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Summary: For nearly 25 years, advances in panel data and quantile regression

were developed almost completely in parallel, with no intersection until the work by

Koenker (2004). The early theoretical work in statistics and economics raised more

questions than answers, but it encouraged the development of several promising

new approaches and research that offered a better understanding of the challenges

and possibilities in the intersection of the literatures. Panel data quantile regression

allows the estimation of effects that are heterogeneous throughout the conditional

distribution of the response variable, while controlling for individual and time spe-

cific confounders. This type of heterogeneous effect is not be well summarized

by the average effect. For instance, the relationship between number of students

in a class and average educational achievement has been extensively investigated,

but research also shows that class size affects differently low-achieving and high-

achieving students. The recent advances in panel data include several methods and

algorithms that created opportunities for more informative and robust empirical

analysis in models with subject heterogeneity and factor structure.
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Introduction

In 1978, Roger Koenker and Gilbert Bassett published a seminal paper titled “Regression

Quantiles”, creating a literature that goes beyond mean regression. Its predecessors, the

median and sample quantiles, have a long history and were considered by Boscovich, Laplace,

and Galton (Koenker, 2017). Quantile regression is an estimation technique to estimate

covariate effects at different quantiles (or percentiles, such as the median or 50th percentile)
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of the conditional distribution of the dependent variable. Quantile regression can be used

to estimate these effects at any quantile of the distribution, offering a more informative

regression picture than familiar least squares methods. After the introduction of quantile

regression, Steve Portnoy, James Powell, Roger Koenker, Xuming He, Victor Chernozhukov,

and others generalized quantile regression, facilitating the application of the techniques in

several scientific areas ranging from medicine and ecology to finance and economics. Part of

the modern quantile regression literature includes models and methods for panel data.

Panel data quantile regression, broadly defined, can be viewed as a collection of statistical

methods designed to estimate a conditional quantile regression model with latent individual

heterogeneity. Panel data consists of multiple observations on the response variable, yit, and

a p-dimensional vector of regressors, xit, for subject i = 1, 2, . . . , n over time t = 1, 2, . . . , T .

With the exception of Lipsitz et al. (1997), the literature on panel data quantile regression

was scarce until the work by Koenker (2004). Motivated by the lack of suitable transforma-

tions to deal with latent individual heterogeneity, the first class of models considered joint

estimation of the slope parameter and individual effects. The simplest version of a panel

quantile regression model involved finding

argmin
α,β∈A×B

E(ρτ (y − x′β −α)), (1)

where the quantile regression function ρτ = u(τ − I(u < 0)), and τ ∈ (0, 1). The parameter

of interest is β ∈ B ⊆ Rp, and α ∈ A ⊆ Rn is a vector of individual parameters. The

formulation of the problem is analogous to the classical fixed effects estimator, which is

widely adopted in practice. Similar problems were investigated by Abrevaya and Dahl (2008),

Lamarche (2010), Canay (2011), Galvao (2011), and Rosen (2012).

Panel quantile regression with fixed effects is highly parametrized and its asymptotic prop-

erties were not well established until the work by Kato et al. (2012). For asymptotic results,

they found that T has to grow at most polynomially in n in order to remove an additional

term found in the Bahadur representation of the estimator for a model with individual pa-

rameters. Importantly, this condition is interpreted as a warning device to practitioners when

asymptotic results are likely to provide a good approximation in practice. More recently,

Galvao et al. (2020) establish consistency and asymptotic normality when T grows faster

than n at rates that are, at best, similar to standard non-linear panel data models. Given

these important caveats, it is not surprising that the most recent literature offers a variety

of alternative approaches to estimate a panel quantile model, including Chernozhukov et al.
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(2013), Chernozhukov et al. (2015), Arellano and Bonhomme (2016), Harding and Lamarche

(2017), Graham et al. (2018), and Machado and Santos Silva (2019).

Recently, the emphasis has been on introducing more flexible forms of latent heterogeneity.

This follows the literature on linear panel data that has made significant progress on the

estimation of models with interactive effects and factor structure (Pesaran, 2006; Bai, 2009;

Moon and Weidner, 2015, 2017). In large T panels, it is possible to accommodate (1) as

argmin
γ,f ,β∈G×F×B

E(ρτ (y − x′β − γ ′f)), (2)

where γ is a r-dimensional vector of individual factor loadings, f is a vector of unobserved

time-varying factors, and r is the number of latent factors. It is straightforward to adapt this

problem to include individual effects by noting that γ ′f = γ1+
∑r

k=2 γkfk if f1 is normalized

to one. This generalization is important in empirical applications as it moves away from

the classical additive separable structure on unobserved heterogeneity that allows one to

control for individual and time heterogeneity, γ + f , for the possibility that f affects the

response variable depending on subject-specific heterogeneity γ. Problems similar to (2)

were investigated in Harding and Lamarche (2014), Ando and Bai (2020), and Harding et al.

(2020). Generalizations of standard factor models to allow for quantile specific loadings and

factors are investigated in Ma et al. (2020), Chen et al. (2020), and Battistin et al. (2020).

Applications of panel quantile regression are now found in several fields of study within

Economics and Finance. Specifically, there has been considerable work in labor economics.

Using a panel of private sector workers, Dahl et al. (2013) investigate the impact of differ-

ent bargaining systems on the distribution of wages. Hartley and Lamarche (2018) study

behavioral-induced welfare participation at the highest quantiles of earnings using data on a

reform experiment. Powell (2020) proposes an estimation approach and studies labor supply

changes to transitory income shocks using data from economic stimulus payments. There

is also a growing empirical literature in other applied micro areas such as environmental

economics (see, e.g., Fell and Kaffine, 2018), empirical auctions (De Silva et al., 2009, 2017),

and empirical finance (Fuchs and Gehring, 2017; Corradin and Maddaloni, 2020). As dis-

cussed in the section titled An Empirical Illustration, the use of quantile regression in panel

data has been also noted in the evaluation of policies. We briefly illustrate the application

of panel methods by estimating the effect of the Civil Rights Act of 1964 on earnings using

data from Chay and Powell (2001). Lastly, considering a factor model, we illustrate the

application of new methods to the evaluation of an energy savings program in Ireland using

data from Harding and Lamarche (2019a).
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Individual Heterogeneity in Quantile Models

The simplest formulation of a panel quantile model follows the tradition in panel econo-

metrics of modeling individual heterogeneity as a time-invariant latent variable (Hsiao, 2014;

Baltagi, 2013). The basic model is,

yit = αi + x′
itβ + uit, (3)

where yit ∈ R is the response variable for cross-sectional unit i at time t, xit is a vector of

regressors specific to cross-sectional unit i at time t, and uit is an error term. The variable

αi is considered to be latent and possibly correlated with the independent variables. The

endogeneity of the vector xit motivates the use of within or first difference transformations

to consistently estimate the parameter of interest, β. These transformations are easy to

implement and allow identification of β. For instance, the moment condition for the first

difference estimator is E((xit − xit−1)(uit − uit−1)) = 0, under independence between the

error term and the regressors. This naturally implies that β can be consistently estimated

by a linear regression model using variables in differences.

On the other hand, these classical transformations that deal with individual heterogeneity

fail when the model is nonlinear, and therefore, the early work in panel quantiles adopted a

different strategy (Koenker, 2004; Lamarche, 2006, 2010; Galvao, 2011). The initial approach

was to estimate a model with a large number of individual intercepts, directly implied by

equation (3):

Qyit(τ |xit) = αi(τ) + x′
itβ(τ), (4)

where the conditional quantile function is defined as Qyit(τ |xit) := inf{y : P (yit ≤ y|xit) ≥
τ}. In this model, αi is treated as a parameter. In the case that αi is treated as a random

variable, one can write Qyit(τ |xit, αi(τ)), but the fixed effects estimator and its large sample

results are identical whether the model conditions on individual effects or not.

A direct implication of equation (4) is that yit = Qyit(τ |xit) + uit(τ), where uit(τ) is a

quantile-specific random variable with zero τ -th conditional quantile: P (uit(τ) ≤ 0|xit) = τ .

It then follows that,

E{τ − I(yit ≤ Qyit(τ |xit))|xit} = 0, (5)

which is a non-linear moment condition and is different than the moment condition corre-

sponding to a response variable of a model in differences. For instance, consider a Gaussian

model without an overall intercept and with covariate effects that do not vary by quantiles,

Qyit(τ |xit) = αi(τ) + x′
itβ. It is clear that uit(τ) = uit + (αi − αi(τ)) = uit − Φ(τ)−1, while
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the quantile error term in a model in differences is ∆uit(τ) = uit − uit−1. Thus, the moment

conditions corresponding to the model in levels and the model in differences are identical

only at the median quantile.

To sum up, the lack of feasible transformations to deal with individual heterogeneity

created a series of theoretical and computational challenges. Importantly, estimating a large

number of parameters in a non-linear model can lead to estimates that are severely biased,

as originally pointed out by Neyman and Scott (1948), and Hahn and Newey (2004) in the

case of panel models. At the same time, estimating a large number of parameters can be

computationally demanding in situations when n is large. However, fixed effects approaches

(Koenker, 2004; Lamarche, 2010; Galvao, 2011) take advantage of modern developments

on Sparse matrix algebra and solve a relatively simple linear programming problem that

performs well in large panel applications.

Panel Data Quantile Regression

Fixed Effects. Koenker (2004) proposes to jointly estimate β and individual effects αi for

1 ≤ i ≤ n, which are assumed to be location-shift effects. This idea is implemented by

simultaneously estimating m quantiles as follows:

argmin
β,α∈A×B

m∑
j=1

n∑
i=1

T∑
t=1

ωjρτj(yit − x′
itβ(τj)− αi), (6)

where ωj is a relative weight given to the j-th quantile. The weight controls the influence

of the m quantiles on the estimation of the parameters of the model. As Koenker (2004)

explains, selecting the vector of weights, ω = (ω1, . . . , ωm)
′, is similar to the choice of dis-

cretely weighted L-statistics. To the best of our knowledge, selecting an optimal vector of

weights has not been studied in the literature, and standard ad-hoc choices are 0.25, 0.5,

and 0.25 for the quartiles, or alternatively, ωj = 1/m for 1 ≤ j ≤ m.

The fixed effects estimator (6) estimates the following conditional quantile model:

Qyit(τj|xit) = x′
itβ(τj) + αi. (7)

The parameter β(τj) models how covariates influence the location, scale, and shape of the

conditional distribution of the response. For instance, if the model has one regressor and the

error term is independently and identically distributed (i.i.d.) as F , then the quantile func-

tions Qyit(τj|xit) are parallel lines with parameter β(τj) = (β0(τj), β1)
′ = (β0+Fu(τj)

−1, β1)
′.
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Moreover, it is important to note that the individual effect does not represent a distri-

butional shift (Koenker, 2004). The individual effect is a location shift parameter on the

conditional quantiles of the response, implying that the conditional distribution for each

subject have the same shape but different locations as long as these parameters are different.

From (7), one can identify n− 1 individual intercepts because the model includes an overall

intercept. If β0 is dropped from the model, the individual intercepts depend on the estimated

quantile τ .

Under the assumption that n nuisance parameters in (7) are location shifters, a number of

approaches are based on simple transformations of the data to remove the fixed effects from

the model. One of the most popular approaches is the two-step estimator proposed by Canay

(2011). The method is relatively simple to implement in practice and has been frequently

adopted in the empirical literature. In the first step, he obtains α̂i = T−1
∑T

t=1(yit − x′
itβ̃),

where β̃ is a consistent estimator of β. In the second step, he employs quantile regression

to estimate β(τ) using yit − α̂i as a response variable. Despite the computational appeal

of the method, Besstremyannaya and Golovan (2019) argue that the estimator suffers from

several issues and show that the approach can lead to incorrect inference in panels typically

considered in applied microeconomics.

Although the literature offered evidence that the estimator performed well in small and

large samples, the asymptotic behavior of the fixed effects estimator was not rigorously

established until the work by Kato et al. (2012). Their contribution is important because

they derive results under general conditions, providing a better understanding of large sample

results in relation to other fixed effects estimators for non-linear models. Kato et al. (2012)

obtain consistency and asymptotic normality results for the fixed effects estimator under n

and T jointly tending to infinity. They consider m = 1, and they estimate a model without

an overall intercept, so that αi cannot be a location shift as in Koenker (2004). Under

regularity conditions, they obtain the Bahadur representation of β̂(τ) as,

β̂(τ)−β(τ) = Γ−1
n

[
1

nT

n∑
i=1

T∑
t=1

(xit − γi)ψτ (uit)

]
+Op((T/ log(n))

−3/4)+ op(∥β̂−β∥), (8)

where the quantile influence function ψτ (u) = τ−I(u < 0), γi = E(fi(0|xi1)xi1)/fi(0), and fi

is the density of uit(τ) = yit−x′
itβ̂(τ)−α̂i(τ). The matrix Γ−1

n = n−1
∑n

i=1 E[fi(0|xi1)xi1(xi1−
γi)

′].

If n2(log(n))3/T → 0, then

√
nT (β̂(τ)− β(τ))

d−→ N (0, τ(1− τ)Γ−1V Γ−1), (9)
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where V is the limiting covariance matrix of Vni = T−1/2
∑T

t=1(xit − γi)ψτ (uit). They also

show that β̂(τ) is consistent if log(n)2/T → 0, which is more stringent that the standard

rate for non-linear panel data models, n/T → 0. More recent results obtained by a different

approach indicate that standard rates can indeed be obtained in models with fixed effects

(Galvao et al., 2020).

The early work on fixed effects models allowed researchers to investigate other important

issues that are common in applied work, such as endogenous regressors and dynamic models.

Harding and Lamarche (2009) address demand-supply type endogeneity by considering an

instrumental variable approach in a model with fixed effects. Galvao (2011) studies esti-

mation of slope coefficients in models with fixed effects and uses instrumental variables to

address the inconsistency of the fixed effects approach in a dynamic panel quantile model.

Zhang et al. (2019) proposes an iterative estimation procedure for a model with individual

effects and heterogeneous parameters for subgroups of subjects with identical slope effects.

Penalized Effects. Motivated by an interpretation of the Gaussian random effects estima-

tor as a penalized least squares estimator, Koenker (2004) develops a variation of the fixed

effects estimator by augmenting the fidelity term in (6) with a LASSO-type penalty. The

penalized quantile regression estimator is defined as:

argmin
β,α∈A×B

m∑
j=1

n∑
i=1

T∑
t=1

ωjρτj(yit − x′
itβ(τj)− αi) + λ

n∑
i=1

|αi|, (10)

where ωj controls the influence of the quantiles on the estimation of the individual effects,

and the tuning parameter λ controls the degree of shrinkage towards zero. The parameter

λ ≥ 0 depends on T and it may also depend on data. Note that λ = 0 implies (6).

The estimation of n individual parameters increases the variability of the estimates of

the covariate effects. However, shrinkage of these effects toward a common value reduces

the variability of the fixed effects estimator of the slope parameter β. Thus, as in all

regularization problems, the selection of the tuning parameter λ is important. As shown

in Lamarche (2010), under independence between the individual effects and the independent

variables, the estimator β̂(τ, λ) is unbiased for all λ > 0. Thus, it is reasonable to consider

choosing λ to minimize variance. The optimal choice of λ can be viewed as selecting the

minimum variance estimator in the class of penalized estimators, the analog of the generalized

least squares estimator for panel data. However, the selection of the tuning parameter

remains a topic of investigation in the case of endogenous regressors.
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More recently, Gu and Volgushev (2019) propose a method to estimate a model with

group effects where individual parameters are allowed to have a group membership. The

particular group structure and the slope parameters of the model are estimated using a

convex minimization approach:

argmin
β,α

n∑
i=1

T∑
t=1

ρτ (yit − x′
itβ − αi) +

∑
i ̸=j

λij|αi − αj|, (11)

where the tuning parameter λij = λ|α̌i − α̌j|−2, and α̌i is an individual effect estimated by

fixed effects quantile regression. The individual fixed effects are grouped into K distinct

groups and are allowed to be different by quantiles. The paper offers conditions and theoret-

ical results on consistent group structure estimation and establishes asymptotic properties

of the resulting joint and group-specific estimators provided that (log T )3(log n)2/T → 0.

The penalized estimator can also be adapted to the analysis of randomized control trials

and quasi-experimental research designs. For instance, in applications related to the evalua-

tion of welfare experiments, individual effects can represent cost of participation on welfare

and, the subject heterogeneity is therefore sparse in relationship to treatment (Hartley and

Lamarche, 2018). Thus,
∑n

i=1 |αi| =
∑n

i=1(di|αi,1|+(1−di)|αi,0|) =
∑

j∈D0
|αj|+

∑
k∈D1

|αk|,
where di ∈ {0, 1} indicates treatment status, D0 includes participants in the control group,

and D1 includes participants in the treatment group. The quantile treatment effect δ(τ) can

be estimated by finding:

argmin
n∑

i=1

T∑
t=1

ŵi(xi0) · ρτ (yit − β0 − δdi − αi) + λ0
∑
j∈D0

|αj|+ λ1
∑
k∈D1

|αk| , (12)

where ŵi(xi0) = di/p̂i(xi0) + (1− di)/(1 − p̂i(xi0)), and (λ0, λ1) is a vector of tuning pa-

rameters. The use of weights is common in quantile regression, and in (12), the weights are

introduced to address selection on observables. The variable pi(xi0) = P (di = 1|xi0) can be

estimated using standard propensity score methods using observed characteristics measured

before the intervention, xi0.

Correlated Random Effects. The correlated random-effects framework provides a com-

promise between misspecification arising from the omission of controlling for unobserved

heterogeneity and incidental parameters bias arising from estimating a large number of nui-

sance parameters in a nonlinear panel model.

Using data from the states of Arizona and Washington on maternally linked births, Abre-

vaya and Dahl (2008) estimate a panel quantile model adopting the correlated random-effects
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framework of Chamberlain (1982, 1984). Consider αi = g(xi)+ai, where g(·) is an unknown

function, and ai is a variable independent of xi = (x′
i1, . . . ,x

′
iT )

′. The panel quantile regres-

sion model is now,

Qyit(τ |xit, αi) = x′
itβ + g(xi) +Qϵ(τ |xi) = x′

itβ(τ) + g(xi), (13)

where Qϵ(τ |xi) is the quantile of the composite error ϵit = ai+uit. Importantly, T is assumed

fixed and the number of parameters do not increase with the sample size. Abrevaya and Dahl

(2008) estimate model (13) using linear quantile regression and they propose a series of tests

for the correlated effects model.

Harding and Lamarche (2017) adopt a similar framework to Abrevaya and Dahl (2008).

The function g(xi), however, is non-parametrically estimated and ai is treated as a parame-

ter. This flexible correlated random effects procedure involves two steps. First, they model

g(xi) as a linear expansion of B-splines:

g(xi)
′ϕ(τ) ≈ b(xi1)

′ϕ1(τ) + b(xi2)
′ϕ2(τ) + ...+ b(xiT )

′ϕT (τ), (14)

where b(xij) = (b1(xij), . . . , bkn+h+1(xij))
′ is a B-spline basis function, kn is the number of

knots, h is the degree of the B-spline basis, and ϕ is the spline coefficient vector. The model

becomes a linear quantile regression model in all coefficients and can be estimated using:

argmin
β,ϕ,a∈B×G×A

m∑
j=1

n∑
i=1

T∑
t=1

ωjρτj(yit − x′
itβ(τj)− g(xi)

′ϕ(τj)− ai) + λ
n∑

i=1

|ai|. (15)

Although flexibility in specification is important, an alternative practical specification for

g(·) is to use a known parametric function of time-series averages or, alternatively, a vector

of covariates for each of the n subjects.

As in the case of (10), the shrinkage of individual effects can improve the performance

of the slope estimator. Moreover, the inclusion of the penalty term offers the possibility

of investigating if the model specification and assumptions are supported by data. If αi =

g(xi) + ai, and g(·) is correctly specified, then ai cannot be correlated with xi. Thus,

shrinking ai towards zero should not affect the bias of the slope parameter estimator at any

value of λ. On the other hand, the limiting case of the penalized estimator when λ → 0 is

not affected by the possible correlation between ai and xi. Harding and Lamarche (2017)

propose a Hausman-type test to evaluate whether the fixed effects estimator, limλ→0 β̂(τ, λ),

and the penalized estimator, β̂(τ, λ), offer significantly different results. If ai and xi are

independent, limλ→0 β̂(τ, λ) and β̂(τ, λ) should be relatively similar for any value of λ.
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Considering a correlated effects framework, Arellano and Bonhomme (2016) develop a

flexible approach that offers practical important advantages over competing techniques.

They assume an outcome yit =
∑K1

k=1 θk(Uit)hk(xit, αi), and employ an equation that mod-

els dependence between latent-specific heterogeneity and the independent variables, αi =∑K2

k=1 δk(Vi)gk(xi). The variables Uit and Vi are uniform random variables, and hk(·) and

gk(·) are unknown functions. They consider two moment conditions of the form,

T∑
t=1

E (Wit(αi)ψτ (yit −Wit(αi)
′θ(τ))) = 0

T∑
t=1

E (Ziψτ (αi −Z ′
iδ(τ))) = 0,

where Wit(αi) = (h1(xit, αi), . . . , hK1(xit, αi))
′ and Zi = (g1(xi), . . . , gK2(xi))

′ are vectors

of xit, xi and αi. These moment conditions are unfeasible since αi is a latent variable,

but Arellano and Bonhomme (2016) demonstrate that identification and estimation can be

achieved by integrating out the latent variable of the model. They propose a sequential EM

algorithm, which is similar to the standard EM algorithm, with the exception that the M-step

is performed using quantile regression check functions rather than likelihood functions.

Statistical Inference. In the last years, a number of papers studied inference for fixed and

penalized effects methods in models with i.i.d. and non-i.i.d errors. Kato et al. (2012) show

that the asymptotic covariance matrix of the slope estimator β̂(τ) in (9) can be consistently

estimated by τ(1 − τ)Γ̂−1V̂ Γ̂−1, where Γ̂ and V̂ are matrices estimated by kernel meth-

ods. Considering a similar estimator, Yoon and Galvao (2020) allow for temporal correlation

within each individual. Progress on statistical inference for the penalized quantile regression

estimator has been moving at a slower pace. Lamarche and Parker (2020) recently propose

a wild residual bootstrap procedure and show that it is asymptotically valid for approxi-

mating the distribution of the penalized estimator. They also show that the pairs bootstrap

that samples cross-sectional units with replacement does not approximate well the limiting

distribution of the penalized estimator.

The recent literature also includes models with clustered standard errors (Hagemann,

2017), although addressing individual heterogeneity and clustered observations in high-

dimensional panel data models has been an elusive topic of investigation.

Computational Aspects and Sparsity-based Estimation . Feasible estimation of fixed

effects models with large N has been possible due to developments for sparse matrices in
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Figure 1. Estimation of Fixed Effects Models using Sparse Matrices.

quantile regression, which are available in the R libraries SparseM and quantreg by Koenker

(2021). The sparsity-based estimation was a key development employed first in Koenker

(2004). More recently, a simple refinement of the initial algorithm for panel quantiles led to

reductions of the computational cost of estimating fixed effects models, as shown in Figure 1.1

For instance, to estimate over 25,000 parameters, Harding and Lamarche (2019b) first create

a sparse matrix, using the Matrix library developed by Bates and Maechler (2021), and then,

they accommodate the algorithm to employ other routines in SparseM and quantreg.

An Empirical Application . We now illustrate the importance of addressing unobserved

heterogeneity in quantile regression models using data from Chay and Powell (2001). We are

interested in estimating the black-white earnings gap after the introduction of Title VII of

1Figure 1 presents results based on estimating a panel quantile regression model with T = 20 and N

ranging from 500 to 8,000. The model also includes a slope parameter. The simulations using R version 4.0.4

were conducted on a Dell Optiplex 7070 workstation which has a i7-9700 Intel Core 4.7GHz processor and

32GB RAM.
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the Civil Rights Act of 1964, which prohibited discrimination by employers on the basis of

race and gender. The data is from the Current Population Survey and it covers the period

between 1957 and 1971. The original data is heavily censored by the maximum taxable

earnings level for Social Security (Galvao et al., 2013), but in this illustration we use a

sub-sample of workers whose earnings are below the maximum during the entire observation

window. We estimate the effect of relative earnings of black workers in the southern states

of the U.S. after the introduction of the Civil Rights Act, controlling for education and age

of the worker. The response variable is the natural logarithm of earnings. The black-white

gap estimates range from -0.25 at the 0.1 quantile to -0.08 at the 0.9 quantile. With that in

mind, we concentrate on the earnings gap after the introduction of the Civil Rights Act of

1964.

Figure 2 shows results obtained from standard quantile regression (QR), fixed effects

quantile regression (FEQR), and penalized quantile regression (PQR). It also presents point-

wise confidence intervals obtained by a wild bootstrap procedure (Lamarche and Parker,

2020). First, we note the significant differences between QR estimates and the other panel

quantile estimates. Moreover, the QR estimate is 0.26 at the 0.1 quantiles, and the estimates

tend to decrease as we go across quantiles. The results in the lower tail mistakenly suggest

that the Civil Rights Act of 1964 eliminated the earnings gap among conditionally low-

earners. These results show that not controlling for individual heterogeneity can lead to

biased results, as in linear panel data models. The other panels present results for the FEQR

and PQR estimators. They suggest that the relative earnings of black workers improved after

the introduction of the policy, and the effect seems larger at the upper conditional quantiles

of the earnings distribution.

Panel Data Quantile Regression 2.0: Beyond Individual Heterogeneity

The initial class of panel data models focused on latent time-invariant heterogeneity. A

recent number of papers propose to estimate variations of the original panel quantile regres-

sion model with individual effects. Graham et al. (2018) study identification and estimation

of a generalization of the random coefficient representation of the quantile regression model

(Koenker, 2005), introducing dependence between regressors and random coefficients. They

consider QY |X(τ |x) = x′β(τ,x) + w′δ(τ), where w = w(x) is a matrix of functions of

the regressors x, and β(τ,x) is a nonparametric function. Moreover, Machado and Santos

Silva (2019) propose a method-of-moments estimator for a linear location-scale shift model,



13

0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

τ

R
ac

e 
G

ap
 A

fte
r 

19
64

 C
iv

il 
R

ig
ht

s 
A

ct

QR

0.2 0.4 0.6 0.8

0.
00

0.
02

0.
04

0.
06

0.
08

τ

R
ac

e 
G

ap
 A

fte
r 

19
64

 C
iv

il 
R

ig
ht

s 
A

ct

FEQR

0.2 0.4 0.6 0.8

0.
00

0.
02

0.
04

0.
06

0.
08

τ
R

ac
e 

G
ap

 A
fte

r 
19

64
 C

iv
il 

R
ig

ht
s 

A
ct

PQR

Figure 2. The black-white race gap after the Civil Rights Act of 1964.

yit = αi + x′
itβ + (δi + z′

itγ)uit, where zit is a vector of known transformations of the inde-

pendent variables. The approach is simple to implement in practice and allows estimation

of (αi, δi,β
′,γ ′) and the quantile function of the error term.

In what follows, we review new models and methods, including a number of generalizations

to address other sources of misspecification.

Instrumental Variables. Harding and Lamarche (2009) consider the estimation of a panel

data model with endogenous independent variables, allowing correlation between the error

term of the model and the regressors. The estimation procedure is similar to the framework

developed by Chernozhukov and Hansen (2005, 2006) for the use of instrumental variables

in quantile regression models. Consider the objective function:

R(τ, δ,β,γ,α) =
n∑

i=1

T∑
t=1

ρτ (yit − d′
itδ − x′

itβ − z′
itα− ŵ′

itγ) , (16)
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where ρτ = u(τ − I(u ≤ 0)) is the quantile regression loss function, ŵ is the least squares

projection of the endogenous variables d on the instrumentsw, x is a vector of the exogenous

variables, and z is an incidence vector for the individual effects. The estimation proceeds in

two steps. First, they minimize R(τ, δ,β,γ,α) for β, γ, and α as functions of τ and δ. Then,

they estimate the coefficient on the endogenous variable by finding the value of δ, which

minimizes a weighted distance function defined on γ: δ̂(τ) = argminδ γ̂(τ, δ)′Aγ̂(τ, δ), for

a given positive definite matrix A. The two-step IV approach was also adopted by Galvao

(2011) to estimate a dynamic panel data model with fixed effects.

Chetverikov et al. (2016) extend the ideas of Hausman and Taylor (1981) to a quan-

tile model. The model for individual i in group g is Qyig(τ |zig,xg,αg) = z′
igαg(τ), where

αg,1(τ) = x′
gβ(τ)+ ϵg(τ). The variable αg(τ) is a group-specific vector of effects and αg,1(τ)

is the first element of the vector αg(τ). The parameter of interest β(τ) is estimated in

two steps. First, α̂(τ) is obtained by employing quantile regression of yig on zig. Second,

β̂(τ) is obtained by employing a linear regression of α̂g,1(τ) on xg using internally generated

instruments. The paper shows that the estimator is consistent and asymptotically normal

under G2/3(log(NG))/NG → 0 as G → ∞, where G is the number of groups and NG is the

number of individuals within each group g = 1, 2, . . . , NG. Therefore, the approach is most

useful in applications when both NG and G are large. The advantage, however, is that the

method allows the use of internal instruments, which are transformations of the exogenous

component of the vector zig.

Censored Models and Attrition . The literature on quantile regression for longitudinal

data with censored observations or drop-outs is very limited. Wang and Fygenson (2009)

study inference in a quantile regression for longitudinal data where some of the responses

are left censored by fixed values. They propose a rank score test for statistical inference

considering censoring and intra-subject correlation. Galvao et al. (2013) investigate the

estimation of a panel quantile regression model with fixed effects when the response variable

is censored. The paper proposes two-step estimators that are obtained by applying fixed

effects quantile regression to subsets of observations. This approach overcomes practical

challenges in situations where the number of estimated parameters is large and the degree

of censoring is high.

Let y∗it denote the potentially left-censored t-th response of the i-th individual and let yit =

max (Cit, y
∗
it) be its corresponding observed value, where Cit is a known censoring point. Let

δit = 1(y∗it > Cit) indicate uncensored observations and π0(xit, Cit) = P (δit = 1|xit, Cit) be
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the propensity score. The model is Qy∗it
(τ |xit) = αi(τ)+x′

itβ(τ), and based on equivariance

to monotone transformations, Qyit(τ |xit) = max(Cit, Qy∗it
(τ |xit)). This leads to a version of

the Powell (1986) estimator with fixed effects based on ρτ (yit − max(Cit, αi + x′
itβ)). An

asymptotically equivalent estimator can be obtained by minimizing
∑

i

∑
t ρτ (yit−αi−x′

itβ)

restricted to a subset of observations i and t where the conditional quantile function is above

Cit. Alternatively, as Galvao et al. (2013) show, one can simply apply fixed effects quantile

regression to observations that satisfy π0(xit, Cit) > 1− τ .

Naturally, the true propensity score function is unknown and needs to be estimated. They

propose a feasible two-step estimator. In step 1, π0(xit, Cit) is estimated by using either a

parametric or nonparametric regression method for binary data. Then, in step 2, (α′,β′)

can be estimated by applying fixed effects quantile regression to a subset of observations:

n∑
i=1

T∑
t=1

ρτ (yit − αi − x′
itβ)1 (π̂(xit, Cit) > 1− τ + cn) , (17)

where π̂(xit, Cit) is the estimated propensity score and cn is a small constant that tends

to zero as n and T tend to infinity. These estimators are simple to compute and easy to

implement in panel data applications with a large number of subjects.

Recent papers also propose quantile regression estimators for panel data when units drop

out of the sample after an initial random sample of subjects is considered. Lipsitz et al.

(1997) and Maitra and Vahid (2006) propose a weighting scheme for longitudinal data,

but their estimating equations would lead to inconsistent and inefficient results for general

models of attrition. Harding and Lamarche (2019a) study identification of slope parameters

in unbalanced panels and focus the investigation on attrition arising from observable and

unobservable factors. They propose a two-step estimator that accommodates penalized

estimation, which is shown to reduce the bias of the quantile fixed effects estimator. The

estimator is shown to be consistent under selection on unobservables, and a key condition

is that the researcher has access to streaming samples, which are similar to the refreshment

samples used in additive-non-ignorable models (Hirano et al., 2001).

Quantile Treatment Effects. The estimation of quantile treatment effects (QTE) has a

long tradition in quantile regression, but, until recently, the literature abstracted away from

panel data (Koenker, 2005). There are now several important contributions that expand our

ability to investigate the effect of interventions beyond average treatment effects, which can

be misleading in practice (Bitler et al., 2006).
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Chernozhukov et al. (2013) and Chernozhukov et al. (2015) study identification and es-

timation of QTE and quantile structural functions using panel data. Chernozhukov et al.

(2013) develop an elegant identification approach of quantile effects in nonseparable mod-

els. The paper provides an approach for the important problem of nonparametric quantile

regression in panel data, allowing for multidimensional heterogeneity.

Using panel data but assuming a difference-in-differences model, Callaway et al. (2018)

and Callaway and Li (2019) investigate identification and estimation of QTE and quantile

treatment effects on the treated units (QTT). Callaway and Li (2019) show identification un-

der a Copula Stability Condition, which implies that dependence between potential outcomes

does not change over time. They estimate QTT by δ̂(τ) = Q̂y1t(τ |D = 1) − Q̂y0t(τ |D = 1),

where the quantile functions for the treated group is estimated by inverting the empirical

probability function, and the counterfactual quantile is,

Q̂y0t(y) = F̂−1
0t|D=1(y) =

1

nD

∑
i∈D

1{F̂∆y1|D=0
(y0) ≤ y − F̂yt−1|D=1

(y1)},

where y0 = F̂∆yt−1|D=1(∆yit−1), y1 = F̂∆yit−2|D=1(∆yit−2), nD is the number of observations

in the treated group, and D is the set of treated individuals. Uniform confidence bands for

the QTT are obtained using the bootstrap, and the use of the approach is illustrated by

estimating the effect of a minimum wage increase on county level unemployment.

Factor Models

A number of recent approaches generalize factor models to allow for quantile-specific pa-

rameters. Ma et al. (2020) consider a semiparametric quantile model with a factor structure.

Chen et al. (2020), and Battistin et al. (2020) consider generalizations of the classical factor

model, allowing factors to have a location-scale shift effect on the distribution of the re-

sponse variable. Chen et al. (2020) study estimation of QXit
(τ |ft(τ)) = γ ′

i(τ)ft(τ), for some

observed variable Xit. Note that this representation allows both loadings and factors to

have a distributional effect, and it implicitly assumes that the loadings are quantile-specific

parameters to be estimated. They propose an interactive approach and show that the esti-

mator achieves the same rate of convergence as other popular estimators for an approximate

factor model. Battistin et al. (2020) study identification and estimation of quantiles of the

distribution of treatment effects considering a generalized factor model. Their method dif-

fers from competing approaches as they consider an approximation of quantile functions of

counterfactual outcomes based on a small-variance measurement error strategy.
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There is also progress on factor-augmented panel quantile regression models. The assump-

tion of time-invariant heterogeneity associated with the traditional fixed effects framework

can be restrictive in applications, in particular when applied researchers have a large number

of repeated observations on each subject. In recent years, a number of papers consider a gen-

eralization of the familiar panel data models (3) by augmenting the model with ηit = γ ′
ift,

where γi is a vector of factor loadings and ft corresponds to common time-varying factors

(Pesaran, 2006; Bai, 2009; Moon and Weidner, 2015, 2017). This extension substantially in-

creases the flexibility of controlling for unobserved heterogeneity, but until recently, existing

approaches did not offer the possibility of estimating a quantile regression model.

The recent literature on models with interactive fixed effects and factor structure includes

papers by Harding and Lamarche (2014), Ando and Bai (2020), and Harding et al. (2020).

This research considers a class of models similar to the following panel data model:

yit = αi + θ′
idit + β′

ixit + γ ′
ift + uit, (18)

where yit ∈ R is the response variable for cross-sectional unit i at time t, dit is a vector of

endogenous variables that can include a lagged dependent variable yit−1, xit is a vector of

exogenous regressors, and uit is the error term. As before, ft is a vector of unobserved factors,

γi is a vector of latent factor loadings, and αi is an individual specific effect potentially

correlated with the regressor variables.

Models with Homogeneous Slopes. Harding and Lamarche (2014) propose an estimator

for a panel quantile model with homogeneous slope coefficients and interactive effects. They

allow for dependence between the two static conditional quantile functions of the response

variable yit and the endogeneous variable dit:

Qyit(τ |dit,xit,γi,ft) = d′
itθ(τ) + x′

itβ(τ) + f ′
tγi(τ), (19)

Qdit(τ |wit,xit,γi,ft) = g(τ,wit,xit,γi,ft) (20)

where wit is a vector of instrumental variables and g(·) is a known linear conditional quantile

function. Using the convention that the conditional quantile function Qyit(τ |dit,xit,γi,ft) is

evaluated at dit = Qdit(τ |wit,xit,γi,ft), they substitute (20) into (19). After basic algebraic

manipulations, they obtain an expression for the unknown factors, ft(τ) ≈ Ψ(τ ; z̄t, w̄t, x̄t),

where z̄t = n−1
∑n

i=1 zit, zit = (yit,d
′
it)

′ and Ψ is a known parametric function of cross-

sectional averages of the endogenous and exogenous variables.
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The model (19) can be estimated as follows. Consider,

Cit(τ,θ,β,γ,ϕ) = ρτ

(
yit − d′

itθ − x′
itβ − f̂ ′

tγ − Φ̂′
itϕ

)
. (21)

where Φit(τ) = Φ(τ ;wit,xit,ft,γi) is a vector of transformations of instruments. First,

obtain β(τ,θ), γ̂(τ,θ), and ϕ̂(τ,θ) as the solution of

min
β,ϕ,γ∈B×G×F

n∑
i=1

T∑
t=1

Cit(τ,θ;β,γ,ϕ). (22)

Second, find θ that minimizes a weighted distance function defined on ϕ:

θ̂(τ) = argmin
θ∈Θ

{
ϕ̂(τ,θ)′Â(τ)ϕ̂(τ,θ)

}
, (23)

for a positive definite matrix A. The quantile regression estimator for a model with inter-

active effects is then defined as (θ̂(τ)′, β̂(θ̂(τ), τ)′, γ̂(θ̂(τ), τ)′). As shown in Harding and

Lamarche (2014), the method can be accommodated to include individual effects.

Models with Heterogeneous Slopes. Ando and Bai (2020) investigate the estimation of

a model with interactive effects, but contrary to Harding and Lamarche (2014), they allow

for heterogeneous slope coefficients and a factor structure that vary across quantiles. They

consider the following conditional quantile function:

Qyit(τ |xit,γi,ft) = x′
itβi(τ) + γ ′

i(τ)ft(τ), (24)

which is estimated by simultaneously minimizing

ℓ(y|X,B,Λ,F ) =
n∑

i=1

T∑
t=1

ρτ (yit − x′
itβi(τ)− γ ′

i(τ)ft(τ)), (25)

where B = (β′
1(τ), . . . ,β

′
n(τ))

′, Λ = (γ ′
1(τ), . . . ,γ

′
n(τ))

′, and F = (f ′
1(τ), . . . ,f

′
T (τ))

′. They

propose a frequentist approach and a Bayesian algorithm that is based on data augmenta-

tion, and they apply the method to investigate quantile co-movement of the global financial

market.

The asymptotic theory of these estimators is different than the estimators for linear models

with interactive effects. Under regularity conditions, Ando and Bai (2020) demonstrate that

the proposed estimator β̂i(τ) for 1 ≤ i ≤ n is uniformly consistent. Moreover, they show

the estimator for the loadings and factors are uniformly consistent, i.e. max1≤i≤n ∥γ̂i(τ) −
γi(τ)∥ = op(1), and max1≤t≤T ∥f̂t(τ) − ft(τ)∥ = op(1), provided that log(T )/

√
n → 0 and

log(n)/
√
T → 0. They also show that the estimator is asymptotically normal if T 1/2/n1−c →

0 and n1/2/T 1−c → 0 for 1/16 < c < 1/2.
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As in Ando and Bai (2020), Harding et al. (2020) consider the estimation of a panel

quantile function with heterogeneous coefficients. However, they consider a dynamic quantile

regression model:

Qyit(τ |yit−1,xit,ft) = αi(τ) + θi(τ)yit−1 + x′
itβi(τ) + f ′

tγi(τ). (26)

The px × 1 vector of regressors is assumed to follow the general linear process xit = αix +

Γ′
ift + vit, where αix is an individual effect, Γi is a matrix of factor loadings, and vit follows

a stationary process independently distributed of other variables in the model. Due to

the combination of cross-sectional error dependence and dynamics, existing panel quantile

regression approaches are inconsistent for the estimation of (θi,β
′
i)
′ for i = 1, . . . , n.

Harding et al. (2020) derive a large n representation for a linear combination of the latent

factors. Let δi(L) =
∑∞

l=0 δilL
l, δil = (δ′

iy,l, δ
′
ix,l)

′, δiy,l is a reduced form coefficient for

the cross-sectional average of yit−l, δix,l is a reduced form coefficient for the cross-sectional

average of xit−l, and z̄t−l = (ȳt−l, x̄
′
t−l)

′. The lag operator is denoted by L. Substituting the

representation of the factors in the model, they obtain

yit = βi0 + θiyit−1 + x′
itβi +

pT∑
l=0

z̄′t−lδil + uit + hit,n, (27)

where βi0 = αi + γ ′
if0 and hit,n =

∑∞
l=pT+1 z̄

′
t−lδil + Op(n

−1/2). It is important to note

that (27) includes the original error term, uit, and an approximation error, hit,n. Under

regularity conditions, they obtain an expression for the difference between the unfeasible

quantile regression problem and the quantile regression problem that corresponds to (27):∣∣∣∣∣ 1T
T∑
t=1

(ρτ (uit + hit,n)− ρτ (uit))

∣∣∣∣∣ ≤ ρpT+1

1− ρ
Bz +Op

(
1√
n

)
, (28)

where Bz is a variable that depends on the vector z̄ and is asymptotically bounded. They

show that this approximation error is asymptotically negligible because the right hand side

of (28) tends to zero as n, T , and pT → ∞, since 0 < ρ < 1. Therefore, ft can be replaced

by the current and lagged cross-section averages z̄t, leading to

Qyit(τ |F̄it) = αi(τ) + θi(τ)yit−1 + x′
itβi(τ) +

pT∑
l=0

z̄′t−lδil(τ), (29)

where the feasible set F̄it includes xit, yit−1, and z̄t−s for all s = 0, 1, 2, . . . , pT .
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This quantile function can now be used to estimate the parameters of interest ϑi(τ) :=

(θi(τ),βi(τ)
′)′ for each i and 0 < τ < 1. In large T panels, one can obtain

π̂i(τ) = arg min
πi∈Πi

1

T

T∑
t=1

ρτ (yit −X′
itπi), (30)

where πi(τ) := (θi(τ),βi(τ)
′, αi(τ), δi(τ)

′)′ and Xit = (yit−1,x
′
it, 1, z̄

′
t, z̄

′
t−1, ..., z̄

′
t−pT

)′ is a

vector of regressors. They also propose a quantile mean group estimator for ϑ(τ) :=

E((θi(τ),βi(τ)
′)′). The estimator is,

ϑ̂(τ) =
1

n

n∑
i=1

ϑ̂i(τ) =
1

n

n∑
i=1

(Ξi ◦ π̂i(τ)) , (31)

where ◦ denotes Hadamard product and Ξi = (ι′i,0
′
i)
′ with ιi denoting a px + 1 dimensional

vector of ones and 0i a (px + 1)(pT + 1) dimensional vector of zeros.

The increasing availability of large T microeconometric panels creates opportunities to

estimate individual-specific treatment effects that vary across the quantiles of the response

distribution. The next section provides an illustration of the previous approaches in models

with a factor structure.

An Empirical Illustration . We employ residential electricity consumption data from a

randomized control trial in Ireland. Smart meter data is obtained from the Irish Social Sci-

ence Data Archive (ISSDA) and CER Smart Metering Project, and electricity consumption is

measured over 30-minute intervals for n = 670 households. The participants of the program

were assigned to different treatment types but we only consider one type here for simplicity.

Treated customers were charged 13.5 cents per kilowatt hour (kwh) from 8 am to 11 pm,

with the exception of 5 pm to 7 pm when they were charged 26 cents. The households in

the treatment group were provided with an in-home display device which shows electricity

usage and price in real time as well as a bimonthly bill combined with an energy usage

statement. The control group has a time invariant rate of 14.1 cents per kwh and receives

bimonthly electricity bills. We do not use data from 11 pm to 8 am, and we consider usage

on Wednesdays in the first six months of the experiment. The total number of observations

per household is T = 780.

The dependent variable is the natural logarithm of electricity consumption, measured

in kwh at the residential level. Following Harding and Lamarche (2019a), we introduce a

large number of control variables including average temperature in Ireland, average relative

humidity, an indicator for household size, an indicator variable for whether the head of the

household is employed, indicators for the number of rooms in the house, and indicators for
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Figure 3. Panel quantile regression results for a factor model of residential

electricity consumption.

other characteristics of the house. We present results for the treatment effect using Figure

3.

The left panel of Figure 3 shows average treatment effects (ATE) and quantile treatment

effects, which are estimated by quantile regression (QR), quantile regression for a model with

homogeneous treatments considered by Harding and Lamarche (2014) (HL), and quantile

regression for a model with heterogeneous treatments as in Harding et al. (2020) (HLP).

The figure also shows point-wise confidence intervals for the HLP estimator. We see that

the QTEs are negative, and savings (reductions in electricity usage) tend to be bigger in the

upper tail. Importantly, ignoring slope heterogeneity seems to produce different estimated

QTEs among households with conditional higher use. The right panel presents the empirical

distribution of the estimated coefficients by treatment status, and shows how the largest

reductions in electricity usage are estimated at the 0.9 quantile of the conditional distribution.
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From Theory to Practice: An Incomplete Journey

The initial interest in panel data quantile regression was primarily motivated by the lim-

itations of classical panel data methods to uncover heterogeneous effects. The first appli-

cations of quantile regression using longitudinal data illustrated the desire for more flexi-

ble approaches “capable of revealing departures from underlying assumptions of parametric

models” (Wei et al. (2006); see also Wei and He (2006)). Moreover, as pointed out by Arias

et al. (2002), quantile regression applied to longitudinal data did not provide a useful tool for

empirical researchers when potentially different sources of latent heterogeneity determined

a reduced-form parameter.

In recent years, however, advances in panel data quantile regression allowed practitioners

to estimate flexible models under a variety of different assumptions. These advances included

a number of methods and algorithms that created opportunities for more informative and

robust empirical analysis. The trend is reflected in the number of applications published in

top-general and top-field journals in Economics and Finance such as the American Economic

Journal: Policy, Journal of the European Economic Association, Journal of Development

Economics, Journal of Financial Economics, Journal of Labor Economics, and Journal of

Public Economics, to name a few.

Despite the relative success, panel quantile regression is still in its infant stage and many

theoretical and practical issues are not fully addressed. The increased availability of large T

micro-econometric panels, administrative data, experimental data, and digital records will

open up new challenges and possibilities. As we encounter vast amounts of data, new models

and innovative computational frameworks will become necessary. These future developments

are likely to solidify the growing consensus that heterogeneity of effects are consistent with

both static and dynamic economic models (Bitler et al., 2006; de Castro and Galvao, 2019).
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