SUPPLEMENTARY APPENDIX TO
“WILD BOOTSTRAP INFERENCE FOR PENALIZED QUANTILE REGRESSION
FOR LONGITUDINAL DATA”*

CARLOS LAMARCHE AND THOMAS PARKER'

S.1. ADDITIONAL THEORETICAL RESULTS

Lemma S.1 below implies a natural upper bound for Ap. If we consider the «a; as parameters
associated with indicator functions for individual 7 in the design matrix, then the column associated
with each ¢ has L norm equal to 7. In the text we set Ay = max{r,1 — 7}T, because otherwise all

the individual effects would be set to zero.

Lemma S.1. Subdivide the covariates for the i-th observation as (X],zp)" € RP. Suppose that the

conformable vector of estimates (a, l;) 1s defined by

(@,b) = argmin Y _ p,(y; — X{a — bay) + A(l|all1 + [b]). (S.1)

Then letting x, denote the p-th column of the design matriz,

~

max{r,1 —7}|lxpl1 <X = b=

Proof of Lemma S.1. Note that if

N N
min (;Pr(yi — Xja — bay) + A|laf1 + W)) — min (; pr(yi — Xja) + )‘Ha”l) >0

then it is optimal to set b = 0. Note that (using the definition of the full solution (&, b))

N
min (Z;PT(%—X{a—bmpi)Jr)\(HaHle!) min (Zm yi— X +Allah> >
ZpT = X{a ~ bayi) + Al ally +[b) ZpT = Alalls

N
=3 (prlyi — Xla—bayi) = prly: — Xa)) + A,

i=1
Therefore if

> (el = Xla) = pr(ys = Xla — b)) < A,
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then b = 0 is not optimal. Applying Lemma S.7 to the left-hand side of the above expression, we have

N N
> (pf(yi — Xja) - pr(yi — Xja — Bxpz')> < max{r,1 -7} [bayl
=1 =1

< max{r,1 — 7}[b|||zp|1.
Therefore for any b # 0, the condition
max{7,1 —7}|b|||x,|[i < Alb] & max{r,1—7}|zy[1 <A
implies that that b is not an optimizer of the objective function. ]

The following lemma collects together two results on expansions that are related to the wild bootstrap
method described in the main text.

Lemma S.2. Let u; have conditional distribution F; and density functions f; as described in As-
sumptions B2 and B4, and suppose that Assumption B3 is satisfied. Let wy ~ Gy be independent of
(uit, xit) and suppose its distribution satisfies Assumptions A1-A3. Then letting X = (x},, 1), under
either Assumption B1 or C1:

(1) For each i,

T

X! A
- ZE* [ / (e (wialua] — ) s whual))s| = —Fi(0) 7. 3 AXuXLA + o0y (| A]).

t=1
(2) For each i,

T

1 x

T E E Wr(witwit + Xz{tA‘ - Xz(t(s) — 7 (wit|uir + Xz{tAD]
=1

= —f;(0 ZX 8+ Op((IA[l + [181))-

Proof. Both parts of this proof use the identity
Yr(u—38)—Yr(u) =I(s <u<0)[(s<0)—I(0<u<s)(s>0). (S.2)
First we show part 1. Use (S.2) to write
r(wit|ug| — ) — Yr(wituie]) = (s < wilugg| < 0)I(s < 0) — I(0 < wig|ug| < s)I(s > 0).

Then rewrite
XA

oy / o (wit ] — ) — b (wig e )ds | =
0

0 XA
E* [/ I(s < witjuie| < O)ds] I(X,A <0)—-E* / I(0 < wi|uy| < s)ds| I(X,A > 0).
A 0

it

(S.3)



Now focusing on just the first expectation,

E[E [/; {tAI<s<wu|uit\<o>ds] lxl [ [ , J(F(5/0) = R(o/w)dsaGr(w)
- / ) /X R+ )5/ 0)5aGiy ()

where @ is between X/, A and 0 and u is between —X/,A and 0. Using Fubini’s theorem and the

properties of the distribution of wy,

¢ f@+ fi(@)

E*
(N 2

E sdsI( X}, A <0)

/0 I(S < wit]uit| < O)dS] ’th] I(XZ/tA < O) = —/
WA
= — (fi(0) + O(IXLA|) A’ X, X, AI(X,A < 0).

An analogous result holds for the other integral, with I(X/,A > 0). Combining the two results and
averaging over t for a given ¢ (under Assumption B3 and either Assumption B1 or C1) implies the first
assertion.

To show the next part, again use (S.2) to write
Ve (witluge + X5 A = X5,6) — tor (wit|uie + X, Al)
= I(X{té < wit\uit + Xz,tA| < O)I(X{té < 0) — I(O < wit\uit + XlltA| < Xz’té)I(Xl’t(S > 0).

We have, using Assumption A2,
E[E* [I(—X},A — X[, 6/wi < uir < —Xj;A + X[,6/wip) I (wir < 0)] [ Xie] 1(X[,6 <0)

= / ’ (Fi(— X4 A + X[,6/w) — Fy(—X},A — X[,6/w)) dGw (w)(X},6 < 0).

Expand the terms inside this integral around (A, d) = O:
Fi(-Xj A+ X,0/w) = Fi(0) + fi(u)(— XA + X,6/w)
F(-Xj{A - X[6/w) = F;(0) + fi(@) (=X A — X;,0 /w),

where @ is between — X/, A+ X/, /w and 0 and @ is between — X/, A — X/,d/w and 0. Using Assump-
tions B2 and A1-A3,

0
/ (fi(@) (=X A + X0 /w) — fi(@) (- XA — X0 /w)) dGw (w)I (X6 < 0)

—00

0
= / ((fi(@) = fi@) (X A) —w™" (fi(@) + fi(@)) (X;,8)) dGw (w)I(X},8 < 0)

—0o0

= (= fi(0)(X,0) + O((IX} Al +1X5,8])%)) I(X},6 < 0). (S4)



4

Analogous computations imply

B [—E* [1(0 < wit|ui + X,A| < X48)] | Xu] I(XL,6 > 0)
= (= £i(0)(X},0) + O((IX} Al +[X76))%)) I(X},6 > 0). (S.5)
Combine equations (S.4) and (S.5), average over t for a given and use Assumption B3 and either of

Assumptions B1 or C1 to find the second result. O

For the next lemmas let
T

1
IPri = Pllg = sup | > (9(yit, Xit) — Elg(yit, Xir)))
9€9 | © =1
and as in Galvao, Gu, and Volgushev (2020), define
Gi={(.X)—dX(I(y<bX)-—7)I(|X||<M):beR" aes}, (S.6)

where X = («/,1)’, and

Ga(0) = {(y, X) = @’ X (I(y < X'by) — I(y < X'bo))I(| X|| < M) :
b1, by € RPTL|Iby — by|| < 6, € ST}, (S.7)

Some lemmas below rely on an infeasible estimate of ;9. For each i, let

T

&; = argmin Y _ p;(yir — @B0 — a) + Arlal. (S.8)
@ =1

The {a;} differ from {G;} because the latter are all solutions to optimization problems like (S.8) but
with ,[3 in the place of By.

Lemma S.3. Under Assumptions B1 and B3-BJ,

sup |é; — aio| = O, (||B — Boll + T7*(log T)'/2 + T*lAT) . (S.9)

Proof of Lemma S.3. Equation (A.5) from the proof of Theorem 2 implies (under Assumption B4 and
using (A.10))

~ 3 (o] )\
sup |&; — aio| = Op (H,B - ,80||> + O, (sqp <H(Ti)(9i0) — ?T sgn(aio)>>
+0, (qu (Hg?‘}(éi) — H{(6,) — HY (640) + H;?(eio))) +0, (T'Ar). (S.10)
Note that the expected value of Hgﬁ;)(em) — (Ap/T) sgn(ao) = % Yo Ur(yie — x5, Bo — auo) is zero
for all 4. Setting (their notation first, ours second) m = p+ 1, n = T and &, = M + 1, and using

kn = ClogT with C' > 1, Lemma S.1.3 of Chao, Volgushev, and Cheng (2017) and the union bound
imply that the right-hand side of (S.10) satisfies

sup [ (610) — Ovr/T) sem(eio)| = Oy <sup IPr: — Pirgl) =0, (T72(og 1)) . (8.11)
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Next, Lemma S.1.3 from Chao, Volgushev, and Cheng (2017) may be used again (with the same
constants) to find

sup }Hg)(éi) - H;O;) (6:) — H%) (Bi0) + H%) (60)]

= Op (Slzp H]P)Ti - B‘|g2(\\ﬁ—50||+supi Idi—aio|)>
=0p <(HB — Bol| + sup |G — 0%‘0’)1/2Tfl/z(logT)l/2 +771! logT)
= 0, (T~*(log T)"/?) (S.12)

by the consistency of ;. Using (S.11) and (S.12) in (S.10) implies the result. O

Lemma S.4. Under Assumptions B1 and B3-B6,

N

1 0 " , ;
=1

=0, (HB — BolM*T 2 Qog T)/? + T og T + T~23N"12 4 T (log T)1/2)\1T/2) . (S.13)

Proof of Lemma S.4. First, for ease of notation define

N
%Z (Kg?j(e) £90,) -k 0) + K90 ) Z/c 6;,6)).
=1

Given the assumed positive definiteness of Dy, we may focus on the stochastic order of this average.
Recalling that &; was defined in (S.8), write

N
A 1
1y Ue 5 Cbg e 7 ) ~i ,U50)- .14
N;lceoo Nzice (Bo. &) +N;’C((ﬂoa)90) (S.14)
Suppose that the assumptions of Theorem 2 are satisfied. Recalling the definition of G2(4) in (S.7),
sup Ki(6, (Bo, 6:)) = Oy (Sup IPri = Bl g, 15-g0 1+sup, |&iaz~|)>

—0, ((HB ~ Boll + sup i — &) T2 (1og T) 2 +T-1logT) |

where the second estimate is a result of Lemma S.1.3 of Chao, Volgushev, and Cheng (2017) with
m=p+1, &, = M and k, = C'logT, using the union bound for the supremum. Therefore Lemma S.5
implies that

Sup KCi(0s, (B0, &) = Op (| — Bol*T /(108 1)/ + T log T + T (0 T)'*A*) . (8.15)

Next we require the stochastic order of sup; K;((Bo, @), 0i0). Note that the {IC;((Bo, &), 0i0)}: are
independent and that

Ki((Bo, &), 0i0) = Op (IPri — Pillg,(jas—aso))) -
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Lemma 3 of Galvao, Gu, and Volgushev (2020) shows that E [% >, Ki((Bo, &), 6i0)] = Op(T " log T).
Consider bounding the order of the variance of this average. By Assumption B3, sup;, ||IC;((Bo, &), €i0)]| <
4M . In addition, we have

P {S‘?P 1Ci((Bo, i), o) || > T_2/3}

<P {sup & — aiol > eI~/ (log T>1/2} + P {ClIBri = Pillgyr-1200 iy > T/}
=0(T7?).

The above order estimate uses Lemma S.6 with x = 2 for the first term. It uses Lemma S.1.3 of
Chao, Volgushev, and Cheng (2017) for the second, setting &, = M + 1, m = p+ 1, k, = 2logT
and &, = ¢T~/?(log T)'/? (their notation first, ours second), noting that T-3/4(log T)%/* = o(T~2/3).

Then the variance of one term in the average, writing K; = IC;((Bo, &;), 6i0), is bounded by

sup Var(K;) < supE [’C?I(VQ\ N T*2/3) + IC?I(\/CZ-] < sz/s)}

< 16M%supP {\/ci| > T—2/3} LT = (T3,

Then using independence over ¢ and E[|X|] < |[E[X] ]|+ /Var(X),

N
1 . _ Y
N > Kil(Bo, 6s), 0:0) = O, <T YogT + T723N 1/2) : (S.16)
i=1
Use (S.16) and (S.15) in (S.14) to find the result. O

Lemma S.5. Recall the definition of &; from (S.8). Under Assumptions B1 and B3-B5,

sup |&; — &;| = Oy (HB — Bol| + T log T + T‘l)\T) . (S.17)

Proof of Lemma S.5. For any value of B define the empirical CDF of {y;; — «},8}: for unit i by
. 1 E
Fir(y, B) = T ZI<yit —x,3 < y).
t=1

Given any value of 3, the solution to ming Y1, pr(yit — 8 — a) + Arlal is a penalized sample
quantile from {y;; — =},B}]_,: the solution a} satisfies
Fir(a;, B) — 7+ (Ar/T) sgn(a})
That is, af lies between the (7—(Ar+1)/T)-th and (74 (Ar+1)/T')-th sample quantiles of {y;: —x},B}+.
Therefore

<1/T a.s. (S.18)

A A

Fir(ai, B) — FiT(&uBO)‘ = 0,(T"Ap).
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Given this, the rest of the proof follows the same steps as the proof of Lemma 7 in Galvao, Gu, and
Volgushev (2020), leading to

sup |; — & = Oy (|8 = Boll + T~ log T) + Op(T " Ap).

(2

0

The following lemma about penalized sample quantile estimates is analogous to classical results

about sample quantiles as in Serfling (1980).

Lemma S.6. Suppose that Assumptions B1 and B3-B6 hold. Then there is a constant ¢ > 0 not
depending on t, N or T such that

P {|di — | > cm1/2T_1/2(10gT)1/2} = O(T~").

Proof of Lemma S.6. As in the proof of Lemma S.5, let Fip(y, 8) = + 3:1 I(yir — x},8 < y). Fur-
thermore let Fyp(y,3) = E [E-T(y, ﬂ)] Given [y, the solution &; for sufficiently large T (assuming
A1 = 0p(T)) satisfies

)R—T(di, Bo) — 7+ (Ar/T)sgn(a;)| < 1/T a.s. (S5.19)
Fix € > 0 and note that P {|&; — aio| > €} = P{&; > a0 + €} + P {G&; < ajo — €}. Since (S.19) implies
that Fip(dy, Bo) < 7+ (Ar + 1)/T, we may write

P{a; > aipp+¢€} =P {ET(@@, Bo) > Fir(aip + ¢, 50)} (S.20)

T
<P {TT +(Ar+1) > Y Iy — TiBo < aio + e)}
t=1

T
:P{ZHyu—a:Q,ﬁo >app+e)+ (A +1)>T(1 —T)}.
t=1

Letting vy = I(yix — },80 > o + €), rewrite this as

T
=P {Z(Uz‘t —Evu]) + (Ar +1) > TFr(aio + €, 80) — TT}
=1

T
<P {Z(Uit — E[vy]) > TFir(oho + €,80) — TT}

t=1
+P {/\T +1> TFZ'T(OQ'O + €, ,@0) — TT} . (8.21)

An analogous argument with 0;; = I(y; — @}, B0 < aiip — €) implies that
T
P{a; <ajp—€} <P {Z(fiit —E[0y4]) > T — TFir(au0 — 67,30)}
t=1
+P {>\T +1>T7— TET(aiO — €, ,30)} . (8.22)
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Define §;7 = d;7(€) by

;v = min {Fir (a0 + €, 80) — 7,7 — Fir(aio — €,80) } -
Applying Hoeffding’s inequality to both (S.21) and (S.22) implies

P {|a&; — aio| > €} < 2720 £ 2P {A\p + 1> Thip} . (S.23)

Next, given « in B6, define ez = i_lnl/QT_l/Q(log T)/? and consider bounding P {|&; — ajo| > er}.
Note that Fyr(auo + u,B0) = E [Fy, |z, (ulzi)], and Assumption B4 implies that f > 0 exists. As T
grows large, again under Assumption B4, Fyp(aio+ e, Bo) — 7 = E[fi(0|xi)] e + o(er), implying that
for given constant ¢, for all T" large enough,

Fyr(aio + er, Bo) — 7 > k2T~ Y2 (log T)1/?

and similarly

T — Fyr(cuo — er, Bo) = cx/*T 2 (log T)'/2.
Therefore the definition of §;7 using er implies that 2e 210 = O(T~"). Finally, given ¢, for large
enough T" we have

P{\r+1>T67(er)} <P {)\T +1> ml/QTl/?aogT)l/?} ,

and by Assumption B6 we may choose ¢ such that the latter sequence of probabilities is O(7~"). O

Remark S.1. Condition B6 is nearly equivalent to making the assumption that Ar behaves like the
sum of independent subgaussian random variables. To see this, suppose that with ur = E[Ap] and
(given k) or = /T/2k, we have the Hoeffding bound P {(Ar — pr) >t} < exp{—t?/202%} for all
t>0. Then P {(Ar — pr) > T2 (log T)'/2} < T, If, in addition, pr = o(T*/2(log T)*/2), then this

implies our assumption.

The following lemma shows that the check function satisfies a triangle inequality, and a sort of
reverse triangle inequality. The inequality |p,(u) — pr(v)| < |u — v| for 7 € (0, 1) is used often in the
quantile regression literature, but for the computational property of the penalized estimator described
above in Lemma S.1, a sharp inequality is required, which is what is shown in the second part of the

following lemma.
Lemma S.7. Let pr(u) = u(r — I(u < 0)) for 7 € (0,1) and u € R. Then

(1) pr(u+w) < pr(u) + pr(v)

(2) [pr(w) = pr(v)] < max{r, 1 - 7}u - vl
Proof of Lemma S.7. 1t can be verified that p;(u) = max{(7 — 1)u, 7u}. This implies both (7 — 1)u <
pr(u) and Tu < pr(u). Therefore 7(u +v) = Tu+ 70 < pr(u) + p-(v) and (7 — 1)(u+v) = (7 — L)u+
(= Dv < pr(u) + pr(v), which together imply

pr(u+v) = max{(7 — 1)(u+v),7(u+v)} < pr(u) + pr(v).



Next, this inequality implies pr(u) < pr(u —v) + p(v) and p,(v) < pr(v — u) + pr(u). Then
pr(u) = pr(v) < pr(u —v) = max{(r — 1)(u - v),7(u - v)} <max{r,1—7}u—v|

and similarly, p;(v) — pr(u) < max{7,1 — 7} u — v|. This implies the result. O

S.2. ON THE CROSS-SECTIONAL PAIRS BOOTSTRAP WITH FIXED N AND T

In this section, we offer a heuristic illustration of some problems with using a cross-sectional pairs

bootstrap for the penalized quantile regression estimator.

Fix N and T and assume that all ;9 # 0 for simplicity. The assumption on «;g reflects the fact that

we make no sparsity assumptions in our analysis (see Knight and Fu (2000) for analogous expressions
with some a;o = 0). Define § = \/W(ﬁ — Bo) and i by n; = \/T(ai — o) fori =1,...N. Then let

N T ,
.0 ;
VT((s?T)): : Z::{p‘r (uit \/;\tfiTi \/77%> uzt }+)\TZ{
where u;; = y;r—x}, 80— 0. This objective function is equivalent to (2.2) in the main text. Analysis like

that of of Koenker (2004) shows that when T is large, letting f; = fy,,|a,, and defining v; = (8'/VN,m;),
and letting A ~ B mean that A is approximately distributed as B,

o0 + ‘ ‘Oélo|} (824)

N N
1 AT
/B i+ = ;Dli-l-i ; SgN( ;o ), S.25
E v;Br 2;_17 TiY \/T;_ln gn(aio) (S.25)
where
1 T
_Vthl

To examine the validity of the cross-sectional pairs bootstrap, consider an analog loss function for

ZT; TyT, T
1zt] 1/}7_<uz»t), Zfz 0|$zt [ ;t:/ it ft] .

it

resampled data. Letting y; and X; denote the vector and matrix of response and covariate observations
corresponding to unit i, a cross-sectional pairs bootstrap procedure resamples N pairs (y;, X;) for
1 <4 < N with replacement. Let n; denote the number of times unit ¢ is redrawn from the original

sample. Thus, a bootstrapped estimate, the minimizer of the bootstrap objective function, solves

N
0 = (Bl, d’) — a,rgmlnz ZpT Vit — T3 — ai) + A7 Znﬂaz\ (S.26)

oc®

Recenter (S.26) employing 6. We find a bootstrap analog of the original objective function (2.3),

6)
denoting U = y;t ,6’ T — Qe

Te(6.m =3 3 {or (0 - T - ) un}HTz oo

=1 t=1

- |@i|}. (S.27)

Then
N

N

* * A *

Vr(d,m) ~ —Zn ~v.Bri + = Zn ~.Driy; + \/—;anm sgn (o) (S.28)
i=1 i=1
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where

wit] Ur (e — (B — Bo) — (qi — cvin)),

- 1 . ) Tuxl, Ty
Dri= 2> fi(xiy(8 — Bo) + (i — i) [ o ]
it
As in Section 2.2, there are two key differences between expressions (S.25) and (S.28). First, By #
Brp; and 1~7Ti # D7; due to the fact that recentering uses é, which is biased since the model implies
that E [t (ui)] = 0.

Second, there is a problem with variability in the penalty term. It is straightforward to calculate
that the expected value of the objective function with respect to the bootstrap weights (i.e., conditional
on the observations) is minimized at 8 = (3, &). However, let A = {i : n! > 0} denote the “active” set
of units that are included in the penalty term in (S.26). In each bootstrap repetition, card(A) < N,

potentially changing the penalty significantly and leading to solutions @ that are very different than

the minimizer 6.

S.3. ADDITIONAL SIMULATION RESULTS

S.3.1. Finite Sample Performance of the Penalized Estimator. Figure S.1 shows the bias and
root mean squared error (RMSE) of the penalized and fixed effects estimator for the slope parameter.
We use the location-scale shift model considered in Section 4 of Kato, Galvao, and Montes-Rojas
(2012). The variables are generated as in their second specification. The parameter of interest is
B(1) = 1+ 0.5F, (1), where F, is the distribution of the error term. The model is estimated at
7 = 0.75 considering that the error term, u;, is distributed as A/(0,1) or x3.

The panels in Figure S.1 show that the fixed effects quantile regression (FEQR) estimator is biased
when N = 100 and T' = 5. The extent of the bias varies with the distribution of the error term. Note in
particular that the bias of the fixed effects estimator is -0.28 (or 9%) when u; ~ X3, which is consistent
with the results in Table 4 in Kato, Galvao, and Montes-Rojas (2012). (See also Koenker, 2004 and
Harding and Lamarche, 2019). In contrast, the penalized quantile regression estimator (PQR) reduces
the bias and RMSE for small values of A\y. The evidence shows that small increases of the tuning
parameter lead to substantial improvements in both the bias profile and the RMSE.

S.3.2. Inference. We now turn our attention to the performance of tests using the bootstrap. To
this end, Table S.1 reports empirical rejection frequencies for the null hypothesis Hy : By = 1 +
CF.(0.5)71. As in Table 4.1, we consider different sample sizes N € {100,200} and T € {5,10},
different distributions F;,, and different assumptions on «;. We report results using two different
approaches. The cross-sectional pairs bootstrap (CS) samples over ¢ with replacement, keeping the
entire block of time series observations. The wild bootstrap is implemented as discussed in Section
2.3. We first obtain residuals ; using the penalized quantile regression estimator. The estimator
(2.6) is labeled ‘WB1’ and the estimator (2.7) is labeled ‘WB2’. As in the case of the wild bootstrap
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FIGURE S.1. Small sample performance of the fized effects (FE) and penalized quantile
regression (PQR) in a location-scale shift model.

estimator proposed by Feng, He, and Hu (2011), a finite sample correction is recommended. We adjust
the residuals with the influence function and sign function following the Bahadur representation of the
estimator derived in Theorem 2. Then, we generate u}, = wj|U;|, where w;; is an i.i.d. random variable
distributed as a two-point distribution with probabilities 7 and 1 — 7 at w;; = —27 and w;; = 2(1 — 7).

Lastly, we generate the dependent variable as v}, = &; + By + Uy

The first columns report results based on bootstrap critical values obtained from the distribution of
\/W(ﬁ* — [3’), where ;\T is obtained as in Table 4.1. The last columns report results obtained using
bootstrap standard errors, which are denoted by se(3*). In this case, the statistic is |8 — Bo|/se(5*)
and it is compared to ®~1(1 — /2). The theoretical size of the tests is equal to 5%. As it can be seen
in the upper block of Table S.1, the wild bootstrap procedure tends to produce empirical sizes that
are closer to the nominal values. The lower panels of Table S.1 show results for a DGP when the error
term is distributed as t3 and X% and offer similar conclusions. We do not observe significant differences

between probabilities estimated by bootstrap critical values or bootstrap standard errors.
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Bootstrap Critical Values Bootstrap Standard Errors

Method: Method: Method: Method:

N T CS WB1I WB2 CS WB1I WB2 CS WB1 WB2 CS WBl1 WB2
Location shift model (¢ = 0) and u ~ N (0, 1)

OéiNN(O,].) Oéi:’i/N OéiN./\/(O,l) ai:i/N
100 5 0.008 0.052 0.048 0.038 0.050 0.041 0.018 0.038 0.041 0.088 0.043 0.042
100 10 0.003 0.040 0.041 0.033 0.053 0.044 0.009 0.035 0.040 0.086 0.049 0.047
200 5 0.004 0.041 0.039 0.023 0.030 0.033 0.012 0.038 0.038 0.069 0.029 0.033
200 10 0.004 0.036 0.039 0.023 0.041 0.040 0.008 0.036 0.038 0.067 0.036 0.042

Location-scale shift model (¢ = 0.5) and u ~ N(0,1)
100 5 0.042 0.062 0.061 0.045 0.064 0.064 0.087 0.049 0.050 0.094 0.061 0.061
100 10 0.041 0.049 0.047 0.046 0.053 0.053 0.091 0.040 0.041 0.105 0.053 0.051
200 5 0.038 0.052 0.048 0.028 0.037 0.037 0.079 0.038 0.042 0.073 0.031 0.033
200 10 0.032 0.041 0.040 0.034 0.037 0.039 0.085 0.038 0.040 0.100 0.037 0.038
Location shift model (¢ = 0) and u ~ t3

OéiNN(O,l) ai:i/N Oéi"\‘N(O,l) ai:i/N
100 5 0.004 0.043 0.039 0.045 0.052 0.042 0.022 0.036 0.035 0.104 0.051 0.043
100 10 0.004 0.035 0.034 0.031 0.039 0.040 0.009 0.034 0.031 0.085 0.040 0.042
200 5 0.010 0.030 0.033 0.039 0.042 0.038 0.019 0.025 0.030 0.102 0.042 0.044
200 10 0.004 0.031 0.030 0.035 0.042 0.040 0.009 0.034 0.032 0.085 0.038 0.041

Location-scale shift model (¢ = 0.5) and u ~ t3

OéiNN(O71) Oéi:i/N 067;’\‘./\/’(0,1) ozi:i/N
100 5 0.032 0.038 0.035 0.062 0.055 0.054 0.065 0.038 0.040 0.100 0.054 0.054
100 10 0.046 0.041 0.044 0.054 0.057 0.056 0.090 0.042 0.043 0.105 0.0561 0.054
200 5 0.032 0.026 0.029 0.052 0.052 0.047 0.065 0.033 0.030 0.097 0.052 0.050
200 10 0.044 0.036 0.037 0.043 0.033 0.033 0.090 0.038 0.037 0.101 0.033 0.033

Location shift model (¢ = 0) and u ~ x3

a; ~N(0,1) a; =1i/N a; ~N(0,1) a; =1i/N
100 5 0.022 0.047 0.045 0.040 0.062 0.062 0.051 0.046 0.047 0.107 0.070 0.070
100 10 0.024 0.061 0.066 0.042 0.068 0.068 0.056 0.059 0.064 0.100 0.063 0.064
200 5 0.034 0.049 0.052 0.046 0.046 0.043 0.059 0.044 0.045 0.113 0.062 0.061
200 10 0.030 0.064 0.068 0.037 0.043 0.043 0.059 0.065 0.067 0.079 0.044 0.044

Location-scale model (( = 0.5) and u ~ x3

()éiNN(O,l) Ozi:i/N OéiNN(O,l) ai:i/N
100 5 0.046 0.055 0.055 0.052 0.066 0.064 0.076 0.057 0.058 0.095 0.074 0.070
100 10 0.037 0.056 0.056 0.049 0.068 0.069 0.086 0.053 0.054 0.114 0.067 0.069
200 5 0.061 0.056 0.057 0.053 0.057 0.053 0.098 0.068 0.067 0.107 0.074 0.074
200 10 0.043 0.061 0.062 0.038 0.046 0.043 0.113 0.060 0.061 0.097 0.045 0.045

TABLE S.1. Empirical rejection probabilities of Hy : Bo(0.5) = 1+ (F,(0.5)71. CS
denotes cross-sectional pairs bootstrap, WB1 denotes wild bootstrap estimator (2.6),
and WB2 wild bootstrap estimator (2.7).
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