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Abstract: The existing theory of penalized quantile regression for longitudinal data has focused

primarily on point estimation. In this work, we investigate statistical inference. We propose a

wild residual bootstrap procedure and show that it is asymptotically valid for approximating the

distribution of the penalized estimator. The model puts no restrictions on individual effects, and

the estimator achieves consistency by letting the shrinkage decay in importance asymptotically.

The new method is easy to implement and simulation studies show that it has accurate small

sample behavior in comparison with existing procedures. Finally, we illustrate the new approach

using U.S. Census data to estimate a model that includes more than eighty thousand parameters.
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1. Introduction

We consider a longitudinal data model of conditional quantiles with individual intercepts. Variations

of this model have been extensively studied in the literature since at least Neyman and Scott (1948).

Recent contributions to the literature using this model for quantile regression have emphasized the

drawbacks of estimating a large number of individual intercepts (N) when the number of time periods

(T ) is small (see Galvao and Kato, 2018, for an excellent survey). Koenker (2004) proposed an estimator

where N individual parameters are regularized by a Lasso-type penalty, shrinking them towards a

common value. As in the case of the Gaussian random effect estimator, shrinkage can reduce the

variability of the estimator of the slope parameter in the quantile regression model (Koenker, 2004). In

models with short T , shrinkage can reduce the bias of the fixed effects estimator of the slope parameter

as well (Harding and Lamarche, 2019).

Although the regularization procedure has advantages, the asymptotic distribution of the estimator

is difficult to approximate. It is known that Lasso-type estimators have non-standard limiting distribu-

tions (Knight and Fu, 2000), but in the case of quantile regression, there are new challenges. Because

individual intercepts are treated as parameters, the increasing dimension of the parameter vector as

the number of units increases can be an issue. In the case of estimators without regularization, Kato,

Galvao, and Montes-Rojas (2012) and Galvao, Gu, and Volgushev (2020) found that T must grow faster

than N for consistency and asymptotic normality at rates that are, at best, similar to standard non-

linear panel data models (Hahn and Newey, 2004). Second, the covariance matrix of quantile regression

estimators typically depends on conditional densities and the penalized estimator of Koenker (2004)
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is no exception. Inference based on the asymptotic distribution requires non-parametric estimation of

nuisance parameters, which can lead to important size distortions (He, 2018).

Motivated by these limitations, cross-sectional pairs (or block) bootstrap, which samples sets of

covariate and response vectors over individuals with replacement, appears to be a natural alternative

method for inference. However, we demonstrate that the cross-sectional pairs bootstrap does not

approximate well the limiting distribution of the penalized estimator. We consider instead a wild

residual bootstrap procedure, which was previously employed by Feng, He, and Hu (2011), and Wang,

Van Keilegom, and Maidman (2018) in cross-sectional settings. We investigate the application of the

procedure to longitudinal data and show that the proposed wild bootstrap procedure is a consistent

estimator of the distribution of the penalized estimator.

We begin by deriving consistency and asymptotic normality results for ℓ1 penalized estimators of a

longitudinal model in which individual effects can be correlated with the regressors. Although our model

might be considered to be high-dimensional, the number of parameters is smaller than the number of

observations, as in the pioneering work by Koenker (2004), and thus our results are obtained without

assuming sparsity in terms of the individual intercepts. Consistency and asymptotic normality with T

growing faster than N are achieved by letting the penalty parameter that controls shrinkage diminish

in importance asymptotically. Thus, relative to Koenker (2004), the asymptotic bias of the estimator

is zero in our case. The consistency and asymptotic normality results are new — they extend the

heuristic results in Koenker (2004) obtained for a model with individual effects as location shifts and

are not included in Kato, Galvao, and Montes-Rojas (2012) and Galvao, Gu, and Volgushev (2020)

because they did not consider penalized estimation.

The main theoretical contribution is to show that the distribution of the wild bootstrap estimator

consistently estimates the asymptotic distribution and covariance of the penalized estimator. The

results include the special case of no penalization, and thus, these results also show the consistency of

the wild bootstrap for the quantile regression estimator with fixed effects. The consistency of the wild

bootstrap is established using developments that are critically different to those used in Wang, Van

Keilegom, and Maidman (2018). We also consider bootstrap estimation of the asymptotic covariance

matrix of the slope parameter estimator, which is novel in the panel quantile literature. As emphasized

in Gonçalves and White (2005), Hagemann (2017), and Hahn and Liao (2021), the weak convergence

of the bootstrap estimator does not necessarily imply convergence of the bootstrap second moment

estimator. Therefore, we provide conditions and establish a result that supports using the second

moment of the bootstrap distribution to estimate the asymptotic variance of the estimator.

Several penalized estimators for quantile regression models have been proposed in the literature

since Koenker (2004). Belloni and Chernozhukov (2011) propose quantile regression estimators for

high-dimensional sparse models using cross-sectional data. Wang (2013) considers a penalized least

absolute deviation estimator, and Wang (2019) derives error bounds for the penalized estimator under

weak conditions. Lamarche (2010) investigates the selection of a regularization parameter, and Lee,

Liao, Seo, and Shin (2018) study estimation of a high-dimensional quantile regression model with a

change point, or threshold. Harding and Lamarche (2017, 2019) investigate estimation of models with
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attrition and correlated random effects. Gu and Volgushev (2019) propose a method for estimation of

models with unknown group membership. Chen and Pouzo (2009) establish the validity of a related

weighted bootstrap procedure for the limiting distribution of a penalized sieve estimator and consider

applications using quantile regression (see also Chen and Pouzo, 2015). The literature on penalized

estimation methods for linear panel data models has also grown in the last decade (see, e.g., Kock,

2013, 2016; Belloni, Chernozhukov, Hansen, and Kozbur, 2016; Su, Shi, and Phillips, 2016; Su and Ju,

2018; Caner and Kock, 2018; Kock and Tang, 2019, among others.)

This paper is organized as follows. The next section provides background and discusses the motiva-

tion of our study. It also introduces the proposed wild residual bootstrap approach. Section 3 presents

theoretical results. Section 4 investigates the small sample performance of the method, showing that

the estimator has satisfactory performance under different specifications and it performs better than

the cross-sectional pairs bootstrap procedure. Section 5 presents extensions to the basic model. Section

6 illustrates the theory and provides practical guidelines from an application of the method. Consid-

ering data from the U.S. Census, we estimate a quantile function with more than eighty thousand

parameters to study how wages of U.S. workers have been affected by the North American Free Trade

Agreement. Finally, Section 7 concludes. One appendix contains proof of the main results, while a

supplementary appendix contains additional technical results and proofs.

2. Inference for penalized quantile regression

2.1. Background and Motivation. We observe repeated measures {(yit,x′
it)}Tt=1 for each subject

1 ≤ i ≤ N . The variable yit ∈ R denotes the response for i at time t and xit denotes a p-dimensional

vector of covariates. Although the number of repeated observations does not vary with i, the analysis

can be trivially extended to consider Ti as long as maxTi/minTi is bounded for 1 ≤ i ≤ N (Gu and

Volgushev, 2019). The model considered in this paper is

Qy(τ |xit) = x′
itβ0(τ) + αi0(τ), (2.1)

where τ ∈ (0, 1) and Qy(τ |xit) is the τ -th quantile of the conditional distribution of yit given xit. It

is assumed that the vector xit does not contain an intercept. The parameter of interest is β0(τ) ∈ Rp

and αi0(τ) is treated as a nuisance parameter. Because we consider just one value of τ , we suppress

the dependence of the parameters on τ in the sequel.

Let θ = (β′,α′)′ ∈ Θ ⊆ Rp+N , where α = (α1, ..., αN )′, and let θ0 = (β′
0,α

′
0)

′. To estimate θ0, we

consider the following estimator:

θ̂ = (β̂′, α̂′)′ = argmin
θ∈Θ

N∑
i=1

T∑
t=1

ρτ (yit − x′
itβ − αi) + λT

N∑
i=1

|αi|, (2.2)

where ρτ (u) = u(τ − I(u < 0)) is the quantile regression loss function. The tuning parameter λT ≥ 0

depends on T and it can also depend on data, as discussed below.

The penalty term in (2.2) helps improve the finite sample performance of the fixed effects estimator,

which is defined for λT = 0. Shrinkage of the individual effects can lead to reductions of the variance of
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the estimator. In models with incidental parameters, the penalty term reduces the noise in the estima-

tion of individual intercepts, and consequently, it can also reduce the bias of the fixed effects estimator

of β0. The online appendix presents simulation evidence to illustrate finite sample improvements when

the time dimension is short, complementing the evidence presented in Koenker (2004) and Harding

and Lamarche (2019). See Bester and Hansen (2009) for a related penalty approach to bias reduction

in nonlinear models with fixed effects.

We establish conditions that result in a tractable asymptotic distribution for the estimator defined in

(2.2). However, we expect that resampling methods offer a more accurate description of the distribution

of the estimator in finite samples. In practice, the cross-sectional pairs bootstrap, which samples over

i with replacement keeping the entire block of time series observations for each i, has been used as a

method for inference, primarily in the fixed effects case when λT = 0. However, the cross-sectional

pairs bootstrap does not provide a good approximation to the sampling distribution of the penalized

estimator (2.2), as in the case of the pairs bootstrap procedure for the Lasso estimator (Camponovo,

2015).

2.2. A cross-sectional pairs bootstrap procedure. We now offer a heuristic illustration of some

problems with using a cross-sectional pairs bootstrap and the penalized quantile regression estimator.

The cross-sectional pairs bootstrap can be used successfully to estimate the distribution of the quantile

regression model with unpenalized fixed effects, but it will be shown below that the penalty causes

problems for this approach to resampling. We fix N in this section to avoid the effect of a diverging

number of parameters as the sample size increases (later, asymptotic approximations will be found

assuming that T grows faster than N). This allows us to see problems with the cross-sectional pairs

without the additional incidental parameters problem. Define γ = (δ′,η′)′ ∈ Rp+N , where δ =√
NT (β − β0) and for i = 1, . . . N , ηi =

√
T (αi − αi0). Then let

VT (γ) =
N∑
i=1

T∑
t=1

{
ρτ

(
uit −

x′
itδ√
NT

− ηi√
T

)
− ρτ (uit)

}
+ λT

N∑
i=1

{∣∣∣∣αi0 +
ηi√
T

∣∣∣∣− |αi0|
}
, (2.3)

where uit = yit − x′
itβ0 − αi0. This objective function is equivalent to (2.2). Knight and Fu (2000)

developed a method for dealing with the asymptotic behavior of this objective function, stated here as

a lemma.

Lemma 1 (Knight and Fu (2000)). Under Assumptions B1-B5 below, if N is fixed, T → ∞ and

λT /
√
T → λ0 ≥ 0, the minimizer of (2.3), γ̂, converges weakly to the minimizer of V : Rp+N → R

defined by

V(γ) = −γ ′B +
1

2
γ ′D1γ + λ0

N∑
i=1

(ηi sgn(αi0)I(αi0 ̸= 0) + |ηi|I(αi0 = 0)) ,

where D1 is positive definite and B ∼ N (0,D0).

To examine the validity of the cross-sectional pairs bootstrap, consider an analog loss function for

resampled data. Letting yi and Xi denote the vector and matrix of response and covariate observations

corresponding to unit i, a cross-sectional pairs bootstrap procedure resamples N pairs (yi,Xi) for
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1 ≤ i ≤ N with replacement. Let n∗i denote the number of times unit i is redrawn from the original

sample. Thus, the asymptotic distribution of γ̂ is approximated with γ̃ = (
√
NT (β̃− β̂)′,

√
T (α̃−α̂)′)′

where

θ̃ =
(
β̃′, α̃′

)′
= argmin

θ∈Θ

N∑
i=1

n∗i

T∑
t=1

ρτ
(
yit − x′

itβ − αi

)
+ λT

N∑
i=1

n∗i |αi|. (2.4)

Since n∗i is a multinomial weight with probability 1/N , it is straightforward to calculate that the

expected value of the objective function with respect to the bootstrap weights (i.e., conditional on the

observations) is minimized at θ̂ = (β̂, α̂). However, a finite sample problem is associated with the

presence of the penalty in the objective function. To see this, let α∗
i = n∗i |αi| and A = {i : α∗

i ̸= 0}
denote the “active” set corresponding to the penalty term in (2.4). In each bootstrap repetition, the

cardinality of A < N , leading to solutions θ̃ that can be potentially very different than the minimizer

θ̂. This may be especially so when αi is correlated with xit.

To see other problems with the cross-sectional bootstrap, we can find the weak limit of the bootstrap

objective function (2.5) similarly to Lemma 1. When we recenter (2.4) employing θ̂, using the i chosen

by resampling, we find a naive bootstrap analog of the original objective function (2.3), denoting

ûit = yit − β̂′xit − α̂i:

ṼT (γ) =

N∑
i=1

n∗i

T∑
t=1

{
ρτ

(
ûit −

δ′xit√
NT

− ηi√
T

)
− ρτ (ûit)

}
+ λT

N∑
i=1

n∗i

{∣∣∣∣α̂i +
ηi√
T

∣∣∣∣− |α̂i|
}
. (2.5)

As T → ∞, assuming η̂i =
√
T (α̂i − αi0)

d−→ Ai for i = 1, . . . N as T → ∞, ṼT converges weakly to

Ṽ(γ) = −γ ′B̃ +
1

2
γ ′D̃1γ + λ0

N∑
i=1

n∗i
(
ηi sgn(αi0)I(αi0 ̸= 0) + (|ηi +Ai| − |Ai|) I(αi0 = 0)

)
.

However, there are two key differences with the resulting expression. The first problem with this

limiting objective function is that B̃ ̸= B and D̃1 ̸= D1 from Lemma 1, due to the fact that recentering

uses θ̂, which is asymptotically biased if λ0 > 0. Second, there is additional randomness arising from

variable selection and resampling. (In the online appendix, we illustrate these issues with fixed N

and T ). In the next section, we propose a wild residual bootstrap that does not suffer from these

shortcomings. Then we expect that the distribution of the wild bootstrap estimator γ∗ provides a

better approximation to the distribution of γ̂ in Lemma 1.

2.3. Wild bootstrap procedures. Let ûit = yit − x′
itβ̂ − α̂i be the τ -th quantile residual. Let u∗it =

wit|ûit| denote bootstrap residuals, where wit is drawn randomly from a pre-determined distribution

GW that satisfies the following conditions:

A1. The τ -th quantile of GW is equal to zero, i.e. GW (0) = τ .

A2. The support of GW is bounded and contained in the interval (−∞,−c1] ∪ [c2,∞), where c1 > 0

and c2 > 0.

A3. The weight distribution GW satisfies −
∫ 0
−∞w−1dGW (w) =

∫ +∞
0 w−1dGW (w) = 1

2 .
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Several weight distributions have been proposed in the quantile regression literature that satisfy

these conditions. Feng, He, and Hu (2011) propose, for 1/8 ≤ τ ≤ 7/8, the continuous weight density

gW (w) = −wI(−2τ − 1/4 ≤ w ≤ −2τ + 1/4) + wI(2(1 − τ) − 1/4 ≤ w ≤ 2(1 − τ) + 1/4). Another

distribution that satisfies A1-A3 is the two-point distribution at w = 2(1−τ) with probability τ and at

w = −2τ with probability (1−τ). We adopt this distribution in the numerical examples. See Appendix

3 in Wang, Van Keilegom, and Maidman (2018) for additional examples of the weight distribution.

Using the bootstrap sample of residuals and the penalized quantile estimator as defined in equation

(2.2), we can form y∗it = x′
itβ̂ + α̂i + u∗it to obtain the bootstrap estimator:

θ∗ = (β∗′ ,α∗′)′ = argmin
θ∈Θ

N∑
i=1

T∑
t=1

ρτ (y
∗
it − x′

itβ − αi) + λT

N∑
i=1

|αi|. (2.6)

Given a bootstrap sample {β∗
b}Bb=1, we can obtain confidence intervals that are asymptotically valid,

as demonstrated in Theorem 3 below. Let G∗
j (α/2) and G∗

j (1 − α/2) be the (α/2)-th quantile and

(1 − α/2)-th quantile of the bootstrap distribution of
√
NT (β∗j − β̂j) for j = 1, 2, . . . , p. We obtain

asymptotically valid 100(1 − α)% confidence intervals for βj by [β̂j − (NT )−1/2G∗
j (1 − α/2), β̂j −

(NT )−1/2G∗
j (α/2)]. Alternatively, Theorem 4 shows that we may also estimate the covariance matrix

of
√
NT (β̂−β0) using the estimated covariance matrix from the bootstrap sample, which can be used

to estimate the variance without requiring density estimation and to construct bootstrap-t statistics

for inference.

We may also consider a threshold estimator for 1 ≤ i ≤ N , α∗∗
i = α̂iI(|α̂i| ≥ aT ), where aT is a

constant that satisfies aT → 0 as T → ∞. Define v∗it = wit|v̂it|, where v̂it = yit − x′
itβ̂ − α∗∗

i . The

response variable is generated as y∗∗it = x′
itβ̂ + α∗∗

i + v∗it, and the threshold estimator is defined as

θ∗∗ = argmin
θ∈Θ

N∑
i=1

T∑
t=1

ρτ (y
∗∗
it − x′

itβ − αi) + λT

N∑
i=1

|αi|. (2.7)

As in the case of the estimator defined in (2.6), we estimate the distribution of θ̂ based on the esti-

mator θ∗∗. Given the similarities between estimators (2.6) and (2.7), we derive below consistency and

asymptotic normality results for (2.6) only. The performance of the bootstrap with this estimator is

examined in the online appendix.

Remark 1. As in the case of other bootstrap estimators in quantile regression (Feng, He, and Hu,

2011; Hagemann, 2017), an adjustment based on the Bahadur representation of the estimator is recom-

mended. For instance, under i.i.d. errors, residuals might be replaced by ûit+
∑N

i=1

∑T
t=1Hit(τ−I(ûit <

0))/f̂(0), where Hit = h′
it(
∑N

i=1

∑T
t=1 hith

′
it)

−1hit, hit = (x′
it, zi)

′, zi is an indicator variable for subject

i, and f̂ is an estimate of the density function defined below in B4. The exact form of the Bahadur

representation for the panel quantile problem is given in Theorem 2 and details on the adjustment are

given in Section 4.

2.4. Tuning parameter selection. The tuning parameter λT controls the degree of shrinkage of the

individual effect αi towards zero and the penalty helps to control the bias and variance of β̂. We restrict
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the tuning parameter to λT ∈ L ⊂ [0, λU ], where λU is an upper bound. As shown in Lemma S.1 in

the supplementary appendix, λU = max{τ, 1− τ}T is a natural choice because if λT is set larger than

this value, all the individual effects will be set equal to zero. If the number of observed time periods

Ti vary over i, then one would need to replace the T in these bounds with maxi Ti. This estimator

accommodates the choice of λT = 0, which means that the results below continue to hold for the

corresponding unpenalized estimator.

The selection λT in related settings has been investigated in several papers (see, e.g., Lamarche, 2010;

Lee, Noh, and Park, 2014; Wang, Van Keilegom, and Maidman, 2018). We follow Wang, Van Keilegom,

and Maidman (2018) and employ cross-validation for tuning parameter selection. To the best of our

knowledge, theory has not yet been developed for the stochastic order of λT when chosen using cross-

validation, but in extensive simulations we have found that it tends to grow much more slowly than T ,

as required in Theorems 1 and 2 below.

3. Asymptotic theory

This section investigates the large sample properties of the proposed estimator. We consider the

following assumptions:

B1. Suppose that {(yit,xit) : t ≥ 1} are independent across i and independent and identically dis-

tributed (i.i.d.) within each unit i.

B2. For each ϕ > 0,

inf
i≥1

inf
∥θi∥1=ϕ

E

[∫ (αi−αi0)+x′
it(β−β0)

0
(Fi(s|xit)− τ) ds

]
= ϵϕ > 0,

where Fi := Fuit|xit
is the distribution function of uit = yit − αi0 − x′

itβ0 conditional on xit.

B3. The covariate vector xit satisfies supi,t ∥xit∥ < M <∞ a.s.

These conditions are standard in the literature on quantile regression with individual effects. Con-

ditions B1 and B2 are the same as Assumptions (A1) and (A3) in Kato, Galvao, and Montes-Rojas

(2012). Condition B1 is relaxed in Kato et al. (2012) and in Section 5 below to allow for time depen-

dence. Condition B2 is an identification condition and it is sufficient for consistency. Slightly weaker

than the assumption that Fi has a continuous density given xit, it allows an expansion that guaran-

tees the convexity of the limiting objective function, and therefore, the uniqueness of (β′
0, αi0) for all

1 ≤ i ≤ N . Assumption B3 is a simple way to assume appropriate moment conditions on the covariates

and it is similar to (B1) in Kato, Galvao, and Montes-Rojas (2012) and (A1) in Gu and Volgushev

(2019). The condition can be relaxed as in Kato, Galvao and Montes-Rojas (2012). Condition B3 can

be replaced with the moment condition supi≥1 E
[
∥xi1∥2s

]
<∞ for some s ≥ 1. The implication of this

weaker condition is that N/T s → 0 instead of log(N)/T → 0 to achieve consistency, as demonstrated

in Theorem 1.

The consistency of the estimator θ̂ is needed to establish the main result stated in Theorem 3.
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Theorem 1. Under Assumptions B1-B3, if log(N)/T → 0 and λT = op(T ) as N,T → ∞, then the

estimator θ̂ defined in equation (2.2) is a consistent estimator of θ0.

Remark 2. Theorem 1 is of independent interest as it has not been established the consistency of the

penalized estimator under arbitrary dependence between regressors and individual effects. The result

depends on the condition that λT , the parameter governing penalization of the individual effects, grows

slowly as T increases.

We now focus our attention on weak convergence and we present a series of results to facilitate the

estimation of standard errors and confidence intervals. To show asymptotic normality of the estimator,

it is necessary to strengthen the conditions required for consistency slightly with the following conditions

routinely adopted in the panel quantile regression literature (see, e.g., assumptions (B2) and (B3) in

Kato, Galvao, and Montes-Rojas, 2012, and assumption (A2) in Gu and Volgushev, 2019).

B4. The conditional density function fi := fuit|xit
corresponding to Fi is uniformly bounded and has a

bounded first derivative f := supi supu∈R,x∈Rp |fi(u|x)| <∞ and f ′ := supi supu∈R,x∈Rp |f ′i(u|x)| <∞.

Assume that in an open neighborhood U of 0, fi is bounded away from zero for all realizations of xit:

f := inf
i

inf
u∈U ,x∈Rp

|fi(u|x)| <∞.

B5. Let φi := E [fi(0|xi1)], Ei := E [fi(0|xi1)xi1] and Ji := E [fi(0|xi1)xi1x
′
i1]. Let

DN =
1

N

N∑
i=1

(
Ji − φ−1

i EiE
′
i

)
.

Suppose that DN is positive definite for all N and there is a positive definite matrix D such that

D = limN→∞DN . Also assume that

V = τ(1− τ)× lim
N→∞

1

N

N∑
i=1

E
[(
xi1 − φ−1

i Ei

) (
xi1 − φ−1

i Ei

)′]
is positive definite.

Then we have the following result:

Theorem 2. Under Assumptions B1-B5, if N2(logN)3/T → 0 and λT = op(T
1/2(logN)1/2) as

N,T → ∞, then √
NT (β̂ − β0)

d−→ N (0,Ω),

where Ω = D−1V D−1.

Remark 3. As with Condition G in Theorem 3.2 in Gu and Volgushev (2019), Theorem 2 provides a

selection rule for candidate values of the tuning parameters that are justified by theory. The limiting

distribution for this estimator matches that of the conventional fixed effects estimator derived in Kato,

Galvao, and Montes-Rojas (2012) because the tuning parameter λT diverges at a slow rate.

Remark 4. Because the goal of the shrinkage estimator here is not variable selection but regularization

of the estimated α̂i, the rate of growth of λT is different than what would usually be used in high-

dimensional models (Belloni and Chernozhukov (2011, p. 86), Lee, Liao, Seo, and Shin (2018, eq.
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2.3), and Wang (2019, Theorem 3.2)). This difference in stochastic order is because the individual

effects {αi0}i are not assumed sparse and this condition on λT is needed for consistency in models with

regressors correlated with individual latent effects. Moreover, perhaps not surprisingly, the rates derived

for linear models (see, e.g., Kock, 2013, 2016) are also different to the rate required for establishing the

asymptotic normality of the quantile estimator.

The wild residual bootstrap procedure is consistent as an estimator of the asymptotic distribution

of β̂, as the next theorem shows.

Theorem 3. Under Assumptions A1-A3 and the conditions of Theorem 2,

sup
b∈Rp

∣∣∣P{√NT (β∗ − β̂) ≤ b|S
}
− P

{√
NT (β̂ − β0) ≤ b

}∣∣∣ p−→ 0

where S denotes the observed sample and β∗ denotes the slope estimator defined by (2.6).

Remark 5. By setting λT = 0, Theorem 3 also implies consistency of the wild residual bootstrap for

the unpenalized estimator with individual effects and i.i.d. errors.

Remark 6. The results allow for a data-dependent λT but they do not allow selecting the tuning

parameter at each bootstrap repetition. While theoretical developments are out of the scope of this

paper, we investigated if this idea leads to improvements in the finite sample performance of the

estimator. We did not find significant changes relative to the results presented in Section 4, although

the computational cost of the procedure is higher.

Theorem 3 only shows consistency of the bootstrap distribution estimator. Theorem 4 ahead shows

that the bootstrap covariance matrix, defined as

Ω∗ = E∗
[
NT

(
β∗ − β̂

)(
β∗ − β̂

)′]
,

may be used to estimate the covariance of
√
NT (β̂ − β0). In practice, one simply uses the sample

covariance of all the bootstrap repetitions, increasing the number of repetitions to bring the sample

average as close as desired to the bootstrap expectation. Variance estimation using the bootstrap was

formally investigated for quantile regression with clustered data in Hagemann (2017), but the model

in this paper is complicated by the diverging number of individual effects as N → ∞ and the penalty

term in (2.6).

Theorem 4. Under Assumptions A1-A3 and the conditions of Theorem 2, if θi for 1 ≤ i ≤ N lie in

a compact set and supN,T E
[
|
√
NλT /

√
T |q
]
<∞ for q > 2, then ∥Ω∗ −Ω∥ p−→ 0.

The assumptions that are required for Theorem 4 are slightly stronger than those used in Theo-

rem 3. The requirement on λT is due to its presence in asymptotic expansions leading to the Bahadur

representation of β∗ and is similar to the moment requirement made on the covariates in Hagemann

(2017). The compactness assumption must be made to ensure that expansions used in the asymptotic

approximation are uniformly bounded.
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Quantile 0.5 Quantile 0.75
Method: Method: Method: Method:

N T CS WB CS WB CS WB CS WB

PQR PQR FE PQR PQR FE PQR PQR FE PQR PQR FE

Location shift model (ζ = 0) and u ∼ N (0, 1)
αi ∼ N (0, 1) αi = i/N αi ∼ N (0, 1) αi = i/N

100 5 0.697 0.902 0.905 0.675 0.909 0.913 0.702 0.854 0.854 0.640 0.848 0.859
100 10 0.720 0.908 0.868 0.683 0.915 0.876 0.737 0.887 0.900 0.683 0.885 0.903
200 5 0.677 0.923 0.925 0.670 0.916 0.920 0.668 0.862 0.861 0.641 0.873 0.877
200 10 0.650 0.925 0.857 0.700 0.927 0.870 0.662 0.898 0.909 0.691 0.897 0.915

25 50 0.886 0.908 0.904 0.779 0.887 0.882 0.857 0.881 0.880 0.758 0.885 0.888
25 100 0.903 0.910 0.911 0.811 0.902 0.905 0.908 0.898 0.901 0.816 0.892 0.898
50 50 0.833 0.905 0.903 0.769 0.884 0.880 0.831 0.893 0.888 0.768 0.889 0.892
50 100 0.847 0.900 0.895 0.831 0.903 0.900 0.854 0.902 0.897 0.827 0.898 0.902

Location shift model (ζ = 0) and u ∼ t3
αi ∼ N (0, 1) αi = i/N αi ∼ N (0, 1) αi = i/N

100 5 0.710 0.906 0.911 0.674 0.902 0.912 0.701 0.828 0.833 0.623 0.819 0.840
100 10 0.713 0.923 0.880 0.660 0.919 0.881 0.734 0.881 0.893 0.680 0.864 0.880
200 5 0.681 0.932 0.936 0.645 0.907 0.927 0.669 0.841 0.852 0.573 0.816 0.852
200 10 0.650 0.922 0.834 0.661 0.931 0.845 0.641 0.881 0.892 0.678 0.859 0.889

25 50 0.887 0.921 0.916 0.784 0.906 0.906 0.852 0.887 0.886 0.738 0.881 0.881
25 100 0.905 0.901 0.901 0.819 0.892 0.891 0.870 0.883 0.891 0.801 0.891 0.900
50 50 0.850 0.898 0.895 0.759 0.884 0.884 0.839 0.886 0.889 0.761 0.900 0.895
50 100 0.848 0.886 0.887 0.816 0.899 0.892 0.837 0.885 0.890 0.770 0.863 0.875

Location shift model (ζ = 0) and u ∼ χ2
3

αi ∼ N (0, 1) αi = i/N αi ∼ N (0, 1) αi = i/N

100 5 0.730 0.906 0.912 0.633 0.897 0.907 0.690 0.728 0.745 0.589 0.716 0.716
100 10 0.673 0.894 0.871 0.647 0.870 0.855 0.718 0.828 0.844 0.707 0.827 0.838
200 5 0.708 0.920 0.927 0.657 0.915 0.910 0.652 0.745 0.753 0.602 0.763 0.763
200 10 0.686 0.901 0.860 0.642 0.880 0.838 0.703 0.833 0.853 0.703 0.818 0.831

25 50 0.791 0.882 0.883 0.716 0.891 0.896 0.749 0.839 0.839 0.707 0.861 0.862
25 100 0.845 0.887 0.890 0.749 0.873 0.874 0.781 0.871 0.879 0.683 0.856 0.860
50 50 0.768 0.869 0.872 0.726 0.898 0.897 0.758 0.862 0.862 0.727 0.876 0.877
50 100 0.798 0.879 0.880 0.735 0.891 0.892 0.770 0.861 0.867 0.710 0.864 0.877

Table 4.1. Empirical coverage probabilities of the bootstrap confidence interval for a
nominal 90% level. CS denotes cross-sectional pairs bootstrap, WB denotes wild boot-
strap, PQR denotes the penalized estimator, and FE is the unpenalized fixed effects
estimator.

4. Simulation Study

In this section, we report the results of several simulation experiments designed to evaluate the

performance of the method in finite samples. We consider a data generating process similar to the ones

considered in Koenker (2004) and Kato, Galvao and Montes-Rojas (2012). The dependent variable is

yit = αi + xit + (1 + ζxit)uit, where xit = 0.5αi + zi + ϵit, and zi and ϵit are i.i.d. random variables

distributed as χ2 with 3 degrees of freedom (χ2
3). The corresponding quantile regression function is

Qy(τ |xit) = α0i+β0xit, where α0i = αi+Fu(τ)
−1, β0 = 1+ζFu(τ)

−1, and Fu(·) denotes the distribution
of the error term, uit.
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Quantile 0.5 Quantile 0.75
Method: Method: Method: Method:

N T CS WB CS WB CS WB CS WB

PQR PQR FE PQR PQR FE PQR PQR FE PQR PQR FE

Location-scale shift model (ζ = 0.5) and u ∼ N (0, 1)
αi ∼ N (0, 1) αi = i/N αi ∼ N (0, 1) αi = i/N

100 5 0.688 0.861 0.881 0.699 0.884 0.893 0.592 0.798 0.824 0.690 0.819 0.827
100 10 0.619 0.899 0.865 0.657 0.896 0.868 0.611 0.864 0.867 0.652 0.877 0.887
200 5 0.660 0.871 0.892 0.674 0.868 0.892 0.540 0.825 0.823 0.605 0.850 0.848
200 10 0.650 0.913 0.852 0.651 0.904 0.860 0.567 0.876 0.880 0.627 0.868 0.884

25 50 0.698 0.898 0.893 0.676 0.900 0.899 0.696 0.881 0.882 0.672 0.866 0.865
25 100 0.762 0.906 0.906 0.678 0.894 0.896 0.749 0.894 0.897 0.678 0.892 0.893
50 50 0.685 0.896 0.892 0.678 0.888 0.883 0.679 0.888 0.889 0.669 0.886 0.888
50 100 0.720 0.900 0.902 0.674 0.905 0.903 0.697 0.879 0.881 0.677 0.901 0.902

Location-scale shift model (ζ = 0.5) and u ∼ t3
αi ∼ N (0, 1) αi = i/N αi ∼ N (0, 1) αi = i/N

100 5 0.723 0.857 0.886 0.758 0.866 0.890 0.620 0.751 0.769 0.721 0.769 0.781
100 10 0.664 0.902 0.882 0.676 0.895 0.873 0.638 0.862 0.874 0.672 0.855 0.857
200 5 0.754 0.875 0.910 0.722 0.873 0.909 0.513 0.767 0.775 0.707 0.780 0.795
200 10 0.650 0.899 0.857 0.649 0.910 0.843 0.554 0.816 0.835 0.634 0.822 0.824

25 50 0.742 0.910 0.910 0.682 0.914 0.916 0.694 0.874 0.875 0.672 0.869 0.873
25 100 0.750 0.885 0.884 0.678 0.896 0.897 0.711 0.874 0.876 0.688 0.885 0.888
50 50 0.683 0.891 0.888 0.675 0.880 0.877 0.690 0.881 0.879 0.678 0.885 0.891
50 100 0.714 0.886 0.885 0.661 0.883 0.883 0.691 0.879 0.889 0.668 0.864 0.872

Location-scale model (ζ = 0.5) and u ∼ χ2
3

αi ∼ N (0, 1) αi = i/N αi ∼ N (0, 1) αi = i/N

100 5 0.735 0.840 0.862 0.693 0.818 0.842 0.746 0.719 0.676 0.784 0.727 0.701
100 10 0.666 0.868 0.859 0.645 0.849 0.837 0.641 0.783 0.790 0.679 0.774 0.762
200 5 0.714 0.831 0.856 0.685 0.839 0.842 0.722 0.750 0.669 0.770 0.731 0.612
200 10 0.661 0.886 0.850 0.658 0.865 0.835 0.637 0.777 0.771 0.642 0.751 0.758

25 50 0.662 0.850 0.859 0.663 0.880 0.884 0.613 0.847 0.843 0.653 0.848 0.846
25 100 0.674 0.888 0.886 0.676 0.883 0.886 0.662 0.877 0.879 0.651 0.864 0.872
50 50 0.633 0.863 0.869 0.685 0.896 0.899 0.661 0.852 0.856 0.672 0.866 0.868
50 100 0.646 0.861 0.874 0.685 0.887 0.887 0.670 0.863 0.873 0.668 0.856 0.860

Table 4.2. Empirical coverage probabilities of the bootstrap confidence interval for a
nominal 90% level. See Table 4.1 for definitions.

We generate data from several variations of the basic model. In one variant of the model, αi is an

i.i.d. Gaussian random variable. In another, we generate αi = i/N for 1 ≤ i ≤ N as in Galvao, Gu, and

Volgushev (2020). We use ζ ∈ {0, 0.5}, and thus, β0 = 1 in the location shift version of the model and

β0 = 1+0.5Fu(τ)
−1 in the location-scale shift case. Lastly, we consider three different distributions for

the error term. We assume that uit is distributed as N (0, 1), a t distribution with 3 degrees of freedom

(t3), or χ
2
3.

Tables 4.1, 4.2, 4.3, and 4.4 present coverage probabilities for a nominal 90% confidence interval

for the slope parameter β0. We present coverage probabilities using the empirical distribution of the

bootstrap estimator (Tables 4.1 and 4.2), as well as coverage probabilities of the asymptotic Gaussian

confidence interval (Tables 4.3 and 4.4). In the latter case, the coverage is constructed using the

standard error of the corresponding bootstrap procedure. Tables 4.1 and 4.3 present results for the
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Quantile 0.5 Quantile 0.75
Method: Method: Method: Method:

N T CS WB CS WB CS WB CS WB

PQR PQR FE PQR PQR FE PQR PQR FE PQR PQR FE

Location shift model (ζ = 0) and u ∼ N (0, 1)
αi ∼ N (0, 1) αi = i/N αi ∼ N (0, 1) αi = i/N

100 5 0.951 0.908 0.910 0.862 0.922 0.919 0.930 0.896 0.894 0.845 0.899 0.899
100 10 0.971 0.917 0.862 0.864 0.913 0.870 0.969 0.909 0.913 0.861 0.910 0.922
200 5 0.953 0.925 0.927 0.849 0.919 0.922 0.918 0.902 0.902 0.831 0.912 0.913
200 10 0.974 0.933 0.853 0.868 0.925 0.868 0.975 0.910 0.920 0.876 0.904 0.924

25 50 0.998 0.911 0.909 0.916 0.894 0.894 1.000 0.889 0.892 0.912 0.886 0.886
25 100 1.000 0.910 0.910 0.972 0.908 0.907 1.000 0.901 0.904 0.944 0.902 0.904
50 50 1.000 0.907 0.905 0.922 0.888 0.885 1.000 0.895 0.897 0.918 0.907 0.908
50 100 1.000 0.908 0.904 0.973 0.904 0.903 1.000 0.900 0.900 0.965 0.913 0.907

Location shift model (ζ = 0) and u ∼ t3
αi ∼ N (0, 1) αi = i/N αi ∼ N (0, 1) αi = i/N

100 5 0.945 0.922 0.918 0.860 0.920 0.916 0.917 0.887 0.885 0.814 0.865 0.901
100 10 0.969 0.923 0.873 0.856 0.923 0.878 0.964 0.908 0.916 0.857 0.894 0.907
200 5 0.946 0.940 0.939 0.826 0.913 0.931 0.911 0.898 0.901 0.774 0.841 0.903
200 10 0.967 0.920 0.822 0.850 0.933 0.838 0.960 0.901 0.915 0.848 0.880 0.897

25 50 0.997 0.926 0.921 0.924 0.912 0.906 0.989 0.890 0.889 0.901 0.890 0.889
25 100 1.000 0.895 0.893 0.950 0.893 0.892 0.999 0.879 0.880 0.935 0.902 0.902
50 50 0.998 0.904 0.899 0.900 0.887 0.881 0.999 0.895 0.897 0.910 0.906 0.909
50 100 1.000 0.896 0.891 0.955 0.902 0.898 0.998 0.890 0.890 0.917 0.875 0.874

Location shift model (ζ = 0) and u ∼ χ2
3

αi ∼ N (0, 1) αi = i/N αi ∼ N (0, 1) αi = i/N

100 5 0.897 0.917 0.918 0.832 0.892 0.916 0.857 0.805 0.824 0.791 0.750 0.800
100 10 0.905 0.898 0.873 0.830 0.879 0.844 0.886 0.835 0.852 0.852 0.836 0.848
200 5 0.897 0.914 0.922 0.824 0.893 0.917 0.828 0.784 0.820 0.798 0.784 0.820
200 10 0.912 0.904 0.845 0.823 0.877 0.831 0.884 0.834 0.858 0.849 0.831 0.846

25 50 0.968 0.881 0.883 0.864 0.894 0.896 0.904 0.851 0.852 0.846 0.868 0.870
25 100 0.994 0.889 0.890 0.870 0.878 0.879 0.956 0.878 0.885 0.831 0.856 0.860
50 50 0.965 0.878 0.874 0.871 0.895 0.894 0.916 0.865 0.864 0.859 0.876 0.878
50 100 0.992 0.882 0.882 0.890 0.894 0.894 0.965 0.870 0.870 0.853 0.868 0.868

Table 4.3. Empirical coverage probabilities of the asymptotic Gaussian confidence in-
terval for a nominal 90% level. See Table 4.1 for definitions.

location shift model (ζ = 0), while Tables 4.2 and 4.4 present results for the location-scale shift

model (ζ = 0.5). The tables present results for τ ∈ {0.50, 0.75}, based on different combinations of

N ∈ {25, 50, 100, 200} and T ∈ {5, 10, 50, 100}. The number of bootstrap repetitions is set to 400, and

the results are obtained by using 1000 random samples.

The tables show results for two bootstrap methods. The cross-sectional pairs bootstrap (CS) samples

over i with replacement, keeping the entire block of time series observations. The wild bootstrap (WB)

is implemented as discussed in Section 2.3. We first obtain residuals ûit using the penalized quantile

regression (2.6), which is labeled ‘PQR’ in the tables. The tuning parameter is obtained as λ̂T = bT λ̃

where λ̃ is obtained by cross-validation and bT = 0.5T−ν controls the bias. The selection of ν = 1

performed well in the simulations and it is consistent with Theorem 1. As in the case of the wild

bootstrap estimator proposed by Feng, He, and Hu (2011), a finite sample correction is recommended.
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Quantile 0.5 Quantile 0.75
Method: Method: Method: Method:

N T CS WB CS WB CS WB CS WB

PQR PQR FE PQR PQR FE PQR PQR FE PQR PQR FE

Location-scale shift model (ζ = 0.5) and u ∼ N (0, 1)
αi ∼ N (0, 1) αi = i/N αi ∼ N (0, 1) αi = i/N

100 5 0.851 0.893 0.886 0.863 0.909 0.905 0.812 0.841 0.837 0.830 0.876 0.843
100 10 0.833 0.912 0.865 0.821 0.910 0.860 0.819 0.873 0.871 0.825 0.887 0.877
200 5 0.838 0.899 0.896 0.834 0.906 0.895 0.784 0.838 0.831 0.810 0.884 0.837
200 10 0.833 0.917 0.845 0.817 0.913 0.847 0.812 0.873 0.870 0.801 0.884 0.879

25 50 0.897 0.903 0.903 0.837 0.909 0.905 0.883 0.894 0.893 0.813 0.873 0.874
25 100 0.938 0.912 0.909 0.827 0.902 0.901 0.922 0.901 0.900 0.824 0.898 0.898
50 50 0.887 0.901 0.897 0.801 0.896 0.886 0.882 0.890 0.891 0.821 0.888 0.890
50 100 0.943 0.909 0.906 0.824 0.904 0.900 0.919 0.891 0.888 0.838 0.907 0.907

Location-scale shift model (ζ = 0.5) and u ∼ t3
αi ∼ N (0, 1) αi = i/N αi ∼ N (0, 1) αi = i/N

100 5 0.864 0.915 0.898 0.882 0.918 0.894 0.816 0.816 0.789 0.857 0.871 0.793
100 10 0.845 0.912 0.864 0.845 0.910 0.870 0.847 0.897 0.873 0.832 0.874 0.854
200 5 0.884 0.919 0.921 0.855 0.910 0.916 0.778 0.803 0.756 0.836 0.860 0.792
200 10 0.830 0.913 0.842 0.821 0.919 0.827 0.786 0.842 0.817 0.793 0.849 0.817

25 50 0.894 0.919 0.912 0.851 0.916 0.914 0.856 0.877 0.878 0.814 0.883 0.881
25 100 0.902 0.887 0.883 0.826 0.903 0.903 0.874 0.886 0.886 0.831 0.890 0.893
50 50 0.882 0.894 0.889 0.791 0.885 0.873 0.856 0.882 0.884 0.820 0.899 0.897
50 100 0.908 0.886 0.882 0.815 0.889 0.885 0.893 0.892 0.892 0.805 0.879 0.878

Location-scale model (ζ = 0.5) and u ∼ χ2
3

αi ∼ N (0, 1) αi = i/N αi ∼ N (0, 1) αi = i/N

100 5 0.857 0.887 0.868 0.829 0.857 0.847 0.881 0.818 0.672 0.896 0.843 0.714
100 10 0.837 0.886 0.847 0.822 0.871 0.832 0.821 0.830 0.786 0.822 0.830 0.779
200 5 0.833 0.881 0.858 0.823 0.860 0.844 0.875 0.850 0.641 0.884 0.842 0.584
200 10 0.845 0.903 0.835 0.814 0.883 0.821 0.815 0.823 0.778 0.799 0.818 0.758

25 50 0.803 0.858 0.858 0.815 0.890 0.886 0.804 0.851 0.850 0.806 0.859 0.857
25 100 0.847 0.893 0.900 0.819 0.885 0.885 0.829 0.881 0.884 0.808 0.863 0.868
50 50 0.819 0.874 0.872 0.836 0.907 0.907 0.808 0.859 0.861 0.826 0.878 0.876
50 100 0.827 0.876 0.877 0.829 0.895 0.892 0.825 0.875 0.878 0.811 0.866 0.868

Table 4.4. Empirical coverage probabilities of the asymptotic Gaussian confidence in-
terval for a nominal 90% level. See Table 4.1 for definitions.

We adopt an adjustment following closely the R package quantreg by Koenker (2021). In our case, we

adjust the residuals with the influence function and sign function following the Bahadur representation

of the estimator derived in Theorem 2. Then, we generate u∗it = wit|ûit|, where wit is an i.i.d. random

variable distributed as a two-point distribution with probabilities τ and 1 − τ at wit = −2τ and

wit = 2(1− τ). Lastly, we generate the dependent variable as y∗it = α̂i+ β̂xit+u
∗
it. The performance of

the estimator (2.7) was similar and the results are not presented here to save space. Finally, we include

the estimator (2.6) defined for λT = 0 and it is labeled ‘FE’.

Following the result presented in Theorem 3, the coverage probabilities in Table 4.1 are obtained

considering the quantiles of the empirical distribution of
√
NT (β∗ − β̂). As can be seen in the upper

block of Table 4.1, the performance of the WB bootstrap estimators are excellent, and they are in

general around the specified coverage probability. Furthermore, performance improves with T , and



14

0.0 0.1 0.2 0.3 0.4 0.5

0.
05

5
0.

06
5

0.
07

5
0.

08
5

λT

B
oo

ts
tr

ap
 S

ta
nd

ar
d 

E
rr

or
s

SD
WB
CS

0.04 0.06 0.08 0.10 0.12

0
10

20
30

40

se β̂(τ)
D

en
si

ty

SD
WB
CS

Figure 4.1. The performance of the bootstrap estimators as λT increases. SD denotes
standard deviation of the penalized estimator, CS denotes cross-sectional pair bootstrap,
and WB denotes wild bootstrap estimator (2.6).

tends to be similar for both 0.5 and 0.75 quantiles. On the other hand, the performance of the CS

estimator is poor, with estimates not approaching to specified nominal values. In the lower parts of

the table, we present the performance of the estimators for different distributions Fu. The WB method

continues to perform better than CS, and, as expected, the estimation of the higher quantile is more

challenging in the χ2
3 case. In all the variations of the model considered in the table, the WB estimator

performs much better than the CS estimator.

The results for the location-scale shift model presented in Table 4.2 are similar. We continue to see

that the WB bootstrap performs better than the CS method. This conclusion holds when we consider

asymptotic Gaussian confidence intervals obtained using bootstrap standard errors se(β∗) (see Tables

4.3 and 4.4). Moreover, the tables confirm two results that were expected. First, as T increases relative

to N , the coverage of the WB improves. Second, the performance of WB in the case of λT = 0 reveals

that, in general, the procedure proposed in this paper is valid for approximating the distribution of the

fixed effects estimator.

We finish the section by briefly documenting the relative performance of the estimators of the

standard errors. We generate data from a location-scale shift model (ζ = 0.5) when the error term

uit ∼ N (0, 1) and αi ∼ N (0, 1), by setting N = 100, T = 10, and τ = 0.5. The left panel of Figure 4.1

shows CS and WB bootstrap estimates of the standard error, se(β∗), and the standard deviation of the

penalized estimator, sd(β̂). The figure shows the advantage of the penalized estimator relative to the

fixed effects estimator, as the standard deviation of the estimator is decreasing as λT increases. We also

see that the WB procedure performs better than CS when λT is relatively small, and the performance
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of the WB estimator does not seem to change over the degree of shrinkage of the individual effects,

as the bias appears to be roughly constant over λT . Using the right panel in Figure 4.1, we explore

further the difference in performance between approaches. The empirical distribution obtained by the

CS procedure is not centered at the true value, and the distribution of the standard error of the WB

is centered at se(β̂) = 0.081 (with λT = 0.05).

5. Extensions

In this section, we investigate the consistency of the wild bootstrap under different conditions. First,

we extend the results of Theorems 1 and 2 to allow for dependent data, and then we focus on the

consistency of the wild bootstrap. In such case, we use the following assumptions:

C1. The processes {(yit,xit), t ∈ 1, 2, . . .} are strictly stationary for each i and β-mixing, and inde-

pendent across i. Letting {βi(j)}j denote the β-mixing coefficients, assume that there are constants

0 < a < 1 and B > 0 such that supi βi(j) ≤ Baj for all j ≥ 1.

C2. The random vector (uit, uit+j) has a density conditional on (xit,xit+j) that is bounded uniformly

over i and j ≥ 1.

C3. Assume that the matrix DN as defined in Assumption B5 exists and is positive definite for all N

under Assumptions C1 and C2 and that D = limN→∞DN exists and is positive definite. Also assume

that

Ṽ = lim
N,T→∞

1

NT

N∑
i=1

Var

(
T∑
t=1

(τ − I(yit < x′
itβ0 + αi0))

(
xit − φ−1

i Ei

))
is positive definite.

Theorem 5 presents both consistency and asymptotic normality results for the estimator with de-

pendent error terms.

Theorem 5. Under Assumptions C1-C3, B3 and B4, if log(N)2/T → 0 and λT = op(T ) as N,T →
∞, the estimator β̂ is consistent. Moreover, if N2(logN)3/T → 0 and λT = op(T

1/2(logN)1/2) as

N,T → ∞, then √
NT (β̂ − β0)

d−→ N (0, Ω̃),

where Ω̃ = D−1Ṽ D−1.

Theorem 6 shows consistency of the bootstrap distribution estimator in the case of dependent errors.

This more complex situation requires another assumption:

A4. Suppose that the weights wit are independent over i and satisfy

lim
N,T→∞

1

N

N∑
i=1

T−1∑
j=1

(
1− j

T

)
(P∗{wit < 0, wit+j < 0} − P {uit ≤ 0, uit+j ≤ 0|xit,xit+j}) = 0.

Assumption A4 is a high-level assumption on the distribution of bootstrap weights. The assumption

guarantees that the variance of the bootstrap estimator is bounded and sufficiently close to the true
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variance, because the weights mimic the within-unit dependence structure of the errors. A feasible

version could use a plug-in estimate of the average of the joint conditional CDFs of (uit, uit+j) to

generate weights that satisfy the average probability. For example, let GWj denote the joint CDF

of the bootstrap weights (wit, wit+j) for 1 ≤ j ≤ T − 1. Then, given residuals from estimation, we

could construct a collection {GWj (0, 0)}
T−1
j=1 that matches the sample analog of the condition from

Assumption A4, that is, such that

T−1∑
j=1

(1− j/T )GWj (0, 0) =

T−1∑
j=1

(1− j/T )
1

N(T − j)

N∑
i=1

T−j∑
t=1

I(ûit ≤ 0, ûit+j ≤ 0).

For example, we may construct correlated normal random variables using a simple parametric model to

simulate a stationary sequence {zit}Tt=1 that is marginally standard normal and has known correlations

{ρj}T−1
j=1 . Letting Φ be the standard normal CDF and G−1

W be the quantile function for a distribution

that satisfies Assumptions A1-A3, bootstrap weights defined by wit = G−1
W (Φ(zit)) have marginal

distribution function GW and GWj (0, 0) = P
{
zit ≤ Φ−1(τ), zit+j ≤ Φ−1(τ)

}
. Then we can tune the

correlations to satisfy the equality given in the above display. Letting Φ2(·, ·, ρ) denote the bivariate

normal CDF of two random variables with standard normal marginals and correlation ρ, we can solve

numerically for {ρ̂j} such that

T−1∑
j=1

(1− j/T )Φ2(Φ
−1(τ),Φ−1(τ), ρ̂j) =

T−1∑
j=1

(1− j/T )
1

N(T − j)

N∑
i=1

T−j∑
t=1

I(ûit ≤ 0, ûit+j ≤ 0).

To specify the example further, if we use an AR(1) model zit = rzit−1 + eit, |r| < 1 and eit ∼ N (0, 1)

to generate zit, then ρj = rj for each j, and the solution r̂ is the root of a univariate function.

Furthermore, if zit = r̂zit−1 + eit, then zit
√
1− r̂2 is distributed as standard normal and the bootstrap

weight is generated as wit = G−1
W (Φ(zit

√
1− r̂2)).

Theorem 6. Suppose that the bootstrap weights satisfies assumptions A1-A4 and the data satisfy

assumptions C1-C3, B3 and B4. If N2(logN)3/T → 0 and λT = op(T
1/2(logN)1/2) as N,T → ∞,

then

sup
b∈Rp

∣∣∣P{√NT (β∗ − β̂) ≤ b|S
}
− P

{√
NT (β̂ − β0) ≤ b

}∣∣∣ p−→ 0,

where S denotes the observed sample and β∗ denotes the slope estimator defined by (2.6).

Finally, we investigate if the conditions on the size of T relative to N needed for the asymptotic

normality in Theorem 2 can be improved, especially in the light of recent work by Galvao, Gu, and Vol-

gushev (2020). If instead of focusing on the stochastic order of the terms of the Bahadur representation

of the penalized estimator, we focus on the expected values of the remainder terms, it is possible to

show that the rates can be improved substantially. In order to show asymptotic normality, we employ

the following assumption about the behavior of the penalty parameter.

B6. For some κ ≥ 2, there exists a constant K > 0 such that P
{
λT > KT 1/2(log T )1/2

}
= O(T−κ).

Assumption B6 dictates the rate at which the probability of observing large a λT becomes small

asymptotically. As illustrated in remark S.1, it is needed to provide a tail bound for the distribution



17

of individual effects, which figure in the remainder terms of the Bahadur representation used to find

the asymptotic distribution of β̂ (such a bound holds naturally for terms related to minimizing the

quantile regression objective function with bounded regressors, a fact used extensively in Galvao, Gu,

and Volgushev (2020)). In the theorem below, we require λT = Op(log T ) = op(T
1/2(log T )1/2), so this

assumption only mildly strengthens the other regularity conditions.

Theorem 7. Under Assumptions B1 and B3-B6, if N(log T )2/T → 0 and λT = Op(log T ) as N,T →
∞, then √

NT (β̂ − β0)
d−→ N (0,Ω),

where Ω = D−1V D−1.

The proof in Theorem 7 uses an infeasible estimator α̃i that is obtained considering T observations

yit − x′
itβ0. The difference between α̃i and α̂i converges to zero as the slope coefficient β̂ converges in

probability towards β0, under the condition on λT . Therefore, the remainder terms of the corresponding

Bahadur representations are sufficiently close, leading to the improvements in the rates first obtained

in Galvao, Gu, and Volgushev (2020) for the fixed effects estimator. We now show the consistency of

the bootstrap distribution estimator under these relatively closer orders of N and T .

Theorem 8. Under Assumptions A1-A3 and the conditions of Theorem 7,

sup
b∈Rp

∣∣∣P{√NT (β∗ − β̂) ≤ b|S
}
− P

{√
NT (β̂ − β0) ≤ b

}∣∣∣ p−→ 0.

where S denotes the observed sample and β∗ denotes the slope estimator defined by (2.6).

6. An Empirical Illustration

In recent years, policy makers and the general public have been debating and re-evaluating several

aspects of trade, including the benefits of trade agreements (Burfisher, Robinson, and Thierfelder, 2001;

Hakobyan and McLaren, 2016, among others). An important question is whether workers have been

negatively affected by the North American Free Trade Agreement (NAFTA), which was signed by the

governments of the United States of America, Canada, and Mexico in 1993. Hakobyan and McLaren

(2016) find that the effect of NAFTA on average wage growth in the period 1990-2000 was negative. In

this section, we use similar data and apply our approach to study the distributional impact of NAFTA.

Our findings suggest that the agreement increased wage inequality. Low-wage workers experienced

significant negative wage growth, while high-wage workers experienced, in general, significant positive

wage growth. Our results are similar to evidence on the effect of Chinese imports on low-wage American

workers (Chetverikov, Larsen, and Palmer, 2016).

6.1. Data. Following Hakobyan and McLaren (2016), we use a 5% sample from the U.S. Census. We

employ two cross-sectional samples in the year 1990 and 2000, and therefore, workers in the sample are

observed once. The longitudinal nature of the analysis comes from exploiting the fact that we observe

multiple individuals in a given industry and location. The sample includes workers between 25 and 64

years of age who reported positive income. We have demographic information including age, gender,
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marital status, race, and educational attainment of the worker classified in four categories: high school

dropout, high school graduate, some college, and college graduate.

The data on U.S. tariffs and Mexico’s revealed comparative advantage (RCA) are obtained from

Hakobyan and McLaren (2016). Using their data, we have access to average U.S. tariffs by industry

of employment of the worker and location (or Consistent Public-Use Microdata Area, abbreviated

conspuma) of residence of the worker. In 1990, the average tariff by industry in 1990 was 2.1% percent

(with a standard deviation of 3.9%), while the average local tariff by conspuma level was 1.03% (with a

standard deviation of 0.67%). In the period 1990-2000, the tariffs decreased 1.7% at the industry level

and 0.9% at the conspuma level. These descriptive statistics are used in the next section to estimate

the percentage change in wages associated with the reduction in tariffs. We consider all industries with

the exception of agriculture.

6.2. Model. To investigate the effect of NAFTA on the wages of American workers, we consider a

specification that allows for the impact of the trade agreement to vary by industry, location, and

educational attainment of the worker. To that end, we consider the following model as in Hakobyan

and McLaren (2016):

yijc = β′
1LLic + β′

2L∆Lic + β′
1IIij + β′

2I∆Iij +X ′
ijcΠ+ αjc + uijc, (6.1)

where the response variable yijc is the logarithm of wages for worker i, who is employed in industry j

and resides in conspuma c, Lic and ∆Lic are location variables to be described below, Iij and ∆Iij are

industry variables, Xijc is the vector of control variables considered in Hakobyan and McLaren (2016),

and αjc is a industry-conspuma effect. The error term is denoted by uijc.

The location variables are defined as Lic = (Lic,1, Lic,2, Lic,3, Lic,4)
′, where Lic,k is the product of

an indicator for educational category k of worker i, an indicator variable for whether i is in the 2000

sample, and the average tariff in the conspuma of residence of worker i. Similarly, we can define

∆Lic = (∆Lic,1,∆Lic,2,∆Lic,3,∆Lic,4)
′, as the change in Lic due to the change in tariffs between

1990 and 2000 in the conspuma of residence of worker i. In terms of the industry variables, Iij =

(Iij,1, Iij,2, Iij,3, Iij,4)
′, where Iij,k is the product of an indicator for educational category k, the RCA in

industry j, an indicator variable for whether i is in the 2000 sample, and the tariff of the industry that

employs worker i. Similarly, we define ∆Iij = (∆Iij,1,∆Iij,2,∆Iij,3,∆Iij,4)
′, as the change in Iij,k due

to the tariff change between 1990 and 2000 in the industry that employs worker i.

Because industry latent factors and trends in some areas can affect wages and also the changes

in tariffs, we employ the penalized estimator (2.2) to estimate a high-dimensional model with more

than 84,000 parameters αjc. The parameters of interest in equation (6.1) are β1L, β2L, β1I , and β2I ,

which measure the initial effect of tariffs by location and industry (β1L and β1I), and the impact

effect of a reduction of tariffs by location and industry (β2L and β2I). Using these parameters, it is

possible to obtain the effect of the trade agreement on wages. For instance, for locations that lost all

of their protection after the introduction of NAFTA, the effect of the local average tariff is measured

by β1L − β2L. Similarly, for industries that lost all of their protection, the effect of the industry tariff

is β1I − β2I .
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Mean Quantiles
Effect 0.1 0.25 0.5 0.75 0.9

High school dropouts
Initial tariff effect, β1I,1 2.018 1.156 2.603 1.880 0.991 0.434

(1.274) (0.820) (1.120) (1.047) (0.847) (1.105)
Impact effect, β2I,1 3.569 3.082 4.625 3.245 1.666 0.600

(1.544) (0.945) (1.314) (1.191) (1.024) (1.290)
Industry effect: β1I,1 − β2I,1 -1.551 -1.925 -2.022 -1.365 -0.675 -0.166

[0.000] [0.000] [0.000] [0.000] [0.000] [0.556]
High school graduates

Initial tariff effect, β1I,2 1.081 5.015 2.224 0.426 -2.216 -2.933
(0.870) (0.523) (0.626) (0.747) (0.515) (0.436)

Impact effect, β2I,2 2.315 9.259 4.318 1.337 -2.469 -3.855
(1.086) (0.595) (0.736) (0.873) (0.618) (0.543)

Industry effect: β1I,2 − β2I,2 -1.234 -4.245 -2.094 -0.911 0.253 0.922
[0.000] [0.000] [0.000] [0.000] [0.022] [0.000]

Some college
Initial tariff effect, β1I,3 -0.181 3.187 2.631 -0.921 -2.963 -3.765

(1.146) (0.820) (1.172) (1.151) (0.779) (0.879)
Impact effect, β2I,3 1.070 7.360 4.889 -0.263 -3.452 -4.662

(1.396) (0.972) (1.468) (1.359) (0.954) (1.026)
Industry effect: β1I,3 − β2I,3 -1.234 -4.245 -2.094 -0.911 0.253 0.922

[0.000] [0.000] [0.000] [0.000] [0.022] [0.000]
College graduate

Initial tariff effect, β1I,4 -2.438 7.623 -1.363 -6.538 -7.681 -8.688
(1.839) (1.826) (1.362) (1.856) (1.041) (1.181)

Impact effect, β2I,4 -2.095 12.840 -0.024 -8.066 -9.828 -11.490
(2.175) (2.215) (1.630) (2.291) (1.178) (1.301)

Industry effect: β1I,4 − β2I,4 -0.343 -5.217 -1.339 1.528 2.147 2.801
[0.439] [0.000] [0.000] [0.000] [0.000] [0.000]

Location variables Yes Yes Yes Yes Yes Yes
Control variables Yes Yes Yes Yes Yes Yes
Number of αjc effects 84,266 84,266 84,266 84,266 84,266 84,266
Observations 9,580,568 9,580,568 9,580,568 9,580,568 9,580,568 9,580,568

Table 6.1. Regression results for the industry effects by educational category of the
worker. We present standard errors in parenthesis, and p-values of a test for the equality
of initial and impact effects in brackets.

6.3. Main empirical results. Table 6.1 reports results for the coefficients β1I , and β2I for the four

educational categories. The table also shows results for β1I,k − β2I,k for each educational category k

and p-values (in brackets) of Wald-type tests for the null hypothesis H0 : β1I,k = β2I,k. The variance of

the test is obtained using the proposed wild residual bootstrap procedure. The first column presents

mean fixed effects regression results. The last five columns show penalized quantile regression (PQR)

results with λT selected by cross-validation. The standard errors are obtained by the proposed wild

bootstrap procedure. To save space, we do not present results on the control variables included in the

vector Lic, ∆Lic, and Xijc, but the results at the conditional mean are similar to the results in Table

4 (column (2)) in Hakobyan and McLaren (2016).
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Figure 6.1. Conditional wage growth impacts. PQR denotes penalized quantile regres-
sion and the dashed areas are 95% confidence intervals.

Looking at the first set of estimates in the first rows, we see that an initial tariff estimate equal to

2.02 and an impact effect of 3.57. Based on the standard deviation of tariffs at the industry level, a 1%

standard deviation increase in the initial industry tariff has an effect of reducing wages by 3.9%×−1.55,

or −6.05% in the period 1990-2000. This implies that, among industries with tariff declining after

the introduction of NAFTA, average wage growth is negative for high school dropouts. The results,

however, show that the average response does not summarize well the distributional impact of NAFTA.

While the industry effect, which is measured as the difference between the initial effect and the impact

effect, is negative (−1.93, or −7.50%) and significant for high school dropouts at the 0.1 quantile, it

is small (−0.17, or −0.65%) and insignificant at the 0.9 quantile. Moreover, we find that the largest

differences between the 0.1 and 0.9 effects are among college graduates in industries that lost all of

their protection, suggesting that wage growth has been also unequal by educational attainment. Lastly,

using Figure 6.1, we report point estimates and confidence intervals for the location and industry effects

for high school dropouts and college graduates. The evidence reveals that inequality increased in the

period after the implementation of the trade agreement.

7. Conclusion

In this article, we address the problem of estimating the distribution of the penalized quantile regres-

sion estimator for longitudinal data using a wild residual bootstrap procedure. Originally introduced

by Koenker (2004) as a convenient alternative to the quantile regression estimator with fixed effects,

the practical use of the penalized estimator has been limited by challenges involving inference. We

show that the wild bootstrap procedure is asymptotically valid for approximating the distribution of
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the penalized estimator. We derive a series of new asymptotic results and carry out a simulation study

that indicates that the wild residual bootstrap performs better than an alternative bootstrap approach

commonly used in practice for similar estimators that do not include a penalty term.

Although the paper makes an important contribution by providing a valid method for statistical

inference, there are several questions that remain to be answered. We believe that the procedure

leads to valid inference in the case of J quantiles estimated simultaneously, but we leave this to future

research. Moreover, under an assumption of sparsity as in other high-dimensional models, we expect

changes in the consistency and asymptotic normality results. In terms of theoretical developments,

we did not consider the case where αi is a random effect. Lastly, the practical implementation of the

wild bootstrap in the case of dependent data involves a few challenges. We hope to investigate these

directions in future work.
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Appendix A. Proof of main results

Remarks on notation and definitions: The estimators β̂ and β∗ depend on τ and λT , but

we suppress this dependency for notational simplicity. The proofs refer to Knight’s (1998) identity:

ρτ (u− v)− ρτ (u) = −vψτ (u) +
∫ v
0 (I(u ≤ s)− I(u ≤ 0))ds, where ρτ = u(τ − I(u < 0)) is the quantile

regression check function and ψτ (u) = τ − I(u < 0) is the associated score function. Throughout the

appendix, we define θi = (β′, αi)
′ for each i, α = (α1, . . . , αN ) and θ = (β′,α′)′.

Proof of Theorem 1. Consistency follows from derivations analogous to those in Kato, Galvao, and

Montes-Rojas (2012), tailored to accommodate a penalty term. Let θ̂ be the minimizer of the normal-

ized objective function

MNT (θ) =
1

NT

N∑
i=1

T∑
t=1

ρτ
(
yit − x′

itβ − αi

)
+

λT
NT

N∑
i=1

|αi|.

Define the i-th contribution to the objective function

MTi(θi) :=
1

T

T∑
t=1

ρτ
(
yit − x′

itβ − αi

)
+
λT
T

|αi|

and let ∆Ti(θi) = MTi(θi)−MTi(θi0), that is,

∆Ti(θi) =
1

T

T∑
t=1

{
ρτ
(
uit − x′

it(β − β0)− (αi − αi0)
)
− ρτ (uit)

}
+
λT
T

(|αi| − |αi0|).
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By Knight’s identity, ∆Ti(θi) = V(1)
Ti (θi) + V(2)

Ti (θi), where

V(1)
Ti (θi) = − 1

T

T∑
t=1

{
x′
it(β − β0) + (αi − αi0)

}
ψτ (uit) +

λT
T

(|αi| − |αi0|),

V(2)
Ti (θi) =

1

T

T∑
t=1

∫ x′
it(β−β0)+(αi−αi0)

0
(I(uit ≤ s)− I(uit ≤ 0)) ds.

We first show the consistency of β̂ for β0. For each ϕ > 0, define the ball Bi(ϕ) := {θi : ∥θi−θi0∥1 ≤
ϕ} and the boundary ∂Bi(ϕ) := {θi : ∥θi−θi0∥1 = ϕ}. For each θi ̸∈ Bi(ϕ), define θ̄i = riθi+(1−ri)θi0
where ri = ϕ/∥θi − θi0∥1. By construction, ri ∈ (0, 1) and θ̄i ∈ ∂Bi(ϕ).

Using the convexity of MTi(θi),

ri
(
MTi(θi)−MTi(θi0)

)
≥ MTi(θ̄i)−MTi(θi0) = E

[
∆Ti(θ̄i)

]
+
(
∆Ti(θ̄i)− E

[
∆Ti(θ̄i)

])
. (A.1)

Under Assumptions B1 and B2, we obtain, for 1 ≤ i ≤ N ,

E [∆Ti(θi)] =
λT
T

(|αi| − |αi0|) + E

[∫ x′
it(β−β0)+(αi−αi0)

0
(Fi(s|xi1)− τ)ds

]

≥ λT
T

(|αi| − |αi0|) + ϵϕ

for some ϵϕ > 0. Using this in (A.1) results in

ri∆Ti(θi) ≥ ϵϕ +
λT
T

(|ᾱi| − |αi0|) +
(
∆Ti(θ̄i)− E

[
∆Ti(θ̄i)

])
.

By the definition of θ̂i as the minimizer of N−1
∑

iMTi(θi), we have{
∥θ̂i − θi0∥1 > ϕ

}
⊆

{
∃i ∈ {1, . . . N} : θ̂i ̸∈ Bi(ϕ) and MTi(θ̂i) ≤ MTi(θi0)

}
⊆

{
max
1≤i≤N

sup
θi∈Bi(ϕ)

∣∣∣(λT /T )(|αi| − |αi0|) + ∆Ti(θi)− E [∆Ti(θi)]
∣∣∣ ≥ ϵϕ

}
.

Therefore, it is sufficient to show that

lim
N→∞

P

{
max
1≤i≤N

sup
θi∈Bi(ϕ)

∣∣∣(λT /T )(|αi| − |αi0|) + ∆Ti(θi)− E [∆Ti(θi)]
∣∣∣ ≥ ϵϕ

}
= 0, (A.2)

which is implied by

max
1≤i≤N

P

{
sup

θi∈Bi(ϕ)

∣∣∣(λT /T )(|αi| − |αi0|)
∣∣∣+ ∣∣∣∆Ti(θi)− E [∆Ti(θi)]

∣∣∣ ≥ ϵϕ

}
= o(N−1). (A.3)

Normalize θi0 = 0p+1 for 1 ≤ i ≤ N , so that Bi(ϕ) = B(ϕ) for all 1 ≤ i ≤ N . Let hθ(u,x) :=

ρτ (u − x′β − α) − ρτ (u) + (λT /T )|α|. By Assumption B3 and the reverse triangle inequality, letting

Λ = λU/T , for some constant C,

|hθ(u,x)− hθ′(u,x)| ≤ 2(1 + ∥x∥+ λT /T )
(
∥β − β′∥1 + |α− α′|

)
≤ C(1 +M + Λ)∥θ − θ′∥1.
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For any ϕ > 0, consider covering B(ϕ), a compact set in Rp+1, with L1-balls of diameter ϵ over B(ϕ):

generally K = (ϕ/ϵ + 1)p+1 such balls are required. Cover B(ϕ) with K balls of diameter ϵ/3κ where

κ = C(1 +M +Λ), and which have centers θ(k) for k = 1, . . .K. Then the number of balls required is

K ≤
(
3κϕ
ϵ + 1

)p+1
= O(ϵ−(p+1)). Covering B(ϕ) with balls of this diameter implies that there is some

k ∈ {1, . . .K} such that∣∣∣∆Ti(θ)− E [∆Ti(θ)]−∆Ti(θ
(k))− E

[
∆Ti(θ

(k))
] ∣∣∣

≤
∣∣∣∆Ti(θ)−∆Ti(θ

(k))
∣∣∣+ ∣∣∣E [∆Ti(θ)]− E

[
∆Ti(θ

(k))
]∣∣∣ ≤ 2κ

ϵ

3κ
=

2

3
ϵ.

Therefore for each θ ∈ B(ϕ) there is a k ∈ {1, 2, ...,K} such that

|∆Ti(θ)− E [∆Ti(θ)]| ≤
∣∣∣∆Ti(θ

(k))− E
[
∆Ti(θ

(k))
]∣∣∣+ 2

3
ϵ,

and

P

{
sup

θ∈B(ϕ)

∣∣∣∆Ti(θ)− E [∆Ti(θ)]
∣∣∣ > ϵ

}
≤ P

{
max

1≤k≤K

∣∣∣∆Ti(θ
(k))− E

[
∆Ti(θ

(k))
]∣∣∣+ 2ϵ

3
> ϵ

}

≤
K∑
k=1

P

{∣∣∣∆Ti(θ
(k))− E

[
∆Ti(θ

(k))
]∣∣∣+ 2ϵ

3
> ϵ

}

=

K∑
k=1

P
{∣∣∣∆Ti(θ

(k))− E
[
∆Ti(θ

(k))
]∣∣∣ > ϵ/3

}
.

For each term,

∆Ti(θ
(k))− E

[
∆Ti(θ

(k))
]
=

1

T

T∑
t=1

(
ρτ (uit − x′

itβ
(k) − α(k))− ρτ (uit)

)

− E

[
1

T

T∑
t=1

(
ρτ (uit − x′

itβ
(k) − α(k))− ρτ (uit)

)]
,

because the terms involving the penalty depend on α(k) and cancel. Because each θ(k) ∈ B(ϕ),
it can verified that |ρτ (uit − x′

itβ
(k) − α(k)) − ρτ (uit)| ≤ (1 + M)ϕ. Hoeffding’s inequality implies

P
{∣∣∆Ti(θ

(k))− E
[
∆Ti(θ

(k))
]∣∣ > ϵ/3

}
≤ 2 exp

{
− (ϵ/3)2T

2(1+M)2ϕ2

}
. Therefore for any ϵ > 0,

P

{
sup

θ∈B(ϕ)
|∆Ti(θ)− E [∆Ti(θ)] | > ϵ/2

}
≤ 2K exp{−DT}.

Considering the penalty term, (λT /T )(|αi| − |αi0|) ≤ (λT /T )|αi − αi0| = Op(λT /T ), assuming

|αi−αi0| = Op(1). Under the condition that λT = op(T ), λT /T < ϵ/2 with probability increasing to 1.

Therefore, consistency of β̂ is implied by the conditions logN = o(T ) and λT = op(T ) as N,T → ∞.

The consistency of β̂ implies consistency of α̂i. Recall that α̂i = argminMNT (β̂, α). Isolating the

part that depends on αi, define the new ball Bi(ϕ) := {α ∈ R : |α − αi0| ≤ ϕ}. For any αi is not in

Bi(ϕ) define ᾱi = rαi + (1− ri)αi0 where ri = ϕ/(|αi − αi0|) for ϕ > 0. Because the objective function
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is convex

ri

(
MTi(β̂, αi) − MTi(β̂, αi0)

)
≥ MTi(β̂, ᾱi)−MTi(β̂, αi0)

= {MTi(β̂, ᾱi)−MTi(β0, αi0)} − {MTi(β̂, αi0)−MTi(β0, αi0)}

= ∆Ti(β̂, ᾱi)−∆Ti(β̂, αi0)

= {∆Ti(β̂, ᾱi)− E [∆Ti(β, ᾱi)]
∣∣
β=β̂

}+ E [∆Ti(β, ᾱi)]
∣∣
β=β̂

−{∆Ti(β̂, αi0)− E [∆Ti(β, αi0)]
∣∣
β=β̂

} − E [∆Ti(β, αi0)]
∣∣
β=β̂

= {∆Ti(β̂, ᾱi)− E [∆Ti(β, ᾱi)]
∣∣
β=β̂

} − {∆Ti(β̂, αi0)

−E [∆Ti(β, αi0)]
∣∣
β=β̂

}+ {E [∆Ti(β, ᾱi)]
∣∣
β=β̂

− E [∆Ti(β0, ᾱi)]}

−{E [∆Ti(β, αi0)]
∣∣
β=β̂

− E [∆Ti(β0, αi0)]}+ E [∆Ti(β0, ᾱi)]

Note that the last term E [∆Ti(β0, ᾱi)] ≥ (λT /T )E [|ᾱi| − |αi0|] + ϵϕ for some ϵϕ > 0 by Assumption

B2. Thus, using similar calculations as before, we have{
∃i ∈ {1, . . . , N} : |α̂i − αi0| > ϕ

}
⊆

{
max
1≤i≤N

sup
αi∈Bi(ϕ)

(
(λT /T )||αi| − |αi0||+

∣∣∣∆Ti(β̂, α)− E [∆Ti(β, α)]
∣∣
β=β̂

∣∣∣) ≥
ϵϕ
4

}

∪

{
max
1≤i≤N

sup
αi∈Bi(ϕ)

∣∣∣E [∆Ti(β̂, α)
] ∣∣

β=β̂
− E [∆Ti(β0, α)]

∣∣∣ ≥ ϵϕ
4

}
=: A1N ∪ A2N .

Because of the convexity of the objective function, the term involving ᾱi is finite, and the entire bias

term is Op(λT /T ) = op(1) under the assumption on λT . By the consistency of β̂ and equation (A.3),

P {A1N} → 0. Moreover, by B3 and the reverse triangle inequality, |E [∆Ti(β, α)]− E [∆Ti(β0, α)] | ≤
CM∥β − β0∥1 (due to cancellation of the penalty terms), β̂ − β0 → 0 implies P {A2N} → 0. �

Proof of Theorem 2. Define the scores with respect to β and αi by

H(β)
Ti (θi) :=

1

T

T∑
t=1

xitψτ (yit − x′
itβ − αi)

H(α)
Ti (θi) :=

1

T

T∑
t=1

ψτ (yit − x′
itβ − αi) +

λT
T

sgn(αi)

and define H
(β)
N (θi) := E

[
H(β)

N (θi)
]
and H

(α)
Ti (θi) := E

[
H(α)

Ti (θi)
]
, that is,

H
(β)
Ti (θi) = E

[
xi1

(
τ − Fi(x

′
i1(β − β0) + (αi − αi0)|xi1)

])
H

(α)
Ti (θi) = E

[
τ − Fi(x

′
i1(β − β0) + (αi − αi0)|xi1)

]
+ (λT /T ) sgn(αi).

First, derive a Bahadur representation for (β̂ − β0). For each i write

H(α)
Ti (θ̂i) = H(α)

Ti (θi0) +
(
H(α)

Ti (θ̂i)−H
(α)
Ti (θ̂i)−H(α)

Ti (θi0) +H
(α)
Ti (θi0)

)
+H

(α)
Ti (θ̂i)−H

(α)
Ti (θi0). (A.4)
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Recalling the definitions made in Assumption B5 and the bounds in Assumption B4, expand the

differentiable part of H
(α)
Ti around θi0 to find

H
(α)
Ti (θ̂i)−H

(α)
Ti (θi0) = −E′

i(β̂ − β0)− φi(α̂i − αi0)

+Op

(
∥β̂ − β0∥2

)
+Op

(
(α̂i − αi0)

2
)
+ (λT /T ) (sgn(α̂i)− sgn(αi0)) .

Using the last expression and equation (A.4), solve for α̂i − αi0 to find

α̂i − αi0 = −φ−1
i E′

i(β̂ − β0) + φ−1
i

(
H(α)

Ti (θi0)−
λT
T

sgn(αi0)

)
+ φ−1

i

(
H(α)

Ti (θ̂i)−H
(α)
Ti (θ̂i)−H(α)

Ti (θi0) +H
(α)
Ti (θi0)

)
− φ−1

i

(
H(α)

Ti (θ̂i)−
λT
T

sgn(α̂i)

)
+Op

(
∥β̂ − β0∥2

)
+Op

(
(α̂i − αi0)

2
)
. (A.5)

Similarly, expand H
(β)
Ti around θi0, noting H

(β)
Ti (θi0) = 0p, to find

H
(β)
Ti (θ̂i) = −Ji(β̂ − β0)−Ei(α̂i − αi0) + op(∥β̂ − β0∥) +Op

(
(α̂i − αi0)

2
)
. (A.6)

Substituting (A.5) in equation (A.6), after simplification, we obtain

H
(β)
Ti (θ̂i) = −(Ji − φ−1

i EiE
′
i)(β̂ − β0)− φ−1

i Ei

(
H(α)

Ti (θi0)−
λT
T

sgn(αi0)

)
− φ−1

i Ei

(
H(α)

Ti (θ̂i)−H
(α)
Ti (θ̂i)−H(α)

Ti (θi0) +H
(α)
Ti (θi0)

)
+ φ−1

i Ei

(
H(α)

Ti (θ̂i)−
λT
T

sgn(α̂i)

)
+ op(∥β̂ − β∥) +Op

(
(α̂i − αi0)

2
)

(A.7)

Once again, for each i we have

H(β)
Ti (θ̂i) = H(β)

Ti (θi0) +
(
H(β)

Ti (θ̂i)−H
(β)
Ti (θ̂i)−H(β)

Ti (θi0)
)
+H

(β)
Ti (θ̂i). (A.8)

Substitute (A.8) into the left-hand side of (A.7) and solve for β̂ − β0. Rearrange to find

(Ji − φ−1
i EiE

′
i)(β̂ − β0) + op(∥β̂ − β∥) = −φ−1

i Ei

(
H(α)

Ti (θi0)−
λT
T

sgn(αi0)

)
+H(β)

Ti (θi0)

− φ−1
i Ei

(
H(α)

Ti (θ̂i)−H
(α)
Ti (θ̂i)−H(α)

Ti (θi0) +H
(α)
Ti (θi0)

)
+
(
H(β)

Ti (θ̂i)−H
(β)
Ti (θ̂i)−H(β)

Ti (θi0) +H
(β)
Ti (θi0)

)
+ φ−1

i Ei

(
H(α)

Ti (θ̂i)−
λT
T

sgn(α̂i)

)
−H(β)

Ti (θ̂i) +Op

(
(α̂i − αi0)

2
)
. (A.9)

It can be verified that for each i,
∣∣∣H(α)

Ti (θ̂i)
∣∣∣ ≤ 1/T (for λT < min{τ, 1 − τ}T ). That implies the

i-th individual effect estimate α̂i is between the (τ − (λT + 1)/T )-th and (τ + (λT + 1)/T )-th sample
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quantiles of the unit-i observations {yit − x′
itβ̂}Tt=1. Therefore

H(α)
Ti (θ̂i)−

λT
T

sgn(α̂i) =
1

T

T∑
t=1

(
τ − I(yit − x′

itβ̂ ≤ α̂i)
)
= Op(λT /T ). (A.10)

Similarly, H(β)
Ti (θ̂i) = Op(λT /T ). Now define K(θ)

Ti (θi) = H(β)
Ti (θi)− φ−1

i Ei(H
(α)
Ti (θi)− (λT /T ) sgn(αi)),

K
(θ)
Ti (θi) = E

[
K(θ)

Ti (θi)
]
and DN = 1

N

∑N
i=1(Ji−φ−1

i EiE
′
i). Averaging equation (A.9) over i and using

the above definitions and (A.10) we have

β̂ − β0 + op

(
∥β̂ − β0∥

)
= D−1

N

1

N

N∑
i=1

K(θ)
Ti (θi0)

+D−1
N

1

N

N∑
i=1

(
K(θ)

Ti (θ̂i)−K
(θ)
Ti (θ̂i)−K(θ)

Ti (θi0) +K
(θ)
Ti (θi0)

)
+Op (λT /T ) +Op

(
sup
i
(α̂i − αi0)

2

)
. (A.11)

Next, we establish the rates of convergence for the estimators. Step 2 of the proof of Theorem 3.2

of Kato, Galvao, and Montes-Rojas (2012) shows that if supi |α̂i − αi0| ∨ ∥β̂ − β0∥ = Op(δN ), then for

dNT = (| log δN |/T ) ∨ (δN | log δN |/T )1/2,∥∥∥∥∥ 1

N

N∑
i=1

K(θ)
Ti (θ̂i)−K

(θ)
Ti (θ̂i)−K(θ)

Ti (θi0) +K
(θ)
Ti (θi0)

∥∥∥∥∥ = Op(dNT ) = op(T
−1/2), (A.12)

where the second equality follows from the consistency of θ̂. The first term on the right-hand side

of (A.11) is Op((NT )
−1/2) = op(T

−1/2). Then, we have

∥β̂ − β0∥ = op(T
−1/2) +Op(T

−1λT ) +Op

(
sup
i
(α̂i − αi0)

2

)
. (A.13)

Using (A.13), we find that with probability approaching 1, there is some K such that

sup
i

|α̂i − αi0| ≤ K sup
i

∣∣∣∣H(α)
Ti (θi0)−

λT
T

sgn(αi0)

∣∣∣∣
+K sup

i

∥∥∥H(α)
Ti (α̂i)−H

(α)
Ti (α̂i)−H(α)

Ti (αi0) +H
(α)
Ti (αi0)

∥∥∥+Op(T
−1λT ) + op(T

−1/2).

The first term in the above sum is mean zero and bounded. Hoeffding’s inequality implies that for

some K,

P
{
sup
i

∣∣∣H(α)
Ti (θi0)−

λT
T

sgn(αi0)
∣∣∣ > T−1/2(logN)1/2K

}
≤

N∑
i=1

P

{∣∣∣∣H(α)
Ti (θi0)−

λT
T

sgn(αi0)

∣∣∣∣ > T−1/2(logN)1/2K

}
≤ 2N1−K2/2,
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so that supi |H
(α)
Ti (θi0) − (λT /T ) sgn(αi0)| = Op(T

−1/2(logN)1/2). Step 3 of the proof of Theorem 3.2

of Kato, Galvao, and Montes-Rojas (2012) implies that

sup
i

∥∥∥H(α)
Ti (α̂i)−H

(α)
Ti (α̂i)−H(α)

Ti (αi0) +H
(α)
Ti (αi0)

∥∥∥ = op(T
−1/2(logN)1/2).

Together, these estimates imply that if λT = op(T
1/2(logN)1/2), then

sup
i

|α̂i − αi0| = Op

(
T−1/2(logN)1/2

)
, (A.14)

and via (A.13) that

∥β̂ − β0∥ = op

(
T−1/2(logN)1/2

)
. (A.15)

The condition on λT and the argument of Kato, Galvao, and Montes-Rojas (2012) implies that if

T−1N2(logN)3 → 0, we may rewrite equation (A.11) as

√
NT (β̂ − β0) = D−1

N

1√
NT

N∑
i=1

T∑
t=1

(xit − φ−1
i Ei)ψτ (yit − x′

itβ0 − αi0) + op(1),

and the Lyapunov Central Limit Theorem implies that
√
NT (β̂ − β0)

d−→ N (0,Ω). �

Proof of Theorem 3. In this proof, the notation X∗ p∗→ X denotes convergence in probability of

X∗ to X under the resampling distribution, conditional on the observed sample S. Similarly, let

E∗ [·] = E [·|S] and P∗{·} = P{·|S} denote the expected value operator and probability calculated

conditional on the data, and stochastic order symbols Op∗(·) and op∗(·) are interpreted conditional on

the observed sample. The proof is divided in two parts. The first part of the proof shows consistency

by demonstrating that feasible and infeasible versions of the wild residual bootstrap estimator are

equivalent as N and T → ∞. The second part of the proof establishes asymptotic normality of θ∗.

For all i and t let y∗it = x′
itβ̂ + α̂i +wit|ûit|, and let θ∗ = (β∗′ ,α∗′)′ be the solution of minθ M∗

NT (θ)

where

M∗
NT (θ) =

1

NT

N∑
i=1

T∑
t=1

ρτ
(
y∗it − x′

itβ − αi

)
+

λT
NT

N∑
i=1

|αi|.

Also define the i-th contribution to the objective function by M∗
Ti,

M∗
Ti(θi) =

1

T

T∑
t=1

ρτ
(
y∗it − x′

itβ − αi

)
+
λT
T

|αi|,

so that M∗
NT = 1

N

∑
iM∗

Ti. Before examining M∗
NT and θ∗, consider an infeasible resampled objective

function using the true error terms instead of the estimated residuals: let y◦it = x′
itβ0 + αi0 + wit|uit|

and define

M◦
Ti(θi) =

1

T

T∑
t=1

ρτ
(
y◦it − x′

itβ − αi

)
+
λT
T

|αi|.

Let θ◦ be the minimizer of 1
N

∑
iM◦

Ti(θi). As in the proof of Theorem 1, we define ∆◦
Ti(θi) = M◦

Ti(θi)−
M◦

Ti(θi0). Note that E∗ [∆◦
Ti(θi)] is minimized at θi0.
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Define the ϕ ball Bi(ϕ) := {θi : ∥θi − θi0∥1 ≤ ϕ} around θi0 and for θi outside of the ball, define the

weight ri = ϕ/∥θi − θi0∥1 and midpoint θ̄i = riθi + (1− ri)θi0. Then

ri(M◦
Ti(θi)−M◦

Ti(θi0) ≥ E∗ [∆◦
Ti(θ̄i)

]
+
(
∆◦

Ti(θ̄i)− E∗ [∆◦
Ti(θ̄i)

])
,

Similarly to the consistency proof, we have

E∗ [∆◦
Ti(θi)] =

λT
T

{|αi| − |αi0|}

+ E∗

[
1

T

T∑
t=1

∫ lit(θi)

0
(I(wit|uit| ≤ s)− I(wit|uit| ≤ 0))ds

]
(A.16)

where lit(θi) = x′
it(β − β0) + (αi − αi0). By Lemma S.2, equation (A.16) can be rewritten

E∗ [∆◦
Ti(θi)] =

λT
T

{|αi| − |αi0|}+
1

T

T∑
t=1

fi(0|xit)lit(θi)
′lit(θi) + op(sup

t
∥lit(θi)∥2).

For θ̄i on the ϕ ball around θi0, there is some ϵϕ > 0 such that

E∗ [∆◦
Ti(θ̄i)

]
≥ λT

T
{|ᾱi| − |αi0|}+ ϵϕ

where ϵϕ > 0 and

ri∆
◦
Ti(θi) ≥ ϵϕ +

λT
T

(|ᾱi| − |αi0|) +
(
∆◦

Ti(θ̄i)− E∗ [∆◦
Ti(θ̄i)

])
. (A.17)

Then, similarly to the proof of consistency of θ̂, the minimizer θ◦ is consistent if the following

probability is satisfied:

sup
1≤i≤N

P∗
{

sup
θi,∈Bi(ϕ)

∣∣∣(λ/T )(|αi| − |αi0|)
∣∣∣ + ∣∣∣∆◦

Ti(θi) − E∗ [∆◦
Ti(θi)]

∣∣∣ ≥ ϵϕ

}
= op(N

−1). (A.18)

The steps to show that θ◦ p∗→ θ0 from this point on are identical to those in Theorem 1.

Having established the consistency of the infeasible estimator θ◦, denoting

∆∗
Ti(θi) = M∗

Ti(θi)−M∗
Ti(θ̂i) =

1

T

T∑
t=1

(
ρτ (y

∗
it − x′

itβ − αi)− ρτ (y
∗
it − x′

itβ̂ − α̂i)
)
+
λT
T

(|αi| − |α̂i|),

we consider supθi∈Θ |∆∗
Ti(θi)−∆◦

Ti(θi)|. Notice that for each i,

sup
θi∈Rp+1

|∆∗
Ti(θi)−∆◦

Ti(θi)| =

∣∣∣∣∣ 1T
T∑
t=1

(
ρτ

(
wit|ûit| − x′

it(β − β̂)− (αi − α̂i)
)

− ρτ
(
wit|uit| − x′

it(β − β0)− (αi − αi0)
)

− (ρτ (wit|ûit|)− ρτ (wit|uit|))
)
+
λT
T

(|α̂i| − |αi0|)

∣∣∣∣∣
≤M

(
1 +

2

T

T∑
t=1

|wit|

)∥∥∥β̂ − β0

∥∥∥+(1 + λT
T

+
2

T

T∑
t=1

|wit|

)
|α̂i − αi0| . (A.19)
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Using the consistency of θ̂i for all i and as long as λT /T = Op(1), the average of these differences over

i is op∗(1) as N,T → ∞ and also

sup
θi∈Rp+1

|∆∗
Ti(θi)− E∗ [∆∗

Ti(θi)]− {∆◦
Ti(θi)− E∗ [∆◦

Ti(θi)]}| = op∗(1)

as N,T → ∞. Finally, replacing the ∆◦ terms with ∆∗ terms in (A.17) and (A.18) and approximating

the inequalities with ∆◦ terms implies that θ∗ p∗→ θ◦. Therefore, the wild residual bootstrap estimator

θ∗ is consistent because, as demonstrated above, θ◦ p∗→ θ0.

Next consider the weak convergence of the estimator. Define the i-th contribution to the scores for

M∗
NT with respect to β and αi,

H(β)∗
Ti (θi) =

1

T

T∑
t=1

xitψτ (u
∗
it − x′

it(β − β̂)− (αi − α̂i))

and

H(α)∗
Ti (θi) =

1

T

T∑
t=1

ψτ (u
∗
it − x′

it(β − β̂)− (αi − α̂i)) +
λT
T

sgn(αi),

where u∗it = wit|ûit|.

Write

H(α)∗
Ti (θ∗

i ) = H(α)∗
Ti (θ̂i) +

(
H(α)∗

Ti (θ∗
i )−H(α)∗

Ti (θ̂i)− E∗
[
H(α)∗

Ti (θ∗
i )−H(α)∗

Ti (θ̂i)
])

+ E∗
[
H(α)∗

Ti (θ∗
i )−H(α)∗

Ti (θ̂i)
]

(A.20)

For the next part, make the following definitions, which are sample analogs to quantities defined

in Assumption B5. Let φ̄i = 1
T

∑
t fi(0|xit), Ēi = 1

T

∑
t fi(0|xit)xit, J̄i = 1

T

∑
t fi(0|xit)xitx

′
it and

D̄N = 1
N

∑
i(J̄i − φ̄−1

i ĒiĒ
′
i).

Part 2 of Lemma S.2 and θ∗
i

p∗→ θ̂i imply that for all 1 ≤ i ≤ N ,

E∗
[
H(α)∗

Ti (θ∗
i )−H(α)∗

Ti (θ̂i)
]
= − 1

T

T∑
t=1

fi(0|xit)
(
x′
it(β

∗ − β̂) + (α∗
i − α̂i)

)
+
λT
T

(sgn(α∗
i )− sgn(α̂i))

+Op∗

(
(α∗

i − α̂i)
2 ∨ ∥β∗ − β̂∥2

)
+Op

(
(α̂i − αi0)

2 ∨ ∥β̂ − β0∥2
)
. (A.21)

Rewrite (A.20) using the above equation as

α∗
i − α̂i = −φ̄−1

i Ē′
i(β

∗ − β̂) + φ̄−1
i

(
H(α)∗

Ti (θ̂i)−
λT
T

sgn(α̂i)

)
+ φ̄−1

i

(
H(α)∗

Ti (θ∗
i )−H(α)∗

Ti (θ̂i)− E∗
[
H(α)∗

Ti (θ∗
i )−H(α)∗

Ti (θ̂i)
])

− φ̄−1
i

(
H(α)∗

Ti (θ∗
i )−

λT
T

sgn(α∗
i )

)
+Op∗

(
(α∗

i − α̂i)
2 ∨ ∥β∗ − β̂∥2

)
+Op

(
(α̂i − αi0)

2 ∨ ∥β̂ − β0∥2
)
.

(A.22)
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Similarly,

H(β)∗
Ti (θ∗

i ) = H(β)∗
Ti (θ̂i) +

(
H(β)∗

Ti (θ∗
i )−H(β)∗

Ti (θ̂i)− E∗
[
H(β)∗

Ti (θ∗
i )−H(β)∗

Ti (θ̂i)
])

+ E∗
[
H(β)∗

Ti (θ∗
i )−H(β)∗

Ti (θ̂i)
]
. (A.23)

Lemma S.2 can be used again to calculate the estimate

E∗
[
H(β)∗

Ti (θ∗
i )−H(β)∗

Ti (θ̂i)
]
= −J̄i(β

∗ − β̂)− Ēi(α
∗
i − α̂i)

+ op∗
(
∥β∗ − β̂∥

)
+ op

(
∥β̂ − β0∥

)
+Op∗

(
sup
i
(α∗

i − α̂i)
2

)
+Op

(
sup
i
(α̂i − αi0)

2

)
. (A.24)

Now analogous to the proof Theorem 2, define

K(θ)∗
Ti (θi) = H(β)∗

Ti (θi)− φ̄−1
i Ēi

(
H(α)∗

Ti (θi)−
λT
T

sgn(αi)

)
(A.25)

and note that K(θ)∗
Ti (θ∗

i ) = Op∗(λT /T ). Then equation (A.23) can be rewritten as(
J̄i − φ̄−1

i ĒiĒ
′
i

)
(β∗ − β̂) + op∗

(
∥β∗ − β̂∥

)
+ op

(
∥β̂ − β0∥

)
= K(θ)∗

Ti (θ̂i)

+
(
K(θ)∗

Ti (θ∗
i )−K(θ)∗

Ti (θ̂i)− E∗
[
K(θ)∗

Ti (θ∗
i )−K(θ)∗

Ti (θ̂i)
])

+Op∗(T
−1λT ) +Op∗

(
sup
i
(α∗

i − α̂i)
2

)
+Op

(
sup
i
(α̂i − αi0)

2

)
. (A.26)

Rearrange and average over i to find

β∗ − β̂ + op∗
(
∥β∗ − β̂∥

)
+ op

(
∥β̂ − β0∥

)
= D̄−1

N

1

N

N∑
i=1

K(θ)∗
Ti (θ̂i)

+ D̄−1
N

1

N

N∑
i=1

(
K(θ)∗

Ti (θ∗
i )−K(θ)∗

Ti (θ̂i)− E∗
[
K(θ)∗

Ti (θ∗
i ) +K(θ)∗

Ti (θ̂i)
])

+Op∗(T
−1λT ) +Op∗

(
sup
i
(α∗

i − α̂i)
2

)
+Op

(
sup
i
(α̂i − αi0)

2

)
. (A.27)

Next we find the stochastic order of the second term on the right-hand side of (A.27). With Xit =

(x′
it, 1)

′, letX ′
it∆ = x′

it(β̂−β0)+(α̂i−αi0) andX ′
itδ = x′

it(β
∗−β̂)+(α∗

i−α̂i) and write ûit = uit+X ′
it∆.

Define the functions gδ(w, u,X,∆) = I(w|u + X ′∆| − X ′δ < 0) − I(w|u + X ′∆| < 0). The class

of functions gδ − E∗ [gδ] is a bounded, mean-zero VC-subgraph class of functions. Finally, letting

c = min{c1, c2}, where c1, c2 were used in A2, the unconditional second moment of gδ satisfies

E
[
(gδ(Zit))

2
]
= E

[
I(|wit||uit +X ′

it∆| < |X ′
itδ|)

]
≤ E

[
I(|uit +X ′

it∆| < |X ′
itδ|/c)

]
= E

[
Fi(−X ′

it∆+ |X ′
itδ|/c|Xit)− Fi(−X ′

it∆− |X ′
itδ|/c|Xit)

]
≤ K(M + 1)∥δ∥, (A.28)
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the last inequality holding due to Assumption B4. This implies that E∗ [(gδ(Zit)− E∗ [gδ(Zit)])
2
]
≤

K(M+1)∥δ∥ with probability approaching 1. Then Proposition B.1 of Kato, Galvao, and Montes-Rojas

(2012) implies that with δ∗N = supi |α∗
i − α̂i|+ ∥β∗ − β̂∥ and d∗NT = | log δ∗N |/T ∨

√
δ∗N | log δ∗N |/T ,

D̄−1
N

1

N

N∑
i=1

(
K(θ)∗

Ti (θ∗
i )−K(θ)∗

Ti (θ̂i)− E∗
[
K(θ)∗

Ti (θ∗
i ) +K(θ)∗

Ti (θ̂i)
])

= Op∗(d
∗
NT ) = op∗(T

−1/2), (A.29)

where the last equality comes from the consistency of θ∗.

Combine (A.27), (A.29), the fact that the first term on the right-hand side of (A.27) isOp∗((NT )
−1/2) =

op∗(T
−1/2) and supi |α̂i − αi0| = Op

(
T−1/2(logN)1/2

)
= op(T

−1/2) to write

∥β∗ − β̂∥ = Op∗

(
sup
i
(α∗

i − α̂i)
2

)
+Op∗(T

−1λT ) + op∗
(
T−1/2

)
+ op

(
T−1/2

)
. (A.30)

Then the preliminary rates of convergence of the coordinates of θ∗
i can be established similarly to the

proof of asymptotic normality of θ̂i. For example, using (A.22),

sup
i

|α∗
i − α̂i| ≤ K

{
sup
i

∣∣∣∣H(α)∗
Ti (θ̂i)−

λT
T

sgn(α̂i)

∣∣∣∣
+ sup

i

∣∣∣H(α)∗
Ti (θi)−H(α)∗

Ti (θ̂i)− E∗
[
H(α)∗

Ti (θ∗
i ) +H(α)∗

Ti (θ̂i)
]∣∣∣}

+Op∗(T
−1λT ) + op∗(T

−1/2) + op(T
−1/2) (A.31)

with probability approaching 1. These terms can be bounded by following the calculations similar to the

asymptotic normality proof, conditional on the data, using the functions gδ(Z) defined earlier, resulting

in supi |α∗
i − α̂i| = Op∗(T

−1/2(logN)1/2). Using (A.30), this implies ∥β∗ − β̂∥ = op∗(T
−1/2(logN)1/2).

The rest of the proof proceeds as in the proof of asymptotic normality of θ̂, with the addition of the

moment conditions on the wit and the convergence of φ̄i, Ēi and J̄i to their population counterparts

for all i using the law of large numbers as N,T → ∞. �

Lemma 2. Suppose that Assumptions A1-A3 and B1-B3 hold. If θi for 1 ≤ i ≤ N lie in a compact

set and supN,T E
[
|
√
NλT /

√
T |q
]
<∞ for q > 2, then supN,T E∗

[
∥
√
NT (β∗ − β̂)∥q

]
<∞.

Proof of Lemma 2. Follow the steps in the expansions used in Theorem 3 but write out the remainder

terms explicitly. Specifically, rewrite (A.21) as

E∗
[
H(α)∗

Ti (θ∗
i )−H(α)∗

Ti (θ̂i)
]
= −Ē′

i(β
∗ − β̂)− φ̄i(α

∗
i − α̂i) + (λT /T ) (sgn(α

∗
i )− sgn(α̂i)) +R

(α)∗
i

where

R
(α)∗
i := E∗

[
1

T

T∑
t=1

ψτ (wit|ûit| − x′
it(β

∗ − β̂)− (α∗
i − α̂i))−

1

T

T∑
t=1

ψτ (wit|ûit|)

]
+ Ē′

i(β
∗ − β̂) + φ̄i(α

∗
i − α̂i).
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Similarly define

R
(β)∗
i := E∗

[
H(β)∗

Ti (θ∗
i )−H(β)∗

Ti (θ̂i)
]
+ J̄i(β

∗ − β̂) + Ēi(α
∗
i − α̂i)

which was represented by error terms in equation (A.24) in the proof of Theorem 3. Then (A.27) can

be equivalently written

D̄N (β∗ − β̂)− 1

N

N∑
i=1

(
R

(β)∗
i − φ̄−1

i ĒiR
(α)∗
i

)
+Op∗(λT /T ) =

1

N

N∑
i=1

K(θ)∗
Ti (θ̂i)

+
1

N

N∑
i=1

(
K(θ)∗

Ti (θ∗
i )−K(θ)∗

Ti (θ̂i)− E∗
[
K(θ)∗

Ti (θ∗
i )−K(θ)∗

Ti (θ̂i)
])
. (A.32)

The left-hand side includes the remainder terms, which are functions of the difference between bootstrap

parameter estimate and original-sample parameter estimate. Assuming the parameters lie in a compact

set implies that the remainder terms are uniformly bounded and have q-th moment. The q-th moment

of the other remainder is finite by assumption. The rest of the proof shows that the right hand side is

uniformly q-integrable.

Consider the first term on the right-hand side of (A.32), scaled by
√
NT :

√
NTK(θ)∗

Ti (θ̂i) =
1√
NT

N∑
i=1

T∑
t=1

(xit − φ̄−1
i Ēi)(τ − I(wit|ûit| ≤ 0)). (A.33)

The bounds on xit and the density of the errors imply that φ̄−1
i Ēi are bounded. Given the conditions

on GW , the expected value of each summand is zero conditional on the data.

Let Xit = (x′
it, 1)

′, Zit = (wit, uit,Xit) and ∆ ∈ Rp+1. Define the class of functions H = {h∆(Z) :=

I(w|u + X ′∆| < 0) : ∆ ∈ Rp+1}. This class of indicators is a VC subgraph class. To see this, first

rewrite

{w|u+X ′∆| < 0} = {w|u+X ′∆| < 0} ∩ {w < 0} ∪ {w|u+X ′∆| < 0} ∩ {w > 0}.

For w positive (the opposite case is analogous), the class of sets {w|u + X ′∆| < 0} ∩ {w > 0} is

equivalent to the class {|u + X ′∆| < 0} = {u + X ′∆ < 0} ∩ {−u − X ′∆ < 0}. Each of these sets

forms a VC class (van der Vaart and Wellner, 1996, Problem 2.6.14) and the class of their intersections

is also a VC class (van der Vaart and Wellner, 1996, Lemma 2.6.17). Then the class of unions of sets

formed in this way is also a VC class, and H is a VC subgraph class.

Because of the fact that the indicators in equation (A.33) are a VC subgraph class bounded by 1,

their uniform covering number satisfies supQN(ϵ,H, L2(Q)) ≤ A
(
1
ϵ

)v
for some A, v and 0 < ϵ < 1 and

Q a probability measure. This implies that

J(1,H) := sup
Q

∫ 1

0

√
1 + logN(ϵ∥F∥Q,2,H, L2(Q))dϵ <∞ (A.34)

where the supremum is taken over all discrete probability measures Q (van der Vaart and Wellner,

1996, p. 239). Then Theorem 2.14.1 of van der Vaart and Wellner (1996) implies that there exists a
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constant C such that

max
1≤i≤N

sup
T≥1

E

[∥∥∥∥∥ 1√
T

T∑
t=1

(xit − φ̄−1
i Ēi)(τ − I(wit|ûit| ≤ 0))

∥∥∥∥∥
q]

≤ CJ(1,H).

Then van der Vaart and Wellner (1996, Problem 2.3.4) implies that

sup
N,T

E

[∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

(xit − φ̄−1
i Ēi)(τ − I(wit|ûit| ≤ 0))

∥∥∥∥∥
q]
<∞.

For the second term, it is sufficient to consider, for any i,

sup
T≥1

E

[∣∣∣∣ 1√
T

T∑
t=1

ψτ

(
wit|ûit| − x′

it(β
∗ − β̂)− (α∗

i − α̂i)
)
− ψτ (wit|ûit|)

− E∗
[
ψτ

(
wit|ûit| − x′

it(β
∗ − β̂)− (α∗

i − α̂i)
)
− ψτ (wit|ûit|)

] ∣∣∣∣q].
Let Xit = (x′

it, 1)
′, Zit = (wit, uit,Xit) and ξ = (∆′, δ′)′ ∈ R2(p+1). Define the functions gξ(Z) =

I(w|u+X ′∆|−X ′δ < 0)−I(w|u+X ′∆| < 0) and the class of functions G = {gξ−E [gξ] : ξ ∈ R2(p+1)}.
Then the above display is finite if

E

[∣∣∣∣∣supξ 1√
T

T∑
t=1

(gξ(Zit)− E∗ [gξ(Zit)])

∣∣∣∣∣
q]
<∞.

However, manipulations similar to the previous step show that G is also a VC-subgraph class, and

therefore, using (A.34) for the class G, we have for another constant C that

max
1≤i≤N

sup
T≥1

E
[∥∥∥√T (H(α)∗

Ti (θi)−H(α)∗
Ti (θ̂i)− E∗

[
H(α)∗

Ti (θ∗
i ) +H(α)∗

Ti (θ̂i)
])∥∥∥q] ≤ CJ(1,G) <∞.

This implies

sup
N,T

E

[∥∥∥∥∥√NT 1

N

N∑
i=1

(
K(θ)∗

Ti (θi)−K(θ)∗
Ti (θ̂i)− E∗

[
K(θ)∗

Ti (θ∗
i ) +K(θ)∗

Ti (θ̂i)
])∥∥∥∥∥

q]
<∞.

The cr inequality implies that the right-hand side of (A.32) is uniformly q-integrable. Under the

assumption that D̄N is invertible, β̂ − β0 must be as well. �

Proof of Theorem 4. This proof is similar to Theorem 3.2, part (i) of Hagemann (2017). Let Z∗
NT =

√
NT (β∗ − β̂). Theorem 3 shows that Z∗

NT
d−→ Z in probability, where Z is defined by the condition

√
NT (β̂−β0)

d−→ Z. E∗
[
Z∗

NTZ
∗′
NT

]
p−→ E [ZZ ′] if and only if each coordinate converges in probability,

so assume that p = 1 and we may deal with the 1-dimensional random variables Z∗
NT and Z. For any

K > 0, write

|E∗ [Z∗2
NT

]
− E

[
Z2
]
| ≤ E∗ [Z∗2

NT

]
− E∗ [min{Z∗2

NT ,K}
]

+
∣∣E∗ [min{Z∗2

NT ,K}
]
− E

[
min{Z2,K}

]∣∣+ ∣∣E [min{Z2,K}
]
− E

[
Z2
]∣∣ .
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The portmanteau lemma (van der Vaart, 1998) implies that E∗ [g(Z∗
NT )]

p−→ E [g(Z)] for all continuous

and bounded functions g, and that the second term on the right-hand side converges in probability to

zero. The first and third terms on the right-hand side are similar; consider just the first term. Note

that E∗ [Z∗2
NT

]
− E∗ [min{Z∗2

NT ,K}
]
≤ E∗ [Z∗2

NT I(Z
∗2
NT > K)

]
. For any ϵ > 0,

E
[
E∗ [Z∗2

NT I(Z
∗2
NT > K)

]]
≤ sup

N,T
E
[
Z

∗2(1+ϵ)
NT

]
K−ϵ

where the expectation on the right-hand side is taken with respect to all the random variables. Lemma 2

(letting q = 2(1+ϵ) there) implies that the expectation on the right-hand side is finite, so the right-hand

side converges to zero as K → ∞. The Markov inequality implies the result. �

Proof of Theorem 5. The proof of this theorem requires minor modifications to that of Theorems 1 and

2. Therefore we only specify the differences here.

To show consistency, first note that Assumption B4 implies Assumption B2, used towards the be-

ginning of the consistency proof. Next, the bound using Hoeffding’s inequality must be replaced.

Imposing the condition on λT and choosing q = [
√
T ] and s = 2 logN , Corollary C.1 of Kato, Galvao,

and Montes-Rojas (2012) implies that

max
1≤i≤N

P

{
sup

θi∈Bi(ϕ)

∣∣∣(λT /T )(|αi| − |αi0|)
∣∣∣+ ∣∣∣∆Ti(θi)− E [∆Ti(θi)]

∣∣∣ ≥ ϵϕ

}
= o(N−1),

which implies (along with the rest of the argument in Theorem 1) consistency of the estimator.

To show asymptotic normality, there are several terms that should be bounded under the dependent

error condition. The proof follows that of Theorem 2 until equation (A.11). The arguments leading to

an analog of equation (A.14) are as in the proof of Theorem 5.1 of Kato, Galvao, and Montes-Rojas

(2012) — specifically, use Corollary C.1 and Lemma C.1 with q = [T c] for some sufficiently small

0 < c < 1 and s = 2 logN to show that∥∥∥∥∥ 1

N

N∑
i=1

K(θ)
Ti (θ̂i)−K

(θ)
Ti (θ̂i)−K(θ)

Ti (θi0) +K
(θ)
Ti (θi0)

∥∥∥∥∥ = Op(T
−1/2δ

1/4
N (logN)1/2 ∨ T c−1 logN)

= op(T
−1/2(logN)1/2)

and similarly, using the same q = [T c] and s = 2 logN ,

sup
i

∣∣∣∣H(α)
Ti (θi0)−

λT
T

sgn(αi0)

∣∣∣∣ = Op(T
−1/2(logN)1/2)

sup
i

∥∥∥H(α)
Ti (α̂i)−H

(α)
Ti (α̂i)−H(α)

Ti (αi0) +H
(α)
Ti (αi0)

∥∥∥ = op(T
−1/2(logN)1/2).

To show the asymptotic normality of the term analogous to the final sum in the proof of Theorem 2,

note that all the K(θ)
Ti (θi0) which are defined below equation (A.10) are independent by Assumption C1.

For a given i, (τ−I(yit ≤ x′
itβ0+αi0))(xit−φ−1

i Ei) are uniformly bounded so supi E
[
|K(θ)

Ti (θi0)|3
]
<∞,

while limN→∞
1
N

∑N
i=1Var(K

(θ)
Ti (θi0)) = Ṽ which is positive definite by assumption. �
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Proof of Theorem 6. The proof is a modification of the proof of Theorem 3, following the developments

in Theorem 5. To save space and avoid repetition, we concentrate our attention on the modifications

of the proof.

For consistency we need a bootstrap equivalent of (A.18). Apply the Bernstein inequality for β-

mixing sequences in Corollary C.1 of Kato, Galvao, and Montes-Rojas (2012), choosing q = [
√
T ] and

s = 2 logN . Because of the condition on λT we concentrate on the second term of (A.18). Under

Assumption C1, we have that

max
1≤i≤N

P∗
{

sup
θi,∈Bi(ϕ)

∣∣∣∆◦
Ti(θi)− E∗ [∆◦

Ti(θi)]
∣∣∣ ≥ ϵϕ

}
= op

(
N−1

)
.

The proof of asymptotic normality is analogous to that of Theorem 3 through expansion (A.27).

The condition on λT and Theorem 2 imply that several of the remainder terms are small, and we need

only make one order estimate in (A.29) and two estimates in (A.31) under the β-mixing assumption.

First, find an expression similar to (A.29) under Assumption C1. The calculations in Theorem 3

leading up to (A.28) imply that E∗ [(gδ(Zit))
2
]
≤ C∥δ∥ with probability approaching 1, and the

Cauchy-Schwarz inequality implies similarly that for any δ1, δ2, E
∗ [|gδ1(Zit) · gδ2(Zit)|2

]
≤ C∥δ1∥∥δ2∥

with probability approaching 1. Therefore Lemma C.1 of Kato, Galvao, and Montes-Rojas (2012)

implies that for any positive integer q, with δ∗N = supi |α∗
i − α̂i|+ ∥β∗ − β̂∥,

Var∗

(
1
√
q

q∑
t=1

gδ(Zit)

)
≤ (δ∗N )1/2

with probability approaching 1. For some c ∈ (0, 1) let q = [T c] and s = 2 logN , and apply Corollary

C.1 of Kato, Galvao, and Montes-Rojas (2012) to find

D̄−1
N

1

N

N∑
i=1

(
K(θ)∗

Ti (θ∗
i )−K(θ)∗

Ti (θ̂i)− E∗
[
K(θ)∗

Ti (θ∗
i ) +K(θ)∗

Ti (θ̂i)
])

= Op∗

(
T−1/2(δ∗N )1/4(logN)1/2 ∨ T c−1 logN

)
. (A.35)

Second, consider the expansion (A.31) under Assumption C1. The second term is op∗(T
−1/2) using

the result from the previous paragraph. The first term is an average of (under the bootstrap measure)

mean-zero terms. It can be verified directly that E∗ [ψ2
τ (u

∗
it)
]
= τ(1− τ) and E∗ [|ψτ (u

∗
it)ψτ (u

∗
is)|2

]
≤

τ2(1 − τ)2. Then Corollary C.1 of Kato, Galvao, and Montes-Rojas (2012) implies that (using s =

2 logN and q = [T c])

sup
i

∣∣∣∣H(α)∗
Ti (θ̂i)−

λT
T

sgn(α̂i)

∣∣∣∣ = Op∗

(
T−1/2(logN)1/2 ∨ T c−1 logN

)
. (A.36)

Now using (A.35) and (A.31) along with the rate condition on N and T and the condition on λT ,

we have (recalling definition (A.25))

√
NT (β∗ − β̂) = D̄−1

N

√
NT

1

N

N∑
i=1

K(θ)∗
Ti (θ̂i) + op∗(1) (A.37)
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Under conditions A1-A3, it is clear that E∗
[
K(θ)∗

Ti (θ̂i)
]
= 0 for all i, and

Var∗
(
K(θ)∗

Ti (θ̂i)
)
=

1

T

T∑
t=1

(xit − φ̄−1
i Ēi)(xit − φ̄−1

i Ēi)
′E∗ [ψ2

τ (u
∗
it)
]

+ 2

T−1∑
j=1

(1− j/T )(xit − φ̄−1
i Ēi)(xit+j − φ̄−1

i Ēi)
′E∗ [ψτ (u

∗
it)ψτ (u

∗
it+j)

]
.

It can be calculated directly that the expected values in the first sum on the right-hand side are all

τ(1 − τ). Therefore (given the convergence in probability of φ̄−1
i Ēi to φ

−1
i Ei) for consistent variance

estimation it is sufficient to show that,

plim
N,T→∞

1

N

N∑
i=1

T−1∑
j=1

(1− j/T )
(
E∗ [ψτ (u

∗
it)ψτ (u

∗
it+j)

]
− E [ψτ (uit)ψτ (uit+j)|xit,xit+j ]

)
= 0. (A.38)

For any (i, t) we have

E∗ [ψτ (u
∗
it)ψτ (u

∗
it+j)

]
= E∗ [(τ − I(u∗it < 0))(τ − I(u∗it+j < 0))

]
= E∗ [(τ − I(wit < 0))(τ − I(wit+j < 0))] = τ − 2τ2 + P∗{I(wit < 0, wit+j < 0)}.

Similarly,

E [ψτ (uit)ψτ (uit+j)|xit,xit+j ] = E [(τ − I(uit < 0))(τ − I(uit+j < 0))|xit,xit+j ]

= τ − 2τ2 + P {uit < 0, uit+j < 0|xitxit+j} .

Inserting these expressions in (A.38), it can be seen that A4 implies the variance is correctly estimated.

Finally, we apply a CLT for dependent sequences to (A.37). As in Theorem 5, we check a Lyapunov

condition on the sum of the K(θ)∗
Ti (θ̂i) terms by C1. By Assumptions B3, B4, and B5, ψτ (u

∗
it)(xit −

φ̄−1
i Ēi) is uniformly bounded. Moreover, under conditions C1 and C2 and the conditions on wit,

supi E
∗
[
|K(θ)∗

Ti (θ̂i)|3
]
= Op(1) and

∑N
i=1 E

∗
[
|K(θ)∗

Ti (θ̂i)|3
]
= op(N

3/2). This implies the result. �

Proof of Theorem 7. The proof of this result is identical to the proof of Theorem 2 through equa-

tion (A.11). Lemma S.3 in the supplementary appendix shows that

sup
i

|α̂i − αi0| = Op

(
∥β̂ − β0∥+ T−1/2(log T )1/2 + T−1λT

)
.

Rewriting (A.11) using this result (and given that T−2λT = o(T−1λT )),

β̂ − β0 = D−1
N

1

N

N∑
i=1

K(θ)
Ti (θi0) +D−1

N

1

N

N∑
i=1

(
K(θ)

Ti (θ̂i)−K
(θ)
Ti (θ̂i)−K(θ)

Ti (θi0) +K
(θ)
Ti (θi0)

)
+Op(T

−1λT ) +Op

(
∥β̂ − β0∥2 + T−1 log T

)
. (A.39)

To show the asymptotic normality of the first term, note that all the K(θ)
Ti (θi0) are independent across

i. For a given i, (τ−I(yit ≤ x′
itβ0+αi0))(xit−φ−1

i Ei) are uniformly bounded so supi E
[
|K(θ)

Ti (θi0)|3
]
<
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∞, while limN→∞
1
N

∑N
i=1Var(K

(θ)
Ti (θi0)) = V which is positive definite by assumption. These condi-

tions are sufficient to imply that a central limit theorem can be applied to the first term of (A.39).

Therefore this term is Op((NT )
−1/2).

Lemma S.4 shows that

D−1
N

1

N

N∑
i=1

(
K(θ)

Ti (θ̂i)−K
(θ)
Ti (θ̂i)−K(θ)

Ti (θi0) +K
(θ)
Ti (θi0)

)
= Op

(
∥β̂ − β0∥1/2T−1/2(log T )1/2 + T−1 log T + T−2/3N−1/2 + T−1(log T )1/2λ

1/2
T

)
. (A.40)

Then

∥β̂ − β0∥ = Op

(
(NT )−1/2

)
+Op

(
∥β̂ − β0∥1/2T−1/2(log T )1/2

)
+Op

(
T−1 log T

)
+Op(T

−1λT ) +Op

(
T−1(log T )1/2λ

1/2
T

)
.

Using the fact that 0 ≤ δ ≤ a+bδ1/2 ⇒ 0 ≤ δ ≤ 4max{a, b2} (“fact 1” from Galvao, Gu, and Volgushev

(2020)), we may shorten this to

∥β̂ − β0∥ = Op

(
(NT )−1/2

)
+Op

(
T−1 log T

)
+Op(T

−1λT ) +Op

(
T−1(log T )1/2λ

1/2
T

)
.

If λT = Op(log T ), the final three remainder terms have the same order. If NT−1(log T )2 → 0 then the

asymptotically normal term dominates, implying the result. �

Proof of Theorem 8. The proof of this theorem is identical to that of Theorem 3 up to (A.27), reprinted

here for convenience with some remainder terms changed using the assumption that λT = Op(log T )

and what is known of θ̂ from previous theorems:

β∗ − β̂ + op∗
(
∥β∗ − β̂∥

)
+ op

(
(NT )−1/2

)
= D̄−1

N

1

N

N∑
i=1

K(θ)∗
Ti (θ̂i)

+ D̄−1
N

1

N

N∑
i=1

(
K(θ)∗

Ti (θ∗
i )−K(θ)∗

Ti (θ̂i)− E∗
[
K(θ)∗

Ti (θ∗
i ) +K(θ)∗

Ti (θ̂i)
])

+Op∗(T
−1λT ) +Op∗

(
sup
i
(α∗

i − α̂i)
2

)
+Op∗

(
T−1 log T

)
. (A.41)

The inequalities of Lemma S.1.3 of Chao, Volgushev, and Cheng (2017) do not apply to the func-

tions in this expression because of the bootstrap weights in the functions. However, the results of

their subsection S.2.1 (which draw on Koltchinskii (2006) and Massart (2000)) may be used to tailor

appropriate concentration inequalities.
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Rewriting (A.22) with what is known thus far,

α∗
i − α̂i = Op∗

(
∥β∗ − β̂∥

)
+ φ̄−1

i

(
H(α)∗

Ti (θ̂i)−
λT
T

sgn(α̂i)

)
+ φ̄−1

i

(
H(α)∗

Ti (θ∗
i )−H(α)∗

Ti (θ̂i)− E∗
[
H(α)∗

Ti (θ∗
i )−H(α)∗

Ti (θ̂i)
])

+Op∗(λT /T ) +Op

(
T−1 log T

)
. (A.42)

Noting that

H(α)∗
Ti (θ̂i)−

λT
T

sgn(α̂i) =
1

T

T∑
t=1

ψτ (wit|ûit|),

this is a sum of mean-zero functions with variance bounded by τ(1 − τ) and that are members of a

VC-subgraph class as described in Lemma 2. Therefore equations S.2.2 and S.2.3 of Chao, Volgushev,

and Cheng (2017) may be combined with the union bound to find that

sup
i

∣∣∣∣H(α)∗
Ti (θ̂i)−

λT
T

sgn(α̂i)

∣∣∣∣ = Op∗

(
T−1/2(log T )1/2

)
.

Similarly, the terms in the second line of (A.42) were described as gδ in the proof of Theorem 3. When

T−1 is smaller than the maximal variance of the gδ in this class, that is, when ∥Cδ∥ > T−1, S.2.2 and

S.2.3 of Chao, Volgushev, and Cheng (2017) may be used again with the union bound to find that,

using the notation in the proof of Theorem 3,

sup
i

1

T

T∑
t=1

(gδ(Zit)− E∗ [gδ(Zit)]) = Op∗

(
∥δ∥1/2T−1/2(log T )1/2 + T−1 log T

)
,

which in turn imply that

sup
i

∣∣∣H(α)∗
Ti (θ∗

i )−H(α)∗
Ti (θ̂i)− E∗

[
H(α)∗

Ti (θ∗
i )−H(α)∗

Ti (θ̂i)
]∣∣∣

= Op∗

((
∥β∗ − β̂∥+ sup

i
|α∗

i − α̂i|
)1/2

T−1/2(log T )1/2 + T−1 log T

)
= op∗(T

−1/2(log T )1/2).

These stochastic orders imply that

sup
i

|α∗
i − α̂i| = Op∗

(
∥β∗ − β̂∥+ T−1/2(log T )1/2 + T−1λT

)
.

More lengthy calculations that are analogs to Lemmas S.4 and S.5 in the supplemental appendix

(conditional on the observations) imply that

1

N

N∑
i=1

(
K(θ)∗

Ti (θ∗
i )−K(θ)∗

Ti (θ̂i)− E∗
[
K(θ)∗

Ti (θ∗
i ) +K(θ)∗

Ti (θ̂i)
])

= Op∗

(
∥β∗ − β̂∥T−1/2(log T )1/2 + T−1 log T + T−2/3N−1/2 + T−1(log T )1/2λ

1/2
T

)
.

Then the rest of the proof goes as in Theorem 7, implying the result. �
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