and peak prices at the same hour on

the same day. Our empirical strategy is to utilize a reliable RCT to overcome the difficulty

of identifying changes on electricity usage from changes in prices.

In order to investigate the effect of dynamic pricing following this simple conceptual

framework, we need to estimate fY and gP by modeling the emission and household con-

sumption equations. The next sections present the models and proposed approach to esti-
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mate changes in emissions based on a dynamic pricing policy. We first focus on estimating

treatment effects, and then obtain changes in electricity usage induced by the policy. Based

on these changes, we identify variations in emissions after considering marginal emissions

of electric demand.

3.1 Household Level Models

We pursue a modeling approach first suggested by Ramanathan et al. (1997), which was

employed by Harding and Lamarche (2016) for the evaluation of a similar (but distinct)

dynamic pricing model. We denote electricity usage by Y k
i,t,h, where household i is observed

at hour h on day t, facing a price level k. As explained before, the price level k can be

medium, high or critical for the treated households or the standard rate for the households

in the control group. Also, recall that all treated customers face the same price level k on

day t. The model includes a treatment indicator and, as standard in the literature, a vector

of weather variables. The variable Di(k) indicates the treatment status of each household

i. The variable takes a value of 1 if price level k is announced to the treated households by

5 p.m. the previous day, and 0 for control households. Moreover, we consider temperature

and dew point variables, included in the vector Wi,t,h.

We estimate the average treatment effect of the VPP price scheme on household elec-

tricity consumption considering the following model:

log(Y k
i,t,h) = αh + βkhDi(k) + f(Wi,t,h) + εki,t,h (3.2)

where the response variable is the natural logarithm of electricity consumption Y k
i,t,h and

f(Wi,t,h) flexibly controls for the non-linear relationship between weather and electricity

consumption. Specifically, we introduce weather controls in f(·) as a linear combination

of temperature and dew point approximated by cubic B-splines. The intercept αh can be

interpreted as a fixed effect for every hour that captures variation in average electricity usage

among control households throughout the course of day that is independent of the effect

of weather. Finally, the error term, εi,t,h, captures remaining, unobserved determinants of

demand and is allowed to be correlated over time for a given household.

The parameters of interest are βkh for h ∈ {0, . . . , 23}. We expect βkh to be negative
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from h = 14 through h = 19 since greater VPP prices occur during those hours, and

letting k ∈ {1, 2, 3} index medium, high and critical prices, we expect β1
h > β2

h > β3
h when

h ∈ {14, . . . , 19}. The parameter exp(βkh)− 1 represent the percentage change in electricity

consumption among treated households facing price k during hour h relative to households

facing the standard rate during the same hour.

Consistent estimation of a causal average treatment effect rests on the random assign-

ment of households to the treatment group. The previous evidence reported in Figure 2

strongly suggests that the randomized experiment was successfully carried out, and the pol-

icy had a remarkably high degree of compliance among treated participants.11 Therefore,

equation (3.2) is estimated, at each hour h and price level k, by standard semi-parametric

methods based on cubic B-splines. The standard errors are clustered at the household level.

While the evidence presented in Figure 1 is descriptive, it does provide tentative evidence

that dynamic pricing has a different impact across the distribution of electricity usage.

Motivated by these empirical lessons, we estimate quantile treatment effects considering

the conditional quantile function corresponding to equation (3.2):

Qlog(Y k
i,t,h)(τ |Di(k),Wi,t,h) = αh(τ) + βkh(τ)Di(k) + f(Wi,t,h; τ), (3.3)

where τ ∈ (0, 1). As before, the parameters of interest are the sequence of βkh(τ)’s for

each hour of the day at a particular peak price level k. The parameter βkh(τ) measures the

difference between the quantile functions of the treatment and control groups, evaluated

at a given quantile τ . They are similar in spirit to the average treatment effect param-

eter in equation (3.2), but rather than measuring the difference between two conditional

mean models, the quantile treatment effect measures the distance between two conditional

quantile functions (Koenker, 2005, 2017).

We estimate (3.3) considering semiparametric quantile regression, where the nonpara-

metric function is estimated using B-splines, and evaluate treatment effects at two quantiles,

τ ∈ {0.1, 0.9}. We cluster the standard errors at the household level by using the bootstrap

11Considering TOU pricing rather than VPP, Harding and Lamarche (2016) investigate the im-
pact of a few households who switched assignments after the initial randomization due to technolog-
ical incompatibilities with the provided devices. They use the initial assignment as an instrument,
finding no significantly different results due to possible non-compliance issues.
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(Hagemann, 2017).

3.2 System Level Models

We now turn our attention to our model of emissions. Following previous work (Graff-

Zivin et al., 2014), we estimate marginal emissions by regressing hourly emissions from

generating units within the NERC region for each day, Et,h, on hourly electricity demand

on each day, qt,h:

Et,h =
23∑
h=0

γh (Hh · qt,h) +
23∑
h=0

9∑
m=7

αhm (Hh ·Mm) +
9∑

m=7

αmMm +
23∑
h=0

αhHh + εt,h (3.4)

where αm and αh are month- and hour- fixed effects that capture changing electricity use

cycles during different parts of the summer, and Mm and Hh are indicator variables for hour

of the day and month of the year. The marginal emissions of pollutant Et,h attributable to

an increase in grid demand at each hour of the day are given by the sequence γ0, . . . , γ23. In

the next sections, we consider three power plant emissions: Carbon Dioxide (CO2), Sulfur

Dioxide (SO2), and Nitrogen Oxides (NOx).

Since wholesale electricity prices are generally not passed on to consumers, consumer

demand does not depend on emissions. The identifying assumption is that the level of

demand in the NERC region, qt,h, is unaffected by the adoption of VPP rates in the RCT.

This assumption is supported by the data as dynamic pricing affected 483 households out

of an estimated 5 million households in the region. Grid level consumer electricity demand,

qt,h, can therefore be treated as exogenous in this context.

Lastly, we define the hourly marginal generation cost as δh = E(MCt,h,j). This param-

eter is the expected value of the cost of supplying one additional megawatt of electricity

to a node, or location, in the service area of the Utility. Nodes are denoted by j and we

have information on locational marginal price (LMP), or marginal cost (MC), for 42 nodes

controlled by the Utility at each hour of the day. The hourly marginal generation cost is

estimated by the average of the reported locational marginal price across all nodes and days

in the period of analysis.
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3.3 Projecting Hourly Changes Under Dynamic Prices

Following closely the conceptual framework discussed above, we now obtain the change

in emissions induced by the effect of dynamic pricing on household electricity demand. We

also introduce a parameter that captures the impact of dynamic pricing on generation costs.

First, we compute the average number of kilowatts conserved by implementing the

dynamic price policy. We apply the percent change in consumption due to VPP k, exp(βkh)−
1, to the expected value of electricity consumption at hour h among households in the control

group, µkh = E(Y k
t,h). Then, the change in consumption during hour h is given by:

∆Y k
h = (exp(βkh)− 1) · µkh, (3.5)

where ∆Y k
h is measured in kW. Next, we multiply the change in energy consumption for

each hour with the marginal emissions rate γh estimated from equation (3.4) to compute

the associated quantity change in each pollutant, ∆Ek
h. The change in emissions during

hour h for VPP k is given by:

∆Ek
h = ∆Y k

h · γh = (exp(βkh)− 1) · µkh · γh. (3.6)

We similarly define the change in hourly production costs, ∆Ck
h , by multiplying the marginal

generation cost in hour h, δh, by the hourly level change in consumption for each VPP level

k, ∆Y k
h :

∆Ck
h = ∆Y k

h · δh = (exp(βkh)− 1) · µkh · δh. (3.7)

The advantage of our approach is that the parameters in equations (3.5), (3.6), and

(3.7) are simple to estimate considering the methods introduced in the previous sections.

Moreover, the parameter µkh can be estimated by the average hourly consumption among

households in the control group (who did not experience price changes and do not have access

to a PCT). Although these parameters are defined at the mean level, it is straightforward

to accommodate these formulas to estimate the effects at the low and high conditional

quantiles of the distribution of electricity usage. For instance, we estimate the change in

electricity usage at the τ -th quantile by ∆̂Y k
h (τ) = (exp(β̂kh(τ))− 1) · µ̂kh.

Finally, the information offered by hourly changes in emissions and production costs
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might not provide a complete picture of the effects of dynamic pricing. The evidence in

Figure 1 suggests that households facing VPP rates consume less electricity during peak

periods, but relatively more during the subsequent hours. Therefore, we obtain daily net

changes in household emissions and generation costs. Consider, for instance, emission Ek
h.

We aggregate the hourly changes over all hours of the day for each price level k following

the formula:

∆Ek =
23∑
h=0

∆Ek
h =

23∑
h=0

(exp(βkh)− 1) · µkh · γh, (3.8)

which is interpreted as the daily average household effect of dynamic pricing on emissions.

Generation costs associated with electricity consumption and corresponding impacts at the

τ -th quantile of the conditional distribution of electricity consumption are calculated by

accommodating (3.8).

Standard errors for these parameters including the one defined in equation (3.8) are

obtained using the bootstrap. Specifically, the procedure draws from the original sample

of treated and control households from each respective group with replacement. In each

draw, considering a bootstrap sample, we are able to obtain bootstrap estimates of the

parameters defined above, including the mean of Y k
h for the control group. It is important

that each draw preserves selected households’ entire consumption path over the summer in

order to account for learning effects, varying consumer engagement with the experiment, and

idiosyncratic inter-day correlations from each household’s daily schedule. Standard errors

and 95% confidence bands are computed using 400 iterations of the bootstrap procedure.

4 Results

This section presents experimental results of the dynamic pricing scheme on emissions

and production costs. Before we turn our attention to the benefits and costs of the policy,

we present results for the household- and system-level parameters.

4.1 Dynamic Impact of Prices

We begin by estimating average and quantile treatment effects for each price level k,

which are computed from the full sample consisting of all weekdays in June, July, August,
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and September. The results for the mean treatment effect and quantile treatment effect

parameters are presented in the Online Appendix (Tables S.1-S.3). At each hour h, these

estimates are obtained using 1,461 households observed during 52 medium price days, 24

high price days, or 12 critical price days, corresponding to samples sizes that range between

17,532 to 75,972 observations. We then obtain point estimates for ∆Y k
h and present them

in Figure 3. For instance, the change in consumption in the first panel at h = 14 is

−0.52 ≈ (exp(−0.21) − 1) × 2.75, which is obtained based on the average consumption in

kilowatts for the control group as shown in the first panel of Figure 1, and the estimate of

the treatment parameter shown in Table S.1.

Figure 3 presents the changes in household electricity consumption measured in kilowatts

at each hour of the day. The vertical dotted lines at h = 14 and h = 19 indicate the peak

hours, that is, the hours of the day when the price of electricity increases. The results across

columns show estimates based on different price levels, while the results across rows show

estimates based on different parts of the consumption distribution. For instance, prices

increase from a flat or low rate of $0.045 during non-peak hours to $0.113 (i.e., medium

price, as shown in the first column), $0.23 (high), or $0.46 (critical) during peak hours,

representing a price increase of between 2.5 to over 10 times the non-peak rate for the

treatment group. Moreover, the average treatment effects are presented in the first row,

and the quantile treatment effects estimated at the 0.1 and 0.9 quantiles are presented in

the last two rows. All impacts are evaluated at the average consumption among control

group households in the corresponding hour.

The treatment effect is characterized by a large reduction in consumption at the very

beginning of the peak period that tapers off over the afternoon. The magnitude of the

reduction increases with peak price rates, where the largest drop in consumption (at hour

15) increases from -0.6 kilowatts during medium peak prices to -1.8 kilowatts during critical

peak prices. The reductions range from 22 to 46 percent, which represent negative price

elasticities similar to those found in the recent literature.12 Moreover, the results suggest

12Jessoe and Rapson (2014) consider a difference-in-differences model, in contrast to our approach
of estimating treatment effects that are allowed to vary by hour. The variation in the price of
electricity is also different and in the range of between 200 to 600 percent with a one-day-ahead
notice. Having in mind these differences, our results imply elasticities that range between -0.06 to
-0.10, which are slightly larger compared to the estimated elasticity of -0.12 implied by their results.
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that low-usage households exhibit the most extreme response to changes in the peak price.

The estimated reduction at the 0.1 quantile of the conditional distribution is approximately

two times larger than the estimated mean treatment effect. In contrast, households consum-

ing at the 0.9 quantile of the conditional distribution are much less responsive to elevated

peak prices.

For all price treatments, we also see clear evidence of load shifting, particularly in the

immediate post-peak period between 8 p.m. and 12 a.m. and, to a lesser extent, during the

early morning hours from 12 a.m. to 7 a.m. This behavior occurs at the mean as well as

the high and low quantiles of the conditional distribution of energy use. These responses

are compatible with a household that takes advantage of the programmable communicating

thermostat to reallocate cooling hours away from the period of elevated prices. Automation

technology reduces consumption at the beginning of the peak period by raising the allowable

interior temperature. As homes warm up, thermostats turn on to maintain the new, higher

temperature. Thermostats then reset to the default temperature when the peak period

ends, prompting an increase in energy consumption to return the household to the initial

lower temperature.

4.2 Marginal Emissions and Generation Costs

We next use estimates of marginal emissions and marginal generation costs to evaluate

the environmental and economic consequences of load shifting in response to dynamic prices.

The first three panels in Figure 4 report estimates for γh in equation (3.4) for SO2, CO2, and

NOx emissions. The point estimate is interpreted as the marginal emission (in pounds) from

a kilowatt increase in electricity demand at hour h. The last figure reports the hourly average

locational marginal price (LMP, measured in dollars) to provide a kilowatt of electricity to

customers of the Utility.

The daily pattern of marginal emissions is consistent with the literature and reflects the

sources of base load power and peak power employed to meet electricity demand. During

the late night and early morning, demand across the NERC region is low and mostly pow-

ered by coal plants. As demand rises during peak hours, relatively cleaner gas power plants

are dispatched to respond to increasing grid demand, which decrease marginal emissions

relative to off-peak hours. Moreover, solar power, with zero marginal emissions, is available
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during the day and further reduces marginal emissions. This pattern suggests that marginal

increases in electricity consumption during the afternoon (peak hours) generate fewer ad-

ditional emissions than during the night. In contrast, average LMP is highest during the

afternoon hours. Together, these figures highlight the need to balance environmental and

economic objectives in VPP price schemes: load shifting from peak to non-peak hours may

reduce total generation costs at the expense of increasing global and local pollutants (in the

short-run and without changes in the generation mix or capacity).

To quantify the tradeoff, we multiply the estimated treatment effects for the three

different price levels by marginal emissions and marginal costs to recover the hourly change

in emissions and production costs. Impacts are plotted in Figures 5 through 8, and Table 2

reports the net impact on emissions and generation costs by summing the average treatment

impacts over the course of the day according to equation (3.8).

We begin with sulfur emissions changes reported in Figure 5. It is clear that the conflu-

ence of high marginal emissions and significant increases in consumption during the early

morning hours results in a statistically significant increase in sulfur emitted during off-peak

hours. The load shifting to off-peak hours with higher marginal emissions causes an over-

all net increase. Following Table 2, daily SO2 emissions increase between 0.001 and 0.006

pounds per household, depending on the price treatment and household consumption level.

The estimated daily increase is largest if one considers the response among low-usage house-

holds at the 0.1 quantile of the conditional consumption distribution, particularly for high

and critical price treatments.

A similar pattern of statistically significant increases in emissions during off-peak hours

is borne out in the estimates for CO2 (Figure 6) and NOx (Figure 7). However, whether

the net impact on emissions is positive or negative depends on both the price and quantile

of household consumption. At the mean, net CO2 emissions range from an increase of

approximately a pound per day per household in response to medium peak prices to a

decrease of almost a pound in response to critical peak prices. The net decreases in CO2 at

critical peak prices are driven by households at the lower quantiles of consumption, where

critical peak prices lead to a daily reduction in CO2 emissions of almost 2.4 pounds per

household. Daily NOx emissions fall during high and critical peak price days, ranging from

-0.001 to -0.01 pounds per household per day. At medium peak prices, effects range from
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a small increase of 0.001 to a small decrease of a similar magnitude at the 0.1 quantile,

although this result is insignificant at standard levels.

The change in production costs for the Utility (Figure 8) reflects net savings in oper-

ating costs associated with peak shaving due to dynamic prices. The Utility reduces the

production costs to supply a treated household during the peak hours. While increased

demand during off-peak hours results in some cost increases for the Utility, reductions in

production costs to supply treated households during the peak hours generally outweigh

off-peak cost increases. If we focus our attention on effects significantly different than zero,

cost savings range from 4.6 to 41.7 cents per household per day and increase as peak prices

shift from medium to critical (Table 2). Reductions in costs are largest if we consider results

at the 0.1 quantile, where savings are 33.6 and 41.7 cents per household per day in response

to high and critical prices. Savings are generally lower at the 0.9 quantile of consumption,

ranging between -8 to -4.6 cents per household per day.

4.3 Measuring Total Impacts

We now employ the experimental estimates to evaluate the effects of an universal adop-

tion of the dynamic pricing scheme in the regulatory region, where it is estimated that 5

million households reside. Our analysis below is based on average treatment effects and

results based on quantile treatment effects are presented in the Online Appendix.

Based on the mean estimates presented in Table 2, the production costs associated with

supplying power for a single high peak price day would fall by $589,000 if every household

in the entire regulatory region received treatment of the dynamic price scheme with a

programmable control thermostat. For a critical peak price, savings increase to $982,000

per day. Scaling the daily estimates by the number of each type of VPP day, the total

change in production costs during the experiment is $24.1 million.13

How do these estimated cost savings compare to the changes in emissions associated with

load shifting? We next present back-of-the-envelope calculations to assess the net impacts

accounting for emissions. In order to answer the question, we first calculate aggregate

changes in emissions (Table 3) and then monetize the impacts (Table 4).

13As noted before, there were 52 medium peak price days, 24 high peak price days, and 12 critical
peak price days during the experiment.
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Panel A of Table 3 reproduces the daily mean treatment effects from Table 2. As for

the case of generation costs, Panel B shows changes in emissions considering the number

of households residing in the NERC region during weekdays in June, July, August, and

September. Scaling the mean treatment effect by the number of each VPP price day and

the number of households, our estimates imply an increase in SO2 emissions of 1.1 million

pounds. However, as shown in Panel C, this increase is relatively small in comparison

to the average monthly SO2 emissions in the NERC region. The estimated price-induced

increase in monthly SO2 emissions is 0.66 percent of monthly emissions.14 Applying similar

calculations to the other pollutants, we find increases in CO2 of 238 million pounds and

decreases in NOx of 0.4 million pounds.

Table 4 presents the total monetized value of emissions (Panel A) and net impacts after

factoring production cost savings (Panel B).15 We recover the dollar value of changes in

SO2 and NOx (both PM2.5 precursors) using sector-specific PM2.5 benefits per ton (BPT)

from the EPA Benefits Mapping and Analysis Program (EPA, 2018).16 For evaluating CO2

impacts, we use a range of Social Cost of Carbon (SCC) values generated by the U.S.

Interagency Working Group (IWG, 2010).17

The increase in sulfates of 561 tons yields a loss of $21.1 million using a benefit per-

ton (BPT) of $37,692. To the extent that SO2 emissions may have non-health impacts

on ecological systems, recreation, and visibility (Burtraw et al., 1997), this estimated loss

is a lower bound. Moreover, carbon emissions increase by 119 thousand tons, generating

14Using CEMS data from July through September, we find that the average monthly SO2 emis-
sions is approximately 42.2 million pounds for the NERC region. The estimates reported in Panel
C of Table 3 are obtained by excluding weekends.

15All values are converted to 2011 dollars using the Consumer Price Index for All Urban Con-
sumers (CPI-U), U.S. city average series for all items. Moreover, for convenience, we change the unit
of emissions measurement from pounds (Table 3) to tons (Table 4). One ton equals 2,000 pounds.

16Specifically, the methodology calculates health damages in three steps: (1) predict the annual
average ambient concentrations of SO2 and NOx from different sectors using source apportionment
photochemical modeling. For this analysis, we apply the estimates for the electricity sector; (2)
estimate the number of premature deaths for the PM2.5 precursors, SO2 and NOx, and monetize
using the Value of a Statistical Life (VSL). The estimates of PM2.5 on premature mortality are from
Krewski et al. (2009); (3) divide PM2.5-related health impacts by the levels of SO2 or NOx to arrive
at per ton benefit values. See EPA (2018) for a detailed description.

17The SCC varies depending on underlying assumptions about the discount rate, among other
factors (Nordhaus, 2017). As there is no consensus about the appropriate discount rate to evaluate
intergenerational effects, it is customary to present a range of values under different discount rates
(Metcalf and Stock, 2017).
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losses of $1.4, $4.8, and $7.1 million under SCC values of $12, $40, and $60. A higher SCC

value of $120 increases CO2 damages to $14.3 million.18 Lastly, nitrate emissions decrease

as a result of the observed pricing scheme by 213 tons, increasing overall benefits by $1.2

million under a BPT of $5,654. Overall, combined with the production cost savings of $24.1

million, the estimated impact of the program in the regulatory region ranges from a net

benefit of $2.8 million (SCC=$12/ton) to a net cost of $10.1 million (SCC=$120/ton).

Net benefits depend on BPT values and, crucially, the behavioral response to the pricing

scheme. The utility clearly gains in terms of cost reductions. Whether the treatment

consisting of dynamic pricing and a programmable thermostat yields positive environmental

benefits, however, is ambiguous. In this experimental evaluation, SO2 and CO2 emissions

increase, but NOx decreases. Interestingly, net emissions vary with the VPP level. Under

medium prices, all three pollutants increase, whereas we observe net decreases in both

carbon and nitrates under critical prices and sulfate emissions, while still positive, see the

lowest increase. This highlights the potential role for electricity pricing policy to increase

net benefits through optimal rate design (e.g., by varying peak to non-peak price ratios or

the number of certain peak price days).

Beyond overall net impacts, price-induced consumption increases (local) pollutants at

the power source. An expansive literature documents the spatial correlation between pol-

lution and populations of low socioeconomic status (Banzhaf et al., 2019). With power

generation and its associated pollutants being no exception (Fowlie et al., 2012; Holland

et al., 2019), dynamic pricing schemes may exacerbate inequitable pollution distribution.

Moreover, while our results may suggest that increasing energy prices could improve net

benefits (and reduce inequitable pollution at power generation sources), this, too, may place

disproportionate burden on lower income consumers since the same energy price increase

represents a larger budget share for low income households (Robinson, 1985; Hassett et

al., 2009; Grainger and Kolstad, 2010). In this respect, careful choice of how revenues are

recycled may mitigate some of the adverse distributional effects of energy price increases

(Metcalf, 1999; Burtraw et al., 2009).

18The SCC values of $12, $40, and $60 correspond to average values using discount rates of 5, 3
and 2.5 percent (IWG, 2010). The SCC value of $120 is the 95th percentile estimate under a 3%
discount rate.
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5 Conclusion

Automation of household responses to dynamic pricing is becoming more prevalent. By

enabling consumers to program default temperature settings and respond to price changes

to control their energy consumption, pricing strategies can help utilities reduce generation

costs, while potentially improving environmental quality. The latter is especially important

for gaining public support given the health impacts of local pollutants, such as PM2.5 and

its precursors, and the expected climate damages from global pollutants. It is, however,

unclear whether pricing policies will unambiguously yield environmental benefits if con-

sumers respond to higher peak prices by shifting consumption to other times of the day

when marginal emissions per kWh of electricity are higher.

This paper provides novel estimates of the causal impact of time-varying electricity

rates on short term utility operating costs and emission using household-level electricity

consumption data from a large-scale randomized control trial. We find that consumers,

enabled with programmable communicating thermostats and notified of price increases a

day in advance, shift demand from peak to off-peak hours in response to increased electricity

rates. This load-shifting response unambiguously reduces operating costs for the Utility.

The impacts on emissions are varied, where SO2 and CO2 emissions increase but NOx

decreases. The net effect on emissions reflects load shifting behavior from peak to off-

peak hours, during which increases in electricity consumption generate higher marginal

emissions in our area of study. Using back-of-the-envelope net benefit calculations, we find

negative net benefits, although the overall impact is positive if one considers a low social

cost of carbon value. The overall net benefits we calculate are underscored by considerable

heterogeneity in the response to different price levels, where the highest VPP rate instead

results in net decreases in CO2 emissions.

To our knowledge, this is the first paper to use household-level electricity consump-

tion data to evaluate the impacts of dynamic electricity pricing on both operating costs

and emissions. In doing so, we demonstrate that dynamic electricity pricing may have

unintended overall and distributional consequences. First, dynamic pricing in household

electricity consumption may actually cause net increases in emissions depending on the

source-generation mix of a region. For several values of the SCC, the program would lead
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to a net loss. Second, by shifting emissions to a different part of the day and increasing

emissions on net at generation sources where low income and minorities are more likely to

live, dynamic pricing schemes may create environmental justice concerns by exacerbating

inequitable pollution distribution. Given the potential for such consequences, our findings

caution the unconditional move toward dynamic pricing schemes from the regulator’s per-

spective. In light of these concerns, however, the heterogeneity in the price response that

we document highlights the important role of optimal policy design and provides a path

forward for dynamic pricing schemes to simultaneously achieve the objectives of production

cost savings and environmental quality improvements.
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Figures

Figure 1: Average Hourly Consumption by Household Treatment Status

0 5 10 15 20

0
2

4
6

8

Medium Price

Hour of the day

E
le

ct
ric

ity
 U

sa
ge

 in
 k

W
h

mean treatment
0.1 quantile treatment
0.9 quantile treatment
mean control
0.1 quantile control
0.9 quantile control

0 5 10 15 20

0
2

4
6

8

High Price

Hour of the day

E
le

ct
ric

ity
 U

sa
ge

 in
 k

W
h

mean treatment
0.1 quantile treatment
0.9 quantile treatment
mean control
0.1 quantile control
0.9 quantile control

0 5 10 15 20

0
2

4
6

8

Peak Price

Hour of the day

E
le

ct
ric

ity
 U

sa
ge

 in
 k

W
h

mean treatment
0.1 quantile treatment
0.9 quantile treatment
mean control
0.1 quantile control
0.9 quantile control

Note. The figure shows average consumption by treatment status obtained using hourly data on electricity usage in
kW. The figure also shows usage at the 10th percentile and 90th percentile of the distribution of usage for treated
households and households in the control group.
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Figure 2: Treatment Effect of Households in 2010 (Pre-Treatment Period)
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Note. The figure presents estimates of the treatment effect on electricity consumption during the summer of 2010 for
households that would be treated with the VPP pricing scheme in 2011.
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Figure 3: The Impact of Dynamic Pricing on Household Electricity Usage
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Note. Level changes in electricity consumption among treated households for each hour of the day is measured in
kW. The shaded areas represent 95% point-wise confidence intervals.
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Figure 4: Marginal Emissions and Marginal Locational Price of Electricity Demand
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Note. The first three figures report marginal emissions for each hour obtained from estimating equation (3.4). The
shaded areas represent 95% point-wise confidence intervals. The last figure shows the average locational marginal
price, with confidence intervals based on the standard deviation.
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Figure 5: Estimated Changes in SOx Emissions
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Note. The figure shows changes in SOx emissions for each hour under treatment with dynamic pricing. The shaded
areas represent 95% point-wise confidence intervals.
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Figure 6: Estimated Changes in CO2 Emissions
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Note. The figure shows changes in CO2 emissions for each hour under treatment with dynamic pricing. The shaded
areas represent 95% point-wise confidence intervals.
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Figure 7: Estimated Changes in NOx Emissions
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Note. The figure shows changes in NOx emissions for each hour under treatment with dynamic pricing. The shaded
areas represent 95% point-wise confidence intervals.
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Figure 8: Estimated Changes in Marginal Generation Costs
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Note. The figure shows changes in marginal generation costs under treatment with dynamic price. The shaded areas
represent 95% point-wise confidence intervals.
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Tables

Table 1: Number of Households by Treatment Status

A. Control Group
Young Family Mature Total

High Income 152 156 198 506
Middle Income 66 81 59 206
Low Income 137 82 47 266

Total 355 319 304 978

B. Treatment Group
Young Family Mature Total

High Income 60 85 69 214
Middle Income 48 53 52 153
Low Income 69 29 18 116

Total 177 167 139 483
Note. The table presents the number of households in each income
and household-type bin for treatment and control groups.
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Table 2: Daily Changes in Emissions and Generation Costs

Mean Treatment 0.1 Quantile 0.9 Quantile

VPP1 VPP2 VPP3 VPP1 VPP2 VPP3 VPP1 VPP2 VPP3
SO2 0.002 0.003 0.002 0.003 0.006 0.004 0.001 0.002 0.002

(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)

CO2 1.094 0.097 -0.975 0.942 -0.944 -2.430 0.445 0.367 -0.025
(0.178) (0.235) (0.315) (0.310) (0.476) (0.572) (0.114) (0.164) (0.247)

NOx 0.001 -0.003 -0.005 -0.001 -0.007 -0.010 0.000 -0.001 -0.002
(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)

Marginal 0.007 -0.118 -0.196 -0.056 -0.336 -0.417 -0.001 -0.046 -0.080
Cost (0.010) (0.011) (0.015) (0.018) (0.020) (0.027) (0.006) (0.008) (0.012)

Note. The table presents the sum of point estimates during the day. Standard errors are presented in parenthesis. VPP1 means
Variable Peak Pricing with medium peak price, VPP2 means Variable Peak Pricing with high peak price, and VPP3 means Variable
Peak Pricing with critical price.
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Table 3: Total Impacts during the Experiment (June-Sep 2011)

A. Mean Treatment Effect per Day

SO2 (lbs) CO2 (lbs) NOx (lbs) Cost ($’s)
VPP1 0.002 1.094 0.001 0.007
VPP2 0.003 0.097 -0.003 -0.118
VPP3 0.002 -0.975 -0.005 -0.196

VPP1 VPP2 VPP3
# of VPP Day 52 24 12
# of Households 5,000,000

B. Impact for 5 Million Households

SO2 (lbs) CO2 (lbs) NOx (lbs) Cost ($’s)
VPP1 624,000 284,466,000 156,000 1,768,000
VPP2 360,000 11,580,000 -300,000 -14,124,000
VPP3 138,000 -58,494,000 -282,000 -11,778,000

Total 1,122,000 237,552,000 -426,000 -24,134,000

C. Impact relative to Average Monthly Emissions

SO2 (lbs) CO2 (tons) NOx (lbs)
Monthly Emissions 42,182,492 11,027,703 26,930,830

% of Average
Monthly Emissions 0.66% 0.27% -0.40%
Note. The table presents estimated aggregate changes in emissions. During the summer of the
experiment, there were 52 medium peak price days, 24 high peak price days, and 12 critical peak
price days. In Panel A, we reproduce the mean treatment effects on emissions and production
cost for a single day from Table 2. In Panel B, we calculate the change in each pollutant and
production costs for the months of June through September assuming 5 million households were
treated with the VPP scheme. Specifically, we multiply the treatment effect in lbs/household/day
by 5 million households and by the number of days with medium, high, or critical prices. Panel C
presents the percent average change in emissions in each month relative to the average monthly
emissions for the NERC region (1 ton = 2,000 lbs). We remove weekends in the calculation of
average monthly emissions for the NERC region to be consistent with the estimation sample.
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Table 4: Net Benefits under Regional Adoption

A. Total Change in Benefits and Costs

SO2 (tons) CO2 (tons) NOx (tons) Cost ($’s)
Treatment Impacts 561 118,776 -213 -24,134,000

SO2 Benefits VPP1 VPP2 VPP3 Total
$37,692/ton -11,759,951 -6,784,587 -2,600,758 -21,145,296

CO2 Benefits VPP1 VPP2 VPP3 Total
$12/ton -1,706,796 -69,480 350,964 -1,425,312
$40/ton -5,689,320 -231,600 1,169,880 -4,751,040
$60/ton -8,533,980 -347,400 1,754,820 -7,126,560
$120/ton -17,067,960 -694,800 3,509,640 -14,253,120

NOx Benefits VPP1 VPP2 VPP3 Total
$5,654/ton -440,998 848,073 797,189 1,204,264

B. Net Benefits under various SCC values

$12 $40 $60 $120

Net Benefits 2,767,656 -558,072 -2,933,592 -10,060,152
Note. The table presents the change in emissions (in tons) for 5 million households at the observed
number of each VPP price days from June through September. It then evaluates the monetary impact
using values of SO2, CO2, and NOx, where a range values for the Social Cost of Carbon (SCC) are
used. Monetary values are in 2011 dollars.
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Environmental and Social Benefits of a Randomized

Dynamic Pricing Experiment

Matthew Harding∗, Kyle Kettler†, Carlos Lamarche‡, and Lala Ma§

July 14, 2021

In this Supplement, we present additional empirical results and robustness checks.

S.1 ARRA Smart Grid Investments

The implementation of time-varying pricing is achieved through significant public and

private investments in system-wide infrastructure. The benefits of these investments are

traditionally evaluated from a purely financial perspective. More recently, significant in-

terest has been dedicated under the heading of “sustainable finance” to understanding the

positive impact of various investments on the environment. No clear metric has emerged

however for best practices to quantify the benefits of such investments and typical studies

focus on firm valuations (Krueger, 2015). In the U.S., a major source of public investment

in the energy sector were grants awarded under the American Recovery and Reinvestment

Act of 2009 (ARRA). By increasing investment in renewable power, the ARRA aimed to

generate environmental benefits while spurring economic activity. It led to significant public

investments in modernizing U.S. energy infrastructure. It provided $4.5 billion investments

in the electric power grid. The energy industry provided additional funds for cost-shared

smart grid projects involving almost 100 electric utilities and totalled $8 billion. Numerous

infrastructure needs were addressed including the deployment of new technology, increasing

cybersecurity and resilience, collection of data, and the provision of smart in-home devices
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†Department of Economics, University of California, Irvine, Social Science Plaza B, Irvine, CA
92697; Email: kettlerk@uci.edu

‡Department of Economics, University of Kentucky, 223G Gatton College of Business and Eco-
nomics, Lexington, KY 40506-0034; Email: clamarche@uky.edu
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to customers. Funds from this grant program were also used to design and implement a se-

ries of RCTs involving time-varying pricing and enabling technologies. The pilot described

and evaluated in the paper is one such program.

While data confidentiality agreements prevent us from disclosing identifying details, we

also collected stock price data for 17 ARRA recipients that are also listed as electric or

power generation companies on the NYSE. We compare the stock price of these companies

with that of 14 other electric or power generation companies that did not receive ARRA

funding in Figure S.1. ARRA grant fund recipients had higher stock price valuations and

a higher stock price growth rate in the years after receiving public funds. The majority of

projects were implemented during 2010 and 2011 and finalized by 2015.

The causal estimated in the paper highlight an indirect channel through which energy

policies (in this case, the ARRA) can affect behavior and outcomes. These estimates serve

as inputs into calculating the marginal value of public funds (MVPF). Comparison of the

MVPF for different policies can help to better allocate public dollars toward uses with

higher social welfare impacts (Hendren and Sprung-Keyser, 2020; Finkelstein and Hendren,

2020).

The core messages of this paper is however that the financial and environmental im-

pact of public investments is subtle and multi-dimensional and not adequately captured by

evaluating stock prices alone.

S.2 Dynamic Impacts of Prices

This section presents results for the mean treatment effect, βkh, and quantile treatment

effect, βkh(τ). The point estimates are used to estimate changes in electricity consumption

induced by dynamic pricing as shown in Figure 3.

Table S.1 presents mean treatment effects by hour of the day and price level. In columns,

we denote medium price level by VPP1, high price level by VPP2, and critical price level by

VPP3. For instance, the second column in the table shows β̂h for medium price level. The

table also offers 95 percent confidence intervals for each point estimate. Moreover, Tables

S.2 and S.3 show quantile treatment effect estimates, β̂kh(τ), and their 95 percent confidence

intervals. Table S.2 presents results for the quantile function estimated at the 0.1 quantile

of the conditional distribution of electricity consumption, and Table S.3 presents results for

the quantile model estimated at the 0.9 quantile.
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S.3 Heterogeneous Dynamic Impacts

As discussed in the manuscript, increasing energy prices could improve net benefits while

they may place a disproportionate burden on low-income households since the same energy

price increase represents a larger budget share for low income households. Our study,

however, abstracts away from heterogeneity of treatment effects with respect to income.

This section extends the analysis in the manuscript and estimates daily net impacts on

emissions and generation costs by price level and income of the household.

Specifically, we estimate the net impacts considering households in the low-income group

and high-income group. The changes in consumption are presented in Figures S.2 and S.3.

Then, using Table S.4, we report the net impact on emissions and generation costs by

summing the average and quantile treatment impacts over the course of the day. Panel

A presents results for low-income households and Panel B presents results for high-income

households.

The results are mixed. If we concentrate on CO2 emissions, the results suggest that

low-income households are associated, in general, with larger daily reductions in emissions

than high-income households. This is explained by the load shifting behavior of low-income

households, who do not seem to significantly reallocate energy use to off-peak hours.

S.4 Measuring Total Impacts: Quantile Regression Results

A difficulty of measuring the impact in the same region using quantile regression esti-

mates relates to estimating the number of households whose price elasticities are similar

to the elasticity obtained in the low quantile of the conditional distribution of electricity

consumption. It is not possible to overcome this important challenge, but at the same time,

it is informative to uncover the heterogeneity of impacts to obtain a broader understanding

of the benefits and costs of emissions.

In our experimental sample, approximately 25 percent of households are low-income

households, with yearly earnings less than $30,000. The analysis presented in Tables S.5

and S.6 assume that the proportion of low-income households in the region is similar to the

proportion of low-income households in our experimental sample. While scaling the quantile

treatment effects by 1.25 million households is likely to not be accurate, our estimates are

not expected to change the sign of the impacts.

Table S.5 presents results for the total impact by estimating consumption changes, ∆Y k
h ,

at the 0.1 quantile of the distribution. Then, Table S.6 presents the monetized value of these

3



impacts. Lastly, Tables S.7 and S.8 show results based on estimating consumption changes

at the 0.9 quantile, assuming that 2.5 million households reside in the region (50 percent of

high-income households in the experimental sample).
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Figure S.1: Stock Prices for Recipients of ARRA Grants compared to Non-Recipients
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Figure S.2: Changes in Electricity Usage among Low Income Households
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Note. The figure shows level changes in electricity consumption among treated, low income households for each hour
of the day is measured in kW. The shaded areas represent 95% point-wise confidence intervals.
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Figure S.3: Changes in Electricity Usage among High Income Households
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Note. The figure shows level changes in electricity consumption among treated, high income households for each hour
of the day is measured in kW. The shaded areas represent 95% point-wise confidence intervals.
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Table S.1: Mean Treatment Effect (kW), Point Estimates

Hour VPP1 95% C.I. VPP2 95% C.I. VPP3 95% C.I.

0 0.125 0.081 0.169 0.140 0.100 0.180 0.148 0.104 0.192
1 0.123 0.083 0.164 0.149 0.101 0.197 0.154 0.107 0.200
2 0.131 0.093 0.169 0.155 0.116 0.193 0.156 0.112 0.199
3 0.124 0.093 0.156 0.164 0.122 0.206 0.162 0.120 0.204
4 0.129 0.095 0.163 0.171 0.128 0.213 0.168 0.124 0.212
5 0.149 0.114 0.184 0.190 0.146 0.233 0.169 0.126 0.211
6 0.106 0.076 0.137 0.130 0.091 0.169 0.115 0.071 0.158
7 0.028 -0.002 0.058 0.033 -0.001 0.067 0.038 -0.001 0.078
8 -0.003 -0.031 0.026 -0.031 -0.062 0.000 -0.009 -0.050 0.031
9 -0.023 -0.062 0.015 -0.049 -0.085 -0.013 -0.034 -0.082 0.013
10 -0.030 -0.071 0.010 -0.041 -0.078 -0.005 -0.041 -0.086 0.004
11 -0.032 -0.077 0.013 -0.038 -0.078 0.001 -0.026 -0.078 0.025
12 -0.033 -0.073 0.007 -0.027 -0.068 0.015 -0.020 -0.066 0.026
13 -0.032 -0.071 0.007 -0.020 -0.060 0.019 -0.115 -0.178 -0.052
14 -0.215 -0.262 -0.168 -0.428 -0.472 -0.385 -0.500 -0.563 -0.437
15 -0.242 -0.292 -0.191 -0.536 -0.579 -0.493 -0.608 -0.671 -0.546
16 -0.156 -0.204 -0.108 -0.353 -0.400 -0.306 -0.452 -0.504 -0.400
17 -0.081 -0.127 -0.034 -0.243 -0.284 -0.202 -0.321 -0.376 -0.266
18 -0.015 -0.052 0.022 -0.149 -0.186 -0.112 -0.185 -0.235 -0.135
19 0.104 0.074 0.134 0.090 0.060 0.120 0.064 0.015 0.113
20 0.130 0.098 0.162 0.158 0.126 0.190 0.119 0.072 0.167
21 0.152 0.118 0.186 0.167 0.138 0.197 0.157 0.112 0.202
22 0.142 0.108 0.176 0.142 0.109 0.175 0.146 0.100 0.191
23 0.125 0.089 0.162 0.141 0.109 0.173 0.156 0.109 0.203
Note. The table presents average treatment effects and 95 percent point-wise confidence intervals. C.I. denotes
confidence interval. VPP1 means Variable Peak Pricing with medium price, VPP2 Variable Peak Pricing with
high price, and VPP3 Variable Peak Pricing with critical price.
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Table S.2: Quantile Treatment Effect (τ = 0.1), Point Estimates

Hour VPP1 95% C.I. VPP2 95% C.I. VPP3 95% C.I.

0 0.174 0.108 0.240 0.191 0.117 0.266 0.199 0.118 0.279
1 0.184 0.123 0.245 0.282 0.196 0.368 0.259 0.181 0.337
2 0.198 0.137 0.260 0.342 0.270 0.413 0.310 0.242 0.377
3 0.189 0.140 0.238 0.396 0.319 0.472 0.329 0.247 0.411
4 0.202 0.151 0.253 0.395 0.318 0.472 0.360 0.282 0.438
5 0.245 0.188 0.301 0.434 0.359 0.510 0.352 0.283 0.420
6 0.197 0.157 0.237 0.316 0.254 0.378 0.267 0.191 0.343
7 0.057 0.018 0.097 0.047 -0.009 0.103 0.042 -0.038 0.123
8 0.048 0.009 0.086 0.030 -0.014 0.075 0.059 -0.017 0.135
9 -0.008 -0.050 0.035 -0.040 -0.091 0.011 -0.006 -0.092 0.079
10 -0.034 -0.080 0.012 -0.076 -0.141 -0.010 -0.112 -0.205 -0.019
11 -0.077 -0.141 -0.014 -0.147 -0.243 -0.052 -0.173 -0.291 -0.055
12 -0.111 -0.171 -0.050 -0.227 -0.344 -0.110 -0.225 -0.357 -0.093
13 -0.158 -0.226 -0.089 -0.219 -0.338 -0.101 -0.256 -0.408 -0.103
14 -0.272 -0.349 -0.195 -0.623 -0.724 -0.521 -0.751 -0.908 -0.594
15 -0.529 -0.631 -0.427 -1.211 -1.308 -1.114 -1.342 -1.486 -1.199
16 -0.455 -0.571 -0.339 -1.131 -1.247 -1.015 -1.204 -1.345 -1.063
17 -0.329 -0.444 -0.214 -0.926 -1.051 -0.802 -1.065 -1.265 -0.866
18 -0.114 -0.211 -0.017 -0.602 -0.709 -0.495 -0.638 -0.776 -0.499
19 0.196 0.136 0.255 0.200 0.145 0.256 0.171 0.078 0.264
20 0.205 0.153 0.257 0.235 0.183 0.287 0.196 0.115 0.277
21 0.248 0.194 0.301 0.241 0.191 0.291 0.278 0.208 0.347
22 0.206 0.155 0.257 0.157 0.106 0.208 0.175 0.095 0.254
23 0.159 0.102 0.216 0.137 0.079 0.194 0.164 0.086 0.242
Note. The table presents point estimates and 95 percent point-wise confidence intervals estimated at the 0.1
quantile. C.I. denotes confidence interval. VPP1 means Variable Peak Pricing with medium price, VPP2 means
Variable Peak Pricing with high price, and VPP3 means Variable Peak Pricing with critical price.
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Table S.3: Quantile Treatment Effect (τ = 0.9), Point Estimates

Hour VPP1 95% C.I. VPP2 95% C.I. VPP3 95% C.I.

0 0.084 0.052 0.115 0.079 0.047 0.111 0.104 0.052 0.155
1 0.076 0.042 0.111 0.103 0.067 0.138 0.094 0.046 0.142
2 0.067 0.034 0.099 0.101 0.069 0.132 0.104 0.061 0.148
3 0.051 0.018 0.083 0.103 0.068 0.138 0.095 0.049 0.142
4 0.043 0.011 0.075 0.086 0.044 0.129 0.102 0.054 0.150
5 0.053 0.023 0.083 0.093 0.050 0.136 0.101 0.050 0.151
6 0.042 0.015 0.069 0.066 0.026 0.106 0.067 0.018 0.116
7 -0.012 -0.040 0.016 0.018 -0.021 0.056 0.035 -0.015 0.084
8 -0.028 -0.056 0.001 -0.028 -0.066 0.010 0.011 -0.035 0.057
9 -0.012 -0.045 0.020 0.017 -0.022 0.055 -0.001 -0.050 0.049
10 0.000 -0.029 0.029 0.035 0.005 0.065 0.016 -0.026 0.058
11 0.006 -0.025 0.037 0.013 -0.016 0.042 0.004 -0.036 0.044
12 0.000 -0.026 0.027 0.002 -0.025 0.028 0.000 -0.031 0.031
13 0.000 -0.023 0.024 -0.009 -0.035 0.018 -0.059 -0.098 -0.020
14 -0.142 -0.171 -0.113 -0.252 -0.280 -0.224 -0.257 -0.297 -0.216
15 -0.109 -0.136 -0.082 -0.194 -0.221 -0.167 -0.208 -0.240 -0.176
16 -0.080 -0.103 -0.056 -0.142 -0.173 -0.111 -0.176 -0.210 -0.142
17 -0.042 -0.066 -0.018 -0.102 -0.121 -0.082 -0.146 -0.186 -0.106
18 -0.019 -0.036 -0.002 -0.080 -0.103 -0.056 -0.104 -0.138 -0.071
19 0.034 0.018 0.051 0.015 -0.006 0.037 -0.001 -0.036 0.033
20 0.065 0.044 0.086 0.084 0.060 0.108 0.073 0.041 0.104
21 0.082 0.057 0.106 0.090 0.066 0.115 0.088 0.048 0.128
22 0.082 0.059 0.105 0.081 0.053 0.109 0.088 0.046 0.130
23 0.076 0.051 0.102 0.066 0.038 0.095 0.087 0.043 0.131
Note. The table presents point estimates and 95 percent point-wise confidence intervals estimated at the 0.9
quantile. C.I. denotes confidence interval. VPP1 means Variable Peak Pricing with medium price, VPP2 means
Variable Peak Pricing with high price, and VPP3 means Variable Peak Pricing with critical price.
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Table S.4: Daily Changes in Emissions and Generation Costs by Income

A. Low Income

Mean Treatment 0.1 Quantile 0.9 Quantile

VPP1 VPP2 VPP3 VPP1 VPP2 VPP3 VPP1 VPP2 VPP3
SO2 0.001 0.001 0.000 0.002 0.002 -0.003 0.000 0.001 0.001

(0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)

CO2 0.448 -0.734 -2.139 -0.503 -3.822 -7.832 0.010 0.192 0.557
(0.261) (0.269) (0.308) (0.492) (0.674) (0.871) (0.173) (0.201) (0.258)

NOx 0.000 -0.003 -0.005 -0.003 -0.011 -0.017 0.000 0.000 0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.000) (0.000) (0.000)

Marginal -0.014 -0.122 -0.198 -0.117 -0.452 -0.619 -0.006 -0.011 -0.001
Cost (0.016) (0.013) (0.017) (0.031) (0.031) (0.047) (0.009) (0.010) (0.013)

B. High Income

Mean Treatment 0.1 Quantile 0.9 Quantile

VPP1 VPP2 VPP3 VPP1 VPP2 VPP3 VPP1 VPP2 VPP3
SO2 0.002 0.003 0.003 0.000 0.003 0.005 0.002 0.003 0.002

(0.000) (0.001) (0.001) (0.001) (0.001) (0.002) (0.000) (0.000) (0.001)

CO2 0.107 -1.115 -1.600 -2.516 -3.770 -2.478 1.001 0.868 -0.208
(0.292) (0.330) (0.409) (0.486) (0.629) (0.817) (0.184) (0.210) (0.299)

NOx -0.001 -0.005 -0.007 -0.007 -0.012 -0.011 0.001 0.000 -0.002
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.000) (0.000) (0.001)

Marginal -0.060 -0.221 -0.280 -0.264 -0.523 -0.506 0.020 -0.033 -0.105
Cost (0.017) (0.013) (0.020) (0.030) (0.024) (0.036) (0.010) (0.010) (0.014)

Note. The table presents the sum of point estimates during the day separately for low income (Panel A) and high income (Panel
B) households. Standard errors are presented using parenthesis. VPP1 means Variable Peak Pricing with medium price, VPP2
means Variable Peak Pricing with high price, and VPP3 means Variable Peak Pricing with critical price.
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Table S.5: Total Impacts for 0.1 Quantile Treatment

A. 0.1 Quantile Treatment Effect per Day

SO2 (lbs) CO2 (lbs) NOx (lbs) Cost ($’s)
VPP1 0.003 0.942 -0.001 -0.056
VPP2 0.006 -0.944 -0.007 -0.336
VPP3 0.004 -2.430 -0.010 -0.417

VPP1 VPP2 VPP3
# of VPP Day 52 24 12
# of Households 1,250,000

B. Impact for 1.25 Million Households (June-Sep)

SO2 (lbs) CO2 (lbs) NOx (lbs) Cost ($’s)
VPP1 221,000 61,197,500 -52,000 -3,653,000
VPP2 168,000 -28,323,000 -216,000 -10,068,000
VPP3 61,500 -36,447,000 -147,000 -6,256,500

Total 450,500 -3,572,500 -415,000 -19,977,500

C. Impact relative to Average Monthly Emissions

SO2 (lbs) CO2 (tons) NOx (lbs)
Monthly Emissions 42,182,492 11,027,703 26,930,830

% of Average
Monthly Emissions 0.27% -0.004% -0.39%
Note. During the summer of the experiment, there were 52 medium peak price days, 24 high peak
price days, and 12 critical peak price days. In Panel A, we reproduce the 0.1 quantile treatment
effects on emissions and production cost for a single day from Table 2. In Panel B, we calculate
the change in each pollutant and production costs for the months of June through September
assuming 1.25 million households were treated with the VPP scheme. Specifically, we multiply
the treatment effect in lbs/household/day by 1.25 million households and by the number of days
with medium, high, or critical prices. Panel C presents the percent average change in emissions
in each month relative to the average monthly emissions for the NERC region (1 ton = 2,000
lbs). We remove weekends in the calculation of average monthly emissions for the NERC region
to be consistent with the estimation sample.
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Table S.6: Net Benefits for 0.1 Quantile Treatment

A. Total Change in Benefits and Costs

SO2 (tons) CO2 (tons) NOx (tons) Cost ($’s)
Treatment Impacts 225 -1,786 -208 -19,977,500

SO2 Benefits VPP1 VPP2 VPP3 Total
$37,692/ton -4,164,983 -3,166,141 -1,159,034 -8,490,157

CO2 Benefits VPP1 VPP2 VPP3 Total
$12/ton -367,185 169,938 218,682 21,435
$40/ton -1,223,950 566,460 728,940 71,450
$60/ton -1,835,925 849,690 1,093,410 107,175
$120/ton -3,671,850 1,699,380 2,186,820 214,350

NOx Benefits VPP1 VPP2 VPP3 Total
$5,654/ton 146,999 610,613 415,556 1,173,168

B. Net Benefits under various SCC values

$12 $40 $60 $120

Net Benefits 12,681,946 12,731,961 12,767,686 12,874,861
Note. The table presents the change in emissions (in tons) for 1.25 million households at the observed
number of each VPP price days from June through September. It then evaluates the monetary impact
using values of SO2, CO2, and NOx, where a range values for the Social Cost of Carbon (SCC) are
used. Monetary values are in 2011 dollars.
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Table S.7: Total Impacts for 0.9 Quantile Treatment

A. 0.9 Quantile Treatment Effect per Day

SO2 (lbs) CO2 (lbs) NOx (lbs) Cost ($’s)
VPP1 0.001 0.445 0.000 -0.001
VPP2 0.002 0.367 -0.001 -0.046
VPP3 0.002 -0.025 -0.002 -0.080

VPP1 VPP2 VPP3
# of VPP Day 52 24 12
# of Households 2,500,000

B. Impact for 2.5 Million Households (June-Sep)
SO2 (lbs) CO2 (lbs) NOx (lbs) Cost ($’s)

VPP1 143,000 57,876,000 13,000 -117,000
VPP2 108,000 21,990,000 -42,000 -2,778,000
VPP3 51,000 -741,000 -48,000 -2,409,000

Total 302,000 79,125,000 -77,000 -5,304,000

C. Impact relative to Average Monthly Emissions

SO2 (lbs) CO2 (tons) NOx (lbs)
Monthly Emissions 42,182,492 11,027,703 26,930,830

% of Average
Monthly Emissions 0.18% 0.090% -0.07%
Note. During the summer of the experiment, there were 52 medium peak price days, 24 high
peak price days, and 12 critical peak price days. In Panel A, we reproduce the 0.9 quantile
treatment effects on emissions and production cost for a single day from Table 2. In Panel B,
we calculate the change in each pollutant and production costs for the months of June through
September assuming 2.5 million households were treated with the VPP scheme. Specifically, we
multiply the treatment effect in lbs/household/day by 2.5 million households and by the number
of days with medium, high, or critical prices. Panel C presents the percent average change in
emissions in each month relative to the average monthly emissions for the NERC region (1 ton =
2,000 lbs). We remove weekends in the calculation of average monthly emissions for the NERC
region to be consistent with the estimation sample.
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Table S.8: Net Benefits for 0.9 Quantile Treatment

A. Total Change in Benefits and Costs

SO2 (tons) CO2 (tons) NOx (tons) Cost ($’s)
Treatment Impacts 151 39,563 -39 -5,304,000

SO2 Benefits VPP1 VPP2 VPP3 Total
$37,692/ton -2,694,989 -2,035,376 -961,150 -5,691,515

CO2 Benefits VPP1 VPP2 VPP3 Total
$12/ton -347,256 -131,940 4,446 -474,750
$40/ton -1,157,520 -439,800 14,820 -1,582,500
$60/ton -1,736,280 -659,700 22,230 -2,373,750
$120/ton -3,472,560 -1,319,400 44,460 -4,747,500

NOx Benefits VPP1 VPP2 VPP3 Total
$5,654/ton -36,750 118,730 135,692 217,672

B. Net Benefits under various SCC values

$12 $40 $60 $120

Net Benefits -644,593 -1,752,343 -2,543,593 -4,917,343
Note. Table presents the change in emissions (in tons) for 2.5 million households at the observed number
of each VPP price days from June through September. It then evaluates the monetary impact using
values of SO2, CO2, and NOx, where a range values for the Social Cost of Carbon (SCC) are used.
Monetary values are in 2011 dollars.
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