Charles Lindsey, Elizabeth Young & Bradley Barney

A Modern Approach to Regression with R

SAS Primer

July 27, 2010
1. Introduction

1.1 Building Valid Models

SAS works with three types of commands, or steps as the SAS literature calls them: data, proc, and option. Data steps read data into SAS and perform elementary operations on the data. Proc steps perform more sophisticated operations on the data, including statistical analysis. Option steps set attributes of the SAS session, such as the number of columns used for output and the default color of points in graphics.

The data and proc steps are made up of component statements. These statements are similar to the one line commands in Stata. We may view the data and proc steps as batches of statements. The SAS literature refers to the options steps as statements as well, since their effects are atomic and straightforward.

In the Stata primer we focused on explaining individual statements. Due to the setup of the SAS language, we will discuss our programs in terms of data and proc steps and options statements. We should be consistently thorough, but some brevity may be required for readability.

We note that our graphics are formulated using the “character cell” unit. This is the pixel size that SAS provides for drawing a single character. It is dependent on the pixel size of the SAS window. In rendering the graphics we generally have SAS maximized in a 1024 x 768 screen resolution environment. In general, the size of elements of our graphics will vary depending on whether the window is maximized and what the overall screen resolution is. So depending on your desktop environment, your graphics may appear different. You can experiment with the “h=” option specification in the axis statements and other size specifications to make the graphics visually clear in your environment.

There are other ways to formulate graphics in SAS than the “character cell”, but the “character cell” formulation is the default. For simplicity we will stick with its use.

It should also be noted that these programs were created under SAS version 9.2. They may provide different results under earlier or later versions of SAS.

1.2 Motivating Examples

We begin with the football example that gives us figure 1.1. First we read in the data with the proc step import. This saves the data in the SAS dataset myfootb. The names of the data are obtained by the getnames statement. The run statement at the end of the proc step makes SAS execute the step. The quit statement tells SAS that the execution of the step should be terminated. Use of both or either may not be necessary in every situation. We will adapt a simple strategy of putting both at the end of each step.

\begin{verbatim}
proc import datafile="data/FieldGoals2003to2006.csv"
 out=myfootb replace;
 getnames=yes;
run;
quit;
\end{verbatim}
We obtain the correlation of the field goals and their lags and the associated p-value with the proc step `corr`. We specify that we want the pearson correlation calculated and specify the variables with the `var` statement.

```sas
proc corr data=myfootb pearson;
    var FGt FGtM1;
run;
quit;
```

The CORR Procedure

2 Variables: FGt FGtM1

Simple Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Sum</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGt</td>
<td>76</td>
<td>82.25921</td>
<td>7.74650</td>
<td>6252</td>
<td>63.60000</td>
<td>100.00000</td>
</tr>
<tr>
<td>FGtM1</td>
<td>76</td>
<td>81.81447</td>
<td>7.14279</td>
<td>6218</td>
<td>66.60000</td>
<td>100.00000</td>
</tr>
</tbody>
</table>

Pearson Correlation Coefficients, N = 76

<table>
<thead>
<tr>
<th>FGt</th>
<th>FGtM1</th>
<th>Prob ></th>
<th>r</th>
<th>under H0: Rho=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGt</td>
<td>1.00000</td>
<td>-0.13919</td>
<td>0.2305</td>
<td></td>
</tr>
<tr>
<td>FGtM1</td>
<td>-0.13919</td>
<td>1.00000</td>
<td>0.2305</td>
<td></td>
</tr>
</tbody>
</table>

Now we will produce figure 1.1. We begin with the options statement `goptions`, which resets all the graphic options. We use the proc step `gplot` for this. The basic `gplot` is given many options here to coerce SAS into giving us a nicer plot. The keyword `value` in the axis statement refers to the actual numbers on the axis, while `offset` gives some extra spacing between the default edge of the graph and the frame. The final statement, `plot` assigns the formatting `axis1` to the vertical axis and `axis2` to the horizontal axis.

```sas
goptions reset=all;
proc gplot data = myfootb;
symbol v = circle;
    axis1 label = (h=2 font=times angle=90
                justify=c 'Field Goal Percentage')
            order=(60 to 100 by 10) value=(h=1 font=times)
            offset=(0,2);
    axis2 label=(h=2 font=times
             'Field Goal Percentage in Year t-1') order=
            (65 to 100 by 5) value=(h=1 font=times)
            offset=(2,2);
title height=2 font=times
    'Unadjusted Correlation = -0.139';
plot FGt*FGtM1=1/hminor=0 vminor=0
    vaxis=axis1 haxis=axis2;
run;
quit;
```
To provide the statistics and p-values between figure 1.1 and 1.2, we will perform an analysis of variance and a linear regression. First we perform the anova. This tells us whether there is significant evidence that the intercepts of the kicker lines differ and if there slopes with respect to the effect of the lagged field goal percentage. The Type I output give us the text’s results. We use proc glm, specifying Name as a categorical variable with the class statement. Then we specify the model in the model statement.

```
proc glm data=myfootb;
  class Name;
  model FGt=FGtm1 Name Name*FGtm1;
run;
quit;
```

The GLM Procedure

Dependent Variable: FGt

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>37</td>
<td>2757.420006</td>
<td>74.524865</td>
<td>1.62</td>
<td>0.0706</td>
</tr>
<tr>
<td>Error</td>
<td>38</td>
<td>1743.203546</td>
<td>45.873778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>75</td>
<td>4500.623553</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Square Coeff Var Root MSE FGt Mean
0.612675 8.233751 6.773018 82.25921

Source DF | Type I SS Mean Square F Value | Pr > F |
FGtm1 1 | 87.198837 87.198837 1.90 | 0.1760 |
Name 18 | 2252.468155 125.137120 2.73 | 0.0046 |
Now we will perform the regression of FGt on $FGtM1$ with a separate intercept for each kicker. Since the slope was the same for each kicker, we omit the $Name*FGtm1$ term from the model statement. The solution option (prefixed by ‘/’) gives us the parameter estimates.

```
proc glm data=myfootb;
   class Name;
   model FGt = FGtM1 Name/solution;
run;
quit;
```

The GLM Procedure

Dependent Variable: FGt

```
Source      DF    Type III SS    Mean Square    F Value    Pr > F
FGtM1        1     769.985939      769.985939      19.95    <.0001
Name         18     2252.468155      125.137120       3.24    0.0004
```

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|------------|-----------|----------------|---------|-------|---|
| Intercept | 128.8221608 B | 9.93338327 | 12.97 | <.0001 |
| FGtM1 | -0.5037008 | 0.11276134 | -4.47 | <.0001 |
| Name Adam Vinatieri | -2.1350020 B | 4.39318203 | -0.49 | 0.6289 |
| Name David Akers | -6.7812913 B | 4.39670350 | -1.54 | 0.1286 |
NOTE: The $X'X$ matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

“Shayne Graham” is chosen by SAS as the base case intercept so that the other kicker intercepts may be estimated. This is why its standard error is missing.

Now we will draw figure 1.2.

ODS is short for output delivery system. It allows for storage of output from SAS proc steps into SAS datasets. The following code stores the parameter estimates from the model we just fit in the SAS dataset `Parms`. Note how `name` is lowercase this time. SAS is case insensitive. The option statements prefixed by `ods` set the ODS up and store the estimates.

```sas
ods trace on;
ods RESULTS on;
proc glm data = myfootb;
   ods output ParameterEstimates=Parms;
   class name;
   model FGt = FGtM1 name/solution;
run;
quit;
ods RESULTS off;
ods trace off;
```

Now we drop excess information from the `Parms` dataset and store it in the dataset `new`. The set statement brings up the `Parms` data. The keep statement keeps the single variable `Estimate`.

```sas
data new;
set parms;
keep Estimate;
run;
quit;
```
We use proc transpose to turn the single variable and 20 observations (one for intercept, slope, and each kicker’s intercept) dataset new into a single observation 20 variable dataset params. Seeking good descriptive names rather than what observation a variable is, we use the rename option.

```
proc transpose data = new out=params (rename=(.name_=name col1=int col2=slope col3-col20=x1-x18));
run;
quit;
```

Now we write our own SAS procedure create. This is called a macro. We will refer to macros with a prefixed %. We need to perform an iteration over the kicker intercepts, which we do with a macro do loop (%do). To do this we must be within a macro. We create the variables y0,….y18 with 36 observations, each containing the regression estimate for one of the 19 kickers under lagged field goal percentage values in 65-100.

```
%macro create;
  data create;
    set params;
    do x = 65 to 100 by 1;
      y0 = int + slope*x;
      %do i = 1 %to 18;
        y&i = int + slope*x + x&i;
      %end;
    output;
  end;
run;
quit;
%mend create;
```

Now we execute create with the %create statement, storing the computed variables in the create dataset.

```
%create;
```

We create a dataset final that contains the variables in create and myfootb.

```
data final;
  set create myfootb;
run;
quit;
```

Finally we create another macro, %plotit, which will draw figure 1.2 when it is executed. We loop through the kicker lines, setting different line attributes for each one with the symbol&i statement. As in the previous macro, this &i notation substitutes the current iteration number i into the statement to be executed. The interpol option within the symbol statements specifies whether values are to be interpolated or not, whether to connect the points and make a line.

```
goptions reset = all;
%macro plotit;
  proc gplot data = final;
    symbol1 interpol=none value=circle color=black;
    %do i = 2 %to 20;
      symbol&i interpol=l line=&i color=black;
    %end;
  axis1 label =(h=1.5 font=times angle=90 'Field Goal
```
Percentage in Year \(t\) order=(60 to 100 by 10) value=(h=1.5 font=times); axis2 label = (h=1.5 font=times "Field Goal Percentage in Year \(t-1\)") order=(65 to 100 by 5) value=(h=1.5 font=times) offset=(2,2); title h=2 "Slope of each line = -0.504" font=times; plot FGT*FGtM1 y0*x y1*x y2*x y3*x y4*x y4*x y6*x y7*x y8*x y9*x y10*x y11*x y12*x y13*x y14*x y15*x y16*x y17*x y18*x /overlay haxis=axis2 hminor=0 vaxis=axis1 vminor=0; run; quit; %mend; %plotit;

Fig. 1.2 Allowing for different abilities across the 19 field goal kickers

Now we will render figures 1.3 and 1.4. First we bring in the circulation data with another proc import. We save the data in the SAS dataset **news**.

```
proc import datafile="data/circulation.txt"
  out=news replace;
run;
quit;
```

We use proc gplot to plot figure 1.3 Here we employ the use of the legend statement to create our legend; the position option gives the desired location of the legend; the keywords position and justify give the location of the label within the legend. In the plot statement, the = tabloid tells SAS to overlay scatterplots of the given sunday and weekday variables for different values of tabloid. We give each of the overlay symbols different attributes with the symbol statements.

```
goptions reset = all;
proc gplot data = news;
  axial label = (f=times h = 2 angle=90 'Sunday Circulation')
    order = (0 to 2000000 by 500000) value=(f=times h=1);
```
axis2 label =(f=times h=2 'Weekday Circulation')
 order=(100000 to 1300000 by 400000)
 value=(f=times h=1);
symbol1 v = circle color = black;
symbol2 v = triangle color = red;
legend1 label = (f=times h=1 justify=c 'Tabloid Dummy Variable' position=top
 justify=center)
 position = (top left inside) across=1 frame
 value = (f=times h=1 '0' justify = c '1' justify = c) ;
plot sunday*weekday = tabloid/ legend=legend1
 haxis = axis2 hminor=0 vaxis = axis1 vminor=0;
run;
quit;

Fig. 1.3 A plot of Sunday circulation against Weekday circulation

To draw figure 1.4 we create a new dataset, with logs of the sunday and weekday. We call the new data logs.

data logs;
 set news;
 lsun = log(sunday);
 lweek = log(weekday);
run;
quit;

We render figure 1.4 with a similar call to proc gplot as we used for figure 1.3.

goptions reset = all;
proc gplot data = logs;
axis1 label = (f=times h=2 angle=90 'log(Sunday Circulation)')
 order = (11.5 to 14.5 by 0.5)
 value = (f=times h=1);
axis2 label = (f=times h=2 'log(Weekly Circulation)')
 order = (11.5 to 14 by 0.5)
 value = (f=times h=1);
symbol1 v = circle color = black;
symbol2 v = triangle color = red;
legend1 label = (h=1 'Tabloid Dummy Variable')
To draw figure 1.5, we begin by importing the restaurant data.

```
proc import datafile="data/nyc.csv" out=nyc replace;
getnames=yes;
run;
quit;
```

To draw the matrix plot in figure 1.5 we will use proc corr again. We use the plots option to specify a matrix plot. The output delivery system’s graphics are used to display the plot. This is set with the ods graphics options. The plot will be saved in SAS’s current directory as a MatrixPlot.png file. If that file already exists, a new file postfixed with a version number (1,…, etc.) will be saved in the directory.

```
ods graphics on;
proc corr data = nyc plots=matrix;
   var price food decor service;
run;
quit;
ods graphics off;
```
To draw the boxplot in figure 1.6, we will define another macro %boxplot. This time we pass arguments into the boxplot. The var argument is the dummy variable that we will do separate boxplots over. The data argument is our dataset. The yvar argument is the variable that we will do the boxplot for. We use these arguments in the body of the macro by prefixing them with the ampersand symbol, &.

We sort the data by the dummy variable using proc sort so the boxplot will be displayed correctly. Proc boxplot is another way of making nice boxplots; there are, however, more options if we use proc gplot. Under the axis1 label, four tic marks instead of two are used to keep the boxes from being outside the plot. The option interpol=boxt results in our desired boxplot, while bwidth=36 controls the actual width of the boxes.

```sas
%macro boxplot(var =, data =, yvar =);
goptions reset = all;
proc sort data = &data;
   by &var;
run;
quit;
proc gplot data = &data;
   axis1 label=(f=times h=2 "&var") minor=none
      order=(-1 0.2 0.8 2) value=(f=times h=1
            t=1 ' ' t=2 '0' t=3 '1' t=4 ' ')
   axis2 label=(f=times h=2 angle=90 "&yvar")
      value=(f=times h=1)
   symbol1 value = circle interpol=boxt bwidth=36;
   plot &yvar*&var/ haxis=axis1 vaxis=axis2 vminor=0;
run;
quit;
%mend;
%boxplot(var=east, data=nyc, yvar=price);
```

Fig. 1.5 Matrix plot of Price, Food, Décor and Service ratings
Now we bring in the Bordeaux data to draw the remaining figures. We use the ods graphics options and proc corr with the plot=matrix option again.

```plaintext
proc import datafile="data/Bordeaux.csv" out=wine replace; getnames=yes;
run;
quit;
ods graphics on;
proc corr data = wine plots=matrix;
  var price ParkerPoints CoatesPoints;
run; quit;
ods graphics off;
```

Fig. 1.6 Box plots of Price for the two levels of the dummy variable East

Fig. 1.7 Matrix plot of Price, ParkerPoints and CoatesPoints
To draw figure 1.8, we will use our `%boxplot` macro again.

```
%boxplot(var = P95andAbove, data=wine, yvar=price);
%boxplot(var = FirstGrowth, data=wine, yvar=price);
%boxplot(var = CultWine, data=wine, yvar=price);
%boxplot(var = Pomerol, data=wine, yvar=price);
%boxplot(var = VintageSuperstar, data=wine, yvar=price);
```

![Box plots of Price against each of the dummy variables](image)

Fig. 1.8 Box plots of Price against each of the dummy variables

Now we transform our continuous predictors to their natural logarithms. We create a new dataset to contain these transformed variables.

```
data logs;
set wine;
log_price = log(price);
log_ParkerPoints = log(ParkerPoints);
log_CoatesPoints = log(CoatesPoints);
run;
quit;
```

Then we re-perform the matrix plot to render figure 1.9.

```
ods graphics on;
proc corr data = logs plots=matrix;
   var log_price log_ParkerPoints log_CoatesPoints;
run;
quit;
ods graphics off;
```
Fig. 1.9 Matrix plot of log(Price), log(ParkerPoints) and log(CoatesPoints)

To draw figure 1.10, our final graphic in this chapter we will use our %boxplot macro again.

%boxplot(var = P95andAbove, data=logs, yvar=log_price);
%boxplot(var = FirstGrowth, data=logs, yvar=log_price);
%boxplot(var = CultWine, data=logs, yvar=log_price);
%boxplot(var = Pomerol, data=logs, yvar=log_price);
%boxplot(var = VintageSuperstar, data=logs, yvar=log_price);

Fig. 1.10 Box plots of log(Price) against each of the dummy variables
2. Simple Linear Regression

2.1 Introduction and Least Squares Estimates

In this chapter we will show how to use SAS to do simple linear regression. We begin by moving the production data into SAS. As before, we use proc `import`.

```sas
proc import datafile="data/production.txt"
   out=prod replace;
run;
quit;
```

Now we will draw figure 1.2. We have used proc `gplot` in the last chapter. We give it the `prod` data to work with. We will go into a bit more detail with explaining this particular `gplot` so the reader can refamiliarize him/herself with the procedure. We would like to plot circles rather than crosses, so we use the `symbol` option to change the symbol being plotted. The `axis` statements control the appearance of the axes, as well as their labels. Don’t forget the `vaxis` and `haxis` options at the end of the plot statement. The `angle` option in the first `axis` statement rotates the vertical axis label to be parallel to the axis. Within the `label` option, which controls the label lettering, or the value option, which controls the tick marks on the axes, the font statement controls the lettering font, while the `h` statement controls the height of the lettering. Also, we lead with a `goptions` option statement that resets all graphical parameters.

```sas
goptions reset = all;
proc gplot data = prod;
symbol1 v=circle;
   axis1 label = (font=times h=2 angle=90 'Run Time')
         order=(140 to 260 by 20) value=(font=times h=1);
   axis2 label = (font=times h=2 'Run Size')
         order=(50 to 350 by 50) value = (font=times h=1);
plot runtime*runsize/hminor=0 vminor=0 vaxis=axis1
   haxis=axis2;
run; quit;
```

![Fig. 2.1 A scatter plot of the production data](image-url)
We obtain the regression output for the production data with proc `reg`. We will use this command repeatedly. Its basic syntax is not very different from the `glm` procedure. The response goes to the left of the equal sign in the model statement.

```plaintext
proc reg data = prod;
  model runtime=runsize;
run;
quit;
```

The REG Procedure
Model: MODEL1
Dependent Variable: RunTime

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>12868</td>
<td>12868</td>
<td>48.72</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>18</td>
<td>4754.57581</td>
<td>264.14310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>19</td>
<td>17623</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 16.25248 R-Square 0.7302
Dependent Mean 202.05000 Adj R-Sq 0.7152
Coeff Var 8.04379

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|-----------|----|--------------------|----------------|---------|------|
| Intercept | 1 | 149.74770 | 8.32815 | 17.98 | <.0001 |
| RunSize | 1 | 0.25924 | 0.03714 | 6.98 | <.0001 |

We will render figure 2.3 with another call to proc `gplot`. We draw the regression line by specifying the in `r` in the `interpol` option in the `symbol1` statement.

```plaintext
goptions reset = all;
proc gplot data = prod;
symbol1 v=circle interpol=r;
  axis1 label = (h=2 font=times angle=90 'Run Time')
               order=(140 to 260 by 20) value=(font=times h=1);
  axis2 label = (font=times h=2 'Run Size')
               order=(50 to 350 by 50) value=(font=times h=1);
plot runtime*runsize/hminor=0 vminor=0 vaxis=axis1
    haxis=axis2 ;
run;
quit;
```
2.2 Inferences About the Slope and the Intercept

To obtain the p-value of the T statistic on page 22 we use the \texttt{cdf} function. The following code blocks creates a dataset \texttt{t_val} with one variable and one value: $2 \times \text{cdf of a T}_{18}$ random variable applied to -6.98. The call to the print procedure prints this single value out.

```plaintext
data t_val;
  tpvalue = 2*cdf('t', -6.98, 18,);
run;
quit;

proc print data=t_val;
run;
quit;
```

To obtain the confidence intervals for the slope and intercept parameters of our regression, we call \texttt{proc reg} again. This time we use the \texttt{clb} option. This gives us confidence intervals on the “betas”, the coefficient parameters.

```plaintext
proc reg data = prod;
model time = size/ clb;
run;
quit;
```
The REG Procedure
Model: MODEL1
Dependent Variable: RunTime

Number of Observations Read 20
Number of Observations Used 20

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>12868</td>
<td>12868</td>
<td>48.72</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>18</td>
<td>4754.57581</td>
<td>264.14310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>19</td>
<td>17623</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 16.25248
R-Square 0.7302
Dependent Mean 202.05000
Adj R-Sq 0.7152
Coeff Var 8.04379

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| | 95% Confidence Limits |
|-----------|----|--------------------|----------------|---------|------|------|----------------------|
| Intercept | 1 | 149.74770 | 8.32815 | 17.98 | <.0001| | 132.25091 167.24450 |
| RunSize | 1 | 0.25924 | 0.03714 | 6.98 | <.0001| | 0.18121 0.33728 |

2.3 Confidence Intervals for the Population Regression Line

2.4 Prediction Intervals for the Actual Value of Y

Now we will generate the confidence intervals for the population regression line and prediction intervals for the actual value of the response. First we create a new dataset, cipi containing the values of runsize we wish to use to formulate the intervals. The input statement followed by cards allows us to hardcode values into runsize.

data cipi;
 input runsize @@;
cards;
 50 100 150 200 250 300 350 ;
run;
quit;

We create a new dataset, new. By using the set statement we append the runsize observations in cipi to the end of the prod data.

data new;
 set prod cipi;
run;
quit;

7/30/2010
Now we will use proc `reg` again to obtain our estimates. This time we specify the options `clm` and `cli`. The `clm` option specifies that we want confidence intervals for the regression line for the observations of `runsize` in the `new`. The `cli` option specifies that we want prediction intervals for `runtime` for the observations of `runsize` in the `new`. The added observations from the `cipi` dataset are used by the `clm` and `cli` options, but they are not used to fit the model, since `runtime` is missing in these observations.

In the output statement, we tell SAS to store results in the dataset `messy`. The predicted values of `runtime` for each observation’s `runsize` will be stored in `fit`. This is specified with the `p` argument. The variables `lwr` and `upr` will store the lower and upper confidence interval endpoints for the regression line. They are specified with the `lclm` and `uclm` arguments. Similarly, as specified by the `lcl` and `ucl` arguments, the variables `lwr_pi` and `upr_pi` store the lower and upper prediction interval endpoints for the actual value of `runtime` given the observations values of `runsize`.

```sas
proc reg data = new;
  model runtime = runsize/clm cli noprint;
  output out = messy p=fit lclm=lwr uclm=upr lcl=lwr_pi ucl=upr_pi;
run;
quit;
```

Now we will store the confidence interval estimates for the regression line in the dataset `first`. If the observation number exceeds 20, we know we are dealing with one of the observations added from `cipi`. We specify that we only want to keep those observations with the `if` statement. We drop unnecessary variables with the `drop` statement.

```sas
data first;
  set messy;
  if _N_ > 20;
    drop case runtime runsize lwr_pi upr_pi;
run;
quit;
```

Now we print the confidence intervals with proc `print`.

```sas
proc print data = first;
run;
quit;
```

```
Obs  fit        lwr        upr
1   162.710    148.620    176.799
2   175.672    164.657    186.687
3   188.634    179.997    197.271
4   201.596    193.960    209.233
5   214.558    206.046    223.071
6   227.521    216.701    238.341
7   240.483    226.622    254.344
```

We will do the same thing for the prediction intervals. This time we call the dataset `second`.

```sas
data second;
  set messy;
  if _N_ > 20;
    drop case runtime runsize lwr upr;
run;
```
quit;

proc print data = second;
run;
quit;

Obs fit lwr_pi upr_pi
1 162.710 125.772 199.648
2 175.672 139.794 211.550
3 188.634 153.413 223.855
4 201.596 166.608 236.585
5 214.558 179.368 249.749
6 227.521 191.702 263.339
7 240.483 203.632 277.334

2.5 Analysis of Variance

To obtain the ANOVA table for the production data, we merely call proc reg again.

proc reg data = prod;
 model runtime = runsize;
run;
quit;

The REG Procedure
Model: MODEL1
Dependent Variable: RunTime

Number of Observations Read 20
Number of Observations Used 20

Analysis of Variance

 Source DF Sum of Squares Mean Square F Value Pr > F
Model 1 12868 12868 48.72 <.0001
Error 18 4754.57581 264.14310
Corrected Total 19 17623

Root MSE 16.25248 R-Square 0.7302
Dependent Mean 202.05000 Adj R-Sq 0.7152
Coeff Var 8.04379

Parameter Estimates

 Variable DF Parameter Estimate Standard Error t Value Pr > |t|
Intercept 1 149.74770 8.32815 17.98 <.0001
RunSize 1 0.25924 0.03714 6.98 <.0001
2.6 Dummy Variable Regression

First we load the changeover data into SAS. Now we use a data step rather than proc import. We use the infile statement to provide a similar functionality to proc import. We use the firstobs=2 option because the actual data begins on the second line of the document, and we use expandtabs because the data is tab delimited. We name our variables in the input statement.

```sas
data change;
     infile 'data/changeover_times.txt' firstobs=2 expandtabs;
     input method $ y x;
run;
quit;
```

We provide the regression output with a call to proc reg.

```sas
proc reg data = change;
    model y = x;
run;
quit;
```

The REG Procedure
Model: MODEL1
Dependent Variable: y

Number of Observations Read 120
Number of Observations Used 120

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>290.06806</td>
<td>290.06806</td>
<td>5.08</td>
<td>0.0260</td>
</tr>
<tr>
<td>Error</td>
<td>118</td>
<td>6736.92361</td>
<td>57.09257</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>119</td>
<td>7026.99167</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 7.55596
Dependent Mean 16.59167
Coeff Var 45.54071

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|--------------------|----------------|---------|------|
| Intercept| 1 | 17.86111 | 0.89048 | 20.06 | <.0001|
| x | 1 | -3.17361 | 1.40797 | -2.25 | 0.0260|

We obtain the p-value of the T test with another call to the cdf function in proc print.
data t_val;
 tpvalue = 2 * cdf('t', -2.254, 118);
run;
quit;

proc print data=t_val;
run;
quit;

Obs tpvalue
1 0.026042

Now we want to draw figure 2.5. We will do this one plot at a time and show them arrayed together. The first plot uses the interpol=r option to draw the regression line, and the option offset in the axis statements keeps the procedure from plotting too close to the edges of the graph.

goptions reset = all;
proc gplot data = change;
symbol v=circle interpol=r;
axis1 label=(h=2 angle=90 font=times 'Change Over Time') order=(5 to 40 by 5)
 value=(font=times h=1) offset=(2, 2);
axis2 label=(h=2 font=times 'Dummy variable, New')
 offset=(10, 10) order=(0 to 1 by 0.2)
 value=(font=times h=1);
plot y*x/hminor=0 vminor=0 vaxis=axis1 haxis=axis2;
run;
quit;

To draw the second plot, two boxplots conditioned on the value of the dummy variable for the new method x, we use proc boxplot. Earlier we wrote our own boxplot macro, and its macro implementation may be compared with our invocation of boxplot here. The boxstyle option gives us the desired type of whiskers on our boxes, while the boxwidth option changes the width of the boxes. The height and font options in the plot statement control the height and font of both the labels and the tick mark values on the axes. To change the color of the boxes, we can use the cboxes option. Outliers are denoted by the symbol listed in the idsymbol option.

goptions reset = all;
proc boxplot data = change;
symbol1 value=none;
label x= 'Dummy variable, New';
label y= 'Change Over Time';
plot y*x/ boxwidth=35 cboxes=black
 boxstyle=schematic idsymbol=circle hoffset=4
 height=3 font=times;
run;
quit;

Now we draw the last plot, another boxplot. This time we use proc gplot to render it. To place the word labels at the bottom of the plot, we used proc gplot again. The interpol=boxt in the symbol statement ensures that the plot is a boxplot, while the bwidth option controls the width of the boxes. In the axis1 statement, the order and value options control where the tick marks on the horizontal axis go and what they are labeled. (For example, at the first tick mark -1, there is no label, while at the second tick mark
0.2, the label ‘Existing’ appears. Defining the values of the tick marks allows the user to define the spacing between tick marks.)

goptions reset = all;
proc gplot data = change;
axis1 label=(font=times h=2 'Method')
 order=(-1 0.2 0.8 2) value=(font=times h=2 t=1
 ' ' t=2 'Existing' t=3 'New' t=4 ' ');
axis2 label=(h=2 font=times angle=90
 'Change Over Time')
 order=(5 to 40 by 5) value=(font=times h=1);
symbol1 value = circle interpol=boxt bwidth=36;
plot y*x/ haxis=axis1 vaxis=axis2 vminor=0;
run;
quit;

Fig. 2.5 A scatter plot and box plots of the change-over time data
3. Diagnostics and Transformations for Simple Linear Regression

3.1 Valid and Invalid Regression Models: Anscombe’s Four Data Sets

In this chapter we will show how to use SAS to do simple linear regression diagnostics. We begin with the Anscombe datasets. We use a data step with the `infile` statement to do this.

```sas
data anscombe;
   infile 'data/anscombe.txt' firstobs=2;
   input case x1-x4 y1-y4;
run;
quit;
```

Now we draw figure 3.1. We use proc `gplot`, within a macro `%fourplots` that loops over the four datasets. Again, we use the & indexing notation.

```sas
%macro fourplots;
%do i = 1 %to 4;
   goptions reset = all;
   proc gplot data = anscombe;
      axis1 label=(h=2 font=times angle=90 "y&i")
         order=(2 to 14 by 2) value=(font=times h=1);
      axis2 label=(h=2 font=times "x&i")
         order=(0 to 20 by 5) value=(font=times h=1);
      symbol1 value=circle interpol=r;
      plot y&i*x&i / vaxis=axis1 haxis=axis2 vminor=0
         hminor=0;
   run;
   quit;
%end;
%mend
%fourplots;
```
To produce the regressions for each dataset, we use another macro, `%reg`.

```sas
%macro reg;
proc reg data = anscombe;
%do i = 1 %to 4;
   model y&i = x&i;
%end;
%end;
%reg;
```

The REG Procedure
Model: MODEL1
Dependent Variable: y1

Number of Observations Read 11
Number of Observations Used 11

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>27.50000</td>
<td>27.50000</td>
<td>17.97</td>
<td>0.0022</td>
</tr>
<tr>
<td>Error</td>
<td>9</td>
<td>13.77629</td>
<td>1.53070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>10</td>
<td>41.27629</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|-----------|----|--------------------|----------------|---------|------|---|
| Intercept | 1 | 3.00091 | 1.12475 | 2.67 | 0.0257| |
| x1 | 1 | 0.50000 | 0.11791 | 4.24 | 0.0022| |

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>27.50000</td>
<td>27.50000</td>
<td>17.97</td>
<td>0.0022</td>
</tr>
<tr>
<td>Error</td>
<td>9</td>
<td>13.77629</td>
<td>1.53070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>10</td>
<td>41.27629</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|-----------|----|--------------------|----------------|---------|------|---|
| Intercept | 1 | 3.00091 | 1.12475 | 2.67 | 0.0257| |
| x2 | 1 | 0.50000 | 0.11791 | 4.24 | 0.0022| |

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>27.50000</td>
<td>27.50000</td>
<td>17.97</td>
<td>0.0022</td>
</tr>
<tr>
<td>Error</td>
<td>9</td>
<td>13.77629</td>
<td>1.53070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>10</td>
<td>41.27629</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|-----------|----|--------------------|----------------|---------|------|---|
| Intercept | 1 | 3.00091 | 1.12475 | 2.67 | 0.0257| |
| x2 | 1 | 0.50000 | 0.11791 | 4.24 | 0.0022| |

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>27.50000</td>
<td>27.50000</td>
<td>17.97</td>
<td>0.0022</td>
</tr>
<tr>
<td>Error</td>
<td>9</td>
<td>13.77629</td>
<td>1.53070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>10</td>
<td>41.27629</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|-----------|----|--------------------|----------------|---------|------|---|
| Intercept | 1 | 3.00091 | 1.12475 | 2.67 | 0.0257| |
| x2 | 1 | 0.50000 | 0.11791 | 4.24 | 0.0022| |
Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>27.47001</td>
<td>27.47001</td>
<td>17.97</td>
<td>0.0022</td>
</tr>
<tr>
<td>Error</td>
<td>9</td>
<td>13.75619</td>
<td>1.52847</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>10</td>
<td>41.22620</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 1.23631 R-Square 0.6663
Dependent Mean 7.50000 Adj R-Sq 0.6292
Coeff Var 16.48415

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|--------------------|----------------|---------|------|
| Intercept| 1 | 3.00245 | 1.12448 | 2.67 | 0.0256 |
|x3 | 1 | 0.49973 | 0.11788 | 4.24 | 0.0022 |

The REG Procedure
Model: MODEL4
Dependent Variable: y4

Number of Observations Read 11
Number of Observations Used 11

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>27.49000</td>
<td>27.49000</td>
<td>18.00</td>
<td>0.0022</td>
</tr>
<tr>
<td>Error</td>
<td>9</td>
<td>13.74249</td>
<td>1.52694</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>10</td>
<td>41.23249</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 1.23570 R-Square 0.6667
Dependent Mean 7.50091 Adj R-Sq 0.6297
Coeff Var 16.47394

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|--------------------|----------------|---------|------|
| Intercept| 1 | 3.00173 | 1.12392 | 2.67 | 0.0256 |
|x4 | 1 | 0.49991 | 0.11782 | 4.24 | 0.0022 |

To draw the residual plots, we again use a macro to loop over the four datasets. Within the macro %regout, we use the out statement within proc reg again. This time we specify the r argument so that SAS will store the residuals for regression i in variable resids of the dataset resdata&i
%macro regout;
proc reg data = anscombe noprint;
 %do i = 1 %to 4;
 model y&i = x&i;
 output out = resdata&i r=resids;
 %end;
run;
quity;
%mend;
%regout;

Now we plot using the macro %resplots. This uses proc gplot to draw each individual plot.

%macro resplots;
 %do i = 1 %to 4;
 goptions reset = all;
 proc gplot data = resdata&i;
 title1 height=2 "Data Set &i";
 axis1 label=(font=times h=2 angle=90 "Residuals")
 order=(-2 to 2 by 1) value=(font=times h=1);
 axis2 label=(font=times h=2 "x&i")
 order=(0 to 20 by 5) value=(font=times h=1);
 symbol1 value=circle;
 plot resids*x&i / vaxis=axis1 haxis=axis2
 vminor=0 hminor=0;
 run;
quity;
 %end;
%mend;
%resplots;
3.2 Regression Diagnostics: Tools for Checking the Validity of a Model

Now we will draw figure 3.3. We use the `interpol=r` option in the first plot’s `symbol1` statement to draw the regression line in the first plot.

```plaintext
goptions reset = all;
proc gplot data = anscombe;
    axis1 label=(h=2 font=times angle=90 "y2") order=(3 to 10 by 1) value=(font=times h=1);
    axis2 label=(h=2 font=times "x2") order=(4 to 14 by 2) value=(font=times h=1) offset=(2,2);
    symbol1 value=circle interpol=r;
    plot y2*x2 / vaxis=axis1 haxis=axis2 vminor=0 hminor=0;
run;
quit;
```

The second plot’s code is very similar to that of the second iteration in `%resplots`.

```plaintext
goptions reset = all;
proc gplot data = resdata2;
    axis1 label=(font=times h=2 angle=90 "Residuals") order=(-2 to 2 by 1)
```
Now we bring in the Huber data.

data huber;
 infile 'data/huber.txt' firstobs=2 expandtabs;
 input x ybad ygood;
run;
quit;

We will use proc **reg** to show the regression output of the *Ybad* and *Ygood* variables on *x*. We use the out statement with the r option to store the residuals in the datasets *resgood* and *resbad*. The print procedure is used to print out these residuals.

```
proc reg data = huber;
  model ybad=x;
  output out= resbad r=badres;
run;
quit;
```

```
Model: MODEL1
Dependent Variable: ybad

Number of Observations Read  6
Number of Observations Used   6

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>0.86268</td>
<td>0.86268</td>
<td>0.36</td>
<td>0.5813</td>
</tr>
</tbody>
</table>
```
Parameter Estimates

| Variable | DF | Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|----------|----------------|---------|------|-------|
| Intercept| 1 | 0.06833 | 0.63279 | 0.11 | 0.9192 |
| x | 1 | -0.08146 | 0.13595 | -0.60 | 0.5813 |

proc reg data = huber;
model ygood=x;
output out = resgood r=goodres;
run;
quit;

Model: MODEL1
Dependent Variable: ygood

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>119.40514</td>
<td>119.40514</td>
<td>515.93</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>4</td>
<td>0.92574</td>
<td>0.23144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>5</td>
<td>120.33088</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 0.48108 R-Square 0.9923
Dependent Mean -1.83167 Adj R-Sq 0.9904
Coeff Var -26.26449

Parameter Estimates

| Variable | DF | Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|----------|----------------|---------|------|-------|
| Intercept| 1 | -1.83167 | 0.19640 | -9.33 | 0.0007 |
| x | 1 | -0.95838 | 0.04219 | -22.71 | <.0001 |

proc print data = resbad;
var badres;
run;
quit;
<table>
<thead>
<tr>
<th>Obs</th>
<th>badres</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.08582</td>
</tr>
<tr>
<td>2</td>
<td>0.41728</td>
</tr>
<tr>
<td>3</td>
<td>-0.27126</td>
</tr>
<tr>
<td>4</td>
<td>-1.58979</td>
</tr>
<tr>
<td>5</td>
<td>-1.38833</td>
</tr>
<tr>
<td>6</td>
<td>0.74628</td>
</tr>
</tbody>
</table>

```sql
proc print data = resgood;
var goodres;
run;
quit;
```

<table>
<thead>
<tr>
<th>Obs</th>
<th>goodres</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.47813</td>
</tr>
<tr>
<td>2</td>
<td>-0.31349</td>
</tr>
<tr>
<td>3</td>
<td>-0.12510</td>
</tr>
<tr>
<td>4</td>
<td>-0.56672</td>
</tr>
<tr>
<td>5</td>
<td>0.51167</td>
</tr>
<tr>
<td>6</td>
<td>0.01551</td>
</tr>
</tbody>
</table>

Now we will draw figure 3.7. This is accomplished with two `gplot` calls. Again we use the offset option to keep points from crowding the edge of the plot areas.

```sql
goptions reset = all;
proc gplot data = huber;
symbol1 value=circle interpol=r;
axis1 label=(h=2 font=times angle=90 "YBad")
  order=(-12 to 3 by 3) value=(f=times h=1);
axis2 label=(h=2 f=times "x") value=(f=times h=1)
  order=(-4 to 10 by 2) offset=(2,2);
plot ybad*x/ vaxis=axis1 haxis=axis2 vminor=0
  hminor=0;
run;
quit;
```

```sql
goptions reset = all;
proc gplot data = huber;
symbol1 value=circle interpol=r;
axis1 label=(f=times h=2 angle=90 "YGood")
  order=(-12 to 3 by 3) value=(f=times h=1);
axis2 label=(f=times h=2 "x") offset=(2,2)
  value=(f=times h=1) order=(-4 to 10 by 2);
plot ygood*x/ vaxis=axis1 haxis=axis2 vminor=0
  hminor=0;
run;
quit;
```
Now we want to list the leverage values for both regressions for table 3.3. We will use proc \texttt{reg} for this again. We have already seen the basic regression results, so we use the \texttt{noprint} option. By using the output statement with the \texttt{h} option, we store the leverage values in an analogous manner to how we stored the residual values when we originally performed the regression. As before, we use proc \texttt{print} to print these stored leverage values.

\begin{verbatim}
proc reg data = huber noprint;
 model ybad=x;
 output out = levbad h=badlev;
run;
quit;

proc reg data = huber noprint;
 model ygood=x;
 output out = levgood h=goodlev;
run;
quit;

proc print data = levbad;
 var x badlev;
run;
quit;
\end{verbatim}

\begin{verbatim}
proc print data = levgood;
 var x goodlev;
run;
quit;
\end{verbatim}

<table>
<thead>
<tr>
<th>Obs</th>
<th>x</th>
<th>badlev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-4</td>
<td>0.28974</td>
</tr>
<tr>
<td>2</td>
<td>-3</td>
<td>0.23590</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
<td>0.19744</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>0.17436</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.16667</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>0.93590</td>
</tr>
</tbody>
</table>

\begin{verbatim}
proc print data = levgood;
 var x goodlev;
run;
quit;
\end{verbatim}
To draw figure 3.8, we use proc `gplot` and the `interpol=rq` option for the first `symbol` statement. This tells SAS that we want to draw the regression line for a quadratic fit.

```
goptions reset = all;
proc gplot data = huber;
symbol1 interpol=rq value=circle color=black;
axis1 label=(h=2 f=times angle=90 "YBad")
     order=(-4 to 3 by 1) value=(f=times h=1);
axis2 label=(f=times h=2 "x") offset=(2,2)
     value=(f=times h=2) order=(-4 to 10 by 2);
plot ybad*x/vaxis=axis1 haxis=axis2 vminor=0 hminor=0;
run;
quit;
```

![Fig. 3.8 Plot of YBad versus x with a quadratic model fit added](image)

We want to give the regression results for the quadratic fit of \(x \) for \(Ybad \). First we use a data step to add a quadratic term for \(x \). The "**" operator stands for exponentiation. The \(xq \) variable which stores this term is added to the \(huber \) dataset. The augmented data is stored in the dataset \(final \). We do not put a run step after the last data operation, but move straight to calling proc `reg` with the new data. This is not a problem, the statements will be sequentially executed in the order we wrote them.

```
data final;
  set huber;
  xq = x**2;
run;
quit;
```
%macro proc_reg(data, model); proc reg data = &data; &model run; quit; %mend proc_reg;

proc reg data = final;
 model ybad = x xq;
run;
quit;

The REG Procedure
Model: MODEL1
Dependent Variable: ybad

Number of Observations Read 6
Number of Observations Used 6

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>9.96969</td>
<td>4.98484</td>
<td>29.72</td>
<td>0.0105</td>
</tr>
<tr>
<td>Error</td>
<td>3</td>
<td>0.50319</td>
<td>0.16773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>5</td>
<td>10.47288</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 0.40955 R-Square 0.9520
Dependent Mean 0.06833 Adj R-Sq 0.9199
Coeff Var 599.34196

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|--------------------|----------------|---------|------|---|
| Intercept| 1 | -1.74057 | 0.29702 | -5.86 | 0.0099|
| x | 1 | -0.65945 | 0.08627 | -7.64 | 0.0046|
| xq | 1 | 0.08349 | 0.01133 | 7.37 | 0.0052|

We have now finished with the Huber data, we move onto the bonds data. We read in the data with a data step in which we use %infile.

data bonds;
 %infile 'data/bonds.txt' firstobs=2 expandtabs;
 input case couponrate bidprice;
run;
quit;

To produce table 3.4 we first use proc %reg to fit the model. We use the h and r options to store the residuals and leverage values in variables within the dataset table3_4. The option %student tells SAS to store the standardized residuals in the variables %StdResids within table3_4.

proc reg data = bonds;
 model bidprice=couponrate/clb;
 output out=table3_4 h=leverage r=residuals
 student=StdResids;
run;
quit;
The REG Procedure
Model: MODEL1
Dependent Variable: bidprice

Number of Observations Read 35
Number of Observations Used 35

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>1741.26340</td>
<td>1741.26340</td>
<td>99.87</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>33</td>
<td>575.34179</td>
<td>17.43460</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>34</td>
<td>2316.60519</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 4.17548 R-Square 0.7516
Dependent Mean 102.14057 Adj R-Sq 0.7441
Coef Var 4.08797

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| | 95% Confidence Limits |
|---------------|----|--------------------|----------------|---------|------|------|-----------------------|
| Intercept | 1 | 74.78656 | 2.82666 | 26.46 | <.0001 | 69.03568 | 80.53744 |
| couponrate | 1 | 3.06610 | 0.30680 | 9.99 | <.0001 | 2.44191 | 3.69030 |

Now we use proc print to obtain table 3.4. The var statement tells SAS precisely which variables to print.

```sas
proc print data = table3_4;
  var couponrate bidprice leverage residuals stdresids;
run;
quit;
```

<table>
<thead>
<tr>
<th>Obs</th>
<th>couponrate</th>
<th>bidprice</th>
<th>leverage</th>
<th>residuals</th>
<th>Std Resids</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.000</td>
<td>92.94</td>
<td>0.04850</td>
<td>-3.3093</td>
<td>-0.81250</td>
</tr>
<tr>
<td>2</td>
<td>9.000</td>
<td>101.44</td>
<td>0.02860</td>
<td>-0.9415</td>
<td>-0.22877</td>
</tr>
<tr>
<td>3</td>
<td>7.000</td>
<td>92.66</td>
<td>0.04850</td>
<td>-3.5893</td>
<td>-0.88125</td>
</tr>
<tr>
<td>4</td>
<td>4.125</td>
<td>94.50</td>
<td>0.15278</td>
<td>7.0658</td>
<td>1.83846</td>
</tr>
<tr>
<td>5</td>
<td>13.125</td>
<td>118.94</td>
<td>0.12397</td>
<td>3.9108</td>
<td>1.00070</td>
</tr>
<tr>
<td>6</td>
<td>8.000</td>
<td>96.75</td>
<td>0.03316</td>
<td>-2.5654</td>
<td>-0.62484</td>
</tr>
<tr>
<td>7</td>
<td>8.750</td>
<td>100.88</td>
<td>0.02873</td>
<td>-0.7350</td>
<td>-0.17860</td>
</tr>
<tr>
<td>8</td>
<td>12.625</td>
<td>117.25</td>
<td>0.10263</td>
<td>3.7539</td>
<td>0.94905</td>
</tr>
<tr>
<td>9</td>
<td>9.500</td>
<td>103.34</td>
<td>0.03038</td>
<td>-0.5745</td>
<td>-0.13974</td>
</tr>
<tr>
<td>10</td>
<td>10.125</td>
<td>106.25</td>
<td>0.03639</td>
<td>0.4192</td>
<td>0.10226</td>
</tr>
<tr>
<td>11</td>
<td>11.625</td>
<td>113.19</td>
<td>0.06803</td>
<td>2.7600</td>
<td>0.68470</td>
</tr>
<tr>
<td>12</td>
<td>8.625</td>
<td>99.44</td>
<td>0.02905</td>
<td>-1.7917</td>
<td>-0.43547</td>
</tr>
<tr>
<td>13</td>
<td>3.000</td>
<td>94.50</td>
<td>0.21788</td>
<td>10.5151</td>
<td>2.84755</td>
</tr>
<tr>
<td>14</td>
<td>10.500</td>
<td>108.31</td>
<td>0.04202</td>
<td>1.3294</td>
<td>0.32528</td>
</tr>
<tr>
<td>15</td>
<td>11.250</td>
<td>111.69</td>
<td>0.05785</td>
<td>2.4098</td>
<td>0.59458</td>
</tr>
<tr>
<td>16</td>
<td>8.375</td>
<td>98.09</td>
<td>0.03018</td>
<td>-2.3752</td>
<td>-0.57762</td>
</tr>
<tr>
<td>17</td>
<td>10.375</td>
<td>107.91</td>
<td>0.03998</td>
<td>1.3126</td>
<td>0.32085</td>
</tr>
<tr>
<td>18</td>
<td>11.250</td>
<td>111.97</td>
<td>0.05785</td>
<td>2.6898</td>
<td>0.66367</td>
</tr>
<tr>
<td>19</td>
<td>12.625</td>
<td>119.06</td>
<td>0.10263</td>
<td>5.5639</td>
<td>1.40665</td>
</tr>
<tr>
<td>20</td>
<td>8.875</td>
<td>100.38</td>
<td>0.02858</td>
<td>-1.6182</td>
<td>-0.39321</td>
</tr>
</tbody>
</table>

7/30/2010
Now we use proc gplot to obtain figure 3.9.

goptions reset = all;
proc gplot data = bonds;
symbol1 value=circle interpol=r;
axis1 label=(h=2 font=times angle=90 "Bid Price ($)") order=(85 to 120 by 5) value=(font=times h=1);
axis2 label=(h=2 font=times "Coupon Rate (%)") order=(2 to 14 by 2) value=(font=times h=1);
plot bidprice*couponrate/ vaxis=axis1 haxis=axis2 vminor=0 hminor=0;
run;
quit;

Now we will render figure 3.10. To create the labels only on the specified points, we split the data into two separate data sets, flower (containing the ‘flower’ bonds), and notflower, which contains the rest of
the bonds. We append these two datasets together in the dataset labels. Because we called the standardized residuals \textit{labely} in the flower data set and dropped the \textit{stresids} variable, data set \textit{labels} only has values for \textit{labely} for the flower bonds, and it only has values for \textit{stresids} for the rest of the bonds.

```
data flower;
  set table3_4;
  if stdresids < 1.8 && stdresids > -2 then delete;
  labely = stdresids;
  drop stdresids;
run;
quit;
```

```
data notflower;
  set table3_4;
  if stdresids > 1.8 then delete;
  else if stdresids < -2 then delete;
run;
quit;
```

```
data labels;
  set flower notflower;
run;
quit;
```

Now in the proc \texttt{gplot}, we can plot each of those variables against \textit{couponrate} and overlay the two plots (with the \texttt{overlay} option) to get all the points plotted. The plot of \textit{labely} against \textit{couponrates} gets labels which take on the value of the case variable because of the \texttt{pointlabel} option in the \texttt{symbol1} statement. The rest of the points do not have this label because they are covered under the \texttt{symbol2} statement. Reference lines perpendicular to the vertical axis are drawn at -2 and 2 with the \texttt{vref} option in the plot statement.

```
goptions reset = all;
proc gplot data = labels;
  symbol1 value=circle pointlabel=
    "(#case" height=1 position=bottom) color=black;
  symbol2 value=circle color=black;
  axis1 label=(h=2 angle=90 font=times
    "Standardized Residuals") order=(-3 to 3 by 1)
    value=(font=times h=1);
  axis2 label=(h=2 font=times "Coupon Rate (%)")
    order=(2 to 14 by 2) value=(font=times h=1);
  plot labely*couponrate stdresids*couponrate/overlay
    vaxis=axis1 haxis=axis2
    vminor=0 hminor=0 vref=-2 2;
run;
quit;
```
Now we move to drawing figure 3.11. We know the case numbers of the flower bonds now. So we delete their case numbers from the data. We reinitialize the `notflower` dataset to contain the `bonds` dataset without the flower observations.

```sas
data notflower;
set bonds;
if case = 4 then delete;
else if case = 13 then delete;
else if case = 35 then delete;
run;
quit;
```

Now we use this `notflower` dataset in proc `gplot` with the `interpol=r` option to draw figure 3.11.

```sas
goptions reset = all;
proc gplot data = notflower;
symbol1 value = circle interpol=r;
title1 height=2 font=times "Regular Bonds";
axis1 label=(h=2 font=times angle=90 "Bid Price ($)"") order=(85 to 120 by 5)
   value=(font=times h=1);
axis2 label=(h=2 font=times "Coupon Rate (%)") order=(2 to 14 by 2)
   value=(font=times h=1);
plot bidprice*couponrate/ vaxis=axis1 haxis=axis2 vminor=0 hminor=0;
run;
quit;
```
Fig. 3.11 A plot of the bonds data with the “flower” bonds removed

We produce the regression output for the regular bond data with another call to proc `reg`. We will need the standardized residuals later for figure 3.12 so we use the `out` statement and specify the `student` option, storing the standardized residuals in the variable `stdres` in the dataset `resids`.

```
proc reg data = notflower;
  model bidprice=couponrate;
  output out = resids student=stdres;
run;
quit;
```

```
The REG Procedure
  Model: MODEL1
  Dependent Variable: bidprice

  Number of Observations Read         32
  Number of Observations Used         32

  Analysis of Variance
    Source        DF    Sum of Squares      Mean Square     F Value   Pr > F
  Model            1    2094.07525      2094.07525    1995.84    <.0001
  Error         30    31.47652         1.04922
  Corrected Total  31    2125.55177

  Root MSE            1.02431    R-Square            0.9852
  Dependent Mean   102.85594     Adj R-Sq            0.9847
  Coeff Var          0.99587

  Parameter Estimates
    Parameter   Standard
```
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 57.29323 1.03582 55.31 <.0001
couponrate 1 4.83384 0.10820 44.67 <.0001

Figure 3.12 is drawn by a call to `gplot` using the just created dataset `resids`. Again we use the `vref` option to draw horizontal reference lines for the standardized residuals at -2 and 2.

```
goptions reset = all;
proc gplot data = resids;
symbol1 value = circle;
title1 height=2 "Regular Bonds";
axis1 label=(h=2 font=times angle=90 "Standardized Residuals")
   order=(-4 to 2 by 1) value=(font=times h=1);
axis2 label=(h=2 font=times "Coupon Rate (%)")
   order=(2 to 14 by 2) value=(font=times h=1);
plot stdres*couponrate/ vaxis=axis1 haxis=axis2
   vminor=0 hminor=0 vref=-2 2;
run;
quit;
```

![Regular Bonds](image)

Fig. 3.12 Plot of standardized residuals with the “flower” bonds removed

To draw figure 3.13, we must compute the cook distances for each observation of the bonds data. Unsurprisingly, proc `reg` can compute them. We perform proc reg with the `cookd` option to attain this computation.

```
proc reg data= bonds noprint;
   model bidprice=couponrate;
   output out = cook cookd=cd;
run;
quit;
```

Now we split the good cook distances from the bad cook distances, like we split the flower bonds from the regular bonds. The dataset `badcook` contains the `labely` variable initialized with the small cook distances. The `goodcook` dataset contains the `cd` variable initialized with the larger cook distances.
data badcook;
 set cook;
 if cd < 0.1212 then delete;
 labely = cd;
 drop cd;
run;
quit;

data goodcook;
 set cook;
 if cd > 0.1212 then delete;
run;
quit;

data labelcook;
 set badcook goodcook;
run;
quit;

Now we use proc gplot to overlay the good and bad cook distances versus couponrate. We add a horizontal line at the good/bad cook distance cutoff with the vref option.

goptions reset = all;
proc gplot data = labelcook;
symbol1 value = circle color=black
 pointlabel="#case" height=1 position=bottom);
symbol2 value=circle color=black;
axis1 label=(h=2 font=times angle=90
 "Cook's Distance") order=(0 to 1.2 by 0.2)
 value=(font=times h=1);
axis2 label=(h=2 font=times "Coupon Rate (%)")
 order=(2 to 14 by 2) value=(font=times h=1);
plot labely*couponrate cd*couponrate/ overlay
 vaxis=axis1 haxis=axis2 vminor=0 hminor=0
 vref=0.1212;
run;
quit;
Fig. 3.13 A plot of Cook’s distance against Coupon Rate

Obtaining figure 3.14 will take some work. The `reg` procedure provides a number of nice default graphics through the `ods` system (like `proc var` does), but they do not match perfectly with the 4 default graphs obtained by the `plot(lm)` function in R.

We will demonstrate the default graphics now, first bringing the production data back into SAS. The graphics are stored as .png files with names DiagnosticsPanel, FitPlot, and ResidualPlot.

```sas
data prod;
  infile 'data/production.txt' firstobs=2 expandtabs;
  input case time size;
run;
quit;
ods graphics on;
proc reg data = prod;
  model time=size;
  output out=output r=resids p=fitted student=stdres cookd=cd h=levg;
run;
quit;
ods graphics off;
```

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>12868</td>
<td>12868</td>
<td>48.72</td>
<td><.0001</td>
</tr>
</tbody>
</table>
Error 18 4754.57581 264.14310
Corrected Total 19 17623

Root MSE 16.25248 R-Square 0.7302
Dependent Mean 202.05000 Adj R-Sq 0.7152
Coeff Var 8.04379

Parameter Estimates

| Variable | DF | Parameter | Standard Error | t Value | Pr > |t|
|----------|----|-----------|----------------|---------|-------|
| Intercept | 1 | 149.74770 | 8.32815 | 17.98 | <.0001|
| size | 1 | 0.25924 | 0.03714 | 6.98 | <.0001|

Fit Diagnostics for time

- Residuals vs. Predicted Value
- Standardized Residuals vs. Predicted Value
- Residuals vs. Leverage
- Cook’s Distance vs. Observation
- Residuals vs. Quantiles
- Residuals vs. Fitted Values
- Normal Probability Plot of Residuals

7/30/2010
We will now generate figure 3.14 using a macro, \texttt{%plotlm}. This macro is invoked after proc \texttt{reg} is executed. It is assumed that proc \texttt{reg} stores the regression results in the macro argument dataset \texttt{regout}. It is also assumed that the variable names for result storage used do not differ from those given in the last command (\texttt{resids}, \texttt{fitted}, \texttt{stdres}, \texttt{cd}, and \texttt{levg}). For brevity, we will not describe any details of the \texttt{%plotlm} definition.

\begin{verbatim}
%macro plotlm(regout =,);
proc loess data = ®out;
 model resids=fitted/smooth=0.6667;
 ods output OutputStatistics=loessout;
run;
quit;

data fit;
set regout;
set loessout;
\end{verbatim}
run;
quit;

proc sort data = fit;
 by fitted;
run;
quit;

goptions reset = all;
symbol1 v=circle c=black;
symbol2 i=join c=black;
title1 height=2 font=times "Residuals vs Fitted";
 axis1 label = (font=times h=2 angle=90 'Residuals')
 value=(font=times h=1);
 axis2 label = (font=times h=2 'Fitted values')
 value =(font=times h=1);
proc gplot data = fit;
 plot /*points:* resids*fitted=1 /*loess:*/
 Pred*fitted=2/ overlay hminor=0 vminor=0
 vaxis=axis1 haxis=axis2 vref=0;
run;
quit;

goptions reset = all htext=1.5;
title1 height=2 font=times "Normal Q-Q";
symbol1 value=circle color=black;
proc univariate data = ®out noprint;
 qqplot stdres/normal(mu=0 sigma=1 l=1 color=black)
 font=times vminor=0 hminor=0
 vaxislabel = "Standardized Residuals";
run;
quit;

data plot3;
 set ®out;
 sqrtres = sqrt(abs(stdres));
run;
quit;

proc loess data = plot3;
 model sqrtres=fitted/smooth=0.6667;
 ods output OutputStatistics=loessout;
run;
quit;

data fit;
 set plot3;
 set loessout;
run;
quit;

proc sort data = fit;
 by fitted;
run;
quit;
%plotlm

Now we invoke %plotlm on the output dataset saved from the production regression.
We bring the cleaning data in next. We draw figure 3.15 with a proc `gplot` and the `interpol=r` option.

```sas
data clean;
  infile 'data/cleaning.txt' firstobs=2 expandtabs;
  input case crews rooms;
run;
quit;
```

```sas
goptions reset = all;
proc gplot data = clean;
symbol1 value=circle interpol=r;
axis1 label=(h=2 angle=90 font=times "Number of Rooms Cleaned")
  order=(0 to 80 by 10) value=(font=times h=1);
axis2 label=(h=2 font=times "Number of Crews")
  order=(2 to 16 by 2) value=(font=times h=1);
plot rooms*crews/ vaxis=axis1 haxis=axis2
  vminor=0 hminor=0;
run;
quit;
```
We obtain the following regression output and prediction intervals by using proc `reg` again. We specify the `ucl` and `lcl` options in the `out` statement to get the prediction intervals.

```plaintext
proc reg data = clean;
model rooms=crews;
output out=predintervals p=fit lcl=lwr ucl=upr;
run;
quit;
```

The REG Procedure
Model: MODEL1
Dependent Variable: rooms

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>16430</td>
<td>16430</td>
<td>305.27</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>51</td>
<td>2744.79602</td>
<td>53.81953</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>52</td>
<td>19175</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 7.33618 R-Square 0.8569
Dependent Mean 33.90566 Adj R-Sq 0.8540
Coeff Var 21.63703

Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard</th>
</tr>
</thead>
</table>

Fig. 3.15 Plot of the room cleaning data with the least squares line added
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 1.78470 2.09648 0.85 0.3986
crews 1 3.70089 0.21182 17.47 <.0001

Now we print the predictions. First we use a data step to restrict the observations in the predinterval dataset to only those with crews of 4 and 16 (via the if statement with the output option). We use the keep statement in this data step to restrict predinterval to only those variables of interest.

data predintervals;
set predintervals;
keep crews fit lwr upr;
if crews in(4,16) then output;
run;
quit;

Then we use the sort procedure with the noduplicates option to sort the observations of predinterval in ascending order of crews, and remove duplicate observations. The sort procedure supports the BY statement. The BY statement specifies that SAS will perform the same operation for each value (or combination of values) of the given variable (or variables in the statement). For a procedure that uses the BY statement to work the dataset it uses must be sorted by the variables in the BY statement.

proc sort data=predintervals noduplicates;
 by crews;
run;
quit;

Finally we use proc print with the var statement to output the prediction results.

proc print data = predintervals;
 var fit lwr upr;
run;
quit;

Obs fit lwr upr
1 16.5883 1.5894 31.5871
2 60.9990 45.8103 76.1877

Now we will draw figure 3.16. First we use proc reg with the output statement to output the standardized residuals, and other estimates for possible later use.

proc reg data = clean noprint;
 model rooms=crews;
 output out=regout r=resids student=stdres cookd=cd
 p=fitted h=levg;
run;
quit;

Now we use proc gplot to render 3.16.

goptions reset = all;
proc gplot data = regout;
symbol1 value=circle;
Fig. 3.16 Plot of standardized residuals against number of cleaning crews

We draw figure 3.17 by adding a variable, the square root of the absolute value of the standardized residuals to the `regout` data.

```plaintext
data plot3;
  set regout;
  sqabs = sqrt(abs(stdres));
run;
quit;
```

Now we use `gplot` to draw figure 3.17. We use the `interpol=r` option to draw the regression line.

```plaintext
goptions reset = all;
proc gplot data = plot3;
symbol1 value=circle interpol=r;
  axis1 label=(h=2 angle=90 font=times "Sqrt(Abs(Std'zd Resids))") value=(font=times h=1)
          order=(0.2 to 1.6 by 0.2);
  axis2 label=(h=2 font=times "Number of Crews")
          offset=(3,3) order=(2 to 16 by 2)
          value=(font=times h=1);
plot sqabs*crews/ vaxis=axis1 haxis=axis2
  vminor=0 hminor=0;
run;
```
Fig. 3.17 A diagnostic plot aimed at detecting nonconstant error variance

To plot figure 3.18, we will reuse the %plotlm macro. Earlier when we called proc reg, we saved the output dataset regout with all the necessary variables for %plotlm.

%plotlm(regout=regout);
To draw figure 3.19, we first calculate the estimated standard deviation of rooms conditional on each value of crews.

So we use proc sort first, to sort the cleaning data by crews.

```
proc sort data = clean;
  by crews;
run;
quit;
```

Now we use the MEANS procedure to calculate the standard deviation estimates. PROC MEANS can calculate a variety of descriptive statistics. We specify that we want standard deviations by specifying the STD option. We tell SAS we only want calculations made for the rooms variable with the var statement. The BY statement tells SAS we want to perform the calculation for each values of crews.

```
PROC MEANS STD;
VAR rooms;
BY crews;
run;
quit;
```

The MEANS Procedure

Analysis Variable : rooms
Analysis Variable: rooms

Std Dev
3.0000000

crews=4

Std Dev
4.9665548

crews=6

Std Dev
4.6904158

crews=8

Std Dev
6.6426651

crews=10

The MEANS Procedure

Std Dev
7.9271234

crews=12

Std Dev
7.2899148
Using these values, we create two new datasets for graphing. Again we use the CARDS statement to hard code values into the data.

```plaintext
data stdevs;
  input std @@;
cards;
; run;
quit;

data crews;
  input crews @@;
cards;
  2 4 6 8 10 12 16
; run;
quit;

data plotit;
  set stdevs;
  set crews;
run;
quit;
```

Now we make a call to proc gplot to draw figure 3.19 using the `plotit` dataset.

```plaintext
goptions reset = all;
proc gplot data = plotit;
symbol1 v=circle i=r c=black;
  axis1 label = (h=2 font=times angle=90 "Stdev(Rooms Cleaned)"
    order=(1 to 13 by 2) value=(font=times h=1);
  axis2 label = (h=2 font=times 'Number of Crews')
    order=(2 to 16 by 2) value=(font=times h=1)
    offset=(2,2);
plot std*crews=1/hminor=0 vminor=0
  vaxis=axis1 haxis=axis2;
run;
quit;
```
3.3 Transformations

We perform the regression on page 77. First we create a new dataset, `sqrttrans`, which contains the cleaning data along with square root transformed versions of `crews` and `rooms`.

```sas
data sqrttrans;
  set clean;
  sqrtcrews = sqrt(crews);
  sqrtrooms = sqrt(rooms);
run;
quit;
```

Now we perform the regression, storing the predictions in the dataset `predint`, along with the variables that will be needed for the `%plotlm` macro.

```sas
proc reg data = sqrttrans;
  model sqrtrooms=sqrtcrews;
  output out=predint lcl=lwr ucl=upr
    r=resids p=fitted student=stdres cookd=cd h=levg;
run;
quit;
```

Model: MODEL1
Dependent Variable: sqrtrooms

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>145.62027</td>
<td>145.62027</td>
<td>412.73</td>
<td><.0001</td>
</tr>
</tbody>
</table>
Finally we print the predictions and prediction intervals stored in `predint` for crew values of 4 and 16. We follow an identical method to that which we used earlier. We create a new dataset this time, `predintred`, instead of altering the original `predint` dataset. We will use the `predint` dataset later and do not want to drop observations from it.

```plaintext
data predintred;
set predint;
keep crews fitted lwr upr;
if crews in(4,16) then output;
run;
quit;
```

```plaintext
proc sort data=predintred noduplicates;
   by crews ;
run;
quit;
```

```plaintext
proc print data = predintred;
   var fitted lwr upr;
run;
quit;
```

To draw figure 3.20, we use two calls to proc `gplot`.

```plaintext
options reset = all;
proc gplot data = sqrttrans;
symbol1 v=circle i=r c=black;
axis1 label = (h=2 font=times angle=90 "Sqrt(Rooms Cleaned)")
   order=(2 to 9 by 1) value=(font=times h=1);
axis2 label = (h=2 font=times 'Sqrt(Number of Crews)')
   order=(1 to 4 by 0.5) value=(font=times h=1) offset=(2,2);
plot sqrtrooms*sqrtcrews=1/hminor=0 vminor=0 vaxis=axis1 haxis=axis2;
run;
quit;
```
goptions reset = all;
proc gplot data = predint;
symbol1 v=circle c=black;
axis1 label = (h=2 font=times angle=90 "Standardized Residuals")
 order=(-2 to 2.5 by 0.5) value=(font=times h=1);
axis2 label = (h=2 font=times 'Sqrt(Number of Crews)')
 order=(1 to 4 by 0.5) value = (font=times h=1) offset=(0,2);
plot stdres*sqrtcrews=1/hminor=0 vminor=0 vaxis=axis1 haxis=axis2;
run;
quit;

Fig. 3.20 Plots of the transformed data and the resulting standardized residuals

To draw figure 3.21, we merely call our macro %plotlm.
Now we bring in the confood1 data and render figure 3.22 with a call to proc gplot. We shorten the interpol option to i and use i=r in the first symbol statement to draw the regression line.

```plaintext
data food;
  infile 'data/confood1.txt' firstobs=2 expandtabs;
  input week sales price;
run;
quit;

goptions reset = all;
symbol1 v=circle c=black i=r;
axis1 order=(0 to 7000 by 1000) label=(angle=90 f=times h=2 "Sales")
  offset=(0,2) value=(f=times h=1);
axis2 order=(0.55 to 0.85 by 0.05) value=(f=times h=1)
  label=(f=times h=2 "Price");
proc gplot data = food;
  plot sales*price/vaxis=axis1 haxis=axis2 vminor=0 hminor=0;
run;
quit;
```

Fig. 3.21 Diagnostic Plots
Fig. 3.22 A scatter plot of sales against price

We draw figure 3.23 by adding log transformed variables to the food dataset.

```sas
data food;
set food;
lsales=log(sales);
lprice=log(price);
runcap=run;
quit;
```

Now we use proc `gplot` to render figure 3.23. Not how this time the `symbol` and `axis` statements that were formerly within the `gplot` procedure are now outside of it. These statements specify global options, just like the first `goptions` statement. So they may be placed before or within the proc `gplot`.

```sas
options reset = all;
symbol1 v=circle c=black i=r;
axis1 order=(5 to 9 by 1) label=(angle=90
  font=('times',12) h=2 "log(Sales)"
  value=('times',12) h=1);
axis2 order=(-0.6 to -0.1 by 0.1) value=('times',12) h=1
  label=('times',12) h=2 "log(Price)"
proc gplot data = food;
plot lsales*lprice/vaxis=axis1 haxis=axis2 vminor=0
  hminor=0;
run;
quit;
```
Now we perform the regression with the transformed variables. We only store the standardized residuals this time.

```plaintext
proc reg data = food;
    model lsales=lprice;
    output out=sres student=stdres;
run;
quit;
```

Model: MODEL1
Dependent Variable: lsales

Number of Observations Read 52
Number of Observations Used 52

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>16.42220</td>
<td>16.42220</td>
<td>101.96</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>50</td>
<td>8.05345</td>
<td>0.16107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>51</td>
<td>24.47565</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 0.40133 R-Square 0.6710
Dependent Mean 6.47215 Adj R-Sq 0.6644
Coeff Var 6.20094

Parameter Estimates
| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|-------------------|----------------|---------|--------|-----|
| Intercept | 1 | 4.80288 | 0.17443 | 27.53 | <.0001 |
| lprice | 1 | -5.14769 | 0.50980 | -10.10 | <.0001 |

Now we use proc **gplot** with the *sres* data to draw figure 3.24.

```plaintext
goptions reset = all;
symbol1 v=circle c=black;
axis1 order=(-2.5 to 3.5 by 1) label=(angle=90
  f=times h=2 "Standardized Residuals")
  value=(f=times h=1);
axis2 order=(-0.6 to -0.1 by 0.1) value=(f=times h=1)
  label=(f=times h=2 "log(Price)")
proc gplot data = sres;
  plot stdres*lprice/vaxis=axis1 haxis=axis2 vminor=0
    hminor=0;
run;
quit;
```

![Standardized Residuals vs log(Price)](image)

Fig. 3.24 A plot of standardized residuals against log(price)

Now we move to the generated example. We bring in the data, storing it in the dataset *transf*.

```plaintext
data transf;
  infile 'data/responsetransformation.txt' firstobs=2 expandtabs;
  input x y;
run;
quit;
```

We use proc **gplot** to draw figure 3.25.

```plaintext
goptions reset = all;
symbol1 v=circle c=black;
axis1 order=(0 to 100 by 20) value=(f=times h=1)
  label=(h=2 f=times angle=90 "y")
```
We draw figure 3.26 by first performing the regression on the untransformed data. We store the standardized residuals and then the square root of their absolute values in the dataset res.

```
proc reg data = transf;
  model y=x;
  output out=res student=stdres;
run;
quit;
```

The REG Procedure
Model: MODEL1
Dependent Variable: y

```
Number of Observations Read        250
Number of Observations Used        250
```

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>61030</td>
<td>61030</td>
<td>1872.75</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>248</td>
<td>8081.98868</td>
<td>32.58866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>249</td>
<td>8081.98868</td>
<td>32.58866</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```

```
root MSE 5.70865 R-Square 0.8831
```

Fig. 3.25 A plot of Y vs x for the generated data (responsetransformation.txt)
Dependent Mean       21.10295    Adj R-Sq     0.8826
                     Coeff Var    27.05143

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|-------------------|----------------|---------|------|---|
| Intercept| 1  | -29.86234         | 1.23180        | -24.24  | <.0001 |
| x        | 1  | 20.00778          | 0.46234        | 43.28   | <.0001 |

data res;
set res;
sqtabsy=sqrt(abs(stdres));
run;
quit;

Now we use two calls to proc gplot to draw the figure.

goptions reset = all;
symbol1 v=circle c=black;
axis1 order=(-2 to 5 by 1) value=(f=times h=1)
  label=(h=2 f=times angle=90
    "Standardized Residuals");
axis2 order=(0 to 5 by 1) value=(f=times h=1)
  label=(f=times h=2 "x");
proc gplot data = res;
plot stdres*x/vaxis=axis1 haxis=axis2 vminor=0
      hminor=0;
run;
quit;

goptions reset = all;
symbol1 v=circle c=black;
axis1 order=(0 to 2.5 by 0.5) value=(f=times h=1)
  label=(h=2 f=times angle=90
    "Sqrt(Abs(Stdzd Resids))");
axis2 order=(0 to 5 by 1) value=(f=times h=1)
  label=(f=times h=2 "x");
proc gplot data = res;
plot sqtabsy*x/vaxis=axis1 haxis=axis2 vminor=0
      hminor=0;
run;
quit;
To draw figure 3.27, we will need to define several new macros. We first define the kernel density macro. Note that we use the Sheather-Jones bandwidth selection method (method=sjpi).

```%macro kerneld(var =, dat =); proc kde data = &dat method=sjpi out=dens; var &var; run; quit; goptions reset = all; symbol1 i=join width=1; title height=2 font=times "Gaussian kernel density estimate"; axis1 value=(f=times h=1) label=(h=2 f=times angle=90 "Density"); axis2 value=(f=times h=1) label=(f=times h=2 "&var"); proc gplot data = dens; plot density*&var/vaxis=axis1 haxis=axis2 vminor=0 hminor=0; run; quit; %mend;```

Then we define a macro to draw a boxplot. Note that this time we only have one group. We must specify a second variable in the plot statement, so we assign a constant value to the variable group and use &var*group.

```%macro boxplot(dsn=, var=); data boxplot; set &dsn; group=1; run; quit; goptions reset = all; symbol1 v=circle i=boxt bwidth=56; axis1 label=(f=times h=2 angle=90 "&var") value=(f=times h=1)); axis2 order=(1) label=(' ')```
value=(f=times h=1 t=1 ' '); proc gplot data = boxplot;
    plot &var*group/vaxis=axis1 haxis=axis2 vminor=0 hminor=0;
run;
quit;
%mend boxplot;

Finally we define a macro for making a normal quantile plot.

%macro qqplot(var=, dsn=);
goptions reset = all htext=1.5;
title1 height=2 font=times "Normal Q-Q";
symbol1 value=circle color=black;
proc univariate data = &dsn noprint;
    qqplot &var/normal(mu=est sigma=est l=1 color=black)
        vminor=0 hminor=0 font=times
        vaxislabel= "&var";
run;
quit;
%mend qqplot;

The following code will call these three macros to generate the plots in figure 3.27.

%kerneld(dat=transf,var=y);
%boxplot(dsn=transf,var=y);
%qqplot(dsn=transf, var=y);
%kerneld(dat=transf,var=x);
%boxplot(dsn=transf,var=x);
%qqplot(dsn=transf, var=x);
To draw figure 3.28, we will create another macro, \%irp. This is an abbreviation of inverse response plot. Our macro will use the iml procedure to perform matrix calculations and optimization. The details of the macro’s implementation are too advanced to explain here. We pass the response and fitted values from the regression of the response $y$ on the one predictor $x$ into it. It prints the optimum value for drawing the inverse response plot in lambdareps. It also renders the inverse response plot with some calls to proc reg, use of the merge statement, and finally invocation of proc gplot.
%macro irp(resp=, fit=, dat=);
proc iml;

start h_irp_call(lambda) global(resp, fit);
Y = log(resp);
if (abs(lambda) > .001) then Y = (1/lambda)##(resp##lambda-J(nrow(resp), 1, 1));
Y = J(nrow(resp), 1, 1) || Y;
predit = Y*(INV(Y`*Y)*Y`*fit);
f = (fit - predit)`*(fit - predit);
f = -f;
return(f);
finish h_irp_call;

start irp_call(lambda) global(resp, fit);
f = h_irp_call(lambda);
return(f);
finish irp_call;

start unirpopt;
lambda = J(1, 1, 1);
optn = j(1, 11, .);
optn[1] = 1;
optn[2] = 1;

call nlpqn(rc, lambdares, "irp_call", lambda, optn);
print lambdares;
call symput('lambda', char(lambdares)) ;
finish;

use &dat;
read all;
resp = &resp;
fit = &fit;
run unirpopt;
quit;

data invresplot;
set &dat;
y = &resp;
cbrty = y**(&lambda);
ly = log(y);
run;
quit;

%macro regouts(dsn=, yvar=, predname=); 
proc reg data = invresplot noprint;
model fitted = &yvar;
output out= &dsn p=&predname;
run;
quit;
%mend;

%regouts(dsn=data1, yvar=y, predname=lam1hat);
%regouts(dsn=data2, yvar=cbrty, predname=cbrtyhat);
%regouts(dsn=data3, yvar=ly, predname=lyhat);

proc sort data = invresplot;
by y;
We invoke the irp macro on our data.

%irp(resp=y, fit=fitted, dat=regout);

Dual Quasi-Newton Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Gradient Computed by Finite Differences

Parameter Estimates 1

Optimization Start
Active Constraints                               0  Objective Function                    -7136.882832
Max Abs Gradient Element              15898.357513

<table>
<thead>
<tr>
<th>Iter</th>
<th>Restarts</th>
<th>Calls</th>
<th>Active Constraints</th>
<th>Objective Function</th>
<th>Max Abs Gradient Element</th>
<th>Step Change</th>
<th>Search Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>-964.05728</td>
<td>6172.8</td>
<td>0.00521</td>
<td>-2.53E6</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>-266.73155</td>
<td>697.3</td>
<td>0.549</td>
<td>-2768.8</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>-265.89269</td>
<td>0.8389</td>
<td>1.000</td>
<td>-1.464</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>-265.87493</td>
<td>0.0178</td>
<td>1.000</td>
<td>-0.0357</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>-265.87493</td>
<td>0.000223</td>
<td>1.000</td>
<td>-129E-8</td>
</tr>
</tbody>
</table>

Optimization Results

Iterations                                       5  Function Calls                                  12
Gradient Calls                                   8  Active Constraints                               0
Objective Function                    -265.8749261  Max Abs Gradient Element              0.0002233637
Slope of Search Direction             -1.292299E-6
GCONV convergence criterion satisfied.

lambdares
0.332116

Fig. 3.28 Inverse response plot for the generated data set

To draw figure 3.29 we will calculate the RSS for the given power transformation values. We first generate the transformed responses, storing them in the new dataset powtransf.

data powtransf;
set regout;
py1 = 1/y;
py2 = y**(-.5);
py3 = y**(-1/3);
py4 = log(y);
py5 = y**(1/3);
py6 = y**(1/2);
py7 = y;
run;
quit;

Now we perform regressions of the original fitted values on the transformed responses. Since we named our transformed variables sequentially, we can use a macro with a do loop to do this quickly. We store the parameter estimates, along with other summary estimates from the regression in a dataset specified with the outest option.

%macro regit;
%do i = 1 %to 7;
proc reg data=powtransf outest=py&i;
model fitted=py&i;
run;
quit;
%end;
%mend regit;

regit;

We keep the RMSE statistic in each of the datasets and introduce a variable that gives the transformation power.

data pyl;
set pyl;
power =-1;
keep _RMSE_ power;
run;
quit;

data py2;
set py2;
power =-1/2;
keep _RMSE_ power;
run;
quit;

data py3;
set py3;
power =-1/3;
keep _RMSE_ power;
run;
quit;

data py4;
set py4;
power =0;
keep _RMSE_ power;
run;
quit;

data py5;
set py5;
power =1/3;
keep _RMSE_ power;
run;
quit;
data py6;
set py6;
power =1/2;
keep _RMSE_ power;
run;
quit;

data py7;
set py7;
power =1;
keep _RMSE_ power;
run;
quit;

Finally we append each of the datasets py1-py7 together. This is accomplished in the set statement. We also transform the mean squared error stored in _RMSE_ to the residual sum of squares by multiplying its squared value by the sample size – 2.

data rssdata;
set py1 py2 py3 py4 py5 py6 py7 ;
rss = (_RMSE_**2)*(250-2);
run;
quit;

Now we draw figure 3.29 with a call to proc gplot.

goptions reset = all;
symbol1 i=join c=black;
axis1 label=(h=2 f=times a=90 "Residual Sum of Squares") order=(0 to 50000 by 10000) value=(h=1 f=times);
axis2 label=(h=2 f=times "Lambda") order=(-1 to 1 by 0.5) value=(h=1 f=times);
proc gplot data = rssdata;
plot rss*power/vaxis=axis1 haxis=axis2 hminor=0 vminor=0;
run;
quit;
To draw the Box-Cox likelihood plots in figure 3.30, we will use the `transreg` procedure. Using the `model boxcox` statement with the convenient lambda option calculates the likelihood of different lambda values for transforming $y$, while leaving $x$ unchanged. The ods statements at the beginning store the boxcox results for later graphing. The actual non-ods output dataset `trans` only contains results for the optimal lambda.

```sas
ods output boxcox=b details=d;
ods exclude boxcox;
proc transreg details data = transf;
model boxcox(y/ convenient
 lambda=0.28 to 0.4 by .001)=identity(x);
output out=trans;
run;
quit;
```

The next few portions of code may be esoteric to introductory SAS users. We use a nice piece of code found in the SAS documentation to create data sets `_null_`; we then use these data sets to create the reference lines for drawing the confidence intervals. The reference values are stored in macro variables `&vref`, `&href1`, `&href2` and `&href3` by way of the `symput` command. In data set `b`, the variable `ci` is a variable that takes on the value * for lambda values within the confidence interval and the value < for the single value of lambda that minimizes the RSS. Because the second data set `_null_` consists only of those values of lambda that are in the confidence interval, it is easy to set the first value in the data set (where `_n_ = 1`) to the macro variable `&href1`, and one also can set `&href2` equal to the last lambda value in the data set (end is an automatic SAS logical taking on the value TRUE for the last observation and FALSE otherwise).

```sas
data _null_;
set d;
 if description = 'CI Limit'
 then call symput('vref', formattedvalue);
 if description = 'Lambda Used'
 then call symput('lambda', formattedvalue);
run;
```
quit;

proc print data = b;
run;
quit;

data _null_;    
set b end = eof;  
where ci ne ' ';
if _n_ = 1
   then call symput('href1',
                   compress(put(lambda, best12.)));
if ci = '<'
   then call symput('href2',
                    compress(put(lambda, best12.)));
if eof
   then call symput('href3',
                    compress(put(lambda, best12.)));
run;
quit;

Now we draw figure 3.30 with two calls to proc gplot.

goptions reset = all;
axis2 order=(0.28 to 0.4 by 0.02)
   label=(f=times h=2 "Lambda") value=(h=1 f=times);
axis1 order=(-20 to 30 by 10) label=(angle=90 f=times h=2 "log-Likelihood") value=(h=1 f=times);
proc gplot data = b;
plot loglike * lambda / vref=&vref href=&href1 &href2 &href3
   vminor=0 hminor=0 vaxis=axis1 haxis=axis2;
footnote height=1.5 font=times
   "95% CI: &href1 - &href3, 
   "Lambda = &lambda";
symbol v=none i=spline c=black;
run;
footnote;
quit;

*Plot 2;

goptions reset = all;
axis2 order=(0.32 to 0.345 by 0.005)
   label=(f=times h=2 "Lambda") value=(h=1 f=times);
axis1 order=(24.5 to 27 by .5) label=(angle=90 f=times h=2 "log-Likelihood") value=(h=1 f=times);
proc gplot data = b;
plot loglike * lambda / vref=&vref href=&href2
   vminor=0 hminor=0 vaxis=axis1 haxis=axis2;
symbol v=none i=spline c=black;
run;
quit;
Fig. 3.30 Log-likelihood for the Box-Cox transformation method

We note that the log-likelihood here is not equivalent to that calculated by R, but its maxima and intervals are. Now we will regress $x$ on the optimally transformed $y$.

```r
data new;
 set transf;
 ty = y**(1/3);
run;
quit;

proc reg data = new;
 model ty=x;
run;
quit;
```

The REG Procedure
Model: MODEL1
Dependent Variable: ty

Number of Observations Read 250
Number of Observations Used 250

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>151.37726</td>
<td>151.37726</td>
<td>56671.6</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Error</td>
<td>248</td>
<td>0.66244</td>
<td>0.00267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>249</td>
<td>152.03970</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 0.05168  R-Square 0.9956
Dependent Mean 2.54718  Adj R-Sq 0.9956
Coeff Var 2.02903
To draw figure 3.31, we reuse our macros `%kerneld`, `%boxplot`, and `%qqplot`. We also use a call to proc `gplot` to draw the last figure, the scatter of the transformed \( y \) and \( x \) with the regression line added.

```sas
%kerneld(dat=new, var=ty);
%boxplot(dsn=new, var=ty);
%qqplot(dsn=new, var=ty);
goptions reset = all;
axis1 label=(font=times h=2 'x')
 value=(font=times h=1);
axis2 label=(h=2 font=times angle=90
 'Y^(1/3)') value=(font=times h=1);
symbol1 value = circle i=r;
proc gplot data = new;
plot ty*x/ haxis=axis1 vaxis=axis2 vminor=0 hminor=0;
run;
quit;
```

**Fig. 3.31** Box plots, normal Q–Q plots and kernel density estimates of \( Y^{1/3} \)
Now we bring in the salary data. We regress \textit{maxsalary} on \textit{score} using proc \texttt{reg}, storing output results in \texttt{outreg}. We will need the standardized residuals. We use an additional data step to add the square root of the absolute values of these residuals.

\begin{verbatim}
data sal;
  infile 'data/salarygov.txt' firstobs=2;
  input id $ nw ne score maxsal;
run;
quit;

proc reg data = sal;
  model maxsal=score;
  output out=outreg student=stdres;
run;
quit;

data outreg;
  set outreg;
  sqtabsres = sqrt(abs(stdres));
run;
quit;
\end{verbatim}

Now we will use three calls to proc \texttt{gplot} to draw figure 3.32.

\begin{verbatim}
goptions reset = all;
  axis1 label=(font=times h=2 'Score')
    value=(font=times h=1);
  axis2 label=(h=2 font=times angle=90
    'Max Salary') value=(font=times h=1)
    order=(1000 to 9000 by 1000);
  symbol1 value = circle i=r;
proc gplot data = outreg;
  plot maxsal*score/ haxis=axis1 vaxis=axis2 vminor=0 hminor=0;
run;
quit;


goptions reset = all;
  axis1 label=(font=times h=2 'Score')
    value=(font=times h=1);
  axis2 label=(h=2 font=times angle=90
    'Standardized Residuals') value=(font=times h=1)
    order=(-4 to 8 by 2);
  symbol1 value = circle i=r;
proc gplot data = outreg;
  plot stdres*score/ haxis=axis1 vaxis=axis2 vminor=0 hminor=0;
run;
quit;


goptions reset = all;
  axis1 label=(font=times h=2 'Score')
    value=(font=times h=1);
  axis2 label=(h=2 font=times angle=90
    'Sqrt(Abs(Std Res))') value=(font=times h=1)
    order=(0 to 3 by 1);
  symbol1 value = circle i=r;
proc gplot data = outreg;
\end{verbatim}
Now it is time to attempt a multivariate box-cox transformation of the salary data. We define the macro \%mboxcox. This macro will be invoked inside of a proc iml call that stores the variables to be transformed as columns in a matrix $X$. The row vector $namesX$ contains the labels for these variables. As before, the details of this macro are too advanced to get into here.

\begin{verbatim}
\%macro mboxcox;
\%start geoMean(orMatrix,nuMatrix);
nuMatrix = log(orMatrix);
nuMatrix = nuMatrix[+,:];
nuMatrix = exp(nuMatrix/nrow(orMatrix));
\%finish;
\%start_h_bcml1(lambda) global(X,namesX);
GMX = J(1, ncol(X), 0);
Y = X;
\%run geoMean(X,GMX);
i=1;
\%do while (i<=ncol(X));
\%if lambda[1,i] = 0 then Y[,i]= GMX[1,i]*log(Y[,i]);
\%end;
\%end;
\end{verbatim}

Fig. 3.32 Plots associated with a straight line model to the untransformed data
else Y[,i] = (GMX[1,i]##(1-lambda[1,i])) * (Y[,i]##lambda[1,i] - J(nrow(X),1,1)) / lambda[1,i];
i = i + 1;
end;
h1 = I(nrow(X)) - J(nrow(X),1,1) * J(nrow(X),1,1)''/nrow(X);
h2 = Y'*h1*Y/(nrow(X)-1);
h3 = det(h2);
if h3 <= 0 then print "Cannot estimate this transformation";
f = -nrow(X)*log(h3)/2;
return(f);
finish h_bcmll;

start bcmll(lambda) global(X,namesX);
f = h_bcmll(lambda);
return(f);
finish bcmll;

start MultivariateBoxCox;
lambda = J(1,ncol(X),0);
optn = j(1,11,.)
optn[1] = 1;
optn[2] = 2;
call nlpqn(rc,lambdares,"bcmll",lambda,optn);
call nlpfdd(crit, grad, hess, "bcmll",lambdares);
print grad;
variance = inv(-hess);
print variance;
print lambdares[c=namesX];

stderr = sqrt(vecdiag(variance)) ;
lrt0 = 2#(bcmll(lambdares)-bcmll(0#lambdares));
lrt1 = 2#(bcmll(lambdares)-bcmll(J(1,ncol(X),1)));
wald0= lambdares#(t(stderr##(-1))) ;
wald1= (lambdares-J(1,ncol(X),1))#(t(stderr##(-1)));
wald0 = t(wald0) ;
wald1 = t(wald1) ;
plrt0 = 1-CDF('CHISQUARE',lrt0,ncol(X));
plrt1 = 1-CDF('CHISQUARE',lrt1,ncol(X));

res = t(lambdares) || stderr || wald0 || wald1;
tcols = {'Power', 'Std.Error', 'Wald 0', 'Wald 1'};
resrow = t(namesX);
rescol= t(tcols);
print res[r=resrow c=rescol] ;

lrtet = J(2,3,0);
lrtet[1,1] = lrt0;
lrtet[2,1] = lrt1;
lrtet[1,2] = ncol(X);
lrtet[2,2] = ncol(X);
lrtet[1,3] = plrt0;
lrtet[2,3] = plrt1;

resrow = {'LRT all = 0', 'LRT all = 1'};
rescol = {'LRT','df','p-value'};
rescol = t(rescol);
print lret[l=resrow c=rescol];
finish;
run MultivariateBoxCox;

%mend mboxcox;

Now we invoke the macro on the salary data.

proc iml;
  use sal;
  read all;
  namesX={"Salary" "Score"};
  X  = maxsal || score ;
  %mboxcox;
run;
quit;

<table>
<thead>
<tr>
<th>Optimization Start</th>
<th>Parameter Estimates</th>
<th>Gradient Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Parameter</td>
<td>Estimate</td>
<td>Function</td>
</tr>
<tr>
<td>1</td>
<td>X1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>0</td>
</tr>
</tbody>
</table>

Value of Objective Function = -5625.398
Dual Quasi-Newton Optimization

Parameter Estimates 2

Optimization Start

<table>
<thead>
<tr>
<th>Active Constraints</th>
<th>0</th>
<th>Objective Function</th>
<th>-5625.398</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Abs Gradient Element</td>
<td>145.96307373</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iter</th>
<th>Restarts</th>
<th>Function Calls</th>
<th>Active Constraints</th>
<th>Objective Function</th>
<th>Max Abs Gradient Element</th>
<th>Step Size</th>
<th>Slope of Search Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>-5566</td>
<td>59.7443</td>
<td>0.100</td>
<td>-732.6</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>-5563</td>
<td>2.2532</td>
<td>0.114</td>
<td>-52.592</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>-5563</td>
<td>0.5161</td>
<td>2.8478</td>
<td>-0.850</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>-5563</td>
<td>0.0312</td>
<td>0.3638</td>
<td>-0.0605</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>-5563</td>
<td>0.000239</td>
<td>0.0806</td>
<td>-0.0005</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>-5563</td>
<td>3.77E-6</td>
<td>0.0284</td>
<td>-423E-7</td>
</tr>
</tbody>
</table>

Optimization Results

Iterations	6	Function Calls	11
Gradient Calls	8	Active Constraints	0
Objective Function	-5562.852927	Max Abs Gradient Element	0.0284240647
Slope of Search Direction	-0.00004231		
GCONV convergence criterion satisfied.

NOTE: At least one element of the (projected) gradient is greater than 1e-3.

Optimization Results
Parameter Estimates

<table>
<thead>
<tr>
<th>N Parameter</th>
<th>Estimate</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 X1</td>
<td>-0.097273</td>
<td>-0.028424</td>
</tr>
<tr>
<td>2 X2</td>
<td>0.597375</td>
<td>-0.009514</td>
</tr>
</tbody>
</table>

Value of Objective Function = -5562.852927

grad

-0.028424 -0.009514

variance

0.0039497  0.001855
0.001855  0.0042707

lambdas

Salary Score

-0.097273 0.5973754

res

Power Std.Error  Wald 0    Wald 1
Salary -0.097273 0.0628464  -1.547794  -17.45961
Score  0.5973754 0.0653502   9.141135   -6.161027

lrt

LRT        df    p-value
LRT all = 0 125.09015         2         0
LRT all = 1 211.0704         2         0

We only really care about the last few portions of the results. The remainder of the results details the optimization procedure. Now we use the %kerneld, %boxplot, and %qqplot macros to draw figure 3.33.

%kerneld(dat=sal, var=maxsal);  
%boxplot(dsn=sal, var=maxsal);  
%qqplot(dsn=sal, var=maxsal);  
%kerneld(dat=sal, var=score);  
%boxplot(dsn=sal, var=score);  
%qqplot(dsn=sal, var=score);
Fig. 3.33 Plots of the untransformed data

Now we transform the data and use proc gplot draw figure 3.34.

```sas
data transf;
set sal;
logmax = log(maxsal);
rtscore = sqrt(score);
run;
quit;

goptions reset = all;
symbol1 v=circle i=r c=black;
axis1 value=(f=times h=1)
 label=(h=2 f=times angle=90 "log(Max Salary)");
```
axis2 value=(f=times h=1) order=(5 to 35 by 10)
   label=(f=times h=2 "Sqrt(Score)");
proc gplot data = transf;
   plot logmax*rtscore/vaxis=axis1 haxis=axis2 vminor=0
      hminor=0;
run;
quit;

Fig. 3.34 Plot of log(MaxSalary) and Sqrt(Score) with the least squares line added

Next to draw figure 3.35 we re-perform our plots in figure 3.33 with the transformed data.

%kerneld(dat=transf, var=logmax);
%boxplot(dsn=transf, var=logmax);
%qqplot(dsn=transf, var=logmax);
%kerneld(dat=transf, var=rtscore);
%boxplot(dsn=transf, var=rtscore);
%qqplot(dsn=transf, var=rtscore);
Now we perform the regression on the transformed data using proc *reg* and the *output* statement. We use two calls to *gplot* to draw figure 3.36.

```plaintext
proc reg data = transf;
model logmax = rtscore;
output out = outreg student=stdres;
run;
quit;

data plot2;
set outreg;
rtabsres = sqrt(abs(stdres));
run;
quit;
```

---

**Fig. 3.35** Plots of the transformed data
*Plot 1;
goptions reset = all;
symbol1 v=circle;
axis1 value=(f=times h=1) order=(-4 to 4 by 2)
  label=(h=2 f=times angle=90 "Standardized Residuals");
axis2 value=(f=times h=1) order=(5 to 35 by 10)
  label=(f=times h=2 "Sqrt(Score)");
proc gplot data = outreg;
  plot stdres*rtscore/vaxis=axis1 haxis=axis2 vminor=0
    hminor=0;
run;
quit;

*Plot 2;
goptions reset = all;
symbol1 v=circle interpol=r;
axis1 value=(f=times h=1) order=(0 to 2 by 0.5)
  label=(h=2 f=times angle=90 "Sqrt(Abs(Stdzd Res))");
axis2 value=(f=times h=1) order=(5 to 35 by 10)
  label=(f=times h=2 "Sqrt(Score)");
proc gplot data = plot2;
  plot rtabsres*rtscore/vaxis=axis1 haxis=axis2 vminor=0
    hminor=0;
run;
quit;

Fig. 3.36 Diagnostic plots from the model based on the transformed data

To obtain the box-cox output for the score variable which follows figure 3.36, we merely call our
%mboxcox macro again.

proc iml;
  use sal;
  read all;
  namesX={'Score'};
  X = score;
  %mboxcox;
run;
quit;
Optimization Start
Parameter Estimates

<table>
<thead>
<tr>
<th>N Parameter</th>
<th>Estimate</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 X1</td>
<td>0.548131</td>
<td>-0.000059138</td>
</tr>
</tbody>
</table>

Value of Objective Function = -2575.08032

Grad

-0.000059

variance

0.0000591376

lambdares

Score

7/30/2010

85
We have some difficulty with the optimization in finding best power in the inverse response plot in figure 3.37, so we will hard code the chosen power and use portions of the \%irp code to draw the plot.

```sas
proc reg data = transf noprint;
 model maxsal=rtscore;
 output out = regout p = fitted;
run;
quit;

data invresplot;
set regout;
y = maxsal;
cbrty = y**(-.19);
ly = log(y);
run;
quit;

%macro regouts (dsn=,yvar=,predname=);
 proc reg data = invresplot noprint;
 model fitted = &yvar;
 output out = &dsn p = &predname;
 run;
quit;
%mend;

%regouts (dsn=data1,yvar=y,predname=lam1hat);
%regouts (dsn=data2,yvar=cbrty,predname=cbrtyhat);
%regouts (dsn=data3,yvar=ly,predname=lyhat);

proc sort data = invresplot;
 by y;
run;
quit;

%macro sortit;
%do i = 1 %to 3;
 proc sort data = data&i;
 by y;
 run;
quit;
```

7/30/2010
%end;
%mend sortit;
%sortit;

data full;
merge invresplot data1 data2 data3;
by y;
run;
quit;

goptions reset = all;
symbol1 v=circle c=black;
symbol2 i=join c=black l=5 w=2;
symbol3 i=join c=black l=1 w=2;
symbol4 i=join c=black l=2 w=2;
axis1 label=(h=2 angle=90 f=times "yhat")
  value=(h=1 f=times);
axis2 label=(h=2 f=times "y")
  value=(h=1 f=times) offset=(2,0);
legend1 label=(f=times h=1.5 j=c 'Lambda' position=top)
  position=(bottom right inside) across=1 frame
  value=(f=times h=1.5 j=c 'Yhat' j=c '1'
    j=c "-.19" j=c '0' j=c);
proc gplot data = full;
plot fitted*y=1 lamihat*y=2 cbryhat*y=3 lyhat*y=4/
  overlay vaxis=axis1 haxis=axis2 vminor=0
  hminor=0 legend=legend1;
run;
quit;

Fig. 3.37 Inverse response plot based on model (3.6)

Now we use our %kerneld, %boxplot, and %qqplot macros to draw figure 3.38.
data transf;
  set transf;
  maxsaln25 = maxsal**(-.25);
run;
quit;

%kerneld(dat=transf, var=maxsaln25);
%boxplot(dsn=transf, var=maxsaln25);
%qqplot(dsn=transf, var=maxsaln25);

Fig. 3.38 Plots of the transformed MaxSalary variable

We draw figure 3.39 by using proc reg to obtain the standardized residuals. Then we use proc gplot.

proc reg data = transf noprint;
  model maxsaln25=rtscore;
  output out=regout student=stdres;
run;
quit;

data regout;
  set regout ;
  rtabsres = sqrt(abs(stdres));
run;
quit;
goptions reset = all;
symbol1 v=circle i=r;
axis1 value=(f=times h=1)
    label=(h=2 f=times angle=90 "(Max Salary)^-.25")
axis2 value=(f=times h=1) order=(5 to 35 by 10)
    label=(f=times h=2 "Sqrt(Score)");
proc gplot data = regout;
    plot maxsaln25*rtscore/vaxis=axis1 haxis=axis2 vminor=0
        hminor=0; run;
quit;

*Plot 2;

goptions reset = all;
symbol1 v=circle;
axis1 value=(f=times h=1)
    label=(h=2 f=times angle=90 "Standardized Residuals")
axis2 value=(f=times h=1) order=(5 to 35 by 10)
    label=(f=times h=2 "Sqrt(Score)");
proc gplot data = regout;
    plot stdres*rtscore/vaxis=axis1 haxis=axis2 vminor=0
        hminor=0; run;
quit;

*Plot 3;
goptions reset = all;
symbol1 v=circle interpol=r;
axis1 value=(f=times h=1)
    label=(h=2 f=times angle=90 "Sqrt(Abs(Stdzd Res))")
axis2 value=(f=times h=1) order=(5 to 35 by 10)
    label=(f=times h=2 "Sqrt(Score)");
proc gplot data = regout;
    plot rtabsres*rtscore/vaxis=axis1 haxis=axis2 vminor=0
        hminor=0;
run;
quit;
Fig. 3.39 Plots associated with the model found using approach (1)
4. Weighted Least Squares

4.1 Straight-Line Regression Based on Weighted Least Squares

We bring the cleaning data into SAS again. This time we use the special data that has been augmented with the standard deviations.

```sas
data inputit;
 infile "data/cleaningwtd.txt" firstobs=2 expandtabs;
 input case crews rooms stdev;
run;
quit;
```

Now we use a data step to add the inverse variance weight variable to the data.

```sas
data wtd;
 set inputit;
 wt = 1/(stdev**2);
run;
quit;
```

We perform the weighted regression using proc `reg`. The `weight` statement tells SAS to perform a weighted regression with the given variable as the weighting variable.

```sas
proc reg data = wtd;
 model rooms = crews;
 weight wt;
 output out=outreg p=fit lcl=lwr ucl=upr;
run;
quit;
```

The REG Procedure
Model: MODEL1
Dependent Variable: rooms

Number of Observations Read 53
Number of Observations Used 53

Weight: wt

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>426.29450</td>
<td>426.29450</td>
<td>457.96</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Error</td>
<td>51</td>
<td>47.47356</td>
<td>0.93085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>52</td>
<td>473.76807</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 0.96481    R-Square 0.8998
Dependent Mean 19.64772  Adj R-Sq 0.8978
Coef Var 4.91053
Parameter Estimates

| Variable     | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|--------------|----|--------------------|----------------|---------|------|---|
| Intercept    | 1  | 0.80948            | 1.11578        | 0.73    | 0.4715 |
| crews        | 1  | 3.82546            | 0.17876        | 21.40   | <.0001 |

By specifying the p, lcl, and ucl options in the output statement we obtain the prediction intervals for each value of crews in the data. These are the correct prediction intervals. Recall how we adapted the prediction output from the cleaning data in chapter 3 and chapter 2 to only include one observation for crews values of 4 and 16. We re-perform this procedure here using a data step, proc sort, and finally proc print.

```
data outreg;
set outreg;
keep crews fit lwr upr;
if crews in(4,16) then output;
run;
quit;
```

```
proc sort data=outreg noduplicates;
by crews ;
run;
quit;
```

```
proc print data = outreg noobs;
var crews fit lwr upr;
run;
quit;
```

```
crews fit lwr upr
4 16.1113 6.3878 25.8348
16 62.0169 38.3953 85.6385
```

Now we will weight the data before regressing so that we may use ordinary least squares.

```
data weightit;
set wtd;
ynew = sqrt(wt)*rooms;
x1new = sqrt(wt);
x2new = sqrt(wt)*crews;
run;
quit;
```

Now we perform ordinary least squares on the transformed data with proc reg. We specify the noint option to prevent SAS from fitting the model with an intercept. Note that the prediction intervals need to be scaled by the inverse of the square root of the observation weight. This is because our response is rooms multiplied by the square root of the observation weight.

```
proc reg data = weightit;
model ynew = x1new x2new/noint;
```
The REG Procedure
Model: MODEL1
Dependent Variable: ynew

Number of Observations Read 53
Number of Observations Used 53

NOTE: No intercept in model. R-Square is redefined.

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>1190.75036</td>
<td>595.37518</td>
<td>639.60</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Error</td>
<td>51</td>
<td>47.47356</td>
<td>0.93085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncorrected Total</td>
<td>53</td>
<td>1238.22392</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 0.96481
R-Square 0.9617
Dependent Mean 4.60357
Adj R-Sq 0.9602
Coeff Var 20.95782

Parameter Estimates

| Variable  | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|-----------|----|--------------------|----------------|---------|------|---|
| x1new     | 1  | 0.80948            | 1.11578        | 0.73    | 0.4715 |
| x2new     | 1  | 3.82546            | 0.17876        | 21.40   | <.0001 |

data outreg;
set outreg;
keep crews fit lwr upr;
if crews in(4,16) then output;
run;
quit;

proc sort data=outreg noduplicates;
   by crews ;
run;
quit;

proc print data = outreg noobs;
   var crews data = fit lwr upr;
run;
quit;

<table>
<thead>
<tr>
<th>crews</th>
<th>fit</th>
<th>lwr</th>
<th>upr</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3.24396</td>
<td>1.28617</td>
<td>5.20176</td>
</tr>
<tr>
<td>16</td>
<td>5.16787</td>
<td>3.19948</td>
<td>7.13627</td>
</tr>
</tbody>
</table>
5. Multiple Linear Regression

5.1 Polynomial Regression

In this chapter we will learn how to do multiple linear regression in SAS. We begin by bringing the professional salary data into SAS.

```sas
data profsal;
 infile 'data/profsalary.txt' firstobs=2 expandtabs;
 input case salary exper;
run;
quit;
```

We draw figure 5.1 with a call to `gplot`.

```sas
goptions reset = all;
 axis1 label=(font=times h=2 'Years of Experience')
 value=(font=times h=1);
 axis2 label=(h=2 font=times angle=90 'Salary') value=(font=times h=1) ;
 symbol1 value = circle;
proc gplot data = profsal;
 plot salary*exper/ haxis=axis1 vaxis=axis2
 vminor=0 hminor=0;
run;
quit;
```

![Fig. 5.1 A plot of the professional salary data (prefsalary.txt)](image)

We now regress salary on experience to obtain the standardized residuals for figure 5.2. We use proc `reg` and specify the `student` option in the `output` statement to get the desired residuals.
proc reg data = profsal;
  model salary = exper;
  output out=outreg student=stdres;
run;
quit;

The REG Procedure
Model: MODEL1
Dependent Variable: salary

Number of Observations Read       143
Number of Observations Used       143

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>9962.92616</td>
<td>9962.92616</td>
<td>293.33</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Error</td>
<td>141</td>
<td>4789.04587</td>
<td>33.96486</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>142</td>
<td>14752</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE              5.82794    R-Square     0.6754
Dependent Mean       65.16783    Adj R-Sq     0.6731
Coeff Var             8.94297

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|--------------------|----------------|---------|-------|-----|
| Intercept| 1  | 48.50593           | 1.08810        | 44.58   | <.0001|
| exper    | 1  | 0.88345            | 0.05158        | 17.13   | <.0001|

Now we use proc gplot again to draw figure 5.2, using the dataset outreg that we just created.

goptions reset = all;
  axis1 label=(font=times h=2
               'Years of Experience')
               value=(font=times h=1);  
  axis2 label=(h=2 font=times angle=90
               'Standardized Residuals')
               value=(font=times h=1);  
  symbol1 value = circle;
proc gplot data = outreg;
  plot stdres*exper/ haxis=axis1 vaxis=axis2
                vminor=0 hminor=0;
run;
quit;
Fig. 5.2 A plot of the standardized residuals from a straight-line regression model

We draw figure 5.3 with a call to **gplot** using the original *profsal* dataset. The **interpol=rq** option in the **symbol1** statement adds the quadratic regression estimation line to the plot.

```plaintext
goptions reset = all;
axis1 label=(font=times h=2 'Years of Experience')
 value=(font=times h=1);
axis2 label=(h=2 font=times angle=90
 'Salary') value=(font=times h=1) ;
symbol1 value = circle interpol=rq;
proc gplot data = profsal;
plot salary*exper/ haxis=axis1 vaxis=axis2
 vminor=0 hminor=0;
run; quit;
```

Fig. 5.3 A plot of salary against experience with a quadratic fit added
Now we add a quadratic term to the data and add this variable as a predictor to our model. We re-run proc `reg`, adding the quadratic term variable to the list of variables on the right hands side of the `=` sign in the model statement. This is the only difference in using the proc `reg` procedure with multiple predictors rather than single. We also save all necessary diagnostic variables for the `%plotlm` macro. Recall how we used `%plotlm` in chapter 3. For the diagnostic options in the output statement, we must specify the exact variable names that `%plotlm` is expecting.

```plaintext
data quad;
 set profsal;
 expsq = exper**2;
run;
quit;

proc reg data = quad;
 model salary=exper expsq;
 output out=regout r=resids student=stdres cookd=cd
 p=fitted h=levg;
run;
quit;
```

The REG Procedure
Model: MODEL1
Dependent Variable: salary

Number of Observations Read 143
Number of Observations Used 143

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>13641</td>
<td>6820.39408</td>
<td>859.31</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Error</td>
<td>140</td>
<td>1111.18387</td>
<td>7.93703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>142</td>
<td>14752</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 2.81727  R-Square 0.9247
Dependent Mean 65.16783  Adj R-Sq 0.9236
Coeff Var 4.32310

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t|
|----------|----|--------------------|----------------|---------|------|
| Intercept| 1  | 34.72050           | 0.82872        | 41.90   | <.0001|
| exper    | 1  | 2.87227            | 0.09570        | 30.01   | <.0001|
| expsq    | 1  | -0.05332           | 0.00248        | -21.53  | <.0001|

Now we can draw figure 5.4 with proc `gplot`.

```plaintext
goptions reset = all;
axis1 label=(font=times h=2
 'Years of Experience')
```

7/30/2010 97
value=(font=times h=1);
axis2 label=(h=2 font=times angle=90 'Standardized Residuals')
    value=(font=times h=1) ;
symbol1 value = circle;
proc gplot data = regout;
plot stdres*exper/ haxis=axis1 vaxis=axis2
    vminor=0 hminor=0;
run;
quit;

Fig. 5.4 A plot of the standardized residuals from a quadratic regression model

We draw figure 5.5 with another call to proc gplot. We add a horizontal line at the high leverage cutoff point with the vref option in the plot statement.

goptions reset = all;
axis1 label=(font=times h=2 'Years of Experience')
    value=(font=times h=1);
axis2 label=(h=2 font=times angle=90 'Leverage')
    value=(font=times h=1) ;
symbol1 value = circle;
proc gplot data = regout;
plot levg*exper/ haxis=axis1 vaxis=axis2
    vminor=0 hminor=0 vref=0.042;
run;
quit;
To draw figure 5.6, we will use the %plotlm macro. To define this macro, we execute this code in SAS.

```sas
%macro plotlm(regout =,);
 proc loess data = ®out;
 model resids=fitted/smooth=0.6667;
 ods output OutputStatistics=loessout;
 run;
 quit;

 data fit;
 set regout;
 set loessout;
 run;
 quit;

 proc sort data = fit;
 by fitted;
 run;
 quit;

 goptions reset = all;
 symbol1 v=circle c=black;
 symbol2 i=join c=black;
 title1 height=2 font=times "Residuals vs Fitted";
 axis1 label = (font=times h=2 angle=90 'Residuals')
 value=(font=times h=1);
 axis2 label = (font=times h=2 'Fitted values')
 value = (font=times h=1);
 proc gplot data = fit;
 plot /*points:* resids*fitted=1 /*loess:* Pred*fitted=2 overlay hminor=0 vminor=0
 vaxis=axis1 haxis=axis2 vref=0;
 run;
 quit;
%
```

Fig. 5.5 A plot of leverage against $x$, years of experience
goptions reset = all htext=1.5;
title1 height=2 font=times "Normal Q-Q";
symbol1 value=circle color=black;

proc univariate data = &regout noprint;
qqplot stdres/normal(mu=0 sigma=1 l=1 color=black)
font=times vminor=0 hminor=0
vaxislabel = "Standardized Residuals";
run;
quit;

data plot3;
set &regout;
sqrtres = sqrt(abs(stdres));
run;
quit;

proc loess data = plot3;
model sqrtres=fitted/smooth=0.6667;
ods output OutputStatistics=loessout;
run;
quit;

data fit;
set plot3;
set loessout;
run;
quit;

proc sort data = fit;
by fitted;
run;
quit;

goptions reset = all;
symbol1 v=circle c=black;
symbol2 i=join c=black;
title1 height=2 font=times  "Scale-Location"
axis1 label = (font=times h=2 angle=90 'Sqrt(Abs(Res))')
value=(font=times h=1);
axis2 label = (font=times h=2 'Fitted values')
value=(font=times h=1);
proc gplot data = fit;
plot /*points:*/ sqrtres*fitted=1 /*loess:*/
   Pred*fitted=2/ overlay hminor=0 vminor=0
   vaxis=axis1 haxis=axis2;
run;
quit;

proc sort data = &regout;
by levg;
run;
quit;

proc loess data = &regout;
model stdres=levg/smooth=0.67777;
ods output OutputStatistics=loessout;
run;
quit;

data fit;
  set &regout;
  set loessout;
run;
quit;

proc sort data = fit;
  by levg;
run;
quit;

goptions reset = all;
symbol1 v=circle c=black;
symbol2 i=join c=black;
title1 height=2 font=times "Residuals vs Leverage";
axis1 label = (h=2 font=times angle=90 "Standardized Residuals")
  value=(font=times h=1);
axis2 label = (h=2 font=times 'Leverage')
  value =(font=times h=1) ;
proc gplot data = fit;
  plot /*points:*/ stdres*levg=1 /*loess:*/ Pred*levg=2/
    overlay hminor=0 vminor=0 vaxis=axis1 haxis=axis2
    vref=0 href=0;
run;
quit;
%mend;

We invoke the %plotlm macro to draw figure 5.6.

%plotlm(regout=regout);
We re-run the quadratic regression with the ucl and lcl options set in the output statement to obtain the prediction intervals. We use the data step, proc sort, and proc print method that we have used previously to show the prediction interval for ten years of experience.

```
proc reg data = quad noprint;
 model salary = exper expsq;
 output out=predout p=fit lcl=lwr ucl=upr;
run;
quit;

data predout;
set predout;
keep exper fit lwr upr;
if exper in(10) then output;
run;
quit;

proc sort data=predout noduplicates;
 by exper;
run;
quit;

proc print data = predout noobs;
 var exper fit lwr upr;
```

---

**Fig. 5.6** Diagnostic plots

- **Residuals vs Fitted**
- **Normal Q-Q**
- **Scale-Location**
- **Residuals vs Leverage**
run;
quit;

<table>
<thead>
<tr>
<th>exper</th>
<th>fit</th>
<th>lwr</th>
<th>upr</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>58.116</td>
<td>52.5048</td>
<td>63.7185</td>
</tr>
</tbody>
</table>

5.2 Estimation and Inference in Multiple Linear Regression

We bring in the New York restaurant data with proc import. Recall that we used this command in chapter 1. The getnames statement tells SAS to obtain the variable names from the first lines of the comma separated file.

```
proc import datafile="data/nyc.csv" out=nyc replace;
 getnames=yes;
run;
quit;
```

Now we run the desired regression form page 138 with proc reg. As before, each predictor variable is placed on the right hand side of the = sign in the model statement.

```
proc reg data = nyc;
 model price = food decor service east;
run;
quit;
```

The REG Procedure
Model: MODEL1
Dependent Variable: Price

Number of Observations Read 168
Number of Observations Used 168

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>4</td>
<td>9054.99614</td>
<td>2263.74904</td>
<td>68.76</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Error</td>
<td>163</td>
<td>5366.52172</td>
<td>32.92345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>167</td>
<td>14422</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 5.73790 R-Square 0.6279
Dependent Mean 42.69643 Adj R-Sq 0.6187
Coeff Var 13.43882

Parameter Estimates
We use proc reg again to obtain the regression on page 139.

```sas
proc reg data = nyc;
 model price = food decor east;
run;
quit;
```

The REG Procedure
Model: MODEL1
Dependent Variable: Price

Number of Observations Read 168
Number of Observations Used 168

Analysis of Variance
```

Source DF Sum of Squares Mean Square F Value Pr > F
Model 3 9054.99458 3018.33153 92.24 <.0001
Error 164 5366.52328 32.72270
Corrected Total 167 14422
```

Root MSE    5.72038    R-Square    0.6279
Dependent Mean 42.69643   Adj R-Sq    0.6211
Coef Var     13.39779

Parameter Estimates
```

Variable DF Parameter Estimate Standard Error t Value Pr > |t|
Intercept 1 -24.02688 4.67274 -5.14 <.0001
Food 1 1.53635 0.26318 5.84 <.0001
Decor 1 1.90937 0.19002 10.05 <.0001
East 1 2.06701 0.93181 2.22 0.0279
```

5.3 Analysis of Covariance

To bring in the travel data into SAS, we return to using a data step with an `infile` statement.

```sas
data travel;
 infile 'data/travel.txt' firstobs = 2 expandtabs;
 input amount age segment $ c;
run;
```

7/30/2010
To draw figure 5.7, we need to do some data preparation first. We define a new dataset tog, which adds two new variables to the travel dataset. The variable amta contains the amount for segment A, and is missing for segment = C values. Similarly, the variable amtc contains the amount for segment C, and is missing for segment = A values.

```plaintext
data tog;
 set travel;
 if segment = 'A' then amta=amount;
 if segment = 'C' then amtc=amount;
run;
quit;
```

We draw figure 5.7 with a call to gplot. We define the symbols for each of the segments in the symbol1 and symbol2 statements. The v option specifies what symbol we will actually use in the graphing. The 1 and 2 from the symbol statements correspond to the =1 and =2 equations in the plot statement.

```plaintext
goptions reset = all;
symbol1 font=times h=1 v='A' c=black;
symbol2 font=times h=1 v='C' c=red;
axis1 label = (h=2 font=times angle=90 "Amount Spent")
 value=(font=times h=1);
axis2 label = (h=2 font=times 'Age')
 value=(font=times h=1);
proc gplot data = tog;
 plot amta*age=1 amtc*age=2/
 hminor=0 vminor=0 vaxis=axis1 haxis=axis2 overlay;
run;
quit;
```

![Image of figure 5.7: A scatter plot of Amount Spent versus Age for segments A and C](image)

**Fig. 5.7** A scatter plot of Amount Spent versus Age for segments A and C
Now we will perform the regression on page 141. First we add an interaction term to the travel data, then we run proc `reg` with this interaction term as a predictor.

```sql
data interact;
 set travel;
 inter = age*c;
run;
quit;

proc reg data = interact;
 model amount = age c inter;
run;
quit;
```

The REG Procedure
Model: MODEL1
Dependent Variable: amount

Number of Observations Read 925
Number of Observations Used 925

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3</td>
<td>50221965</td>
<td>16740655</td>
<td>7379.30</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Error</td>
<td>921</td>
<td>2089377</td>
<td>2268.59616</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>924</td>
<td>52311342</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 47.62978
Dependent Mean 908.12865
Coeff Var 5.24483

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|--------------------|----------------|---------|------|---|
| Intercept| 1  | 1814.54449         | 8.60106        | 210.97  | <.0001 |
| age      | 1  | -20.31750          | 0.18777        | -108.21 | <.0001 |
| c        | 1  | -1821.23368        | 12.57363       | -144.85 | <.0001 |
| inter    | 1  | 40.44611           | 0.27236        | 148.50  | <.0001 |

We perform the reduced model regression on page 143 with another proc `reg`.

```sql
proc reg data = interact;
 model amount = age c;
run;
quit;
```

The REG Procedure
Model: MODEL1
Dependent Variable: amount

Number of Observations Read 925
Number of Observations Used         925

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>191001</td>
<td>95500</td>
<td>1.69</td>
<td>0.1852</td>
</tr>
<tr>
<td>Error</td>
<td>922</td>
<td>52120341</td>
<td>56530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>924</td>
<td>52311342</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE               237.75966    R-Square     0.0037
Dependent Mean         908.12865    Adj R-Sq     0.0015
Coeff Var              26.18127

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|--------------------|----------------|---------|------|---|
| Intercept| 1  | 963.42541          | 32.01430       | 30.09   | <.0001 |
| age      | 1  | -1.09389           | 0.67894        | -1.61   | 0.1075 |
| c        | 1  | -12.92908          | 15.64552       | -0.83   | 0.4088 |

To perform the F-test on page 144, we define a macro, `%ftest`. We omit details of the definition here for brevity.

```
%macro ftest(dsn=, yvar=, fullm=, reducedm=,fulldf=,reddf=);
proc reg data = &dsn outest=est tableout;
 m1: model &yvar = &fullm/noprint;
 m2: model &yvar = &reducedm/noprint;
run;
quit;

data makef;
 set est;
 keep _RMSE_
 if _TYPE_ ^= 'PARMS' then delete;
run;
quit;

proc transpose data = makef out=makef2(rename=(col1=rmse_full
 col2=rmse_red));
run;
quit;

data make3;
 set makef2;
 keep rmse_full rmse_red;
run;
quit;

data ftest;
 set make3;
```
rss_red=(rmse_red**2)*&reddf;
rss_full=(rmse_full**2)*&fulldf;
f=((rss_red - rss_full)/(&reddf-&fulldf))/(rss_full/&fulldf);
pval=1-probf(f,(&reddf-&fulldf),&fulldf);
run;
quit;
proc print data = ftest;
run;
quit;
%mend ftest;

Now we call the %ftest macro. We specify the response in the yvar argument, the full model in the fullm argument, and the reduced model in the reduced argument. The fulldf and reddf arguments take the degrees of freedoms for the F-test. The data set created from the tableout command contains the Root Mean Square Errors from our two models, along with several other things; the rest of the macro eliminates the parts of the table that we don’t need and creates the variable f to contain the f-statistic for the model reduction. Pval contains the p-value from the test.

%ftest(dsn=interact, yvar=amount, fullm= age c inter,
       reducedm= age, fulldf=921, reddf=923);

We return to the New York restaurant data now to perform the regression on page 145. The dataset nyc should still be in SAS, so we load it in a data step and add the interaction terms. Then we use proc reg to perform the regression.

data interac;
  set nyc;
  food_e = food*east;
  dec_e = decor*east;
  serv_e = service*east;
run;
quit;

proc reg data = interac;
  model price = food decor service east food_e dec_e serv_e;
run;
quit;

The REG Procedure
Model: MODEL1
Dependent Variable: Price

Number of Observations Read 168
Number of Observations Used 168

Analysis of Variance
Now we fit the reduced model with proc `reg`.

```sas
proc reg data = interac;
 model price = food decor east;
run;
quit;
```

The REG Procedure
Model: MODEL1
Dependent Variable: Price

Number of Observations Read 168
Number of Observations Used 168

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3</td>
<td>9054.99458</td>
<td>3018.33153</td>
<td>92.24</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Error</td>
<td>164</td>
<td>5366.52328</td>
<td>32.72270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>167</td>
<td>14422</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 5.72038 R-Square 0.6279
Dependent Mean 42.69643 Adj R-Sq 0.6211
Coeff Var 13.39779

Parameter Estimates

| Variable  | DF | Parameter Estimate | Standard Error  | t Value | Pr > |t| |
|-----------|----|--------------------|-----------------|---------|------|-----|
| Intercept | 1  | -26.99485          | 8.46721         | -3.19   | 0.0017 |
| Food      | 1  | 1.00681            | 0.57041         | 1.77    | 0.0795 |
| Decor     | 1  | 1.88810            | 0.29840         | 6.33    | <.0001 |
| Service   | 1  | 0.74382            | 0.64427         | 1.15    | 0.2500 |
| East      | 1  | 6.12531            | 10.24990        | 0.60    | 0.5510 |
| food_e    | 1  | 1.20769            | 0.77427         | 1.56    | 0.1208 |
| dec_e     | 1  | -0.25001           | 0.45701         | -0.55   | 0.5851 |
| serv_e    | 1  | -1.27194           | 0.81706         | -1.56   | 0.1215 |
### Parameter Estimates

| Variable | DF | Estimate  | Error   | t Value | Pr > |t| |
|----------|----|-----------|---------|---------|-------|---|
| Intercept| 1  | -24.02688 | 4.67274 | -5.14   | <.0001|
| Food     | 1  | 1.53635   | 0.26318 | 5.84    | <.0001|
| Decor    | 1  | 1.90937   | 0.19002 | 10.05   | <.0001|
| East     | 1  | 2.06701   | 0.93181 | 2.22    | 0.0279|

Now we call our `%ftest` macro again.

%ftest(dsn=interac, yvar=price, fullm=
  food decor service east food_e dec_e serv_e,
  reducedm= food decor east, fulldf=160,
  reddf=164);

<table>
<thead>
<tr>
<th>Obs</th>
<th>rmse_ full</th>
<th>rmse_red</th>
<th>rss_red</th>
<th>rss_full</th>
<th>f</th>
<th>pval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.71301</td>
<td>5.72038</td>
<td>5366.52</td>
<td>5222.17</td>
<td>1.10572</td>
<td>0.35579</td>
</tr>
</tbody>
</table>
6. Diagnostics and Transformations for Multiple Linear Regression

6.1 Regression Diagnostics for Multiple Regression

In this chapter we will learn how to do diagnostics for multiple linear regression in SAS. We begin with the New York restaurant data. We use proc import to bring the data in. Recall how this command was used instead of a data step in chapter 1.

```
proc import datafile="data/nyc.csv" out=nyc replace;
getnames=yes;
run;
quit;
```

We will now draw figure 6.1. Recall from chapter 1 how we used the ods system to generate the matrix plot with proc corr. By specifying the plots=matrix option, we get a .png file call MatrixPlot in the current SAS directory (usually the same directory as the .sas file we are submitting commands from) that contains the matrix plot of the three continuous predictors we specified in the var statement.

```
ods graphics on;
proc corr data = nyc plots=matrix;
 var food decor service;
run;
quit;
ods graphics off;
```

The CORR Procedure

3 Variables: Food Decor Service

Simple Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Sum</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>168</td>
<td>20.59524</td>
<td>1.98267</td>
<td>3460</td>
<td>16.00000</td>
<td>25.00000</td>
</tr>
<tr>
<td>Decor</td>
<td>168</td>
<td>17.69048</td>
<td>2.70274</td>
<td>2972</td>
<td>6.00000</td>
<td>25.00000</td>
</tr>
<tr>
<td>Service</td>
<td>168</td>
<td>19.39881</td>
<td>2.11394</td>
<td>3259</td>
<td>14.00000</td>
<td>24.00000</td>
</tr>
</tbody>
</table>

Pearson Correlation Coefficients, N = 168

<table>
<thead>
<tr>
<th></th>
<th>Food</th>
<th>Decor</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>1.00000</td>
<td>0.50392</td>
<td>0.79452</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Decor</td>
<td>0.50392</td>
<td>1.00000</td>
<td>0.64533</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Service</td>
<td>0.79452</td>
<td>0.64533</td>
<td>1.00000</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
</tr>
</tbody>
</table>
To draw figure 6.2, we first regress price on the three predictors with proc `reg`. We save the standardized residuals and fitted values using the `output` statement.

```sas
proc reg data = nyc;
model price = food decor service east;
output out=outreg student=stdres p=fitted;
run;
quit;
```

The REG Procedure
Model: MODEL1
Dependent Variable: Price

Number of Observations Read 168
Number of Observations Used 168

Analysis of Variance

```
<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>4</td>
<td>9054.99614</td>
<td>2263.74904</td>
<td>68.76</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>163</td>
<td>5366.52172</td>
<td>32.92345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>167</td>
<td>14422</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Root MSE 5.73790
Dependent Mean 42.69643
Coef Var 13.43882

Parameter Estimates
| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|--------------------|----------------|---------|------|---|
| Intercept| 1  | -24.02380          | 4.70836        | -5.10   | <.0001 |
| Food     | 1  | 1.53812            | 0.36895        | 4.17    | <.0001 |
| Decor    | 1  | 1.91009            | 0.21700        | 8.80    | <.0001 |
| Service  | 1  | -0.00273           | 0.39623        | -0.01   | 0.9945 |
| East     | 1  | 2.06805            | 0.94674        | 2.18    | 0.0304 |

Now we use proc `gplot` with the dataset `outreg` to draw figure 6.2.

```plaintext
goptions reset = all;
axis1 label=(h=2 f=times 'Food')
 value=(f=times h=1) offset=(3,3);
axis2 label=(h=2 angle=90 f=times
 'Standardized Residuals') value=(f=times h=1);
symbol1 value = circle;
proc gplot data = outreg;
 plot stdres*food/ haxis=axis1 vaxis=axis2 vminor=0
 hminor=0;
run;
quit;

options reset = all;
axis1 label=(h=2 f=times 'Decor')
 value=(f=times h=1) offset=(3,0);
axis2 label=(h=2 angle=90 f=times
 'Standardized Residuals') value=(f=times h=1);
symbol1 value = circle;
proc gplot data = outreg;
 plot stdres*decor/ haxis=axis1 vaxis=axis2 vminor=0
 hminor=0;
run;
quit;

options reset = all;
axis1 label=(h=2 f=times 'Service') order=
 (14 to 24 by 2) value=(f=times h=1)
 offset=(3,3.5);
axis2 label=(h=2 angle=90 f=times
 'Standardized Residuals') value=(f=times h=1);
symbol1 value = circle;
proc gplot data = outreg;
 plot stdres*service/ haxis=axis1 vaxis=axis2 vminor=0
 hminor=0;
run;
quit;

options reset = all;
axis1 label=(h=2 f=times 'East') order=
 (0 to 1 by 1) value=(f=times h=1)
 offset=(30,30);
axis2 label=(h=2 angle=90 f=times
 'Standardized Residuals') value=(f=times h=1);
symbol1 value = circle;
proc gplot data = outreg;
 plot stdres*east/ haxis=axis1 vaxis=axis2 vminor=0
 hminor=0;
run;
quit;

[7/30/2010] 113
Since we also saved the fitted values in \texttt{outreg}, we can draw figure 6.3 by simply calling \texttt{proc gplot} again.

\begin{verbatim}
goptions reset = all;
axis1 label=(h=2 f=times 'Fitted Values')
 value=(f=times h=1);
axis2 label=(h=2 angle=90 f=times 'Price')
 value=(f=times h=1);
symbol1 value = circle i=r;
proc gplot data = outreg;
 plot price*fitted/ haxis=axis1 vaxis=axis2
 vminor=0 hminor=0;
run;
quit;
\end{verbatim}
Now we bring in the caution data. We return to using a data step with an `infile` statement.

```r
data gen;
infile 'data/caution.txt';
input x1 x2 y;
run;
quit;
```

We draw the matrix plot in figure 6.4 using the ods system again. If we left the last matrix plot in the current directory, the new plot will be called MatrixPlot1. If we perform this procedure again, we will get MatrixPlot2, etc.

```r
ods graphics on;
proc corr data = gen plots=matrix;
  var y x1 x2;
run;
quit;
ods graphics off;
```

The CORR Procedure

3 Variables: y x1 x2

Simple Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Sum</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>100</td>
<td>0.2207</td>
<td>0.1789</td>
<td>22.07</td>
<td>0.0003</td>
<td>0.8727</td>
</tr>
<tr>
<td>x1</td>
<td>100</td>
<td>0.0632</td>
<td>0.5952</td>
<td>6.31</td>
<td>-0.90</td>
<td>0.99</td>
</tr>
<tr>
<td>x2</td>
<td>100</td>
<td>-0.0339</td>
<td>0.5464</td>
<td>-3.39</td>
<td>-0.97</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Pearson Correlation Coefficients, N = 100

Prob > |r| under HO: Rho=0
<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>x1</th>
<th>x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1.00000</td>
<td>0.02806</td>
<td>-0.52706</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7817</td>
<td><.0001</td>
</tr>
<tr>
<td>x1</td>
<td>0.02806</td>
<td>1.00000</td>
<td>-0.04275</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7817</td>
<td>0.6728</td>
</tr>
<tr>
<td>x2</td>
<td>-0.52706</td>
<td>-0.04275</td>
<td>1.00000</td>
</tr>
<tr>
<td></td>
<td><.0001</td>
<td>0.6728</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6.4 Scatter plot matrix of the response and the two predictor variables

To draw figures 6.5 and 6.6 we need to regress y on $x1$ and $x2$ and obtain the fitted values and standardized residuals. We accomplish this with a call to proc **gplot** with the **output** statement.

```plaintext
proc reg data = gen;
model y = x1 x2;
output out=outreg student=stdres p=fitted;
run;
quit;
```

The REG Procedure
Model: MODEL1
Dependent Variable: y

<table>
<thead>
<tr>
<th>Number of Observations Read</th>
<th>101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations Used</td>
<td>100</td>
</tr>
<tr>
<td>Number of Observations with Missing Values</td>
<td>1</td>
</tr>
</tbody>
</table>

Analysis of Variance
Now we use `proc gplot` to draw figure 6.5, using the dataset `outreg`.

goptions reset = all;
axis1 label=(h=2 f=times 'x1')
 value=(f=times h=1) offset=(0,3);
axis2 label=(h=2 angle=90 f=times 'Studentized Residuals')
 value=(f=times h=1);
symbol1 value = circle;
proc gplot data = outreg;
plot stdres*x1/ haxis=axis1 vaxis=axis2 vminor=0 hminor=0;
run;
quit;

goptions reset = all;
axis1 label=(h=2 f=times 'x2')
 value=(f=times h=1) offset=(0,3);
axis2 label=(h=2 angle=90 f=times 'Studentized Residuals')
 value=(f=times h=1);
symbol1 value = circle;
proc gplot data = outreg;
plot stdres*x2/ haxis=axis1 vaxis=axis2 vminor=0 hminor=0;
run;
quit;

goptions reset = all;
axis1 label=(h=2 f=times 'Fitted Values')
 value=(f=times h=1) offset=(0,3);
axis2 label=(h=2 angle=90 f=times 'Studentized Residuals')
 value=(f=times h=1);
symbol1 value = circle;
We draw figure 6.6 with proc `gplot`. The `interpol=r` option in the `symbol1` statement draws the regression line for us.

```plaintext
proc gplot data = outreg;
plot stdres*fitted/ haxis=axis1 vaxis=axis2
   vminor=0 hminor=0;
run;
quit;
```

Fig. 6.5 Plots of standardized residuals against each predictor and the fitted values
Now we will bring in the nonlinearx data to draw figure 6.7. We use proc import for this purpose. It automatically detects that the data is tab delimited.

```
proc import datafile="data/nonlinearx.txt" out= nonlinearx replace;
getnames=yes;
run;
quit;
```

Now we use proc gplot to draw figure 6.7. Please note how we have switched whether the axis1 statement corresponds to the vertical axis or horizontal axis. Both uses are correct.

```
goptions reset=all;
axis1 label=(h=2 angle=90 f=times 'y')
   value=(f=times h=1);
axis2 label=(h=2 f=times 'x1')
   value=(f=times h=1);
symbol1 value = circle;
proc gplot data=nonlinearx;
plot y*x1/haxis=axis2 vaxis=axis1 ;
run;
quit;

ngoptions reset=all;
axis1 label=(h=2 angle=90 f=times 'y' angle=90)
   value=(f=times h=1);
axis2 label=(h=2 f=times 'x2')
   value=(f=times h=1);
symbol1 value = circle;
proc gplot data=nonlinearx;
plot y*x2/haxis=axis2 vaxis=axis1 ;
run;
quit;
```

```
goptions reset=all;
axis1 label=(h=2 f=times 'x1')
```
To draw figure 6.8, we first regress y on x_1 and x_2 with proc `reg`. We store the standardized residuals and fitted values using the output statement.

```sas
proc reg data = nonlinearx;
model y = x1 x2;
output out=outreg student=stdres p=fitted;
run;
quit;
```

The REG Procedure
Model: MODEL1
Dependent Variable: y

Number of Observations Read 601
Number of Observations Used 601
Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>1787.84619</td>
<td>893.92310</td>
<td>809.17</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>598</td>
<td>660.63143</td>
<td>1.10473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>600</td>
<td>2448.47762</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 1.05106 R-Square 0.7302
Dependent Mean 1.54913 Adj R-Sq 0.7293
Coeff Var 67.84885

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t|
|------------|----|--------------------|----------------|--------|------|
| Intercept | 1 | 1.54913 | 0.04287 | 36.13 | <.0001 |
| x1 | 1 | 0.99280 | 0.04389 | 22.62 | <.0001 |
| x2 | 1 | 0.00388 | 0.10570 | 0.04 | 0.9707 |

Now we draw figure 6.8 with proc gplot.

goptions reset=all;
axis1 label=(h=2 angle=90 f=times 'Standardized Residuals')
 value=(f=times h=1);
axis2 label=(h=2 f=times 'x1')
 value=(f=times h=1);
symbol1 value = circle;
proc gplot data=outreg;
plot stdres*x1/haxis=axis2 vaxis=axis1 ;
run;
quit;

goptions reset=all;
axis1 label=(h=2 angle=90 f=times 'Fitted Values')
 value=(f=times h=1);
axis2 label=(h=2 f=times 'Fitted Values')
 value=(f=times h=1);
symbol1 value = circle;
proc gplot data=outreg;
plot stdres*fitted/haxis=axis2 vaxis=axis1 ;
run;
quit;
We return to the `nyc` dataset to focus on added variable plots. We bring the data into SAS using the `proc import`.

```
proc import datafile="data/nyc.csv" out=nyc replace;
getnames=yes;
run;
quit;
```

Now we use proc gplot to render figure 6.9. We use the `interpol=r` option in the first symbol statement of each call to add the regression line to the plots.

```
goptions reset=all;
axis1 label=(h=2 angle=90 f=times 'Price')
   value=(f=times h=1);
axis2 label=(h=2 f=times 'Food')
   value=(f=times h=1);
symbol1 value = circle interpol=r;
proc gplot data=nyc;
plot price*food/haxis=axis2 vaxis=axis1 ;
run;
quit;
```
goptions reset=all;
axis1 label=(h=2 angle=90 f=times 'Price')
 value=(f=times h=1);
axis2 label=(h=2 f=times 'Decor')
 value=(f=times h=1);
symbol1 value = circle interpol=r;
proc gplot data=nyc;
plot price*decor/haxis=axis2 vaxis=axis1 ;
run;
quit;

goptions reset=all;
axis1 label=(h=2 angle=90 f=times 'Price')
 value=(f=times h=1);
axis2 label=(h=2 f=times 'Service')
 value=(f=times h=1);
symbol1 value = circle interpol=r;
proc gplot data=nyc;
plot price*service/haxis=axis2 vaxis=axis1 ;
run;
quit;

goptions reset=all;
axis1 label=(h=2 angle=90 f=times 'Price')
 value=(f=times h=1);
axis2 label=(h=2 f=times 'East')
 value=(f=times h=1);
symbol1 value = circle interpol=r;
proc gplot data=nyc;
plot price*east/haxis=axis2 vaxis=axis1 ;
run;
quit;
Fig. 6.9 A scatter plot of Y, price against each predictor

To produce added variable plots we will define a macro `%addvarplot`. It takes 5 arguments. The `dsn` argument specifies what dataset contains the variables to be used in the regression. The `yvar` argument specifies the response variable of the regression. The `ylab` argument specifies what label to use for the response variable in the added variable plot. The argument `var1` tells the macro which predictor to examine in the added variable plot. The `othervar` argument is a list of the regression’s predictors, excluding `var1`.

```
%macro addvarplot(dsn=, yvar=, ylab=, var1=, othervar=);
  proc reg data = &dsn noprint;
    model &yvar = &othervar;
    output out=plot1a r=y1;
  run;
  quit;
  proc reg data = &dsn noprint;
    model &var1 = &othervar;
    output out = plot1b r=x1;
  run;
  quit;
  data plot1;
    merge plot1a plot1b;
  run;
```

7/30/2010
quit;

goptions reset = all;
axis1 label=(h=2 f=times "&var1|others")
value=(f=times h=1);
axis2 label=(h=2 angle=90 f=times
"&ylab|others") value=(f=times h=1);
symbol1 value = circle i = r;
title height=2 "Added-Variable Plot";
proc gplot data = plot1;
 plot y1*x1/ haxis=axis1 vaxis=axis2 vminor=0
 hminor=0;
run;
quit;
%mend;

Now to produce figure 6.10, we will call %addvarplot on each of the potential predictors of price in the nyc dataset.

%addvarplot(dsn=nyc, yvar=price, var1=Food, ylab=price, othervar=decor service east);
%addvarplot(dsn=nyc, yvar=price, var1=Decor, ylab=price, othervar=food service east);
%addvarplot(dsn=nyc, yvar=price, var1=Service, ylab=price, othervar=food decor east);
%addvarplot(dsn=nyc, yvar=price, var1=East, ylab=price, othervar=food decor service);
6.2 Transformations

Now we bring in the defects data. We use a `data` step with an `infile` statement.

```r
data defects;
  infile 'data/defects.txt' firstobs=2 expandtabs;
  input case temperature density rate defective;
run;
quit;
```

We draw figure 6.11 using the output delivery system and `proc corr`. As before, we obtain a matrix plot as a `MatrixPlot.png` file with the `plots=matrix` option.

```r
ods graphics on;
proc corr data = defects plots=matrix;
  var defective temperature density rate;
run;
quit;
ods graphics off;
```
Before we draw figure 6.12, we need to obtain the regression of defective on the other three variables. We use proc reg for this purpose. The standardized residuals and fitted values that we will use in figure 6.12 are stored in the dataset outreg. We do not need to see the actual numeric output of the regression, so we use the noprint option to suppress it.

```
proc reg data = defects noprint;
  model defective = temperature density rate;
  output out = outreg student=stdres p=fitted;
run;
quit;
```

Now we use the gplot procedure to draw figure 6.12.

```
goptions reset = all;
  axis1 label=(h=2 f=times 'Temperature')
    value=(f=times h=1) offset=(3,3)
    order=(0.5 to 3.5 by 1);
  axis2 label=(h=2 angle=90 f=times
    'Standardized Residuals') value=(f=times h=1);
symbol1 value = circle;
proc gplot data = outreg;
  plot stdres*temperature/ haxis=axis1 vaxis=axis2 vminor=0
    hminor=0;
run;
quit;
```

```
goptions reset = all;
  axis1 label=(h=2 f=times 'Density')
    value=(f=times h=1) offset=(3,3)
    order=(18 to 33 by 3);
  axis2 label=(h=2 angle=90 f=times
    'Standardized Residuals') value=(f=times h=1);
symbol1 value = circle;
proc gplot data = outreg;
```
plot stdres*density/ haxis=axis1 vaxis=axis2 vminor=0 hminor=0;
run; quit;

goptions reset = all;
axis1 label=(h=2 f=times 'Rate')
 value=(f=times h=1) offset=(3,3)
 order=(175 to 300 by 25);
axis2 label=(h=2 angle=90 f=times 'Standardized Residuals') value=(f=times h=1);
symbol1 value = circle;
proc gplot data = outreg;
plot stdres*rate/ haxis=axis1 vaxis=axis2 vminor=0 hminor=0;
run; quit;

goptions reset = all;
axis1 label=(h=2 f=times 'Fitted Values')
 value=(f=times h=1) offset=(3,3);
axis2 label=(h=2 angle=90 f=times 'Standardized Residuals') value=(f=times h=1);
symbol1 value = circle;
proc gplot data = outreg;
plot stdres*fitted/ haxis=axis1 vaxis=axis2 vminor=0 hminor=0;
run; quit;

Fig. 6.12 Plots of the standardized residuals from model (6.14)
To draw figure 6.13, we need to fit a quadratic regression of defective on the fitted values from model 6.14. First we use a data step to add a squared version of the fitted values to the outreg dataset. We call this variable fitsq.

```
data outreg;
  set outreg;
  fitsq = fitted ** 2;
run;
quit;
```

Now we perform the quadratic regression using proc reg. The resulting new fitted values are stored in the dataset plotit in the variable newfit.

```
proc reg data = outreg noprint;
  model defective=fitted fitsq;
  output out=plotit p=newfit;
run;
quit;
```

We must use proc sort to order the observations of plotit according to fitted so that the points (fitted,newfit) may be connected by line segments in the plot.

```
proc sort data = plotit;
  by fitted;
run;
quit;
```

Now we use proc gplot to draw figure 6.13. We use two symbol statements. The first corresponds to the defective*fitted plot. The interpol=r (here shortened to i=r) option tells SAS to draw the linear regression line for defective regressed on fitted. The specification of the l option with a value of 4 tells SAS to draw the line dashed.

The second symbol statement corresponds to the newfit*fitted plot. Here we specify l=1 so that the drawn line will be solid. We omit a value option in this symbol statement because we do not care to see the individual points. We specify the i=join interpolation option so that the individual points are connected with the drawn line.

```
goptions reset = all;
  axis1 label=(h=2 f=times 'Fitted Values')
    value=(f=times h=1) offset=(3,3);
  axis2 label=(h=2 angle=90 f=times 'Defective') value=(f=times h=1)
    order=(5 to 65 by 10);
  symbol1 value = circle i=r c=black l=4;
symbol2 i=join c=black l=1;
proc gplot data = plotit;
  plot defective*fitted newfit*fitted/ haxis=axis1 vaxis=axis2 vminor=0
    hminor=0 overlay;
run;
quit;
```
Fig. 6.13 Plot of Y against fitted values with a straight line and a quadratic curve

Next we will use an inverse response plot to determine the appropriate transformation power for defective. We use the %irp macro defined previously in chapter 3.

```sas
%macro irp(resp=, fit=, dat=);
proc iml;

start h_irp_call(lambda) global(resp, fit);
Y = log(resp);
if (abs(lambda) > .001) then Y = (1/lambda)##(resp##lambda-J(nrow(resp), 1, 1));
Y = J(nrow(resp), 1, 1) || Y;
predit = Y*(INV(Y`*Y)*Y`*fit);
f = (fit - predit)`*(fit - predit);
f = -f;
return(f);
finish h_irp_call;

start irp_call(lambda) global(resp, fit);
f = h_irp_call(lambda);
return(f);
finish irp_call;

start unirpopt;
lambda = J(1, 1, 1);
optn = j(1, 11, .);
optn[1] = 1;
optn[2] = 1;
call nlpqn(rc, lambdares, "irp_call", lambda, optn);
print lambdares;
call symput('lambda', char(lambdares)) ;
finish;

use &dat;
read all ;
```
resp = &resp ;
fit = &fit ;
run unirpopt;
quit;
data invresplot;
set &dat;
y=&resp ;
cbrty=y**(&lambda);
ly=log(y) ;
run;
quit;

%macro regouts(dsn=,yvar=,predname=);
proc reg data = invresplot noprint;
 model fitted = &yvar;
 output out= &dsn p=&predname;
run;
quit;
%mend

%regouts(dsn=data1,yvar=y, predname=lam1hat);
%regouts(dsn=data2,yvar=cbrty,predname=cbrtyhat);
%regouts(dsn=data3,yvar=ly,predname=lyhat);

proc sort data = invresplot;
 by y;
run;
quit;

%macro sortit;
%do i = 1 %to 3;
 proc sort data = data&i;
 by y;
run;
quit;
%end;
%mend sortit;
%sortit;
data full;
 merge invresplot data1 data2 data3;
 by y;
run;
quit;

goptions reset = all;
symbol1 v=circle c=black;
symbol2 i=join c=black l=5 w=2;
symbol3 i=join c=black l=1 w=2;
symbol4 i=join c=black l=2 w=2;
axis1 label=(h=2 angle=90 f=times "yhat")
 value=(h=1 f=times);
axis2 label=(h=2 f=times "y") value=(h=1 f=times) offset=(2,0);
legend1 label=(f=times h=1.5 j=c 'Lambda' position=top)
 position=(bottom right inside) across=1 frame
value=(f=times h=1.5 j=c 'Yhat' j=c 'l' j=c "&lambda" j=c '0' j=c);

proc gplot data = full;
plot &fit*y=1 lamlhat*y=2 cbryhat*y=3 lyhat*y=4/
overlay vaxis=axis1 haxis=axis2 vminor=0
hminor=0 legend=legend1;
run;
quit;
%mend irp;

Now we call the %irp macro.

%irp(resp=defective, fit=fitted,dat=outreg);

Dual Quasi-Newton Optimization
Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Gradient Computed by Finite Differences

Parameter Estimates 1

Optimization Start

Active Constraints 0 Objective Function -1156.270385
Max Abs Gradient Element 1577.8585434

<table>
<thead>
<tr>
<th>Iter</th>
<th>Restarts</th>
<th>Function Calls</th>
<th>Active Constraints</th>
<th>Objective Function</th>
<th>Max Abs Gradient Element</th>
<th>Step Size</th>
<th>Search Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>-542.06808</td>
<td>614.2</td>
<td>0.0354</td>
<td>-24896</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>-541.93765</td>
<td>0.1304</td>
<td>0.3343</td>
<td>0.384</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>-541.93764</td>
<td>7.772E-6</td>
<td>0.00354</td>
<td>1.000</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>-541.93764</td>
<td>9.2E-10</td>
<td>0.000032</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Optimization Results

Iterations 4 Function Calls 9
Gradient Calls 7 Active Constraints 0
Objective Function -541.9376405 Max Abs Gradient Element 0.0000318781
Slope of Search Direction -1.747517E-9

GCONV convergence criterion satisfied.

lambdares

0.4359837
We draw figure 6.15 using the `transreg` procedure and the `ods` system. We performed a similar plot in figure 3.30, and for details the reader should look at our explanation for that figure.

```plaintext
ods output boxcox=b details=d;
    ods exclude boxcox;
proc transreg details data = defects;
    model boxcox(defective/ convenient
                lambda=0.3 to 0.65 by .001)=identity(density temperature rate);
    output out=trans;
run;
quit;
* Store values for reference lines;
data _null_;  
    set d;
    if description = 'CI Limit'
        then call symput('vref', formattedvalue);
    if description = 'Lambda Used'
        then call symput('lambda', formattedvalue);
run;
quit;
proc print data = b;
run;
quit;
```

```plaintext
data _null_;  
    set b end=eof;
    where ci ne ' ';
    if _n_ = 1
        then call symput('href1',
                        compress(put(lambda, best12.)));
    if ci = '<'
        then call symput('href2',
                        compress(put(lambda, best12.)));
    if eof
```
then call symput('href3',
compress(put(lambda, best12.)));
run;
quit;

goptions reset = all;
axis2 order=(0.3 to 0.65 by 0.05)
 label=(f=times h=2 "Lambda") value=(h=1
 f=times);
axis1 label=(angle=90
 f=times h=2 "log-Likelihood") value=(h=1
 f=times);
proc gplot data = b;
plot loglike * lambda / vref=&vref href=&href1 &href2 &href3
 vminor=0 hminor=0 vaxis=axis1 haxis=axis2;
symbol v=none i=spline c=black;
run;
quit;

Fig. 6.15 Log-likelihood for the Box-Cox transformation method

Figure 6.16 plots scatters of the square root transformed defective versus each of the predictors. To render it, we first introduce a transformed defective variable with a data step.

data transf;
 set defects;
 rty = sqrt(defective);
run;
quit;

Now we will define a macro %plotit that can be called separately to draw each plot, passing in the relevant predictor as an argument xvar. The macro calls gplot after setting the graphic options.
Finally we draw figure 6.16 by calling the `%plotit` macro three times, varying the `xvar` argument.

```
%plotit(xvar=Temperature);
%plotit(xvar=Density);
%plotit(xvar=Rate);
```

Fig. 6.16 Plots of $Y^{0.5}$ against each predictor

Now we fit model 6.15 using proc `reg`. We will use its output to render figures 6.17-6.19. The regression output matches that on page 175. Note how our output options match those used for the variables used in the `%plotlm` macro.
proc reg data = transf;
 model rty = temperature density rate;
 output out=outreg r=resids p=fitted student=stdres cookd=cd h=levg;
 run;
 quit;

The REG Procedure
 Model: MODEL1
 Dependent Variable: rty

 Number of Observations Read 30
 Number of Observations Used 30

 Analysis of Variance

 Source DF Sum of Squares Mean Square F Value Pr > F
 Model 3 138.71088 46.23696 143.45 <.0001
 Error 26 8.38014 0.32231
 Corrected Total 29 147.09102

 Root MSE 0.56773 R-Square 0.9430
 Dependent Mean 4.71596 Adj R-Sq 0.9365
 Coef Var 12.03840

 Parameter Estimates

 | Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
 |-----------|----|-------------------|----------------|---------|------|---|
 | Intercept | 1 | 5.59297 | 5.26401 | 1.06 | 0.2978|
 | temperature | 1 | 1.56516 | 0.66226 | 2.36 | 0.0259|
 | density | 1 | -0.29166 | 0.11954 | -2.44 | 0.0218|
 | rate | 1 | 0.01290 | 0.01043 | 1.24 | 0.2273|

We draw figure 6.17 with another macro that calls gplot, aptly named %fig6_17. In addition to the `xvar` argument where the predictor is specified, %fig6_17 takes an `xlab` argument, where the plot label of the predictor is given.

```macro fig6_17(xvar=,xlab=);```
  goptions reset = all;
  axis2 label=(f=times h=2 "&xlab") value=(h=1 f=times);
  axis1 label=(angle=90 f=times h=2 "Standardized Residuals") value=(h=1 f=times);
  symbol v=circle;
  proc gplot data = outreg;
  plot stdres*&xvar /vminor=0 hminor=0 vaxis=axis1 haxis=axis2;
  run;
  quit;
```

%end fig6_17;`
Now we call the `%fig6_17` macro on each predictor and the fitted values variable `fitted`. This produces figure 6.17.

```
%fig6_17(xvar=Temperature,xlab=Temperature);
%fig6_17(xvar=Density,xlab=Density);
%fig6_17(xvar=Rate,xlab=Rate);
%fig6_17(xvar=fitted,xlab=Fitted Values);
```

![Standardized Residuals vs. Temperature](image1)

![Standardized Residuals vs. Density](image2)

![Standardized Residuals vs. Rate](image3)

![Standardized Residuals vs. Fitted Values](image4)

Fig. 6.17 Plots of the standardized residuals from model (6.15)

Figure 6.18 is drawn with a simple gplot call. We use the `i=r` option in the symbol statement to draw the regression line.

```
goptions reset = all;
axis2 label=(f=times h=2 "Fitted Values") value=(h=1 f=times);
axis1 label=(angle=90 f=times h=2 "Sqrt(Defective)") value=(h=1 f=times);
symbol v=circle i=r;
proc gplot data = outreg;
plot rty*fitted/vminor=0 hminor=0 vaxis=axis1 haxis=axis2;
run;
quit;
```
We will use the `%plotlm` macro to draw figure 6.19. We redefine it here.

```sas
%macro plotlm(regout = ,);
proc loess data = &regout;
   model resid=fitted/smooth=0.6667;
ods output OutputStatistics=loessout;
run;
quit;

data fit;
   set regout;
   set loessout;
run;
quit;

proc sort data = fit;
   by fitted;
run;
quit;

goptions reset = all;
symbol1 v=circle c=black;
symbol2 i=join c=black;
title1 height=2 font=times "Residuals vs Fitted";
axis1 label = (font=times h=2 angle=90 'Residuals')
   value=(font=times h=1);
axis2 label = (font=times h=2 'Fitted values')
   value=(font=times h=1);
proc gplot data = fit;
plot /*points:* resid*fitted=1 /*loess:*/
   Pred*fitted=2/ overlay hminor=0 vminor=0
   vaxis=axis1 haxis=axis2 vref=0;
```

Fig. 6.18 A plot of \(Y^{0.5}\) against fitted values with the regression line added.
run;
quit;

goptions reset = all htext=1.5;
title1 height=2 font=times "Normal Q-Q";
symbol1 value=circle color=black;

proc univariate data = ®out noprint;
qqplot stdres/normal(mu=0 sigma=1 l=1 color=black)
 font=times vminor=0 hminor=0
 vaxislabel = "Standardized Residuals";
run;
quit;
data plot3;
 set ®out;
 sqrtres = sqrt(abs(stdres));
run;
quit;

proc loess data = plot3;
 model sqrtres=fitted/smooth=0.6667;
 ods output OutputStatistics=loessout;
run;
quit;
data fit;
 set plot3;
 set loessout;
run;
quit;

proc sort data = fit;
 by fitted;
run;
quit;

goptions reset = all;
symbol1 v=circle c=black;
symbol2 i=join c=black;
title1 height=2 font=times "Scale-Location";
axis1 label = (font=times h=2 angle=90 'Sqrt(Abs(Res))')
 value=(font=times h=1);
axis2 label = (font=times h=2 'Fitted values')
 value=(font=times h=1);
proc gplot data = fit;
 plot /*points:*/ sqrtres*fitted=1 /*loess:*/
 Pred*fitted=2/ overlay hminor=0 vminor=0
 vaxis=axis1 haxis=axis2;
run;
quit;

proc sort data = ®out;
 by levg;
run;
quit;
proc loess data = ®out;
 model stdres=levg/smooth=0.67777;
 ods output OutputStatistics=loessout;
run;
quit;

data fit;
 set ®out;
 set loessout;
run;
quit;

proc sort data = fit;
 by levg;
run;
quit;
goptions reset = all;
symbol1 v=circle c=black;
symbol2 i=join c=black;
title1 height=2 font=times "Residuals vs Leverage"
 "Standardized Residuals"
 value=(font=times h=1);
axis1 label = (h=2 font=times angle=90
 "Standardized Residuals")
 value=(font=times h=1);
axis2 label = (h=2 font=times 'Leverage')
 value =(font=times h=1) ;
proc gplot data = fit;
 plot /*points:*/ stdres*levg=1 /*loess:*/ Pred*levg=2/
 overlay hminor=0 vminor=0 vaxis=axis1 haxis=axis2
 vref=0 href=0;
run;
quit;
%mend;

Now we call it using the regression output dataset we saved, outreg.

%plotlm(regout=outreg);
To draw figure 6.20, we will reuse our `%addvarplot` macro.

```r
%addvarplot(dsn=transf, yvar=rty, var1=Temperature, ylab=sqrt(Defective), othervar=Density Rate);
%addvarplot(dsn=transf, yvar=rty, var1=Density, ylab=sqrt(Defective), othervar=Temperature Rate);
%addvarplot(dsn=transf, yvar=rty, var1=Rate, ylab=sqrt(Defective), othervar=Temperature Density);
```
Now we will move to the ad revenue data to examine box-cox transformations in multiple linear regression. We bring the data into SAS using proc import, storing it in the dataset *ads*.

```sas
proc import datafile='data/magazines.csv' out=ads replace;
getnames=yes;
run;
quit;
```

We will use the `%mboxcox` macro first define in chapter 3 to obtain the results on page 177. We redefine the macro here.

```sas
%macro mboxcox;
start geoMean(orMatrix,nuMatrix);
nuMatrix = log(orMatrix);
nuMatrix = nuMatrix[+,
];
uMatrix = exp(nuMatrix/nrow(orMatrix));
finish;

start h_bcml1(lambda) global(X,namesX);
GMX = J(1,ncol(X),0);
Y = X;
run geoMean(X,GMX);
i=1;
do while (i<=ncol(X));
```

Fig. 6.20 Added-variable plots for model (6.15)
if lambda[1,i] = 0 then Y[,i] = GMX[1,i]*log(Y[,i]);
else Y[,i] = (GMX[1,i]##(1-lambda[1,i])) * (Y[,i]##lambda[1,i] - J(nrow(X),1,1)) / lambda[1,i];
i = i + 1;
end;
h1 = I(nrow(X)) - J(nrow(X),1,1) * J(nrow(X),1,1)^/nrow(X);
h2 = Y*h1*Y/(nrow(X)-1);
h3 = det(h2);
if h3 <= 0 then print "Cannot estimate this transformation">
f = -nrow(X)*log(h3)/2;
return(f);
finish h_bcmll;

start bcmll(lambda) global(X,namesX);
f = h_bcmll(lambda);
return(f);
finish bcmll;

start MultivariateBoxCox;
lambda = J(1,ncol(X),0);
optn = j(1,11,.);
optn[1] = 1;
optn[2] = 2;
call nlpqn(rc,lambdares,"bcmll",lambda,optn);
call nlpfdd(crit, grad, hess, "bcmll",lambdares);
print grad;
print variance = inv(-hess);
print lambdares[c=namesX];

stderr = sqrt(vecdiag(variance)) ;
lrt0 = 2*(bcmll(lambdares)-bcmll(0#lambdares));
lrt1 = 2*(bcmll(lambdares)-bcmll(J(1,ncol(X),1)));
wald0= lambdares##(t(stderr##(-1))) ;
wald1= (lambdares-J(1,ncol(X),1))##(t(stderr##(-1))) ;
wald0 = t(wald0) ;
wald1 = t(wald1) ;
plrt0 = 1-CDF('CHISQUARE',lrt0,ncol(X));
plrt1 = 1-CDF('CHISQUARE',lrt1,ncol(X));

res = t(lambdares) || stderr || wald0 || wald1;
tcols = {'Power', 'Std.Error', 'Wald 0', 'Wald 1'};
resrow = t(namesX);
rescol= t(tcols);
print res[r=resrow c=rescol] ;

lrt0 = J(2,3,0);
lrt0[1,1] = lrt0;
lrt0[2,1] = lrt0;
lrt0[1,2] = ncol(X);
lrt0[2,2] = ncol(X);
lrt0[1,3] = plrt0;
lrt0[2,3] = plrt0;

resrow = {'LRT all = 0', 'LRT all = 1'};

7/30/2010 143
rescol = {'LRT','df','p-value'};
rescol = t(rescol);

print lrtet[r=resrow c=rescol];
finish;
run MultivariateBoxCox;

%mend mboxcox;

Now we call the %mboxcox macro on the ad revenue data within proc iml.

proc iml;
 use ads;
 read all ;
 namesX={"AdPages" "SubRevenue" "NewsRevenue"};
 X = adpages || subrevenue || newsrevenue ;
 %mboxcox;
run;
quit;

<table>
<thead>
<tr>
<th>Optimization Start</th>
<th>Parameter Estimates</th>
<th>Gradient Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Parameter</td>
<td>Estimate</td>
<td>Value of Objective Function</td>
</tr>
<tr>
<td>1 X1</td>
<td>0</td>
<td>-5041.789478</td>
</tr>
<tr>
<td>2 X2</td>
<td>0</td>
<td>-6.615417</td>
</tr>
<tr>
<td>3 X3</td>
<td>0</td>
<td>70.289551</td>
</tr>
</tbody>
</table>

Value of Objective Function = -5041.789478
Dual Quasi-Newton Optimization

Gradient Computed by Finite Differences

Parameter Estimates 3

Optimization Start

<table>
<thead>
<tr>
<th>Iter</th>
<th>Restarts</th>
<th>Calls</th>
<th>Active Constraints</th>
<th>Objective Function</th>
<th>Max Abs Gradient Element</th>
<th>Step</th>
<th>Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>-5039</td>
<td>2.8127</td>
<td>13.6242</td>
<td>0.0182</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>-5039</td>
<td>0.4715</td>
<td>4.1580</td>
<td>0.125</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>-5038</td>
<td>0.0164</td>
<td>3.2751</td>
<td>0.0306</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>-5038</td>
<td>0.00713</td>
<td>0.2812</td>
<td>1.000</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>-5038</td>
<td>0.000051</td>
<td>0.000737</td>
<td>1.000</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>-5038</td>
<td>2.23E-10</td>
<td>0.000220</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Optimization Results

<table>
<thead>
<tr>
<th>Iterations</th>
<th>6</th>
<th>Function Calls</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient Calls</td>
<td>8</td>
<td>Active Constraints</td>
<td>0</td>
</tr>
<tr>
<td>Objective Function</td>
<td>-5038.48166</td>
<td>Max Abs Gradient Element</td>
<td>0.0002195756</td>
</tr>
<tr>
<td>Slope of Search Direction</td>
<td>-7.35942E-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GCONV convergence criterion satisfied.
Optimization Results
Parameter Estimates

<table>
<thead>
<tr>
<th>N Parameter</th>
<th>Estimate</th>
<th>Gradient</th>
<th>Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 X1</td>
<td>0.111875</td>
<td>-0.000220</td>
<td>-0.000220</td>
</tr>
<tr>
<td>2 X2</td>
<td>-0.008449</td>
<td>0.000182</td>
<td>0.000182</td>
</tr>
<tr>
<td>3 X3</td>
<td>0.075894</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Value of Objective Function = -5038.48166

\[
\begin{align*}
\text{grad} & = \begin{bmatrix} -0.00022 & 0.0001816 & 0 \end{bmatrix} \\
\text{variance} & = \begin{bmatrix}
0.0102795 & 0.0000815 & 0.000043 \\
0.0000815 & 0.0020543 & 0.0000586 \\
0.000043 & 0.0000586 & 0.001111
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\text{lamdares} & = \begin{bmatrix} 0.111875 & -0.008449 & 0.0758936 \end{bmatrix} \\
\text{res} & = \begin{bmatrix}
\text{Power} & \text{Std.Error} & \text{Wald 0} & \text{Wald 1} \\
\text{AdPages} & 0.1118752 & 0.1013881 & 1.103435 & -8.759658 \\
\text{SubRevenue} & -0.008449 & 0.0453244 & -0.186419 & -22.2496 \\
\text{NewsRevenue} & 0.0758936 & 0.0333313 & 2.2769481 & -27.72489
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\text{lrt} & = \begin{bmatrix}
\text{LRT} & \text{df} & \text{p-value} \\
\text{LRT all = 0} & 6.6156359 & 3 & 0.085212 \\
\text{LRT all = 1} & 1100.0186 & 3 & 0
\end{bmatrix}
\end{align*}
\]

As before, only the end of the output is of interest to us.

roc gplot to o draw figure 6.8, we first regress y on x1 and x2 with proc reg. We store the standardized residuals and fitted values using the output statement.

We draw figure 5.1 with a call to gplot.
We draw figure 5.1 with a call to `gplot`. We draw figure 5.1 with a call to `gplot`. We draw figure 5.1 with a call to `gplot`. We draw figure 5.1 with a call to `gplot`. We draw figure 5.1 with a call to `gplot`.
7. Variable Selection

7.2 Deciding on the Collection of Potential Subsets of Predictor Variables

In this chapter we will learn how to use SAS to do variable selection in linear regression. We begin by bringing the bridge data into SAS with a data step. Then we use another data step to introduce the log transformed predictors and response that we decided on using in the previous chapter.

```sas
data bridge;
infile 'data/bridge.txt' expandtabs firstobs=2;
input case time darea ccost dwgs length spans;
run;
quit;

data bridge;
set bridge;
log_Time = log(time);
log_darea = log(darea);
log_ccost = log(ccost);
log_dwgs = log(dwgs);
log_length = log(length);
log_spans = log(spans);
run;
quit;
```

Now we use proc reg to get the output on page 234.

```sas
proc reg data = bridge;
model log_time = log_darea log_ccost log_dwgs log_length log_spans;
run;
quit;
```

The REG Procedure
Model: MODEL1
Dependent Variable: log_Time

```
Number of Observations Read  45
Number of Observations Used  45

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>5</td>
<td>13.33040</td>
<td>2.66608</td>
<td>27.05</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Error</td>
<td>39</td>
<td>3.84360</td>
<td>0.09855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>44</td>
<td>17.17400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Root MSE 0.31393 R-Square 0.7762
Dependent Mean 4.84288 Adj R-Sq 0.7475
Coeff Var 6.48236
Parameter Estimates

| Variable | DF | Estimate | Standard Error | t Value | Pr > |t| |
|--------------|----|----------|----------------|---------|------|---|
| Intercept | 1 | 2.28590 | 0.61926 | 3.69 | 0.0007|
| log_darea | 1 | -0.04564 | 0.12675 | -0.36 | 0.7207|
| log_ccost | 1 | 0.19609 | 0.14445 | 1.36 | 0.1824|
| log_dwgs | 1 | 0.85879 | 0.22362 | 3.84 | 0.0004|
| log_length | 1 | -0.03844 | 0.15487 | -0.25 | 0.8053|
| log_spans | 1 | 0.23119 | 0.14068 | 1.64 | 0.1083|

Now we will produce table 7.1 and figure 7.1. We use proc reg again and specify several new options. The outest option tells SAS to store the estimation results in the given dataset, this time rsqadj. The edf option tells SAS to output the degrees of freedom of the fitted models, along with that of the errors, and the R^2. We use the selection option in the model statement to tell SAS how to find the best models. SAS will estimate all possible models (all subsets), and produce a sorted list of the best for us. Here, the first argument to selection is the method to be used in sorting this list. This is given here by adjrsq, so SAS will put the models with the best adjusted R-squared values at the top of the list. The remaining arguments specify the additional statistics that should be calculated for each considered model. Here these are aic, bic and sse (RSS).

`proc reg data = bridge outest = rsqadj edf;`
`model log_time = log_darea log_ccost log_dwgs`
`log_length log_spans; selection = adjrsq aic bic sse;`
`run;`
`quit;`
So we see all possible subsets have been computed, and they are displayed in decreasing order of Adjusted R\(^2\). They are sorted similarly in the `rsqadj` dataset that proc reg output to. We are going to use this dataset now. First we clean some of the unnecessary variables from it. We also create dummy variables for inclusion of each variable in the model. The variables `log_darea`, …, `log_spans` contain the parameter estimates for those variables in the regression. When they are not present in that observations model they have missing values, “.”. We only care whether a variable is included in the model or not, we will calculate the parameter estimates for included variables later. We also re-calculate `rsqadj` and `bic` to conform to our definition in the text. The corrected AIC statistic, `aicc` is also calculated.

```plaintext
data clean;
set rsqadj;
idarea = 0;
if log_darea ^= . then idarea = 1;
iccost = 0;
if log_ccost ^= . then iccost = 1;
idwgs = 0;
if log_dwgs ^= . then idwgs=1;
ilen = 0;
if log_length ^= . then ilen=1;
ispan = 0;
if log_spans ^= . then ispan=1;
sst = _SSE_ / (1 - _RSQ_);
rsqadj = 1 - (_SSE_/(_45_ - _IN_ - 1))/(sst/(_45_ - 1));
aicc = _AIC_ + (2*(_IN_+2)*(_IN_+3)/(_45_ - _IN_ - 1));
bic = _45_*log(_SSE_/(_45_)) + log(_45_)*(_IN_ + 1);
drop _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ intercept log_darea
   log_ccost log_dwgs log_length log_time
   _P_ _EDF_ _BIC_ sst _RSQ_;
run;
quit;
```

Now we sort the data by the # of included predictors, `_IN_`, and `_SSE_` with proc `sort`. Then to see what the clean dataset looks like, we use proc `print`.

```plaintext
class proc sort data = clean;
```

7/30/2010 150
Note that there are 31 models here. We are only interested in the best models for each predictor quantity size. The models are sorted by predictor quantity size (_IN_) and RSS (_SSE_). It is clear that the smallest RSS value for each value of _IN_ is also the highest rsqadj value for that value of _IN_. So we were not misguided to use Adjusted R^2 as the model selection criteria in the selection option.

Given the above printout, we can select the observation containing the best model and drop the rest with a data step. We use a BY statement in the data step. Recall that the BY statement specifies that SAS will perform the same operation for each value (or combination of values) of the given variable (or variables in the statement). For a procedure that uses the BY statement to work the dataset it uses must be sorted by the variables in the BY statement, which we have already obtained with proc sort. After the BY _IN_ statement, the variable FIRST._IN_ will take the value 1 if the observation is the first for that observations particular value of _IN_ and 0 otherwise. So since we have sorted the data by _IN_ and _SSE_, FIRST._IN_ will be 1 whenever we encounter the smallest value of the RSS for a particular predictor quantity size.

Finally We show the results with proc print, giving us table 7.1.
data table7p1;
set clean;
by _IN_; If (FIRST._IN_=1) then output;
run;
quit;

proc print data=table7p1 noobs;
var _IN_ idwgs ispans iccost idarea ilen
rsqadj _AIC_ aicc bic;
run;
quit;

<table>
<thead>
<tr>
<th>IN</th>
<th>idwgs</th>
<th>ispans</th>
<th>iccost</th>
<th>idarea</th>
<th>ilen</th>
<th>rsqadj</th>
<th>AIC</th>
<th>aicc</th>
<th>bic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.70224</td>
<td>-94.898</td>
<td>-94.339</td>
<td>-91.2842</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.75302</td>
<td>-102.370</td>
<td>-101.418</td>
<td>-96.9504</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.75822</td>
<td>-102.412</td>
<td>-100.949</td>
<td>-95.1854</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.75343</td>
<td>-100.640</td>
<td>-98.540</td>
<td>-91.6070</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.74750</td>
<td>-98.711</td>
<td>-95.840</td>
<td>-87.8714</td>
</tr>
</tbody>
</table>

Now using the dataset table7p1, we can draw figure 7.1 with proc gplot.

goptions reset = all;
symbol1 v=circle c=black;
axis1 label = (h=2 font=times angle=90
 "Adjusted R-squared")
 value=(font=times h=1);
axis2 label = (h=2 font=times 'Subset Size')
 value = (font=times h=1) offset=(2,2)
 order=(1 to 5 by 1);
proc gplot data = table7p1;
plot rsqadj* _IN_ /hminor=0 vminor=0
 vaxis=axis1 haxis=axis2;
run;
quit;
Fig. 7.1 Plots of R^2_{adj} against subset size for the best subset of each size

Now we produce the regression output on pages 235 and 236 with proc `reg`. We can specify multiple model statements in proc `reg`. We do this for brevity.

```
proc reg data=bridge;
model log_time=log_dwgs log_spans;
model log_time=log_dwgs log_spans log_ccost;
run;
quit;
```

```
The REG Procedure
Model: MODEL1
Dependent Variable: log_Time

Number of Observations Read 45
Number of Observations Used 45

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>13.12515</td>
<td>6.56258</td>
<td>68.08</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Error</td>
<td>42</td>
<td>4.04885</td>
<td>0.09640</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>44</td>
<td>17.17400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 0.31049  R-Square 0.7642
Dependent Mean 4.84288  Adj R-Sq 0.7530
Coeff Var 6.41117

Parameter Estimates
```

| Parameter | Standard |
SAS only does stepwise selection based on p-values. So we cannot perform the text’s stepwise selection examples. We will move onto section 7.3.

7.3 Assessing the Predictive Ability of Regression Models

We begin by bringing in the training data. We use a `data` step with an `infile` statement.

```sas
data train;
  infile 'data/prostateTraining.txt'
     expandtabs firstobs=2;
  input ocase lcavol lweight age lbph svi lcp gleason pgg45 lpsa;
run;quit;
```
Now we render figure 7.2 with the `ods` system and proc `corr` with the `plots=matrix` option. Remember that a `MatrixPlot.png` file is found in the current SAS directory. We find a problem with using our direct procedure of listing all the variables in the `var` statement. There appears to be a limit of five variables in the matrix plot. So we repeatedly use proc `corr`, creating multiple `.png` files. We use the `with` statement along with the `var` statement to perform non-symmetric matrix plots.

```sas
ods graphics on;
proc corr data = train plots=matrix;
   var lpsa lcavol lweight age lbph ;
run;
quit;
ods graphics off;

ods graphics on;
proc corr data = train plots=matrix;
   with  svi lcp gleason pgg45;
   var lpsa lcavol lweight age lbph ;
run;
quit;
ods graphics off;

ods graphics on;
proc corr data = train plots=matrix;
   with lpsa lcavol lweight age lbph;
var svi lcp gleason pgg45;
run;
quit;
ods graphics off;

ods graphics on;
proc corr data = train plots=matrix;
   var svi lcp gleason pgg45;
run;
quit;
ods graphics off;
```
Now we fit model 7.5 using proc reg.

```
proc reg data = train noprint;
  model lpsa = lcavol lweight age lbph svi lcp gleason pgg45;
  output out=outreg r=resids p=fitted student=stdres cookd=cd h=levg;
run;
quit;
```

We draw figure 7.3 using the `%stdresplot` macro that we defined in chapter 6.

```
%macro stdresplot(xvar=,xlab=);
goptions reset = all;
axis2 label=(f=times h=2 "&xlab") value=(h=1 f=times);
axis1 label=(angle=90 f=times h=2 "Standardized Residuals") value=(h=1 f=times);
symbol v=circle;
proc gplot data = outreg;
plot stdres*&xvar /vminor=0 hminor=0 vaxis=axis1 haxis=axis2;
run;
```
We plot figure 7.4 with proc gplot.

```plaintext
goptions reset = all;
axial label=(h=2 f=times 'Fitted Values')
   value=(f=times h=1)
   order=(0 to 5 by 1);
```
Fig. 7.4 A plot of lpsa against fitted values from (7.5) with a straight line added

Now we use our %plotlm macro to render figure 7.5.

%plotlm(regout=outreg);
After drawing all these graphics, we fit model 7.5 with proc \texttt{reg} and remove the \texttt{noprint} option. We also add the \texttt{vif} option to the model statement to obtain the variance inflation factors on page 244. We also obtain the numeric output on pages 242-244.

\begin{verbatim}
 proc reg data = train;
 model lpsa = lcavol lweight age lbph svi lcp gleason pgg45/vif;
 output out=regout r=resids p=fitted student=stdres cookd=cd h=levg;
 run;
 quit;
\end{verbatim}

\begin{verbatim}
The REG Procedure
Model: MODEL1
Dependent Variable: lpsa

Number of Observations Read 67
Number of Observations Used 67

Analysis of Variance

\begin{tabular}{cccccc}
 Source & DF & Sum of Squares & Mean Square & F Value & Pr > F \\
 \hline
 & & & & & \\
\end{tabular}
\end{verbatim}
Model 8 66.85506 8.35688 16.47 <.0001
Error 58 29.42638 0.50735
Corrected Total 66 96.28145

Root MSE 0.71229 R-Square 0.6944
Dependent Mean 2.45235 Adj R-Sq 0.6522
Coeff Var 29.04510

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| | Inflation |
|------------|----|--------------------|----------------|---------|-------|---|-----------|
| Intercept | 1 | 0.42917 | 1.55359 | 0.28 | 0.7833 | 0 |
| lcavol | 1 | 0.57654 | 0.10744 | 5.37 | <.0001 | 2.31850 |
| lweight | 1 | 0.61402 | 0.22322 | 2.75 | 0.0079 | 1.47230 |
| age | 1 | -0.01900 | 0.01361 | -1.40 | 0.1681 | 1.35660 |
| lbph | 1 | 0.14485 | 0.07046 | 2.06 | 0.0443 | 1.38343 |
| svi | 1 | 0.73721 | 0.29856 | 2.47 | 0.0165 | 2.04531 |
| lcp | 1 | -0.20632 | 0.11052 | -1.87 | 0.0670 | 3.11745 |
| gleason | 1 | -0.02950 | 0.20114 | -0.15 | 0.8839 | 2.64448 |
| pgg45 | 1 | 0.00947 | 0.00545 | 1.74 | 0.0875 | 3.31329 |

Now we will use our %mmplot macro to draw the marginal model plots in figure 7.7. Note how the dataset outreg is created within the macro. In our last proc reg invocation, we named our regression output dataset regout so that there would be no confusion. If name conflicts persist in your SAS analysis, it might be prudent to use less generic names. For example, we could have called the regout dataset regout75 instead.
Next we use our `%addvarplot` macro to draw figure 7.7.

```
%macro addvarplot(dsn=, yvar=, ylab=, var1=, othervar=);  
proc reg data = &dsn noprint;  
   model &yvar = &othervar;  
   output out=plot1a r=y1;  
run;  
quit;  

proc reg data = &dsn noprint;  
   model &var1 = &othervar;  
   output out = plot1b r=x1;  
run;  
quit;  

data plot1;  
   merge plot1a plot1b;  
run;  
quit;  

goptions reset = all;  
axis1 label=(h=2 f=times "&var1|others")  
   value=(f=times h=1);  
axis2 label=(h=2 angle=90 f=times
```

Fig. 7.6 Marginal model plots for model (7.5)
title height=2 "Added-Variable Plot";
proc gplot data = plot1;
 plot y1*x1/ haxis=axis1 vaxis=axis2 vminor=0
 hminor=0;
run;
quit;
%mend;

%addvarplot(dsn=train, yvar=lpsa, var1=lcavol,
 ylab=lpsa, othervar=lweight age lbph svi lcp
 gleason pgg45);
%addvarplot(dsn=train, yvar=lpsa, var1=lweight,
 ylab=lpsa, othervar=lcavol age lbph svi lcp
 gleason pgg45);
%addvarplot(dsn=train, yvar=lpsa, var1=age,
 ylab=lpsa, othervar=lcavol lweight lbph svi lcp
 gleason pgg45);
%addvarplot(dsn=train, yvar=lpsa, var1=lbph,
 ylab=lpsa, othervar=lcavol lweight age svi lcp
 gleason pgg45);
%addvarplot(dsn=train, yvar=lpsa, var1=svi,
 ylab=lpsa, othervar=lcavol lweight age lbph lcp
 gleason pgg45);
%addvarplot(dsn=train, yvar=lpsa, var1=lcp,
 ylab=lpsa, othervar=lcavol lweight age lbph svi
 gleason pgg45);
%addvarplot(dsn=train, yvar=lpsa, var1=gleason,
 ylab=lpsa, othervar=lcavol lweight age lbph svi
 lcp pgg45);
%addvarplot(dsn=train, yvar=lpsa, var1=pgg45,
 ylab=lpsa, othervar=lcavol lweight age lbph svi
 lcp gleason);
Fig. 7.7 Added-variable plots for model (7.5)

Now we will produce table 7.2 and figure 7.8 using the same methodology we used for the production of table 7.1 and figure 7.1. For brevity we will not detail the new production, but only show its code.

```sas
proc reg data = train outest=rsqadj edf;
model lpsa = lcavol lweight age lbph svi lcp gleason pgg45/ selection=adjrsq aic bic sse;
run;
quit;

data clean;
set rsqadj;
ilocavol = 0;
if lcavol ^= . then ilcavol = 1;
ilweight = 0;
if lweight ^= . then ilweight = 1;
iage = 0;
if age ^= . then iage=1;
ilbph = 0;
if lbph ^= . then ilbph=1;
isvi=0;
if svi ^= . then isvi=1;
```

7/30/2010
ilcp=0;
if lcp ^= . then ilcp=1;
igleason=0;
if gleason ^= . then igleason=1;
ipgg45=0;
if pgg45 ^= . then ipgg45=1;
sst = _SSE_ / (1_-RSQ_);
rsqadj = 1 - (_SSE_/(67- _IN_ -1))/(sst/(67-1));
aicc = _AIC_ + (2*(_IN_+2)*(_IN_+3)/(67 - _IN_ - 1));
bic = 67*Log(_SSE_/67)+Log(67)*(_IN_+1);
drop _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ intercept lcavol lweight age lbph svi lcp gleason pgg45 P_EDF_ BIC sst RSQ;
run;
quit;

proc sort data = clean;
by _IN_ SSE_; run;
quit;
data table7p2;
set clean;
by _IN_; if (FIRST._IN_ EQ 1) then output;
run;
quit;

proc print data=table7p2 noobs;
var _IN_ ilcavol ilweight iage ilbph isvi ilcp igleason ipgg45 rsqadj _AIC_ aicc BIC;
run;
quit;

_data table7p2;
_set clean;
_by _IN_ ;
_if (FIRST._IN_ EQ 1) then output;
_run;
_quit;

_goptions reset = all;
symbol1 v=circle c=black;
_axis1 label = (h=2 font=times angle=90 "Adjusted R-squared")
_value=(font=times h=1);
_axis2 label = (h=2 font=times 'Subset Size')
_value = (font=times h=1);
proc gplot data = table7p2;
plot rsqadj*_IN_ /hminor=0 vminor=0
_vaxis=axiss1 haxis=axiss2;
run;
Now we use proc `reg` to fit the best two, four, and seven predictor models. We obtain the numeric output on page 246.

```sas
proc reg data=train;
model lpsa=lcavol lweight;
model lpsa=lcavol lweight svi lbph;
model lpsa=lcavol lweight svi lbph pgg45 lcp age;
run;
quit;
```

The REG Procedure
Model: MODEL1
Dependent Variable: lpsa

Number of Observations Read 67
Number of Observations Used 67

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>59.18960</td>
<td>29.59480</td>
<td>51.06</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>64</td>
<td>37.09185</td>
<td>0.57956</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>66</td>
<td>96.28145</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 0.76129 R-Square 0.6148
Dependent Mean 2.45235 Adj R-Sq 0.6027
Coeff Var 31.04328

Parameter Estimates
Parameter Estimates

| Variable | DF | Parameter | Standard Error | t Value | Pr > |t| |
|----------|----|-----------|----------------|---------|-------|
| Intercept| 1 | -1.04944 | 0.72904 | -1.44 | 0.1549|
| lcavol | 1 | 0.62761 | 0.07906 | 7.94 | <.0001|
| lweight | 1 | 0.73838 | 0.20613 | 3.58 | 0.0007|

The REG Procedure
Model: MODEL2
Dependent Variable: lpsa

Number of Observations Read 67
Number of Observations Used 67

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>4</td>
<td>63.46645</td>
<td>15.86661</td>
<td>29.98</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>62</td>
<td>32.81499</td>
<td>0.52927</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>66</td>
<td>96.28145</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 0.72751
R-Square 0.6592
Dependent Mean 2.45235
Adj R-Sq 0.6372
Coeff Var 29.66598

Parameter Estimates

| Variable | DF | Parameter | Standard Error | t Value | Pr > |t| |
|----------|----|-----------|----------------|---------|-------|
| Intercept| 1 | -0.32592 | 0.77998 | -0.42 | 0.6775|
| lcavol | 1 | 0.50552 | 0.09256 | 5.46 | <.0001|
| lweight | 1 | 0.53883 | 0.22071 | 2.44 | 0.0175|
| svi | 1 | 0.67185 | 0.27323 | 2.46 | 0.0167|
| lbph | 1 | 0.14001 | 0.07041 | 1.99 | 0.0512|

The REG Procedure
Model: MODEL3
Dependent Variable: lpsa

Number of Observations Read 67
Number of Observations Used 67

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>59</td>
<td>29.43730</td>
<td>0.49894</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Corrected Total 66 96.28145
Root MSE 0.70635 R-Square 0.6943
Dependent Mean 2.45235 Adj R-Sq 0.6580
Coeff Var 28.80324

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|-------------------|----------------|---------|------|-----|
| Intercept| 1 | 0.25906 | 1.02517 | 0.25 | 0.8014|
| lcavol | 1 | 0.57393 | 0.10507 | 5.46 | <.0001|
| lweight | 1 | 0.61921 | 0.21856 | 2.83 | 0.0063|
| svi | 1 | 0.74178 | 0.29445 | 2.52 | 0.0145|
| lbph | 1 | 0.14443 | 0.06981 | 2.07 | 0.0430|
| pgg45 | 1 | 0.00894 | 0.00410 | 2.18 | 0.0331|
| lcp | 1 | -0.20542 | 0.10942 | -1.88 | 0.0654|
| age | 1 | -0.01948 | 0.01310 | -1.49 | 0.1425|

Now we will bring in the test data and see how our models compare. We use proc reg to refit the models under the new data and a data step with an infile statement to bring the test data in.

data test;
 infile 'data/prostateTest.txt' expandtabs firstobs=2;
 input ocase lcavol lweight age lbph svi lcp gleason pgg45 lpsa;
run;

proc reg data=test;
model lpsa=lcavol lweight;
model lpsa=lcavol lweight svi lbph;
model lpsa=lcavol lweight svi lbph pgg45 lcp age;
run;
quit;

The REG Procedure
Model: MODEL1
Dependent Variable: lpsa

Number of Observations Read 30
Number of Observations Used 30

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>17.45188</td>
<td>8.72594</td>
<td>16.78</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>14.03742</td>
<td>0.51990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>29</td>
<td>31.48930</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7/30/2010
Root MSE 0.72104 R-Square 0.5542
Dependent Mean 2.53655 Adj R-Sq 0.5212
Coeff Var 28.42620

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|------------|----|--------------------|----------------|---------|------|---|
| Intercept | 1 | 0.73539 | 0.95722 | 0.77 | 0.4490 |
| lcavol | 1 | 0.74779 | 0.12942 | 5.78 | <.0001|
| lweight | 1 | 0.19683 | 0.24734 | 0.80 | 0.4331|

The REG Procedure
Model: MODEL1
Dependent Variable: lpsa

Number of Observations Read 30
Number of Observations Used 30

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>17.45188</td>
<td>8.72594</td>
<td>16.78</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>14.03742</td>
<td>0.51990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>29</td>
<td>31.48930</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 0.72104 R-Square 0.5542
Dependent Mean 2.53655 Adj R-Sq 0.5212
Coeff Var 28.42620

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|------------|----|--------------------|----------------|---------|------|---|
| Intercept | 1 | 0.73539 | 0.95722 | 0.77 | 0.4490 |
| lcavol | 1 | 0.74779 | 0.12942 | 5.78 | <.0001|
| lweight | 1 | 0.19683 | 0.24734 | 0.80 | 0.4331|

The REG Procedure
Model: MODEL3
Dependent Variable: lpsa

Number of Observations Read 30
Number of Observations Used 30

Analysis of Variance
Now we return to the training set. We will omit case number 45 and reproduce table 7.2. Then we will produce figure 7.8 by using proc `gplot` and both versions of the table 7.2 dataset. To produce these results we use the same methodology we used previously.

```sas
data trainno45;
set train;
obs = _N_; 
if obs EQ 45 then delete;
run;
quit;

proc print data=trainno45;
run;
quit;

proc reg data = trainno45 outest=rsqadj edf;
model lpsa = lcavol lweight age lbph svi lcp
gleason pgg45/ selection=adjrsq aic bic sse;
run;
quit;

data clean;
set rsqadj;
ilcavol = 0;
if lcavol ^= . then ilcavol = 1;
ilweight = 0;
```
if lweight ^= . then ilweight = 1;
if age ^= . then iage=1;
ilbph = 0;
if lbph ^= . then ilbph=1;
isvi=0;
if svi ^= . then isvi=1;
ilcp=0;
if lcp ^= . then ilcp=1;
igleason=0;
if gleason ^= . then igleason=1;
ipgg45=0;
if pgg45 ^= . then ipgg45=1;
sst = _SSE_ / (1 - _RSQ_);
rsqadj = 1 - (_SSE_/(66 - _IN_ -1))/(sst/(66-1));
aicc = _AIC_ + (2*(_IN_+2)*(_IN_+3))/(66 - _IN_ - 1));
bic = 66*log(_SSE_/66)+log(66)*(_IN_+1) ;
drop _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ intercept lcavol lweight age lbph svi lcp
gleason pgg45 _P_ _EDF_ _BIC_ sst _RSQ_;
run;
quit;

proc sort data = clean;
 by _IN_ _SSE_;
run;
quit;

data table7p2no45;
 set clean;
 by _IN_;
 if (FIRST._IN_ EQ 1) then output;
run;
quit;

proc print data=table7p2no45 noobs;
 var _IN_ lcavol ilweight iage ilbph isvi ilcp
gleason ipgg45 rsqadj _AIC_ aicc BIC;
run;
quit;

IN ilcavol ilweight iage ilbph isvi ilcp igleason ipgg45 rsqadj _AIC_ aicc bic

1 1 0 0 0 0 0 0 0 0 0.56349 .26.9921 .26.6171 .22.6128
2 1 0 0 1 0 0 0 0 0 0.61600 .34.4908 .33.8558 .27.9218
3 1 0 0 1 1 0 0 0 0 0.65165 .39.9776 .39.0099 .31.2190
4 1 1 0 1 1 0 0 0 0 0.65992 .40.6364 .39.2594 .29.6881
5 1 0 0 1 1 1 0 1 0 0.66537 .40.7938 .38.9271 .27.6559
6 1 1 0 1 1 1 0 1 1 0.67571 .41.9753 .39.5346 .26.6477
7 1 1 1 1 1 1 0 1 0 0.68863 .43.7869 .40.6834 .26.2696
8 1 1 1 1 1 1 1 1 1 0.68321 .41.7945 .37.9348 .22.0876

goptions reset = all;
symbol1 v=circle c=black;
axis1 label = (h=2 font=times angle=90

7/30/2010 170
"Adjusted R-squared")
value=(font=times h=1);
axis2 label = (h=2 font=times 'Subset Size')
value =(font=times h=1)
order=(1 to 5 by 1);
proc gplot data = table7p2;
plot rsqadj*_IN_ /hminor=0 vminor=0
vaxis=axis1 haxis=axis2;
run;
quit;
goptions reset = all;
symbol1 v=circle c=black;
axis1 label = (h=2 font=times angle=90
"Adjusted R-squared")
value=(font=times h=1);
axis2 label = (h=2 font=times 'Subset Size')
value =(font=times h=1)
order=(1 to 5 by 1);
proc gplot data = table7p2no45;
plot rsqadj*_IN_ /hminor=0 vminor=0
vaxis=axis1 haxis=axis2;
run;
quit;

Fig. 7.9 Plots of R^2_{adj} against subset size for the best subset of each size

Now we will draw figure 7.10. First we use data steps to create duplicate \texttt{lpsa} variables for the test and train datasets. Then we merge the new datasets containing these duplicate variables together with another \texttt{data} step.

\begin{verbatim}
data train1;
set train;
lpsa1 = lpsa;
run;
quit;
data test2;
set test;
lpsa2 = lpsa;
end;\end{verbatim}
run;
quit;

data tog;
 set train1 test2;
run;
quit;

Now we draw figure 7.10 using proc gplot. We use multiple symbol statements to specify the test observations and the training observations.

goptions reset = all;
symbol1 i=r v=plus c=red h=1;
symbol2 i=r v=triangle c=black h=1;
axis1 label = (h=2 font=times angle=90 "lpsa")
 value=(font=times h=1) order= (-1 to 6 by 1);
axis2 label = (h=2 font=times 'lweight')
 value = (font=times h=1);* order=(2.5 to 6.5 by 1);
legend1 label=(f=times h=2 j=c 'Data Set'
 position=top) position=(bottom right inside)
 across=1 frame value=(f=times h=2 j=c 'Training' j=c 'Test');
proc gplot data = tog;
 plot lpsa1*lweight=1 lpsa2*lweight=2/
 overlay hminor=0 vminor=0 vaxis=axis1
 haxis=axis2 legend=legend1;
run;
quit;

![Fig. 7.10 Plot of lpsa against lweight for both the training and test data sets](image)

We finish this chapter by drawing the added variable plot for figure 7.11. We use our %addvarplot macro for this purpose.
%addvarplot(dsn= test, yvar=lpsa,
 ylab=lpsa, var1=lweight,
 othervar=lcavol svi lbph pgg45 lcp age);

Fig. 7.11 Added-variable plot for the predictor lweight for the test data
8. Logistic Regression

8.1 Logistic Regression Based on a Single Predictor

In this chapter we will learn how to use SAS to do logistic regression. We begin by bringing the Michelin guide data into SAS. We use a data step with an infile statement.

data mich;
 infile 'data/MichelinFood.txt' firstobs=2 expandtabs;
 input rating in notin mi prop;
run;
quit;

We produce table 8.1 using proc print.

proc print data=mich;
run;
quit;

<table>
<thead>
<tr>
<th>Obs</th>
<th>rating</th>
<th>in</th>
<th>notin</th>
<th>mi</th>
<th>prop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>2</td>
<td>13</td>
<td>15</td>
<td>0.13</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>5</td>
<td>13</td>
<td>18</td>
<td>0.28</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>8</td>
<td>25</td>
<td>33</td>
<td>0.24</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>15</td>
<td>11</td>
<td>26</td>
<td>0.58</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>0.33</td>
</tr>
<tr>
<td>9</td>
<td>23</td>
<td>12</td>
<td>6</td>
<td>18</td>
<td>0.67</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>0.86</td>
</tr>
<tr>
<td>11</td>
<td>25</td>
<td>11</td>
<td>1</td>
<td>12</td>
<td>0.92</td>
</tr>
<tr>
<td>12</td>
<td>26</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.50</td>
</tr>
<tr>
<td>13</td>
<td>27</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>0.86</td>
</tr>
<tr>
<td>14</td>
<td>28</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Now we use proc gplot to draw figure 8.1.

goptions reset = all;
symbol1 v=circle c=black h=1;
axis1 label = (h=2 font=times angle=90
 "Sample proportion") value=(font=times
 h=1) order=(0 to 1 by .2) offset=(2,2);
axis2 label = (h=2 font=times
 'Zagat Food Rating') value =(font=times
 h=1) offset=(2,2) ;
proc gplot data = mich;
 plot prop*rating /hminor=0 vminor=0
 vaxis=axis1 haxis=axis2;
run;
quit;
Fig. 8.1 Plot of the sample proportion of “successes” against food ratings

Now we will fit model 8.1 using proc logistic. Using the logistic procedure is very similar to using the proc reg procedure. There are model statements where the variables are specified. There are also output statements where you can store your prediction and estimation results. In the model statement, for this binomial example the response variable (storing the number of successes) is specified first. It is followed by a “/” and then the variable containing the total count of trials (successes + failures). Finally there is an “=” and the predictor variables. Options may be used in the model statement as well, just like in proc reg. Here we specify the option scale=D so that the deviance is calculated.

We use two separate proc logistic statements. The first fits the null model and gives us the null deviance. The second fits model 8.1 and gives us the residual deviance. Unlike proc reg, proc logistic does not allow more than one model statement in each call. It should be noted that we obtain the Pearson’s Chi-Squared statistic on page 274 as well.

```plaintext
proc logistic data = mich;
  model in/mi= /scale=D;
run;
quit;
```

The LOGISTIC Procedure

Model Information

- Data Set: WORK.MICH
- Response Variable (Events): in
- Response Variable (Trials): mi
- Model: binary logit
- Optimization Technique: Fisher’s scoring

Number of Observations Read: 14
Number of Observations Used: 14
Sum of Frequencies Read 164
Sum of Frequencies Used 164

Response Profile

<table>
<thead>
<tr>
<th>Ordered Value</th>
<th>Binary Outcome</th>
<th>Total Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Event</td>
<td>74</td>
</tr>
<tr>
<td>2</td>
<td>Nonevent</td>
<td>90</td>
</tr>
</tbody>
</table>

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

\[-2 \text{Log L} = 225.789\]

Deviance and Pearson Goodness-of-Fit Statistics

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Value</th>
<th>DF</th>
<th>Value/DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviance</td>
<td>61.4270</td>
<td>13</td>
<td>4.7252</td>
<td><.0001</td>
</tr>
<tr>
<td>Pearson</td>
<td>52.7458</td>
<td>13</td>
<td>4.0574</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Number of events/trials observations: 14

NOTE: The covariance matrix has been multiplied by the heterogeneity factor (Deviance / DF) 4.72516.

Analysis of Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Wald Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>-0.1957</td>
<td>0.3411</td>
<td>0.3293</td>
<td>0.5661</td>
</tr>
</tbody>
</table>

```
proc logistic data = mich;
  model in/mi=rating /scale=D;
run;
quit;
```

The LOGISTIC Procedure

Model Information

<table>
<thead>
<tr>
<th>Data Set</th>
<th>WORK.MICH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Variable (Events)</td>
<td>in</td>
</tr>
<tr>
<td>Response Variable (Trials)</td>
<td>mi</td>
</tr>
<tr>
<td>Model</td>
<td>binary logit</td>
</tr>
<tr>
<td>Optimization Technique</td>
<td>Fisher's scoring</td>
</tr>
</tbody>
</table>

Number of Observations Read 14
Number of Observations Used 14
Sum of Frequencies Read 164
Sum of Frequencies Used 164

Response Profile

Ordered Binary Total
 Value Outcome Frequency

1 Event 74
2 Nonevent 90

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Deviance and Pearson Goodness-of-Fit Statistics

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Value</th>
<th>DF</th>
<th>Value/DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviance</td>
<td>11.3684</td>
<td>12</td>
<td>0.9474</td>
<td>0.4976</td>
</tr>
<tr>
<td>Pearson</td>
<td>11.9995</td>
<td>12</td>
<td>1.0000</td>
<td>0.4457</td>
</tr>
</tbody>
</table>

Number of events/trials observations: 14

NOTE: The covariance matrix has been multiplied by the heterogeneity factor (Deviance / DF) 0.947369.

Model Fit Statistics

Intercept and Criterion

<table>
<thead>
<tr>
<th>AIC</th>
<th>Value</th>
<th>SC</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept Only</td>
<td>240.332</td>
<td>243.432</td>
<td>238.332</td>
</tr>
<tr>
<td>Covariates</td>
<td>189.493</td>
<td>195.693</td>
<td>185.493</td>
</tr>
</tbody>
</table>

The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0

<table>
<thead>
<tr>
<th>Test</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>52.8396</td>
<td>1</td>
<td><.0001</td>
</tr>
<tr>
<td>Score</td>
<td>46.4119</td>
<td>1</td>
<td><.0001</td>
</tr>
<tr>
<td>Wald</td>
<td>34.4985</td>
<td>1</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Analysis of Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard DF</th>
<th>Wald DF</th>
<th>Estimate</th>
<th>Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
</table>

7/30/2010
We will now draw figure 8.2. We begin by generating food rating values, stored in \(x \). At each iteration of the do loop, \(x \) with its current value is output to the dataset \textit{makex}.

\begin{verbatim}
data makex;
do x = 15 to 28 by 0.1;
 output;
end;
run;
quit;
\end{verbatim}

Then we create predicted probability of inclusion in Michelin, stored as \textit{phat}.

\begin{verbatim}
data makex;
 set makex;
 eqn = -10.8415 + 0.5012*x;
 phat = 1/(1+exp(-eqn));
 drop eqn;
run;
quit;
\end{verbatim}

Now we merge the \textit{makex} dataset with \textit{mich}. This is essentially the same as appending \textit{mich} to the end of \textit{makex}, since they do not share any variables.

\begin{verbatim}
data join;
 set makex mich;
run;
quit;
\end{verbatim}

Now we finally use proc \textit{gplot} to draw figure 8.2.

\begin{verbatim}
goptions reset = all;
symbol1 v=circle c=black h=1;
symbol2 c=black i=join;
axis1 label = (h=2 font=times angle=90 "Probability of inclusion in Michelin Guide")
 value=(font=times h=1) order=(0 to 1 by .2)
 offset=(2,2);
\end{verbatim}
axis2 label = (h=2 font=times 'Zagat Food Rating') value =(font=times h=1) offset=(2,2) ;
proc gplot data = join;
plot prop*rating=1 phat*x=2 /hminor=0 vminor=0
 vaxis=axis1 haxis=axis2 overlay;
run;
quit;

Fig. 8.2 Logistic regression fit to the data in Figure 8.1

Now we will produce table 8.2. We mentioned earlier that the logistic procedure allows for an output statement. We use it here. The p option specifies what variable we want to store the estimated probabilities in.

proc logistic data = mich noprint;
 model in/mi=rating;
 output out=probs p=predprob;
run;
quit;

Now we use a data step to create the odds as a function of predprob. We finally produce table 8.2 with a call to proc print.

data table8p2;
 set probs;
 odds = predprob/(1-predprob);
run;

proc print data=table8p2;
var rating predprob odds;
run;
quit;
<table>
<thead>
<tr>
<th>Obs</th>
<th>rating</th>
<th>predprob</th>
<th>odds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>0.03479</td>
<td>0.0360</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>0.05616</td>
<td>0.0595</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>0.08944</td>
<td>0.0982</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>0.13952</td>
<td>0.1621</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>0.21114</td>
<td>0.2677</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>0.30644</td>
<td>0.4418</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>0.42176</td>
<td>0.7294</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>0.54628</td>
<td>1.2040</td>
</tr>
<tr>
<td>9</td>
<td>23</td>
<td>0.66528</td>
<td>1.9876</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>0.76641</td>
<td>3.2810</td>
</tr>
<tr>
<td>11</td>
<td>25</td>
<td>0.84414</td>
<td>5.4161</td>
</tr>
<tr>
<td>12</td>
<td>26</td>
<td>0.89940</td>
<td>8.9407</td>
</tr>
<tr>
<td>13</td>
<td>27</td>
<td>0.93654</td>
<td>14.7590</td>
</tr>
<tr>
<td>14</td>
<td>28</td>
<td>0.96057</td>
<td>24.3635</td>
</tr>
</tbody>
</table>

Now we will use proc logistic with an output statement to obtain table 8.3. The option reschi specifies a variable to store the Pearson residuals. The option resdev specifies a variable to store the deviance residuals.

```plaintext
proc logistic data = mich noprint;
model in/mi=rating;
output out=resdat p=predprob reschi=pearson resdev=devres;
run;
quit;
```

We use a data step to calculate the response residuals.

```plaintext
data resdata;
set resdat;
respres = prop-predprob;
run;
quit;
```

Finally we use proc print to produce table 8.3. The additional non-observation level statistics in the table are omitted because they have been shown in previous output.

```plaintext
proc print data=resdata;
var rating prop predprob respres pearson devres;
run;
quit;
```
Next we will draw figure 8.3. We begin by calculating the estimated variances and standard deviations of the Pearson and deviance residuals. First we use a data step to introduced the squared Pearson and deviance residuals.

```plaintext
data resdata;
set resdata;
    pearson2 = pearson**2;
    devres2 = devres**2;
run;
quit;
```

Now we use proc `means` to output the sum of these squared variables and their originals. The `var` statement specifies which variables we want to summarize. Using the `sum` option in the `output` statement tells proc means that we only want to calculate the sum.

```plaintext
proc means data= resdata noprint;
    var pearson pearson2 devres devres2;
    output out = resdatsum SUM=;
run;
quit;
```

```plaintext
proc print data=resdatsum;
run;
quit;
```

Note how the sum of the squared values match the statistics we calculated earlier. Now we will use these sums to calculate the estimated standard deviations. We introduce another variable, `key` which will be used to merge the estimated standard deviations into the `resdat` dataset.

```plaintext
data resdatsum;
set resdatsum;
    vardev = (devres2 - devres**2/14)/(14-1);
    varpear = (pearson2 - pearson**2/14)/(14-1);
    stddev = sqrt(vardev);
```
stdpear = sqrt(varpear);
key = 1;
keep key stddev stdpear;
run;
quit;

Before merging two datasets on a variable they must both be sorted by that variable. We sort \textit{resdatsum} with proc \texttt{sort}.

\texttt{proc sort data=resdatsum;}
\texttt{by key;}
\texttt{run; quit;}

Now we add the \texttt{key} variable to the \texttt{resdat} dataset with a data step and use proc \texttt{sort} to sort the new dataset by \texttt{key}.

\texttt{data fig83;}
\texttt{set resdat;}
\texttt{key = 1;}
\texttt{run; quit;}

\texttt{proc sort data=resdatsum;}
\texttt{by key;}
\texttt{run; quit;}

Finally we use a data step to merge the two together. We must follow the \texttt{merge} statement with the \texttt{by} statement so SAS knows which variable we are merging on. Finally we print the data so that we can see precisely what happened.

\texttt{data fig83;}
\texttt{merge fig83 resdatsum;}
\texttt{by key;}
\texttt{run; quit;}

\texttt{proc print data=fig83;}
\texttt{run; quit;}

\begin{verbatim}
Obs rating in notin mi prop predprob pearson devres key stddev stdpear
1 15 0 1 1 0.00 0.03479 -0.18986 -0.26612 1 0.92097 0.94363
2 16 0 1 1 0.00 0.05616 -0.24393 -0.34000 1 0.92097 0.94363
3 17 0 8 8 0.00 0.08944 -0.88644 -1.22438 1 0.92097 0.94363
4 18 2 13 15 0.13 0.13952 -0.06916 -0.06960 1 0.92097 0.94363
5 19 5 13 18 0.28 0.21114 0.69269 0.66954 1 0.92097 0.94363
6 20 8 25 33 0.24 0.30644 -0.79771 -0.81548 1 0.92097 0.94363
7 21 15 11 26 0.58 0.42176 1.60214 1.58894 1 0.92097 0.94363
8 22 4 8 12 0.33 0.54628 -1.48173 -1.48497 1 0.92097 0.94363
9 23 12 6 18 0.67 0.66528 0.01249 0.01249 1 0.92097 0.94363
10 24 6 1 7 0.86 0.76641 0.56737 0.59935 1 0.92097 0.94363
11 25 11 1 12 0.92 0.84414 0.69263 0.74908 1 0.92097 0.94363
12 26 1 1 2 0.50 0.89940 -1.87784 -1.42574 1 0.92097 0.94363
13 27 6 1 7 0.86 0.93654 -0.86174 -0.74826 1 0.92097 0.94363
14 28 4 0 4 1.00 0.96057 0.40519 0.56727 1 0.92097 0.94363
\end{verbatim}
Now we will use one final data step to standardize the residuals and then draw figure 8.3 using proc gplot.

```plaintext
data fig83;
set fig83;
stdzpearson=pearson/stdpear;
stdzdev=devres/stddev;
run;
quit;

goptions reset = all;
symbol1 v=circle c=black;
axis1 label = (h=2 font=times angle=90
"Standardized Deviance Residuals")
value=(font=times h=1) offset=(2,2);
axis2 label = (h=2 font=times 'Food Rating')
value =(font=times h=1) offset=(2,2);
proc gplot data = fig83;
plot stdzdev*rating /hminor=0 vminor=0
vaxis=axis1 haxis=axis2 overlay;
run;
quit;

goptions reset = all;
symbol1 v=circle c=black;
axis1 label = (h=2 font=times angle=90
"Standardized Pearson Residuals")
value=(font=times h=1) offset=(2,2);
axis2 label = (h=2 font=times 'Food Rating')
value =(font=times h=1) offset=(2,2);
proc gplot data = fig83;
plot stdzpearson*rating /hminor=0 vminor=0
vaxis=axis1 haxis=axis2 overlay;
run;
quit;
```

Fig. 8.3 Plots of standardized residuals against Food Rating
8.2 Binary Logistic Regression

Now we move to binary logistic regression. We begin by bringing the Michelin New York data into SAS with proc import.

```
proc import datafile='data/MichelinNY.csv' out=michny;
   getnames=yes;
run;
quit;
```

Now we will draw figure 8.4. First we create a new dataset, jitter, where we jitter the data points of food and inmichelin. The uniform function takes one argument, a random number generation seed, and produces a uniform(0,1) random realization.

```
data jitter;
   set michny;
   if inmichelin = 0 then jin = InMichelin+uniform(0)*.03;
   else jin = InMichelin-uniform(0)*.03;
   jfood = food+(uniform(0)*.3-.15);
run;
quit;
```

Now we use proc gplot to draw figure 8.4.

```
goptions reset = all;
symbol1 v=circle c=black h=1;
axis1 label = (h=2 font=times angle=90 "In Michelin Guide? (0=No, 1=Yes)"
   value=(font=times h=1) order=(0 to 1 by .2)
   offset=(2,2));
axis2 label = (h=2 font=times 'Food Rating') value =(font=times h=1)
   offset=(2,2);
proc gplot data = jitter;
   plot jin*jfood /hminor=0 vminor=0
      vaxis=axis1 haxis=axis2;
run;
quit;
```
We will draw figure 8.5 using the `%boxplot` macro we used in chapter 1 for figure 1.6. We add additional arguments that allow us to specify labels for the x and y axes.

```sas
%macro boxplot(var =, data =, yvar =, xvarlab =, yvarlab =);
goptions reset = all;
proc sort data = &data;
    by &var;
run;
proc gplot data = &data;
    axis1 label=(f=times h=2 "&xvarlab") minor=None;
    order=(-1 0.2 0.8 2) value=(f=times h=1 t=1 ' ' t=2 '0' t=3 '1' t=4 ' ');
    axis2 label=(f=times h=2 angle=90 "&yvarlab")
    value=(f=times h=1);
    symbol1 value = circle interpol=boxt bwidth=36;
    plot &yvar* &var/ haxis=axis1 vaxis=axis2 vminor=0;
run;
quit;
%mend;
%boxplot(var = inmichelin, data = michny, yvar = food, xvarlab = Food Rating, yvarlab = In Michelin Guide? (0 = No, 1 = Yes));
```

Fig. 8.4 Plot of y_i versus food rating
We obtain the logistic regression output on page 279 with two calls to proc logistic. As before, we must obtain the null deviance through a separate call. For brevity, the output from the table 8.1 logistic regression is not regenerated. In a binary logistic model, the deviance only depends on the natural logarithm of the likelihood under the model, so the “-2 Log L” row under the “Model Fit Criterion” gives us the null and residual deviances. Also, to ensure that SAS models the event inmichelin=1 as a success, we use the response variable option event.

```
proc logistic data = michny;
  model inmichelin(event='1')=food;
run;
quit;
```

![Fig. 8.5 Box plots of Food Ratings](image)

The LOGISTIC Procedure
Model Information

<table>
<thead>
<tr>
<th>Data Set</th>
<th>WORK.MICHNY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Variable</td>
<td>InMichelin</td>
</tr>
<tr>
<td>Number of Response Levels</td>
<td>2</td>
</tr>
<tr>
<td>Model</td>
<td>binary logit</td>
</tr>
<tr>
<td>Optimization Technique</td>
<td>Fisher's scoring</td>
</tr>
</tbody>
</table>

| Number of Observations Read | 164 |
| Number of Observations Used | 164 |

Response Profile

<table>
<thead>
<tr>
<th>Ordered Value</th>
<th>InMichelin</th>
<th>Total Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>74</td>
</tr>
</tbody>
</table>
Probability modeled is InMichelin='1'.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Intercept Only</th>
<th>Intercept and Covariates</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>227.789</td>
<td>179.730</td>
</tr>
<tr>
<td>SC</td>
<td>230.889</td>
<td>185.930</td>
</tr>
<tr>
<td>-2 Log L</td>
<td>225.789</td>
<td>175.730</td>
</tr>
</tbody>
</table>

Testing Global Null Hypothesis: BETA=0

<table>
<thead>
<tr>
<th>Test</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>50.0586</td>
<td>1</td>
<td><.0001</td>
</tr>
<tr>
<td>Score</td>
<td>43.9692</td>
<td>1</td>
<td><.0001</td>
</tr>
<tr>
<td>Wald</td>
<td>32.6828</td>
<td>1</td>
<td><.0001</td>
</tr>
</tbody>
</table>

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Wald Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>-10.8415</td>
<td>1.8624</td>
<td>33.8881</td>
<td><.0001</td>
</tr>
<tr>
<td>Food</td>
<td>1</td>
<td>0.5012</td>
<td>0.0877</td>
<td>32.6828</td>
<td><.001</td>
</tr>
</tbody>
</table>

Odds Ratio Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Point Estimate</th>
<th>95% Wald Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>1.651</td>
<td>1.390 1.960</td>
</tr>
</tbody>
</table>

Association of Predicted Probabilities and Observed Responses

<table>
<thead>
<tr>
<th></th>
<th>Percent Concordant</th>
<th>Somers' D</th>
<th>Percent Discordant</th>
<th>Gamma</th>
<th>Percent Tied</th>
<th>Tau-a</th>
<th>Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75.7</td>
<td>0.602</td>
<td>15.5</td>
<td>0.659</td>
<td>8.8</td>
<td>0.300</td>
<td>6660</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Now we will draw figure 8.6. We recall proc logistic and use the output statement to store the Pearson and deviance residuals. Their standard errors are obtained through a different method this time. Earlier we calculated the estimated standard deviations by the normal elementary statistical method, where the
estimated standard error of the data $\hat{\chi}$ is obtained by s^2_n. Now we use the definitions on 275, where we can standardize the residuals by dividing them by a function of the observations’ leverage. The leverage is stored by SAS using the h option in the output statement.

```sas
proc logistic data = michny noprint;
model inmichelin(event='1')=food;
output out=output p=preds reschi=pearson
resdev=devres h=hat;
run;
quit;

data z_scores;
set output;
stdzdd=devres/sqrt(1-hat);
stdzdp=pearson/sqrt(1-hat);
keep stdzdd stdzdp food;
run;
quit;

Finally we draw figure 8.6 with proc gplot.

goptions reset = all;
symbol1 v=circle h=1;
axis1 value=(f=times h=1) label=(h=2 f=times
angle=90 "Standardized Deviance Residuals");
axis2 value=(f=times h=1)
label=(f=times h=2 "Food Rating") offset=(2,2);
proc gplot data = z_scores;
plot stdzdd*food/vaxis=axis1
hminor=0 haxis=axis2 vminor=0;
run;
quit;
axis1 value=(f=times h=1) label=(h=2 f=times
angle=90 "Standardized Pearson Residuals");
proc gplot data = z_scores;
plot stdzdp*food/vaxis=axis1
hminor=0 haxis=axis2 vminor=0;
run;
quit;
```
Now we will draw figure 8.7. We generated the logistic curve estimates previously in the makex dataset. We will just reuse it. Now we produce the loess estimates with proc loess.

```sas
proc loess data = michny;
  model inmichelin=food/smooth=0.66666667;
  ods output OutputStatistics=loess;
run;
```

Now we merge the three datasets `jitter`, `loess`, and `makex` together. We sort by food and x so that the lines will be rendered correctly. Then we use proc gplot to render figure 8.7.

```sas
data join;
set loess jitter makex;
run;
quit;
```

```sas
proc sort data=join;
by food x;
run;
quit;
```

```sas
options reset = all;
symbol1 v=circle c=black h=1;
symbol2 c=blue i=join l=1;
symbol3 c=red i=join l=2;
axis1 label = (h=2 font=times angle=90
  "In Michelin Guide? (0=No, 1=Yes)"
  value=(font=times h=1) order=(0 to 1 by .2)
  offset=(2,2);)
axis2 label = (h=2 font=times
  'Food Rating') value =(font=times h=1)
  offset=(2,2) ;
proc gplot data = join;
plot jin*jfood=1 phat*x=2 pred*food=3/hminor=0
  vminor=0 vaxis=axis1 haxis=axis2 overlay;
run;
quit;
```
Fig. 8.7 Plot of y_i versus food rating with the logistic and loess fits added

Now we will draw figure 8.8 using the `%boxplot` macro.

```plaintext
%boxplot(var=inmichelin, data=michny, yvar=food, yvarlab=Food Rating, xvarlab=In Michelin Guide? (0 = No, 1 = Yes));
%boxplot(var=inmichelin, data=michny, yvar=decor, yvarlab=Decor Rating, xvarlab=In Michelin Guide? (0 = No, 1 = Yes));
%boxplot(var=inmichelin, data=michny, yvar=service, yvarlab=Service Rating, xvarlab=In Michelin Guide? (0 = No, 1 = Yes));
%boxplot(var=inmichelin, data=michny, yvar=cost, yvarlab=Price Rating, xvarlab=In Michelin Guide? (0 = No, 1 = Yes));
```
Now we move to figure 8.9. We already have the loess estimates of \textit{inmichelin} conditioned on \textit{food} rating stored in the dataset \textit{loess}. We fit model 8.2 and then obtain the loess estimates of the predicted probabilities conditioned on \textit{food}. We call proc \texttt{logistic} to fit model 8.2 and obtain the predicted probabilities with the output statement. Then we use proc \texttt{loess} to get the loess estimates. Finally we use proc \texttt{gplot} to draw figure 8.9.

First we add the log \textit{cost} term to \textit{michny} with a \texttt{data} step.

\begin{verbatim}
data michny;
 set michny;
 lcost=log(cost);
run;
quit;
\end{verbatim}

Now we fit model 8.2 with proc \texttt{logistic}.

\begin{verbatim}
proc logistic data = michny noprint;
 model inmichelin(event='1')=food decor service cost lcost;
 output out=points p=predprob;
run;
quit;
\end{verbatim}

Then we use proc \texttt{loess} to get the desired loess estimates.

\textbf{Fig. 8.8} Box plots of the four predictor variables
proc loess data = points;
 model predprob=food/smooth=0.66666667;
 ods output OutputStatistics=loesspred;
run;
quit;

Now we use **proc gplot** to draw figure 8.9. We use data steps to join the loess datasets with the original datasets. We also use **proc sort** to sort the resulting datasets by **food**, so that the loess line will render correctly.

data join;
set loess michny;
run;
quit;

proc sort data=join;
by food;
run;
quit;

goptions reset = all;
symbol1 v=circle c=black h=1;
symbol2 c=black i=join l=1;
 axis1 label = (h=2 font=times angle=90
 "Y, In Michelin Guide? (0=No, 1=Yes")
 value=(font=times h=1) order=(0 to 1 by .2)
 offset=(2,2);
 axis2 label = (h=2 font=times
 'Food Rating, x1') value=(font=times h=1)
 offset=(2,2);
proc gplot data = join;
plot inmichelin*food=1 pred*food=2/hminor=0 vminor=0
 vaxis=axis1 haxis=axis2 overlay;
run;
quit;

data join2;
set points loesspred;
run;
quit;

proc sort data=join2;
by food;
run;
quit;

goptions reset = all;
symbol1 v=circle c=black h=1;
symbol2 c=black i=join l=1;
 axis1 label = (h=2 font=times angle=90
 "Y, In Michelin Guide? (0=No, 1=Yes")
 value=(font=times h=1) order=(0 to 1 by .2)
 offset=(2,2);
 axis2 label = (h=2 font=times
 'Food Rating, x1') value=(font=times h=1)
offset=(2,2);
*variable preds are y-hats, variable pred is loess fit;
proc gplot data=join2;
 plot predprob*food=1 pred*food=2/hminor=0 vminor=0
 vaxis=axis1 haxis=axis2 overlay;
run;
quit;

Fig. 8.9 Plots of Y and \(\hat{Y} \) against \(x_1 \), Food Rating

Now we re-define marginal model plot macro as `%logitmmpplot`. This time the definition handles logistic regression rather than linear regression. We use a different response variable option than `event` as well. We use the `REF` option to specify that the baseline category will be the first ordered value of the response. In logistic models, this will always be zero. Using this definition we allow for both binomial and binary models to be fit.

```sas
%macro logitmmpplot(dsn=, yvar=, x1=, allx=, xlab=, ylab=);
proc loess data=&dsn;
 model &yvar=&x1/smooth=0.6667;
ods output OutputStatistics=loessout1;
run;
quit;

proc logistic data=&dsn noprint;
 model &yvar(ref='0')= &allx;
 output out=outreg p=yhat;
run;
quit;

proc loess data=outreg;
 model yhat=&x1/smooth=0.6667;
ods output OutputStatistics=loessout2;
run;
quit;

data loessout2;
 set loessout;
 Pred2 = pred;
drop pred;
```

7/30/2010 193
run;
quit;

data fit;
 set outreg;
 set loessout1;
 set loessout2;
run;
quit;

proc sort data = fit;
 by &x1;
run;
quit;

goptions reset = all;
 axis1 label=(h=2 f=times "&xlab")
 value=(f=times h=1);
 axis2 label=(h=2 angle=90 f=times "&ylab") order=(0 to 1 by 1) value=(f=times h=1);
 symbol1 v = circle c=black;
 symbol2 i=join c=blue;
 symbol3 i=join c=red l=2;
proc gplot data = fit;
 plot /*points:*/ &yvar*&x1=1 /*loess:*/
 Pred*&x1=2 Pred2*&x1=3 /
 haxis=axis1
 vaxis=axis2 vminor=0 hminor=0 overlay;
run;
quit;
%mend;

Now we use %logitmmplot to draw figure 8.10. We have a data step before the last plot to calculate the linear predictor of the logits from the predicted probabilities.

%logitmmplot(dsn=michny, yvar=inmichelin, x1=food, allx=food decor service cost lcost, xlab=Food, ylab=y);
%logitmmplot(dsn=michny, yvar=inmichelin, x1=decor, allx=food decor service cost lcost, xlab=Decor, ylab=y);
%logitmmplot(dsn=michny, yvar=inmichelin, x1=service, allx=food decor service cost lcost, xlab=Service, ylab=y);
%logitmmplot(dsn=michny, yvar=inmichelin, x1=cost, allx=food decor service cost lcost, xlab=Cost, ylab=y);

data points;
 set points;
 linpred= -log((1-predprob)/predprob);
run;
quit;
%logitmmplot(dsn=points, yvar=inmichelin, x1=linpred, allx=food decor service cost lcost, xlab=Linear Predictor, ylab=y);
To draw figure 8.11 we define and call another macro, \texttt{\%respdifplot}. It takes arguments specifying the x and y axis variables (\texttt{xvar}, \texttt{yvar}, \texttt{xlab}, and \texttt{ylab}) and an argument specifying the by variable, \texttt{byvar} (\texttt{inmichelin} in this case).

\begin{verbatim}
\%macro respdifplot(dsn=, yvar=, xvar=, ylab=, xlab=, byvar=);
data zero;
 set \&dsn;
 if inmichelin=0;
 xvarzero = \&xvar;
run;
quit;

data one;
 set \&dsn;
 if inmichelin=1;
 xvarone = \&xvar;
run;
quit;

data plotit;
 set zero one;
run;
quit;

goptions reset = all;
axis1 label=(h=2 f=times angle=90 \"&ylab\")
 value=(h=1 f=times) offset=(1,1);
axis2 label=(h=2 f=times \"&xlab\") v=(h=1
 f=times) offset=(1,1);
symbol1 v=circle i=r h=1 c=black l=1;
symbol2 v=triangle h=1 i=r c=red l=2;
legend1 across=1 frame /*offset=(12 pct, -1 pct)*/
 position=(bottom right inside) label=
\end{verbatim}
Now we will introduce a cross term for service and décor into michny with a data step. Then we’ll draw figure 8.12 with our %logitmmplot macro. To draw the last plot we must fit model 8.4 using proc logistic and the output statement. We will do so with the noprint option. After we calculate our plot we will refit the model and look at the output.

data michny;
set michny;
decserv = decor*service;
run;
quit;

%logitmmplot(dsn=michny, yvar=inmichelin, x1=food, allx=food decserv service cost lcost decserv, xlab=Food, ylab=y);
%logitmmplot(dsn=michny, yvar=inmichelin, x1=decor, allx=food decserv service cost lcost decserv, xlab=Decor, ylab=y);
%logitmmplot(dsn=michny, yvar=inmichelin, x1=service, allx=food decserv service cost lcost decserv, xlab=Service, ylab=y);
%logitmmplot(dsn=michny, yvar=inmichelin, x1=cost, allx=food decserv service cost lcost decserv, xlab=Price, ylab=y);
We produce the analysis of deviance data on page 290 by running both models 8.2 and 8.4 with proc logistic. Then we use the probchi function to obtain the p-value.

```
proc logistic data = michny;
    model inmichelin(ref='0') =food decor service cost lcost;
run;
quit;
```

```
proc logistic data = michny noprint;
    model inmichelin(ref='0') =food decor service cost lcost decserv;
    output out=points p=predprob;
run;
quit;
```

```
data points;
    set points;
    linpred= -log((1-predprob)/predprob);
    run;
quit;
```

```
data points;
    set points;
    linpred= -log((1-predprob)/predprob);
    run;
quit;
```

```
%logitmmplot(dsn=michny, yvar=inmichelin, x1=lcost, allx=food
decor service cost lcost decserv, xlab=log(Price), ylab=y);
```

```
%logitmmplot(dsn=points, yvar=inmichelin, x1=linpred, allx=food
decor service cost lcost decserv, xlab=Linear Predictor, ylab=y);
```

Fig. 8.12 Marginal model plots for model (8.4)
Model binary logit
Optimization Technique Fisher's scoring

Number of Observations Read 164
Number of Observations Used 164

Response Profile

Ordered Total
Value InMichelin Frequency
1 0 90
2 1 74

Probability modeled is InMichelin='1'.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Intercept Only</th>
<th>Intercept and Covariates</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>227.789</td>
<td>148.431</td>
</tr>
<tr>
<td>SC</td>
<td>230.889</td>
<td>167.030</td>
</tr>
<tr>
<td>-2 Log L</td>
<td>225.789</td>
<td>136.431</td>
</tr>
</tbody>
</table>

Testing Global Null Hypothesis: BETA=0

<table>
<thead>
<tr>
<th>Test</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>89.3581</td>
<td>5</td>
<td><.0001</td>
</tr>
<tr>
<td>Score</td>
<td>71.8895</td>
<td>5</td>
<td><.0001</td>
</tr>
<tr>
<td>Wald</td>
<td>43.2685</td>
<td>5</td>
<td><.0001</td>
</tr>
</tbody>
</table>

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Wald Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>-43.7096</td>
<td>8.9330</td>
<td>23.9419</td>
<td><.0001</td>
</tr>
<tr>
<td>Food</td>
<td>1</td>
<td>0.5721</td>
<td>0.1651</td>
<td>12.0020</td>
<td>0.0005</td>
</tr>
<tr>
<td>Decor</td>
<td>1</td>
<td>0.0452</td>
<td>0.0922</td>
<td>0.2401</td>
<td>0.6242</td>
</tr>
<tr>
<td>Service</td>
<td>1</td>
<td>-0.3090</td>
<td>0.1407</td>
<td>4.8217</td>
<td>0.0281</td>
</tr>
<tr>
<td>Cost</td>
<td>1</td>
<td>-0.1048</td>
<td>0.0339</td>
<td>9.5796</td>
<td>0.0020</td>
</tr>
<tr>
<td>lcost</td>
<td>1</td>
<td>10.8585</td>
<td>2.8241</td>
<td>14.7840</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
Odds Ratio Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Point Estimate</th>
<th>95% Wald Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>1.772</td>
<td>1.282 - 2.449</td>
</tr>
<tr>
<td>Decor</td>
<td>1.046</td>
<td>0.873 - 1.253</td>
</tr>
<tr>
<td>Service</td>
<td>0.734</td>
<td>0.557 - 0.967</td>
</tr>
<tr>
<td>Cost</td>
<td>0.900</td>
<td>0.843 - 0.962</td>
</tr>
<tr>
<td>lcost</td>
<td>>999.999</td>
<td>205.089 - >999.999</td>
</tr>
</tbody>
</table>

Association of Predicted Probabilities and Observed Responses

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Concordant</td>
<td>89.3</td>
<td>Somers' D</td>
</tr>
<tr>
<td>Percent Discordant</td>
<td>10.5</td>
<td>Gamma</td>
</tr>
<tr>
<td>Percent Tied</td>
<td>0.1</td>
<td>Tau-a</td>
</tr>
<tr>
<td>Pairs</td>
<td>6660</td>
<td>c</td>
</tr>
</tbody>
</table>

`proc logistic data = mchny;
model inmichelin(ref='0') =food decor service cost lcost decserv;
run;
quit;`

The LOGISTIC Procedure

Model Information

Data Set WORK.MICHNY
Response Variable InMichelin
Number of Response Levels 2
Model binary logit
Optimization Technique Fisher's scoring

Number of Observations Read 164
Number of Observations Used 164

Response Profile

<table>
<thead>
<tr>
<th>Ordered Value</th>
<th>Total InMichelin</th>
<th>Total Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>74</td>
</tr>
</tbody>
</table>

Probability modeled is InMichelin='1'.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics
Intercept and Criterion Only Covariates

<table>
<thead>
<tr>
<th></th>
<th>AIC</th>
<th>SC</th>
<th>-2 Log L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>227.789</td>
<td>230.889</td>
<td>225.789</td>
</tr>
<tr>
<td>Food</td>
<td>143.820</td>
<td>165.519</td>
<td>129.820</td>
</tr>
</tbody>
</table>

Testing Global Null Hypothesis: BETA=0

<table>
<thead>
<tr>
<th>Test</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>95.9686</td>
<td>6</td>
<td><.0001</td>
</tr>
<tr>
<td>Score</td>
<td>74.6164</td>
<td>6</td>
<td><.0001</td>
</tr>
<tr>
<td>Wald</td>
<td>42.9505</td>
<td>6</td>
<td><.0001</td>
</tr>
</tbody>
</table>

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Wald Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>-70.8529</td>
<td>15.4578</td>
<td>21.0096</td>
<td><.0001</td>
</tr>
<tr>
<td>Food</td>
<td>1</td>
<td>0.6700</td>
<td>0.1828</td>
<td>13.4374</td>
<td>0.0002</td>
</tr>
<tr>
<td>Decor</td>
<td>1</td>
<td>1.2979</td>
<td>0.4930</td>
<td>6.9311</td>
<td>0.0085</td>
</tr>
<tr>
<td>Service</td>
<td>1</td>
<td>0.9197</td>
<td>0.4883</td>
<td>3.5476</td>
<td>0.0596</td>
</tr>
<tr>
<td>Cost</td>
<td>1</td>
<td>-0.0746</td>
<td>0.0442</td>
<td>2.8505</td>
<td>0.0913</td>
</tr>
<tr>
<td>lcost</td>
<td>1</td>
<td>10.9640</td>
<td>3.2285</td>
<td>11.5331</td>
<td>0.0007</td>
</tr>
<tr>
<td>decserv</td>
<td>1</td>
<td>-0.0655</td>
<td>0.0251</td>
<td>6.7993</td>
<td>0.0091</td>
</tr>
</tbody>
</table>

Odds Ratio Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Point Estimate</th>
<th>95% Wald Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>1.954</td>
<td>1.366 - 2.796</td>
</tr>
<tr>
<td>Decor</td>
<td>3.662</td>
<td>1.393 - 9.623</td>
</tr>
<tr>
<td>Service</td>
<td>2.509</td>
<td>0.963 - 6.532</td>
</tr>
<tr>
<td>Cost</td>
<td>0.928</td>
<td>0.851 - 1.012</td>
</tr>
<tr>
<td>lcost</td>
<td>>999.999</td>
<td>103.164 - >999.999</td>
</tr>
<tr>
<td>decserv</td>
<td>0.937</td>
<td>0.892 - 0.984</td>
</tr>
</tbody>
</table>

Association of Predicted Probabilities and Observed Responses

<table>
<thead>
<tr>
<th>Percent Concordant</th>
<th>Somers' D</th>
<th>0.010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Discordant</td>
<td>Gamma</td>
<td>0.02</td>
</tr>
<tr>
<td>Percent Tied</td>
<td>Tau-a</td>
<td>0.399</td>
</tr>
<tr>
<td>Pairs</td>
<td>c</td>
<td>0.901</td>
</tr>
</tbody>
</table>

Remember that the “-2 log L” criterion gives the deviance values. Now we use the probchi function with a data step and proc print to get the p-value.
data devpval;
pval = 1-probchi(136.431-129.820,1);
run;
quit;

proc print data=devpval;
run;
quit;

Obs pval
1 0.010135

Now we will draw figure 8.13. We refit model 8.4 using proc logistic, this time saving the deviance residuals and leverage values via the output statement. After standardizing the residuals using a data step, we use proc gplot to draw the figure.

proc logistic data = michny noprint;
 model inmichelin(ref='0') =food decor service cost lcost decserv;
 output out=points resdev=devres h=hat;
run;
quit;

data points;
set points;
 stdres = devres/sqrt(1-hat);
run;
quit;

goptions reset = all;
symbol1 v=circle c=black h=1;
 axis1 label = (h=2 font=times angle=90
 "Standardized Deviance Residuals")
 value=(font=times h=1)
 offset=(2,2);
 axis2 label = (h=2 font=times
 'Leverage Values') value=(font=times h=1)
 offset=(2,2);
proc gplot data = points;
 plot stdres*hat=1 /hminor=0 vminor=0
 vaxis=axis1 haxis=axis2 href=.085;
run;
quit;
We obtain the output on page 291-292 by recalling proc logistic for model 8.4. It is redundant to document model 8.4 again so we omit it. We fit model 8.5 using proc logistic now. This gives the results for the analysis of deviance and model output on pages 292 and 293.

```plaintext
proc logistic data = michny;
  model inmichelin(ref='0') =food decor service lcost decserv;
run;
quit;
```

The LOGISTIC Procedure

Model Information

<table>
<thead>
<tr>
<th>Data Set</th>
<th>WORK.MICHNY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Variable</td>
<td>InMichelin</td>
</tr>
<tr>
<td>Number of Response Levels</td>
<td>2</td>
</tr>
<tr>
<td>Model</td>
<td>binary logit</td>
</tr>
<tr>
<td>Optimization Technique</td>
<td>Fisher's scoring</td>
</tr>
</tbody>
</table>

Number of Observations Read 164
Number of Observations Used 164

Response Profile

<table>
<thead>
<tr>
<th>Ordered Value</th>
<th>InMichelin</th>
<th>Total Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>74</td>
</tr>
</tbody>
</table>

Probability modeled is InMichelin='1'.

Fig. 8.13 A plot of leverage against standardized deviance residuals for (8.4)
Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Intercept Only</th>
<th>Intercept and Covariates</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>227.789</td>
<td>143.229</td>
</tr>
<tr>
<td>SC</td>
<td>230.889</td>
<td>161.828</td>
</tr>
<tr>
<td>-2 Log L</td>
<td>225.789</td>
<td>131.229</td>
</tr>
</tbody>
</table>

Testing Global Null Hypothesis: BETA=0

<table>
<thead>
<tr>
<th>Test</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>94.5601</td>
<td>5</td>
<td><.0001</td>
</tr>
<tr>
<td>Score</td>
<td>72.3281</td>
<td>5</td>
<td><.0001</td>
</tr>
<tr>
<td>Wald</td>
<td>41.6382</td>
<td>5</td>
<td><.0001</td>
</tr>
</tbody>
</table>

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Wald Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>-63.7642</td>
<td>14.0985</td>
<td>20.4555</td>
<td><.0001</td>
</tr>
<tr>
<td>Food</td>
<td>1</td>
<td>0.6427</td>
<td>0.1783</td>
<td>13.0019</td>
<td>0.0003</td>
</tr>
<tr>
<td>Decor</td>
<td>1</td>
<td>1.5060</td>
<td>0.4788</td>
<td>9.8915</td>
<td>0.0017</td>
</tr>
<tr>
<td>Service</td>
<td>1</td>
<td>1.1263</td>
<td>0.4707</td>
<td>5.7264</td>
<td>0.0167</td>
</tr>
<tr>
<td>lcost</td>
<td>1</td>
<td>7.2983</td>
<td>1.8106</td>
<td>16.2474</td>
<td><.0001</td>
</tr>
<tr>
<td>decserv</td>
<td>1</td>
<td>-0.0761</td>
<td>0.0245</td>
<td>9.6699</td>
<td>0.0019</td>
</tr>
</tbody>
</table>

Odds Ratio Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Point Estimate</th>
<th>95% Wald Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>1.902</td>
<td>1.341</td>
</tr>
<tr>
<td>Decor</td>
<td>4.509</td>
<td>1.764</td>
</tr>
<tr>
<td>Service</td>
<td>3.084</td>
<td>1.226</td>
</tr>
<tr>
<td>lcost</td>
<td>>999.999</td>
<td>42.500</td>
</tr>
<tr>
<td>decserv</td>
<td>0.927</td>
<td>0.883</td>
</tr>
</tbody>
</table>

Association of Predicted Probabilities and Observed Responses

<table>
<thead>
<tr>
<th>Percent Concordant</th>
<th>Somers' D</th>
<th>Percent Discordant</th>
<th>Gamma</th>
<th>Percent Tied</th>
<th>Tau-a</th>
<th>Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.1</td>
<td>0.803</td>
<td>9.8</td>
<td>0.804</td>
<td>0.1</td>
<td>0.400</td>
<td>6660</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Now we use the `probchi` function with a `data` step and proc `print` to get the p-value on page 292.

```sas
data devpval;
pval = 1 - probchi(131.229 - 129.820, 1);
run;
quit;

proc print data=devpval;
run;
quit;
```

<table>
<thead>
<tr>
<th>Obs</th>
<th>pval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.23522</td>
</tr>
</tbody>
</table>

Now we produce figure 8.14 using our `%logitmmplot` macro. This time when we produce the linear predictor, we also store the deviance residuals and hat values for the production of figure 8.15 and table 8.5.

```sas
%logitmmplot(dsn=michny, yvar=inmichelin, x1=food, allx=food
decor service lcost decserv, xlab=Food, ylab=y);
%logitmmplot(dsn=michny, yvar=inmichelin, x1=decor, allx=food
decor service lcost decserv, xlab=Decor, ylab=y);
%logitmmplot(dsn=michny, yvar=inmichelin, x1=service, allx=food
decor service lcost decserv, xlab=Service, ylab=y);
%logitmmplot(dsn=michny, yvar=inmichelin, x1=lcost, allx=food
decor service lcost decserv, xlab=log(Price), ylab=y);

proc logistic data = michny noprint;
  model inmichelin(ref='0') =food decor service lcost decserv;
  output out=points p=predprob resdev=devres h=hat;
run;
quit;

data points;
set points;
linpred= -log((1-predprob)/predprob);
run;
quit;

%logitmmplot(dsn=points, yvar=inmichelin, x1=linpred, allx=food
decor service lcost decserv, xlab=Linear Predictor, ylab=y);
```
Now we produce figure 8.15 using the same method as we used for figure 8.13.

data points;
set points;
 stdres = devres/sqrt(1-hat);
run;
quit;

goptions reset = all;
symbol1 v=circle c=black h=1;
axis1 label = (h=2 font=times angle=90
 "Standardized Deviance Residuals")
 value=(font=times h=1)
 offset=(2,2);
axis2 label = (h=2 font=times
 'Leverage Values') value = (font=times h=1)
 offset=(2,2);
proc gplot data = points;
plot stdres*hat=1 /hminor=0 vminor=0
 vaxis=axis1 haxis=axis2 href=.073;
run;
quit;
Now we use a `data` step and proc `print` to produce table 8.5.

```plaintext
data table8p5;
set points;
if abs(stdres) < 2 then delete;
drop devres hat lcost _LEVEL_ linpred decserv;
run;
quit;
proc print data= table8p5;
run;
quit;
```

<table>
<thead>
<tr>
<th>Restaurant_</th>
<th>Obs</th>
<th>InMichelin</th>
<th>Name</th>
<th>Food</th>
<th>Decor</th>
<th>Service</th>
<th>Cost</th>
<th>predprob</th>
<th>stdres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>Atelier</td>
<td>27</td>
<td>25</td>
<td>27</td>
<td>95</td>
<td>0.97057</td>
<td>-2.68516</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>Café du Soleil</td>
<td>23</td>
<td>23</td>
<td>17</td>
<td>44</td>
<td>0.93425</td>
<td>-2.38825</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>Terrace in the</td>
<td>23</td>
<td>25</td>
<td>21</td>
<td>62</td>
<td>0.92218</td>
<td>-2.28144</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>Gavroche</td>
<td>19</td>
<td>15</td>
<td>17</td>
<td>42</td>
<td>0.12452</td>
<td>2.06981</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>Odeon</td>
<td>18</td>
<td>17</td>
<td>17</td>
<td>42</td>
<td>0.10251</td>
<td>2.15632</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>Paradou</td>
<td>19</td>
<td>17</td>
<td>18</td>
<td>38</td>
<td>0.08127</td>
<td>2.25573</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1</td>
<td>Park Terrace B</td>
<td>21</td>
<td>20</td>
<td>20</td>
<td>33</td>
<td>0.07207</td>
<td>2.33111</td>
</tr>
</tbody>
</table>
```
9. Serially Correlated Errors

9.1 Autocorrelation
In this chapter we will show how to use SAS to do time series analysis. We begin by bringing the canned 
food data into SAS. Here we use an `infile` statement within a `data` step. The variables are named with 
the following `input` statement.

```sas
data food1;
 infile 'data/confood2.txt' firstobs=2 expandtabs;
 input week sales price promotion saleslag1 $;
run;
```

Next, in a data step we initialize the `saleslag` variable. The original `saleslag1` variable has “NA” in the 
first observation, and this is replaced with a missing value in the new variable `saleslag`. The log version 
of each relevant variable are also created.

```sas
data food;
 set food1;
 if saleslag1 = 'NA' then saleslag = .;
 else saleslag = saleslag1;
 drop saleslag1;
 lsales = log(sales);
 lprice = log(price);
 lsaleslag = log(saleslag);
run;
```

Now it’s time to draw figure 9.1. We split the data into two parts, `yes` and `no`, by the `promotion` dummy 
variable value in two `data` steps. Here the `if` statement acts as an observation selector. We append the 
two datasets together at the end in `plotit` with a third `data` step.

```sas
*Fig. 9.1;
data no;
 set food;
 if promotion=0;
 lsalesno = lsales;
run;
data yes;
 set food;
 if promotion=1;
 lsalesyes = lsales;
run;
data plotit;
 set no yes;
run;
```

Next we use proc gplot to draw figure 9.1. The triangles, corresponding to no promotion, are drawn using 
`lsalesno`. The pluses, corresponding to a promotion, are drawn with `lsalesyes`.

```sas
goptions reset = all;
axis1 label=(h=2 f=times angle=90 'log(Sales)')
 value=(h=1 f=times) offset=(1,1);
axis2 label=(h=2 f=times 'log(Price)') v=(h=1
 f=times) offset=(1,1);
symbol1 v=triangle h=1 c=black;
symbol2 v=plus h=1 c=black;
legend1 across=1 frame
```
Now we will draw figure 9.2. We use proc sort to order the data by week so that the lines in figure 9.2 will connect the proper points. Then we use proc gplot to render figure 9.2.

*Fig. 9.2;
proc sort data = plotit;
by week;
run;

goptions reset = all;
axis1 label=(h=2 f=times angle=90 'log(Sales)')
value=(h=1 f=times) offset=(1,1);
axis2 label=(h=2 f=times 'Week, t') v=(h=1
f=times) offset=(1,1);
symbol1 i=join c=black l=1;
Figure 3 is drawn with another call of proc **gplot**.

*Fig. 9.3;

goptions reset = all;
axis1 label=(h=2 f=times angle=90 'log(Sales t)')
   value=(h=1 f=times) offset=(2,1);
axis2 label=(h=2 f=times 'log(Sales t-1)') v=(h=1
   f=times) offset=(2,1);
symbol1 v=circle c=black h=1;
```sas
proc gplot data = food;
plot lsales*lsaleslag=1/vaxis=axis1 haxis=axis2
 vminor=0 hminor=0;
run;
```

**Fig. 9.3** Plot of log(Sales) in week t against log(Sales) in week t – 1

To draw figure 9.4, we call proc `arima`. By specifying the ods `graphics` and `html` options, we generate the following output. The `identify var` statement tells SAS which variable to model with `arima`. The `estimate plot` statement tells SAS to plot the autocorrelation plot of the `lsales`.

```sas
ods html;
ods graphics on;
proc arima data = food;
estimate plot;
identify var=lsales;
run;
ods graphics off;
ods html close;
```

The ARIMA Procedure

Name of Variable = lsales
Name of Variable = Isales

Mean of Working Series 6.472146
Standard Deviation 0.686065
Number of Observations 52

Autocorrelation Check for White Noise

<table>
<thead>
<tr>
<th>To Lag</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr &gt; ChiSq</th>
<th>Autocorrelations</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>24.23</td>
<td>6</td>
<td>0.0005</td>
<td>0.611 0.228 0.077 0.069 0.049 0.022</td>
</tr>
<tr>
<td>12</td>
<td>25.62</td>
<td>12</td>
<td>0.0121</td>
<td>-0.066 -0.119 -0.026 0.028 0.028 -0.027</td>
</tr>
</tbody>
</table>

Fig. 9.4 Autocorrelation function for log(Sales)
Now we move to figure 9.5. We begin with proc **reg**. We store the estimation output with the **output** statement in the dataset **resids_m2**. The standardized residuals will be stored in **stdres**. The fitted values will be stored in **fitted**.

```
proc reg data = food;
model lsales = lprice week promotion;
output out = resids_m2 student=stdres p=fitted;
run;
```

The REG Procedure
Model: MODEL1
Dependent Variable: lsales

Number of Observations Read 52
Number of Observations Used 52

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3</td>
<td>20.57927</td>
<td>6.85976</td>
<td>84.51</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Error</td>
<td>48</td>
<td>3.89638</td>
<td>0.08117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>51</td>
<td>24.47565</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 0.28491 R-Square 0.8408
Dependent Mean 6.47215 Adj R-Sq 0.8309
Coeff Var 4.40212

Parameter Estimates

| Variable     | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|--------------|----|--------------------|----------------|---------|------|
| Intercept    | 1  | 4.73930            | 0.17946        | 26.41   | <.0001 |
| lprice       | 1  | -4.10279           | 0.47486        | -8.64   | <.0001 |
| week         | 1  | 0.01257            | 0.00275        | 4.58    | <.0001 |
| promotion    | 1  | 0.71945            | 0.17724        | 4.06    | 0.0002 |

Now we will draw the standardized residual plot using the output dataset **resids_m2** and proc **gplot**. We connect the points in the standardized residual plot for price, showing the serial correlation.
Now we will use proc arima on the standardized residuals stored in `resids_m2`. This will give us figure 9.6.

```r
ods html;
do$ graphics on;
title 'Series Standardized Residuals';
proc arima data = resids_m2;
estimate plot;
identify var=stdres;
run;
do$ graphics off;
do$ html close;
```

**Fig. 9.5** Plots of standardized residuals from LS fit of model (9.2)

Series Standardized Residuals

The ARIMA Procedure

Name of Variable = stdres
Name of Variable = stdres

Mean of Working Series 0.000144
Standard Deviation 1.017264
Number of Observations 52

Autocorrelation Check for White Noise

<table>
<thead>
<tr>
<th>To Lag</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr &gt; ChiSq</th>
<th>Autocorrelations</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>20.71</td>
<td>6</td>
<td>0.0021</td>
<td>0.542 0.181 0.089 0.120 0.001 -0.152</td>
</tr>
<tr>
<td>12</td>
<td>39.42</td>
<td>12</td>
<td>&lt;.0001</td>
<td>-0.262 -0.295 -0.175 -0.196 -0.167 -0.184</td>
</tr>
</tbody>
</table>

Fig. 9.6 Autocorrelation function of the standardized residuals from model (9.2)
9.2 Using Generalized Least Squares When the Errors Are AR(1)

We fit the AR(1) version of model 9.2 using proc mixed. This gives us the output on page 313. We will learn how to use proc mixed very well in chapter 10. We specify the error covariance as being AR(1) in the repeated statement via the type option.

We note that the estimates here match both R and our method using matrices in the output that follows; however, the standard errors do not match. SAS System for Mixed Models explains this in Appendix I, p. 501:

“As a cautionary note, $\hat{C}$ [the covariance matrix of $(\hat{\beta} - \beta, \hat{u} - u)$] tends to underestimate the true sampling variability of $\hat{\beta}$ and $\hat{u}$ because no account is made for the uncertainty in estimating $G$ and $R$. Although inflation factors have been proposed (Kackar and Harville 1984, Kass and Steffey 1989, Prasad and Rao 1990) they tend to be small for data sets that are fairly well balanced. PROC MIXED does not currently compute any inflation factors, but rather accounts for the downward bias by using the approximate t- and F-statistics.”

Because the standard errors from R match the matrix method to follow, we can be sure that its method for inflating the standard errors is correct, while SAS gives standard errors that are too small.

data food; set food; subjectnum=1; run;
proc mixed data=food method=ml;
   class subjectnum;
   model lsales=lprice promotion week/solution residual;
   repeated /type=ar(1) subject=subjectnum;
run;

Series Standardized Residuals

The Mixed Procedure
Model Information

Data Set WORK.FOOD
Dependent Variable lsales
Covariance Structure Autoregressive
Subject Effect subjectnum
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values
subjectnum 1 1

Dimensions
Covariance Parameters             2
Columns in X                      4
Columns in Z                      0
Subjects                          1
Max Obs Per Subject              52

Number of Observations
Number of Observations Read      52
Number of Observations Used      52
Number of Observations Not Used  0

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>12.82743901</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-5.46226127</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>

Convergence criteria met.
Series Standardized Residuals

The Mixed Procedure

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(1)</td>
<td>subjectnum</td>
<td>0.5504</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>0.07509</td>
</tr>
</tbody>
</table>

Fit Statistics

-2 Log Likelihood: -5.5
AIC (smaller is better): 6.5
AICC (smaller is better): 8.4
BIC (smaller is better): 18.2

Null Model Likelihood Ratio Test

<table>
<thead>
<tr>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr &gt; ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.29</td>
<td>&lt;.0001</td>
</tr>
</tbody>
</table>

Solution for Fixed Effects

| Effect    | Estimate | Error  | DF | t Value | Pr > |t| |
|-----------|----------|--------|----|---------|-------|-------|
| Intercept | 4.6757   | 0.2290 | 0  | 20.42   | .     |       |
| lprice    | -4.3274  | 0.5405 | 48 | -8.01   | <.0001|       |
| promotion  | 0.5846   | 0.1606 | 48 | 3.64    | 0.0007|       |
| week      | 0.01252  | 0.004486 | 48 | 2.79    | 0.0075|       |

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num</th>
<th>Den</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>lprice</td>
<td>1</td>
<td>48</td>
<td>64.10</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>promotion</td>
<td>1</td>
<td>48</td>
<td>13.26</td>
<td>0.0007</td>
</tr>
<tr>
<td>week</td>
<td>1</td>
<td>48</td>
<td>7.79</td>
<td>0.0075</td>
</tr>
</tbody>
</table>

We obtain the residuals from the gls model by refitting the model and specifying the outp option in the model statement. The residuals are then stored as resid in the output dataset, here fig9p7.

```
proc mixed data=food method=ml;
 class subjectnum;
 model lsales=lprice promotion week/solution
 residual outp=fig9p7;
 repeated /type=ar(1) subject=subjectnum;
run;
```
Now we draw figure 9.7 by using proc **arima** and the ods options again.

```sas
*Fig. 9.7;
ods html;
ods graphics on;
title 'Series Standardized Residuals';
proc arima data = fig9p7;
 estimate plot;
 identify var=resid;
run;
ods graphics off;
ods html close;
```

### Series Standardized Residuals

<table>
<thead>
<tr>
<th>Name of Variable = Resid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of Working Series</td>
</tr>
<tr>
<td>Standard Deviation</td>
</tr>
<tr>
<td>Number of Observations</td>
</tr>
</tbody>
</table>

### Autocorrelation Check for White Noise

<table>
<thead>
<tr>
<th>To Lag</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr &gt; ChiSq</th>
<th>Autocorrelations</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>22.75</td>
<td>6</td>
<td>0.0009</td>
<td>0.554 0.211 0.113 0.138 0.016 -0.157</td>
</tr>
<tr>
<td>12</td>
<td>44.13</td>
<td>12</td>
<td>&lt;0.001</td>
<td>-0.303 -0.336 -0.184 -0.198 -0.155 -0.167</td>
</tr>
</tbody>
</table>
Now we will fit the LS model with output on page 318. First we define a macro `makecorr`, which transforms the data using proc `iml`. First we must create the covariance matrix, sigma, in the macro above; then we find the Cholesky decomposition by the command “root”.

*Output p. 318;
`proc sort data = food;
   by week;
run;`
`%macro makecorr;
proc iml;
   use food;
   read all var{lprice promotion week} into x;
   read all var{week} into weeks;
   read all var{lsales} into y;
   rho = 0.5503593;
   int = J(nrow(x), 1, 1);
   design = int||x;
   rowsig = weeks
   %do i = 2 %to 52;
       | weeks
   %end;
   
   ...
rowwks = t(weeks);
colsig = rowwks
   %do i = 2 %to 52;
      // rowwks
   %end;
sigma = rho##abs(rowsig-colsig);
s = root(sigma)``;
max_diff=max(abs(s*s`-sigma));
old_s=root(sigma);
old_max_diff=max(abs(old_s*old_s`-sigma));
ystar = solve(s,y);
xstar = solve(s,design);
data = ystar|xstar;
data2 = data|x;
names2={ystar intstar lprstar promstar wkstar
         lprice promotion week};
create foodstar from data2 [colname=names2];
append from data2;
quit;
%mend;

%makecorr;

Then we fit the transformed data model using proc reg. A model with no intercept is fitted by using the
noint option at the end of the model statement. This gives us the output on page 318. For later analysis
we save estimation results in the dataset outres.

proc reg data = foodstar;
   model ystar = intstar lprstar promstar wkstar/noint;
   output out=outres student=stdres p=fitted r=resids
         h=levg;
run;

The REG Procedure

Model: MODEL1
Dependent Variable: YSTAR

Number of Observations Read  52
Number of Observations Used  52

NOTE: No intercept in model. R-Square is redefined.

Analysis of Variance

                  Sum of             Mean
      Source        DF    Squares    Square      F Value  Pr > F
      Model          4   685.37752  171.34438    2106.27   <.0001
      Error         48    3.90479  0.08135
      Uncorrected Total  52  689.28231

Root MSE          0.28522 R-Square    0.9943
Dependent Mean    3.56221 Adj R-Sq    0.9939

7/30/2010
Parameter Estimates

| Variable  | DF | Parameter | Standard | t Value | Pr > |t| |
|-----------|----|-----------|----------|---------|-------|---|
| INTSTAR   | 1  | 4.67567   | 0.23837  | 19.62   | <.0001|
| LPRSTAR   | 1  | -4.32739  | 0.56256  | -7.69   | <.0001|
| PROMSTAR  | 1  | 0.58465   | 0.16711  | 3.50    | 0.0010|
| WKSTAR    | 1  | 0.01252   | 0.00467  | 2.68    | 0.0100|

Now we will draw figure 9.8. This is accomplished using the transformed data in `foodstar` that `makecorr` created. We call proc `gplot` using this transformed data.

*Fig. 9.8;*

*Plot 1;*

goptions reset = all;
axis1 value=(h=2 f=times) label=(h=2 f=times angle=90 'log(Sales)*');
axis2 label=(h=2 f=times 'Intercept*') v=(h=2 f=times) order=(0.5 to 1.1 by 0.2);
symbol1 v=circle c=black h=2;
proc gplot data = foodstar;
plot ystar*intstar=1/vaxis=axis1 haxis=axis2 vminor=0 hminor=0;
run;
quit;

*Plot 2;*

goptions reset = all;
axis1 value=(h=2 f=times) label=(h=2 f=times angle=90 'log(Sales)*') offset=(1,0);
axis2 label=(h=2 f=times 'log(Price)*') v=(h=2 f=times) order=(-0.6 to 0 by 0.2);
symbol1 v=circle c=black h=2;
proc gplot data = foodstar;
plot ystar*lprstar=1/vaxis=axis1 haxis=axis2 vminor=0 hminor=0;
run;
quit;

*Plot 3;*

goptions reset = all;
axis1 value=(h=2 f=times) label=(h=2 f=times angle=90 'log(Sales)*') offset=(1,0);
axis2 label=(h=2 f=times 'Promotion*') v=(h=2 f=times) order=(-1 to 1.5 by 0.5);
symbol1 v=circle c=black h=2;
proc gplot data = foodstar;
plot ystar*promstar=1/vaxis=axis1 haxis=axis2 vminor=0 hminor=0;
run;
quit;
*Plot 4;
goptions reset = all;
axis1 value=(h=2 f=times) label=(h=2 f=times angle=90 'log(Sales)*') offset=(1,0);
axis2 label=(h=2 f=times 'Week*') v=(h=2 f=times) order=(0 to 30 by 10);
symbol1 v=circle c=black h=2;
proc gplot data = foodstar;
plot ystar*wkstar=1/vaxis=axis1 haxis=axis2 vminor=0 hminor=0;
run;
quit;

Fig. 9.8 Plots of the transformed variables from model (9.6)

Figure 9.9 is drawn using proc arima and ods on the standardized residuals stored in the dataset outres.

*Fig. 9.9;
ods html;
ods graphics on;
title 'Series Standardized Residuals';
proc arima data = outres;
estimate plot;
identify var=stdres;

7/30/2010
run;
ods graphics off;
ods html close;

### Series Standardized Residuals

#### The ARIMA Procedure

<table>
<thead>
<tr>
<th>Name of Variable = stdres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of Working Series</td>
</tr>
<tr>
<td>Standard Deviation</td>
</tr>
<tr>
<td>Number of Observations</td>
</tr>
</tbody>
</table>

#### Autocorrelation Check for White Noise

<table>
<thead>
<tr>
<th>To Lag</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr &gt; ChiSq</th>
<th>Autocorrelations</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2.87</td>
<td>6</td>
<td>0.8256</td>
<td>-0.105 -0.058 0.147 0.034 -0.058</td>
</tr>
<tr>
<td>12</td>
<td>9.74</td>
<td>12</td>
<td>0.6391</td>
<td>-0.166 -0.239 0.080 -0.097 0.023 -0.078</td>
</tr>
</tbody>
</table>

7/30/2010 223
9.3 Case Study

We draw figure 9.3 using the *outres* dataset computed previously and several calls to proc *gplot*.

```
*Fig. 9.10;
*Plot 1;
goptions reset = all;
axis1 value=(h=2 f=times) label=(h=2 f=times
 angle=90 'Standardized LS Residuals')
 offset=(0,1);
axis2 label=(h=2 f=times 'log(Price)') v=(h=2
 f=times) order=(-.6 to -.1 by .1);
symbol1 v=circle c=black h=2;
proc gplot data = outres;
 plot stdres*lprice=1/vaxis=axis1 haxis=axis2
 vminor=0 hminor=0;
run;
quit;

*Plot 2;
proc sort data = outres;
 by week;
```
run;
goptions reset = all;
axis1 value=(h=2 f=times) label=(h=2 f=times
angle=90 'Standardized LS Residuals');
axis2 label=(h=2 f=times 'Week') v=(h=2
f=times) order=(0 to 52 by 13) offset=(1,2);
symbol1 v=circle c=black h=2 i=join;
proc gplot data = outres;
plot stdres*week=1/vaxis=axis1 haxis=axis2
vminor=0 hminor=0;
run;
quit;

*Plot 3;
goptions reset = all;
axis1 value=(h=2 f=times) label=(h=2 f=times
angle=90 'Standardized LS Residuals');
axis2 label=(h=2 f=times 'Promotion') v=(h=2
f=times) order=(0 to 1 by 1) offset=(15, 15);
symbol1 v=circle c=black h=2;
proc gplot data = outres;
plot stdres*promotion=1/vaxis=axis1 haxis=axis2
vminor=0 hminor=0;
run;
quit;

*Plot 4;
goptions reset = all;
axis1 value=(h=2 f=times) label=(h=2 f=times
angle=90 'Standardized LS Residuals')
offset=(0,1);
axis2 label=(h=2 f=times 'Fitted Values') v=(h=2
f=times) order=(2 to 7 by 1);
symbol1 v=circle c=black h=2;
proc gplot data = outres;
plot stdres*fitted=1/vaxis=axis1 haxis=axis2
vminor=0 hminor=0;
run;
quit;
*End Fig. 9.10;
We draw figure 9.11 by redefining our `plotlm` macro and invoking it on `outres`.

```sas
%macro plotlm(regout =,);
proc loess data = ®out;
 model resids=fitted/smooth=0.6667;
 ods output OutputStatistics=loessout;
run;

data fit;
 set ®out;
 set loessout;
 proc sort data = fit;
 by fitted;
 run;

 goptions reset = all;
 symbol1 v=circle c=black;
 symbol2 i=join c=black;
 title1 height=2 font=times "Residuals vs Fitted";
 axis1 label = (font=times h=2 angle=90 'Residuals')
 value=(font=times h=1);
 axis2 label = (font=times h=2 'Fitted values')
 value = (font=times h=1);
proc gplot data = fit;
```

Fig. 9.10 Plots of standardized LS residuals from model (9.6)
plot /*points:*/ resids*fitted=1 /*loess:*/  
   Pred*fitted=2/ overlay hminor=0 vminor=0  
   vaxis=axis1 haxis=axis2 vref=0;  
run;  
goptions reset = all htext=1.5;  
title1 height=2 font=times "Normal Q-Q";  
symbol1 value=circle color=black;  
proc univariate data = &regout noprint;  
   qqplot stdres/normal(mu=0 sigma=1 l=1 color=black)  
      font=times vminor=0 hminor=0  
   vaxislabel= "Standardized Residuals";  
run;  
data plot3;  
   set &regout;  
   sqrtres = sqrt(abs(stdres));  
run;  
proc loess data = plot3;  
   model sqrtres=fitted/smooth=0.6667;  
   ods output OutputStatistics=loessout;  
run;  
data fit;  
   set plot3;  
   set loessout;  
proc sort data = fit;  
   by fitted;  
run;  
goptions reset = all;  
symbol1 v=circle c=black;  
symbol2 i=join c=black;  
title1 height=2 font=times "Scale-Location";  
axis1 label = (font=times h=2 angle=90 'Sqrt(Abs(Res))')  
   value=(font=times h=1);  
axis2 label = (font=times h=2 'Fitted values')  
   value=(font=times h=1);  
proc gplot data = fit;  
   plot /*points:*/ sqrtres*fitted=1 /*loess:*/  
      Pred*fitted=2/ overlay hminor=0 vminor=0  
      vaxis=axis1 haxis=axis2;  
run;  
*Fourth plot;  
proc sort data = &regout;  
   by levg;  
run;  
proc loess data = &regout;  
   model stdres=levg/smooth=0.67777;  
   ods output OutputStatistics=loessout;  
run;  
data fit;  
   set &regout;  
   set loessout;  
proc sort data = fit;  
   by levg;
run;
goptions reset = all;
symbol1 v=circle c=black;
symbol2 i=join c=black;
title1 height=2 font=times "Residuals vs Leverage";
axis1 label = (h=2 font=times angle=90 "Standardized Residuals")
value=(font=times h=1);
axis2 label = (h=2 font=times 'Leverage')
value =(font=times h=1) ;
proc gplot data = fit;
plot /*points:*/ stdres*levg=1 /*loess:*/ Pred*levg=2/
overlay hminor=0 vminor=0 vaxis=axis1 haxis=axis2
vref=0 href=0;
run;
quit;
%mend;

%plotlm(regout=outres);

Fig. 9.11 Diagnostic plots for model (9.6)
10. Mixed Models

10.1 Random Effects

In this chapter we will show how to use SAS to do mixed models. We begin by moving the orthodontic data into SAS. As before, we use proc `import`.

```
proc import datafile="data/Orthodont.txt"
 out=orthodont replace;
 getnames=yes;
run;
quit;
```

We will draw figure 10.1 first. We begin by creating age and distance variable particular to each female. This is accomplished in a `data` step, where we use the `if` statement to conditionally assign values to these variables.

```
data fig101;
set orthodont;
if subject='F01' then af1 = age;
if subject='F01' then df1 = distance;
if subject='F02' then af2 = age;
if subject='F02' then df2 = distance;
if subject='F03' then af3 = age;
if subject='F03' then df3 = distance;
if subject='F04' then af4 = age;
if subject='F04' then df4 = distance;
if subject='F05' then af5 = age;
if subject='F05' then df5 = distance;
if subject='F06' then af6 = age;
if subject='F06' then df6 = distance;
if subject='F07' then af7 = age;
if subject='F07' then df7 = distance;
if subject='F08' then af8 = age;
if subject='F08' then df8 = distance;
if subject='F09' then af9 = age;
if subject='F09' then df9 = distance;
if subject='F10' then af10 = age;
if subject='F10' then df10 = distance;
if subject='F11' then af11 = age;
if subject='F11' then df11 = distance;
run;
quit;
```

In this chapter we will show how to use SAS to do mixed models. We begin by moving the orthodontic data into SAS. As before, we use proc `import`.

Now we will draw figure 1.2. We have used proc `gplot` in the last chapter. We give it the `prod` data to work with. We will go into a bit more detail with explaining this particular `gplot` so the reader can refamiliarize him/herself with the procedure. We would like to plot circles rather than crosses, so we use the `symbol` option to change the symbol being plotted. The `axis` statements control the appearance of the axes, as well as their labels. Don’t forget the `vaxis` and `haxis` options at the end of the plot statement.
The **angle** option in the first **axis** statement rotates the vertical axis label to be parallel to the axis. Within the **label** option, which controls the label lettering, or the value option, which controls the tick marks on the axes, the font statement controls the lettering font, while the **h** statement controls the height of the lettering. Also, we lead with a **goptions** option statement that resets all graphical parameters.

Now with these particular variables for each female, we will draw a separate plot using each pair of the particular **age**, **distance** variables. We begin by setting some graphical options that will apply to the succeeding **gplot** calls. We define 4 axes (**axis1**-**axis4** statements) that will be used in each plot, and two symbols (**symbol1** – **symbol2**).

```plaintext

goptions reset = all;
symbol1 v=circle c=blue;
symbol2 i=join c=blue;
axis1 label =(h=2 font=times angle=90 "Distance")
 value=(font=times h=1)
 order=(16 to 30 by 2);
axis2 label =(h=2 font=times "Age") value =(font=times h=1) offset=(2,2)
 order=(8 to 14 by 2);
axis3 major=none minor=none label=NONE value=NONE order=(16 to 30 by 2);
axis4 major=none minor=none label=NONE value=NONE;
goptions vsize=6;
goptions hsize=2;
```

Finally, before plotting we sort the data on age so that the lines will be properly connected. This is done with proc **sort**.

```plaintext

tproc sort data=fig101;
 by age;
run;
quit;
```

Now we perform the separate **gplots**. The title (**title** statement) of each plot corresponds to the individual being measured.

```plaintext

tproc gplot data = fig101;
 title 'F02';
 plot df2*af2=2 df2*af2=1/overlay vaxis=axis1 haxis=axis4;
run;
quit;

tproc gplot data = fig101;
 title 'F08';
 plot df8*af8=2 df8*af8=1/overlay vaxis=axis3 haxis=axis4;
run;
quit;

tproc gplot data = fig101;
 title 'F03';
 plot df3*af3=2 df3*af3=1/overlay vaxis=axis3 haxis=axis4;
run;
quit;

tproc gplot data = fig101;
 title 'F04';
 plot df4*af4=2 df4*af4=1/overlay vaxis=axis3 haxis=axis4;
run;
quit;
```

7/30/2010
proc gplot data = fig101;
title 'F11';
plot df11*af11=2 df11*af11=1/overlay vaxis=axis3 haxis=axis4;
run;
quit;
proc gplot data = fig101;
title 'F10';
plot df10*af10=2 df10*af10=1/overlay vaxis=axis1 haxis=axis2;
run;
quit;
proc gplot data = fig101;
title 'F09';
plot df9*af9=2 df9*af9=1/overlay vaxis=axis3 haxis=axis2;
run;
quit;
proc gplot data = fig101;
title 'F06';
plot df6*af6=2 df6*af6=1/overlay vaxis=axis3 haxis=axis2;
run;
quit;
proc gplot data = fig101;
title 'F01';
plot df1*af1=2 df1*af1=1/overlay vaxis=axis3 haxis=axis2;
run;
quit;
proc gplot data = fig101;
title 'F05';
plot df5*af5=2 df5*af5=1/overlay vaxis=axis3 haxis=axis2;
run;
quit;
proc gplot data = fig101;
title 'F07';
plot df7*af7=2 df7*af7=1/overlay vaxis=axis3 haxis=axis2;
run;
quit;
Fig. 10.1 Plot of Distance against Age for each female

Now we will produce the correlation output on page 334. We use proc `corr`. By using ODS with proc `corr`, we are able to draw figure 10.2.

We read in the data again using proc `import`, and then keep only the female observations in the dataset `orthodontwidef` by using a data step. We read in the wide orthodontic data from `orthdist.txt`. We again use an `if` statement to make this selection. The `output` keyword tells SAS to write the “if” approved observation to the output data.

```sas
proc import datafile="data/orthdist.txt"
 out=orthodontwide replace;
 getnames=yes;
run;
quit;
```
data orthodontwidef;
set orthodontwide;
if substr(subject,1,1)='F' then output;
run;
quit;

For clarity, we create new female specific variables for the ages in a data step. Then we finally use proc corr with the ods graphics on/off statements to obtain our correlation output and figure 10.2

data orthodontwidef;
set orthodontwidef;
DistFAge8=Age8;
DistFAge10=Age10;
DistFAge12=Age12;
DistFAge14=Age14;
run;
quit;

* p. 334, fig. 10.2;
ods graphics on;
proc corr data=orthodontwidef plots=matrix;
var distfage14 distfage12 distfage10 distfage8;
run;
quit;
ods graphics off;

The CORR Procedure

4 Variables: DistFAge14 DistFAge12 DistFAge10 DistFAge8

Simple Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Sum</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>DistFAge14</td>
<td>11</td>
<td>24.09091</td>
<td>2.43740</td>
<td>265.00000</td>
<td>19.50000</td>
<td>28.00000</td>
</tr>
<tr>
<td>DistFAge12</td>
<td>11</td>
<td>23.09091</td>
<td>2.36451</td>
<td>254.00000</td>
<td>19.00000</td>
<td>28.00000</td>
</tr>
<tr>
<td>DistFAge10</td>
<td>11</td>
<td>22.22727</td>
<td>1.90215</td>
<td>244.50000</td>
<td>19.00000</td>
<td>25.00000</td>
</tr>
<tr>
<td>DistFAge8</td>
<td>11</td>
<td>21.18182</td>
<td>2.12453</td>
<td>233.00000</td>
<td>16.50000</td>
<td>24.50000</td>
</tr>
</tbody>
</table>

Pearson Correlation Coefficients, N = 11
Prob > |r| under H0: Rho=0

<table>
<thead>
<tr>
<th></th>
<th>DistFAge14</th>
<th>DistFAge12</th>
<th>DistFAge10</th>
<th>DistFAge8</th>
</tr>
</thead>
<tbody>
<tr>
<td>DistFAge14</td>
<td>1.00000</td>
<td>0.94841</td>
<td>0.87942</td>
<td>0.84136</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>0.0004</td>
<td>0.0012</td>
<td></td>
</tr>
<tr>
<td>DistFAge12</td>
<td>0.94841</td>
<td>1.00000</td>
<td>0.89542</td>
<td>0.86231</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>0.0002</td>
<td>0.0006</td>
<td></td>
</tr>
<tr>
<td>DistFAge10</td>
<td>0.87942</td>
<td>0.89542</td>
<td>1.00000</td>
<td>0.83009</td>
</tr>
<tr>
<td></td>
<td>0.0004</td>
<td>0.0002</td>
<td>0.0016</td>
<td></td>
</tr>
<tr>
<td>DistFAge8</td>
<td>0.84136</td>
<td>0.86231</td>
<td>0.83009</td>
<td>1.00000</td>
</tr>
<tr>
<td></td>
<td>0.0012</td>
<td>0.0006</td>
<td>0.0016</td>
<td></td>
</tr>
</tbody>
</table>
Now we return the original orthodontic data for fitting model 10.1. We use a `data` step on the `orthodont` dataset to get our data. Again, an `if` statement with the `output` keyword is used to keep on the female observations.

```sas
data female;
set orthodont;
if substr(subject,1,1)='F' then output;
run;
quit;
```

We fit model 10.1, and give the output on page 337 by using `proc mixed`. The `class` statement tells SAS that subject is a categorical variable. The `random` statement tells SAS to treat the particular subject of an observation as a random effect. In the `model` statement, we output the predicted values in the dataset `frF`. The `solution` and `intercept` options are used so that SAS will show the coefficients for the fixed effect coefficients and the intercept.

```sas
*p. 337;
proc mixed data=female;
class subject;
model distance=age/solution intercept outp=frF;
random subject;
run;
quit;
```

**Fig. 10.2** Scatter plot matrix of the Distance measurements for female subjects
Residual Variance Method     Profile
Fixed Effects SE Method      Model-Based
Degrees of Freedom Method    Containment

Class Level Information

Class  Levels  Values
Subject  11    F01 F02 F03 F04 F05 F06 F07
         F08 F09 F10 F11

Dimensions

Covariance Parameters             2
Columns in X                      2
Columns in Z                     11
Subjects                          1
Max Obs Per Subject              44

Number of Observations

Number of Observations Read              44
Number of Observations Used              44
Number of Observations Not Used           0

Iteration History

Iteration  Evaluations  -2 Res Log Like  Criterion
0           1       193.21659319
1           1       141.21832479      0.00000000

Convergence criteria met.

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm  Estimate
Subject    4.2786
Residual   0.6085

Fit Statistics

-2 Res Log Likelihood      141.2
AIC (smaller is better)    145.2
AICC (smaller is better)   145.5
BIC (smaller is better)    146.0
Solution for Fixed Effects

| Effect   | Estimate | Standard Error | DF | t Value | Pr > |t| |
|----------|----------|----------------|----|---------|-------|
| Intercept| 17.3727  | 0.8587         | 10 | 20.23   | <.0001|
| age      | 0.4795   | 0.05259        | 32 | 9.12    | <.0001|

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num</th>
<th>Den</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>10</td>
<td>409.27</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>32</td>
<td>83.15</td>
<td>&lt;.0001</td>
</tr>
</tbody>
</table>

The covariance parameters estimates are given to us as variances rather than standard deviations. So we take the square root of these to obtain the results in the top paragraph of page 337. We do the operation in a data step and show the results using proc print.

```sas
*p. 337;
data res;
subject = sqrt(4.2786);
residual = sqrt(.6085);
run;
quit;
proc print data=res;
run;
quit;
```

Now we will produce table 10.2. We begin with a data step. We create the random intercept by subtracting the fixed effect of age with its appropriate coefficient from the predicted value for the subject and age. This is output in the dataset femalerandint.

```sas
*table 10.2;
data femalerandint;
set frF;
randint = pred-0.479545*age;
run;
quit;
```

Next we use proc means to output a dataset containing the mean random intercept by subject in randintest. The var statement tells proc means which variable we are concerned with. The by statement tells SAS to compute the mean within each subject.

```sas
proc means data=femalerandint noprint;
var randint;
by subject;
output out=randintest MEAN=;
```
run;
quit;

Now we obtain the fixed intercepts. We use proc **glm** to fit the model with fixed effects for age and a separate intercept for each subject (since we specify that subject is categorical via the **class** statement). The ODS system saves the parameter estimates of the model in the dataset **fixintest**. We omit the output of the **glm** procedure for brevity, but do show the parameter estimate datasets via proc **print**.

```plaintext
ods trace on;
ods RESULTS on;
proc glm data=female;
 ods output ParameterEstimates=fixintest;
 class subject;
 model distance = age subject/solution;
run;
quit;
ods RESULTS off;
ods trace off;
```

<table>
<thead>
<tr>
<th>Obs</th>
<th>Dependent</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Biased</th>
<th>StdErr</th>
<th>tValue</th>
<th>Probt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>distance</td>
<td>Intercept</td>
<td>21.100000</td>
<td>1</td>
<td>0.69768285</td>
<td>30.24</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>2</td>
<td>distance</td>
<td>age</td>
<td>0.47954545</td>
<td>0</td>
<td>0.05258982</td>
<td>9.12</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>3</td>
<td>distance</td>
<td>Subject F01</td>
<td>-5.00000000</td>
<td>1</td>
<td>0.55156673</td>
<td>-9.07</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>4</td>
<td>distance</td>
<td>Subject F02</td>
<td>-3.37500000</td>
<td>1</td>
<td>0.55156673</td>
<td>-6.12</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>5</td>
<td>distance</td>
<td>Subject F03</td>
<td>-2.62500000</td>
<td>1</td>
<td>0.55156673</td>
<td>-4.76</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>6</td>
<td>distance</td>
<td>Subject F04</td>
<td>-1.50000000</td>
<td>1</td>
<td>0.55156673</td>
<td>-2.72</td>
<td>0.0105</td>
</tr>
<tr>
<td>7</td>
<td>distance</td>
<td>Subject F05</td>
<td>-3.75000000</td>
<td>1</td>
<td>0.55156673</td>
<td>-6.80</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>8</td>
<td>distance</td>
<td>Subject F06</td>
<td>-5.25000000</td>
<td>1</td>
<td>0.55156673</td>
<td>-9.52</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>9</td>
<td>distance</td>
<td>Subject F07</td>
<td>-3.37500000</td>
<td>1</td>
<td>0.55156673</td>
<td>-6.12</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>10</td>
<td>distance</td>
<td>Subject F08</td>
<td>-3.00000000</td>
<td>1</td>
<td>0.55156673</td>
<td>-5.44</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>11</td>
<td>distance</td>
<td>Subject F09</td>
<td>-5.25000000</td>
<td>1</td>
<td>0.55156673</td>
<td>-9.52</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>12</td>
<td>distance</td>
<td>Subject F10</td>
<td>-7.87500000</td>
<td>1</td>
<td>0.55156673</td>
<td>-14.28</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>13</td>
<td>distance</td>
<td>Subject F11</td>
<td>0.00000000</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

We treat subject F11 as if it were the base case, so we transfer the global intercept to it. The other intercepts are obtained by adding this global intercept to their base values. We do this in a **data** step.

```plaintext
data fixintest;
set fixintest;
estimate = estimate+21.1;
if _N_ < 3 then delete;
run;
quit;
```

Next we create a **subject** variable from the Parameter variable and generate a **fixint** variable from the estimates. This is done in a **data** step. So **fixintest** is now conformal to **randintest**.

```plaintext
data fixintest;
set fixintest;
subject = substr(Parameter,11,3);
fixint=estimate;
run;
quit;
```
We now sort both datasets by subject, and merge the two together in proc `merge`. Now the random and fixed intercept information is together in the dataset `intest`.

```
proc sort data=fixintest;
 by subject;
run;
quit;

proc sort data=randintest;
 by subject;
run;
quit;

data intest;
merge randintest fixintest;
 by subject;
run;
quit;
```

An ordering is imposed on the `intest` dataset to match the output of table 10.2. The `sort` procedure is used to finally enforce this order.

```
data intest;
 set intest;
 if subject= 'F11' then order =1;
 if subject= 'F04' then order =2;
 if subject= 'F03' then order =3;
 if subject= 'F08' then order =4;
 if subject= 'F07' then order =5;
 if subject= 'F02' then order =6;
 if subject= 'F05' then order =7;
 if subject= 'F01' then order =8;
 if subject= 'F09' then order =9;
 if subject= 'F06' then order =10;
 if subject= 'F10' then order =11;
 diff = randint-fixint;
run;
quit;
```

```
proc sort data=intest;
 by order;
run;
quit;
```

Finally we use proc `print` to get table 10.2.

```
proc print data=intest;
 var subject randint fixint diff;
run;
quit;
```
<table>
<thead>
<tr>
<th>Obs</th>
<th>Subject</th>
<th>randint</th>
<th>fixint</th>
<th>diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F11</td>
<td>20.9720</td>
<td>21.100</td>
<td>-0.12796</td>
</tr>
<tr>
<td>2</td>
<td>F04</td>
<td>19.5235</td>
<td>19.600</td>
<td>-0.07646</td>
</tr>
<tr>
<td>3</td>
<td>F03</td>
<td>18.4372</td>
<td>18.475</td>
<td>-0.03784</td>
</tr>
<tr>
<td>4</td>
<td>F08</td>
<td>18.0750</td>
<td>18.100</td>
<td>-0.02496</td>
</tr>
<tr>
<td>5</td>
<td>F07</td>
<td>17.7129</td>
<td>17.725</td>
<td>-0.01209</td>
</tr>
<tr>
<td>6</td>
<td>F02</td>
<td>17.7129</td>
<td>17.725</td>
<td>-0.01209</td>
</tr>
<tr>
<td>7</td>
<td>F05</td>
<td>17.3508</td>
<td>17.350</td>
<td>0.00079</td>
</tr>
<tr>
<td>8</td>
<td>F01</td>
<td>16.1437</td>
<td>16.100</td>
<td>0.04370</td>
</tr>
<tr>
<td>9</td>
<td>F09</td>
<td>15.9023</td>
<td>15.850</td>
<td>0.05228</td>
</tr>
<tr>
<td>10</td>
<td>F06</td>
<td>15.9023</td>
<td>15.850</td>
<td>0.05228</td>
</tr>
<tr>
<td>11</td>
<td>F10</td>
<td>13.3674</td>
<td>13.225</td>
<td>0.14240</td>
</tr>
</tbody>
</table>

Now we will draw figure 10.3. We begin with a **data** step where we load the prediction dataset `frF`. We create subject particular variables for the prediction and distance values.

```sas
*fig 10.3;
data fig103;
set frF;
if subject='F01' then ff1 = pred;
if subject='F01' then df1 = distance;
if subject='F02' then ff2 = pred;
if subject='F02' then df2 = distance;
if subject='F03' then ff3 = pred;
if subject='F03' then df3 = distance;
if subject='F04' then ff4 = pred;
if subject='F04' then df4 = distance;
if subject='F05' then ff5 = pred;
if subject='F05' then df5 = distance;
if subject='F06' then ff6 = pred;
if subject='F06' then df6 = distance;
if subject='F07' then ff7 = pred;
if subject='F07' then df7 = distance;
if subject='F08' then ff8 = pred;
if subject='F08' then df8 = distance;
if subject='F09' then ff9 = pred;
if subject='F09' then df9 = distance;
if subject='F10' then ff10 = pred;
if subject='F10' then df10 = distance;
if subject='F11' then ff11 = pred;
if subject='F11' then df11 = distance;
run;
quit;
```

Next the SAS system dataset `anno` is used. Using the **function** / **output** statement we give instructions to SAS to draw a straight line when the `anno` dataset is used in the `gplot annotate` option.

```sas
data anno;
retain xsys ysys '1';
function = 'move'; x=0; y=0; output;
function = 'draw'; x=100; y=100; output;
run;
quit;
```
Now we draw figure 10.3 with several calls to gplot. The annotate option is specified so that a straight line is drawn in each plot.

```
goptions reset = all;
symbol1 v=circle c=blue;
axis1 label =(h=2 font=times angle=90 "Distance")
 value=(font=times h=1)
 order=(16 to 28 by 2);
axis2 label =(h=2 font=times "Fitted") value =(font=times h=1)
 offset=(2,2)
 order=(16 to 28 by 2);
axis3 major=none minor=none label=NONE value=NONE order=(16 to 28 by 2);
axis4 major=none minor=none label=NONE value=NONE order=(16 to 28 by 2);
goptions vsize=3;
goptions hsize=3;

proc gplot data = fig103 annotate=anno;
title 'F04';
plot df4*ff4=1 /vaxis=axis1 haxis=axis4;
run;
quit;

proc gplot data = fig103 annotate=anno;
title 'F11';
plot df11*ff11=1 /vaxis=axis3 haxis=axis4;
run;
quit;

proc gplot data = fig103 annotate=anno;
title 'F02';
plot df2*ff2=1 /vaxis=axis1 haxis=axis4;
run;
quit;

proc gplot data = fig103 annotate=anno;
title 'F08';
plot df8*ff8=1 /vaxis=axis3 haxis=axis4;
run;
quit;

proc gplot data = fig103 annotate=anno;
title 'F03';
plot df3*ff3=1 /vaxis=axis3 haxis=axis4;
run;
quit;

proc gplot data = fig103 annotate=anno;
title 'F01';
plot df1*ff1=1 /vaxis=axis1 haxis=axis4;
run;
quit;

proc gplot data = fig103 annotate=anno;
title 'F05';
plot df5*ff5=1 /vaxis=axis3 haxis=axis4;
run;
```
quit;

proc gplot data = fig103 annotate=anno;
title 'F07';
plot df7*ff7=1 /vaxis=axis3 haxis=axis4;
run;
quit;

proc gplot data = fig103 annotate=anno;
title 'F10';
plot df10*ff10=1 /vaxis=axis1 haxis=axis2;
run;
quit;

proc gplot data = fig103 annotate=anno;
title 'F09';
plot df9*ff9=1 /vaxis=axis3 haxis=axis2;
run;
quit;

proc gplot data = fig103 annotate=anno;
title 'F06';
plot df6*ff6=1 /vaxis=axis3 haxis=axis2;
run;
quit;
Fig. 10.3 Plots of Distance against Age for females with fits from model (10.1)
Now we will move the male data. We use a \texttt{data} step and the \texttt{if} / \texttt{output} statement to save only the male observations.

\begin{verbatim}
\texttt{data male;}
\texttt{set orthodont;}
\texttt{if substr(subject,1,1)='M' then output;}
\texttt{run;}
\texttt{quit;}
\end{verbatim}

Figure 10.4 is drawn in analogous manner to the rendering of figure 10.1. Subject specific \textit{age} and \textit{distance} variables are created, and then each is drawn in a separate \texttt{gplot}.

\begin{verbatim}
*fig. 10.4;
\texttt{data fig104;}
\texttt{set male;}
\texttt{if subject='M01' then am1 = age;}
\texttt{if subject='M01' then dm1 = distance;}
\texttt{if subject='M02' then am2 = age;}
\texttt{if subject='M02' then dm2 = distance;}
\texttt{if subject='M03' then am3 = age;}
\texttt{if subject='M03' then dm3 = distance;}
\texttt{if subject='M04' then am4 = age;}
\texttt{if subject='M04' then dm4 = distance;}
\texttt{if subject='M05' then am5 = age;}
\texttt{if subject='M05' then dm5 = distance;}
\texttt{if subject='M06' then am6 = age;}
\texttt{if subject='M06' then dm6 = distance;}
\texttt{if subject='M07' then am7 = age;}
\texttt{if subject='M07' then dm7 = distance;}
\texttt{if subject='M08' then am8 = age;}
\texttt{if subject='M08' then dm8 = distance;}
\texttt{if subject='M09' then am9 = age;}
\texttt{if subject='M09' then dm9 = distance;}
\texttt{if subject='M10' then am10 = age;}
\texttt{if subject='M10' then dm10 = distance;}
\texttt{if subject='M11' then am11 = age;}
\texttt{if subject='M11' then dm11 = distance;}
\texttt{if subject='M12' then am12 = age;}
\texttt{if subject='M12' then dm12 = distance;}
\texttt{if subject='M13' then am13 = age;}
\texttt{if subject='M13' then dm13 = distance;}
\texttt{if subject='M14' then am14 = age;}
\texttt{if subject='M14' then dm14 = distance;}
\texttt{if subject='M15' then am15 = age;}
\texttt{if subject='M15' then dm15 = distance;}
\texttt{if subject='M16' then am16 = age;}
\texttt{if subject='M16' then dm16 = distance;}
\texttt{run;}
\texttt{quit;}
\end{verbatim}

\begin{verbatim}

goptions reset = all;
symbol1 v=circle c=blue;
symbol2 i=join c=blue;
\end{verbatim}
axis1 label =(h=2 font=times angle=90 "Distance")
value=(font=times h=1)
    order=(16 to 32 by 2);
axis2 label =(h=2 font=times "Age") value =(font=times h=1)
    order=(8 to 14 by 2);
axis3 major=None minor=None label=None value=None order=(16 to 32 by 2);
axis4 major=None minor=None label=None value=None order=(8 to 14 by 2);
goptions vsize=6;
goptions hsize=2;

proc sort data=fig104;
by age;
run;
quit;

proc gplot data = fig104;
title 'M13';
plot dm13*am13=2 dm13*am13=1/overlay vaxis=axis1 haxis=axis4;
run;
quit;

proc gplot data = fig104;
title 'M14';
plot dm14*am14=2 dm14*am14=1/overlay vaxis=axis3 haxis=axis4;
run;
quit;

proc gplot data = fig104;
title 'M09';
plot dm9*am9=2 dm9*am9=1/overlay vaxis=axis3 haxis=axis4;
run;
quit;

proc gplot data = fig104;
title 'M15';
plot dm15*am15=2 dm15*am15=1/overlay vaxis=axis3 haxis=axis4;
run;
quit;

proc gplot data = fig104;
title 'M06';
plot dm6*am6=2 dm6*am6=1/overlay vaxis=axis3 haxis=axis4;
run;
quit;

proc gplot data = fig104;
title 'M04';
plot dm4*am4=2 dm4*am4=1/overlay vaxis=axis3 haxis=axis4;
run;
quit;

proc gplot data = fig104;
title 'M01';
plot dm1*am1=2 dm1*am1=1/overlay vaxis=axis3 haxis=axis4;
run;
quit;
```
proc gplot data = fig104;
 title 'M10';
 plot dm10*am10=2 dm10*am10=1/overlay vaxis=axis3 haxis=axis4;
 run;
quit;
proc gplot data = fig104;
 title 'M16';
 plot dm16*am16=2 dm16*am16=1/overlay vaxis=axis1 haxis=axis2;
 run;
quit;
proc gplot data = fig104;
 title 'M05';
 plot dm5*am5=2 dm5*am5=1/overlay vaxis=axis3 haxis=axis2;
 run;
quit;
proc gplot data = fig104;
 title 'M02';
 plot dm2*am2=2 dm2*am2=1/overlay vaxis=axis3 haxis=axis2;
 run;
quit;
proc gplot data = fig104;
 title 'M11';
 plot dm11*am11=2 dm11*am11=1/overlay vaxis=axis3 haxis=axis2;
 run;
quit;
proc gplot data = fig104;
 title 'M07';
 plot dm7*am7=2 dm7*am7=1/overlay vaxis=axis3 haxis=axis2;
 run;
quit;
proc gplot data = fig104;
 title 'M08';
 plot dm8*am8=2 dm8*am8=1/overlay vaxis=axis3 haxis=axis2;
 run;
quit;
proc gplot data = fig104;
 title 'M03';
 plot dm3*am3=2 dm3*am3=1/overlay vaxis=axis3 haxis=axis2;
 run;
quit;
proc gplot data = fig104;
 title 'M12';
 plot dm12*am12=2 dm12*am12=1/overlay vaxis=axis3 haxis=axis2;
 run;
quit;
```
The correlation output and on pages 340 and 341 and the matrix plot in figure 10.5 are produced by proc corr and the ODS system. The description of the process is analogous to that of figure 10.2 and the correlation output on page 334.

```
data orthodontwidem;
set orthodontwide;
if substr(subject,1,1)='M' then output;
run;
quit;

data orthodontwidem;
set orthodontwide;
DistMAge8=Age8;
DistMAge10=Age10;
DistMAge12=Age12;
DistMAge14=Age14;
run;
quit;
```

*p. 340-341, fig. 10.5;
ods graphics on;
proc corr data=orthodontwidem plots=matrix;
var distmage14 distmage12 distmage10 distmage8;
"Fig. 10.4 Plot of Distance against Age for each male subject"
run;
quit;
ods graphics off;

The CORR Procedure

4 Variables:  DistMAge14 DistMAge12 DistMAge10 DistMAge8

Simple Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Sum</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>DistMAge14</td>
<td>16</td>
<td>27.46875</td>
<td>2.08542</td>
<td>439.5000</td>
<td>25.0000</td>
<td>31.5000</td>
</tr>
<tr>
<td>DistMAge12</td>
<td>16</td>
<td>25.71875</td>
<td>2.65185</td>
<td>411.5000</td>
<td>22.5000</td>
<td>31.0000</td>
</tr>
<tr>
<td>DistMAge10</td>
<td>16</td>
<td>23.81250</td>
<td>2.13600</td>
<td>381.0000</td>
<td>20.5000</td>
<td>28.0000</td>
</tr>
<tr>
<td>DistMAge8</td>
<td>16</td>
<td>22.87500</td>
<td>2.45289</td>
<td>366.0000</td>
<td>17.0000</td>
<td>27.5000</td>
</tr>
</tbody>
</table>

Pearson Correlation Coefficients, N = 16

<table>
<thead>
<tr>
<th></th>
<th>DistMAge14</th>
<th>DistMAge12</th>
<th>DistMAge10</th>
<th>DistMAge8</th>
</tr>
</thead>
<tbody>
<tr>
<td>DistMAge14</td>
<td>1.00000</td>
<td>0.58599</td>
<td>0.63092</td>
<td>0.31523</td>
</tr>
<tr>
<td></td>
<td>0.0171</td>
<td>0.0088</td>
<td>0.2343</td>
<td></td>
</tr>
<tr>
<td>DistMAge12</td>
<td>0.58599</td>
<td>1.00000</td>
<td>0.38729</td>
<td>0.55793</td>
</tr>
<tr>
<td></td>
<td>0.0171</td>
<td>0.1383</td>
<td>0.0247</td>
<td></td>
</tr>
<tr>
<td>DistMAge10</td>
<td>0.63092</td>
<td>0.38729</td>
<td>1.00000</td>
<td>0.43739</td>
</tr>
<tr>
<td></td>
<td>0.0088</td>
<td>0.1383</td>
<td>0.0902</td>
<td></td>
</tr>
<tr>
<td>DistMAge8</td>
<td>0.31523</td>
<td>0.55793</td>
<td>0.43739</td>
<td>1.00000</td>
</tr>
<tr>
<td></td>
<td>0.2343</td>
<td>0.0247</td>
<td>0.0902</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 10.5 Scatter plot matrix of the Distance measurements for male subjects
We use proc \texttt{mixed} on the male data to fit model 10.1 for the males. This gives us the output on page 341. The predicted data are saved as \texttt{mrF}.

\begin{verbatim}
proc mixed data=male;
class subject;
model distance=age/solution intercept outp=mrF;
random subject;
run;
quit;
\end{verbatim}

The Mixed Procedure

Model Information

<table>
<thead>
<tr>
<th>Data Set</th>
<th>WORK.MALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>distance</td>
</tr>
<tr>
<td>Covariance Structure</td>
<td>Variance Components</td>
</tr>
<tr>
<td>Estimation Method</td>
<td>REML</td>
</tr>
<tr>
<td>Residual Variance Method</td>
<td>Profile</td>
</tr>
<tr>
<td>Fixed Effects SE Method</td>
<td>Model-Based</td>
</tr>
<tr>
<td>Degrees of Freedom Method</td>
<td>Containment</td>
</tr>
</tbody>
</table>

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>16</td>
<td>M01 M02 M03 M04 M05 M06 M07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M08 M09 M10 M11 M12 M13 M14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M15 M16</td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th>covariance Parameters</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns in X</td>
<td>2</td>
</tr>
<tr>
<td>Columns in Z</td>
<td>16</td>
</tr>
<tr>
<td>Subjects</td>
<td>1</td>
</tr>
<tr>
<td>Max Obs Per Subject</td>
<td>64</td>
</tr>
</tbody>
</table>

Number of Observations

<table>
<thead>
<tr>
<th>Number of Observations Read</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations Used</td>
<td>64</td>
</tr>
<tr>
<td>Number of Observations Not Used</td>
<td>0</td>
</tr>
</tbody>
</table>

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Res Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>290.10913852</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>273.44804071</td>
<td>0.000000000</td>
</tr>
</tbody>
</table>

Convergence criteria met.
The Mixed Procedure

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>2.6407</td>
</tr>
<tr>
<td>Residual</td>
<td>2.8164</td>
</tr>
</tbody>
</table>

Fit Statistics

-2 Res Log Likelihood: 273.4
AIC (smaller is better): 277.4
AICC (smaller is better): 277.7
BIC (smaller is better): 279.0

Solution for Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Estimate</th>
<th>Error</th>
<th>DF</th>
<th>t Value</th>
<th>Pr &gt;</th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>16.3406</td>
<td>1.1287</td>
<td>15</td>
<td>14.48</td>
<td>&lt;.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>0.7844</td>
<td>0.09382</td>
<td>47</td>
<td>8.36</td>
<td>&lt;.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num</th>
<th>Den</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>15</td>
<td>209.59</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>47</td>
<td>69.90</td>
<td>&lt;.0001</td>
</tr>
</tbody>
</table>

data res;
subject= sqrt(2.6407);
residual = sqrt(2.8164);
run;
quit;
proc print data=res;
run;
quit;

Figure 10.6 is drawn in an analogous manner to the rendering of figure 10.3. The anno dataset is used again in concert with the annotate option in proc gplot. Subject specific prediction and distance variables are created as well.

*fig. 10.6;
data fig106;
set mrf;
if subject='M01' then fml = pred;
if subject='M01' then dm1 = distance;
if subject='M02' then fm2 = pred;
if subject='M02' then dm2 = distance;
if subject='M03' then fm3 = pred;
if subject='M03' then dm3 = distance;
if subject='M04' then fm4 = pred;
if subject='M04' then dm4 = distance;
if subject='M05' then fm5 = pred;
if subject='M05' then dm5 = distance;
if subject='M06' then fm6 = pred;
if subject='M06' then dm6 = distance;
if subject='M07' then fm7 = pred;
if subject='M07' then dm7 = distance;
if subject='M08' then fm8 = pred;
if subject='M08' then dm8 = distance;
if subject='M09' then fm9 = pred;
if subject='M09' then dm9 = distance;
if subject='M10' then fm10 = pred;
if subject='M10' then dm10 = distance;
if subject='M11' then fm11 = pred;
if subject='M11' then dm11 = distance;
if subject='M12' then fm12 = pred;
if subject='M12' then dm12 = distance;
if subject='M13' then fm13 = pred;
if subject='M13' then dm13 = distance;
if subject='M14' then fm14 = pred;
if subject='M14' then dm14 = distance;
if subject='M15' then fm15 = pred;
if subject='M15' then dm15 = distance;
if subject='M16' then fm16 = pred;
if subject='M16' then dm16 = distance;
run;
quit;

data anno;
retain xsys ysys '1';
function = 'move'; x=0; y=0; output;
function = 'draw'; x=100; y=100; output;
run;
quit;

goptions reset = all;
symbol1 v=circle c=blue;
axis1 label =(h=2 font=times angle=90 "Distance")
value=(font=times h=1)
order=(16 to 32 by 2);
axis2 label =(h=2 font=times "Fitted") value =(font=times h=1)
order=(20 to 32 by 2);
axis3 major=none minor=none label=NONE value=NONE order=(16 to 32 by 2);
axis4 major=none minor=none label=NONE value=NONE order=(20 to 32 by 2);
goptions vsize=3;
goptions hsize=3;
proc gplot data = fig106 annotate=anno;
title 'M06';
plot dm6*fm6=1 /vaxis=axis1 haxis=axis4;
proc gplot data = fig106 annotate=anno;
    title 'M04';
    plot dm4*fm4=1 /vaxis=axis3 haxis=axis4;
quit;
proc gplot data = fig106 annotate=anno;
    title 'M01';
    plot dm1*fm1=1 /vaxis=axis3 haxis=axis4;
quit;
proc gplot data = fig106 annotate=anno;
    title 'M10';
    plot dm10*fm10=1 /vaxis=axis3 haxis=axis4;
quit;
proc gplot data = fig106 annotate=anno;
    title 'M13';
    plot dm13*fm13=1 /vaxis=axis1 haxis=axis4;
quit;
proc gplot data = fig106 annotate=anno;
    title 'M14';
    plot dm14*fm14=1 /vaxis=axis3 haxis=axis4;
quit;
proc gplot data = fig106 annotate=anno;
    title 'M09';
    plot dm9*fm9=1 /vaxis=axis3 haxis=axis4;
quit;
proc gplot data = fig106 annotate=anno;
    title 'M08';
    plot dm8*fm8=1 /vaxis=axis3 haxis=axis4;
quit;
proc gplot data = fig106 annotate=anno;
    title 'M03';
    plot dm3*fm3=1 /vaxis=axis3 haxis=axis4;
quit;
proc gplot data = fig106 annotate=anno;
    title 'M12';
    plot dm12*fm12=1 /vaxis=axis3 haxis=axis4;
quit;
run;
quit;

proc gplot data = fig106 annotate=anno;
title 'M16';
plot dm16*fm16=1 /vaxis=axis1 haxis=axis2;
run;
quit;
proc gplot data = fig106 annotate=anno;
title 'M05';
plot dm5*fm5=1 /vaxis=axis3 haxis=axis2;
run;
quit;
proc gplot data = fig106 annotate=anno;
title 'M02';
plot dm2*fm2=1 /vaxis=axis3 haxis=axis2;
run;
quit;
proc gplot data = fig106 annotate=anno;
title 'M11';
plot dm11*fm11=1 /vaxis=axis3 haxis=axis2;
run;
quit;
Fig. 10.6 Plots of Distance against Age for males with fits from model (10.1)
Now we will fit the cross term model 10.5. In a `data` step, we create a `fem` dummy variable to identify female subjects.

```plaintext
data orthodont;
set orthodont;
fem=0;
if substr(subject,1,1)='F' then fem=1;
run;
quit;
```

Next to fit the model we use `proc mixed`. We obtain the output on page 343-344. The use of the `fem` and `fem*age` terms provide the cross term and dummy variable effect. Using the `class` and `random` statements, the handling of subject is the same as our earlier models. The `repeated` statement with the `group` option, tells SAS to expect different variances for the different occurrences of the group variable, here `fem`. So SAS will correctly find two different error variances: one for males and one for females.

```plaintext
*p. 343-344;
proc mixed data=orthodont;
class subject;
model distance=age fem fem*age/solution intercept;
random subject;
REPEATED / GROUP=fem;
run;
quit;
```

The Mixed Procedure

Model Information

<table>
<thead>
<tr>
<th>Data Set</th>
<th>WORK.ORTHODONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>distance</td>
</tr>
<tr>
<td>Covariance Structure</td>
<td>Variance Components</td>
</tr>
<tr>
<td>Group Effect</td>
<td>fem</td>
</tr>
<tr>
<td>Estimation Method</td>
<td>REML</td>
</tr>
<tr>
<td>Residual Variance Method</td>
<td>None</td>
</tr>
<tr>
<td>Fixed Effects SE Method</td>
<td>Model-Based</td>
</tr>
<tr>
<td>Degrees of Freedom Method</td>
<td>Containment</td>
</tr>
</tbody>
</table>

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>27</td>
<td>F01 F02 F03 F04 F05 F06 F07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F08 F09 F10 F11 M01 M02 M03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M04 M05 M06 M07 M08 M09 M10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M11 M12 M13 M14 M15 M16</td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th>Covariance Parameters</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns in X</td>
<td>4</td>
</tr>
<tr>
<td>Columns in Z</td>
<td>27</td>
</tr>
<tr>
<td>Subjects</td>
<td>1</td>
</tr>
<tr>
<td>Max Obs Per Subject</td>
<td>108</td>
</tr>
</tbody>
</table>
Number of Observations

<table>
<thead>
<tr>
<th>Number of Observations Read</th>
<th>108</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations Used</td>
<td>108</td>
</tr>
<tr>
<td>Number of Observations Not Used</td>
<td>0</td>
</tr>
</tbody>
</table>

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Res Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>483.55911746</td>
<td>0.02078126</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>417.55027253</td>
<td>0.00646027</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>416.12191383</td>
<td>0.00053966</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>415.2857551</td>
<td>0.00053966</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>415.22123261</td>
<td>0.00000666</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>415.22047971</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Group</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td></td>
<td>3.4135</td>
</tr>
<tr>
<td>Residual</td>
<td>Group 1</td>
<td>2.7883</td>
</tr>
<tr>
<td>Residual</td>
<td>Group 2</td>
<td>0.6104</td>
</tr>
</tbody>
</table>

Fit Statistics

-2 Res Log Likelihood           415.2  
AIC (smaller is better)         421.2  
AICC (smaller is better)        421.5  
BIC (smaller is better)         425.1  

Solution for Fixed Effects

| Effect    | Estimate | Error       | DF  | t Value | Pr > |t| |
|-----------|----------|-------------|-----|---------|------|---|
| Intercept | 16.3406  | 1.1451      | 25  | 14.27   | <.0001|
| age       | 0.7844   | 0.09335     | 79  | 8.40    | <.0001|
| fem       | 1.0321   | 1.4040      | 79  | 0.74    | 0.4644|
| age*fem   | -0.3048  | 0.1072      | 79  | -2.84   | 0.0057|

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num</th>
<th>Den</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>25</td>
<td>203.64</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>79</td>
<td>70.61</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>fem</td>
<td>1</td>
<td>79</td>
<td>0.54</td>
<td>0.4644</td>
</tr>
<tr>
<td>age*fem</td>
<td>1</td>
<td>79</td>
<td>8.09</td>
<td>0.0057</td>
</tr>
</tbody>
</table>

Now we will fit the cross term model 10.6. Here we omit the repeated statement from proc mixed, so SAS will find only one error variances, ignoring gender.

```
proc mixed data=orthodont;
class subject;
model distance=age fem fem*age/solution intercept;
random subject;
run;
quit;
```
Data Set WORK.ORTHODONT
Dependent Variable distance
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>27</td>
<td>F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 F11 M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16</td>
</tr>
</tbody>
</table>

Dimensions

- Covariance Parameters: 2
- Columns in X: 4
- Columns in Z: 27
- Subjects: 1
- Max Obs Per Subject: 108

Number of Observations

- Number of Observations Read: 108
- Number of Observations Used: 108
- Number of Observations Not Used: 0

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Res Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>483.55911746</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>433.75724920</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>

Convergence criteria met.
The Mixed Procedure

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>3.2986</td>
</tr>
<tr>
<td>Residual</td>
<td>1.9221</td>
</tr>
</tbody>
</table>

Fit Statistics
-2 Res Log Likelihood           433.8
AIC (smaller is better)         437.8
AICC (smaller is better)        437.9
BIC (smaller is better)         440.3

Solution for Fixed Effects

| Effect       | Estimate | Error   | DF  | t Value | Pr > |t|   |
|--------------|----------|---------|-----|---------|------|-----|
| Intercept    | 16.3406  | 0.9813  | 25  | 16.65   | <.0001|
| age          | 0.7844   | 0.07750 | 79  | 10.12   | <.0001|
| fem          | 1.0321   | 1.5374  | 79  | 0.67    | 0.5040|
| age*fem      | -0.3048  | 0.1214  | 79  | -2.51   | 0.0141|

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num</th>
<th>Den</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>25</td>
<td>277.28</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>79</td>
<td>102.43</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>fem</td>
<td>1</td>
<td>79</td>
<td>0.45</td>
<td>0.5040</td>
</tr>
<tr>
<td>age*fem</td>
<td>1</td>
<td>79</td>
<td>6.30</td>
<td>0.0141</td>
</tr>
</tbody>
</table>

data res;
subject = sqrt(3.2986);
residual = sqrt(1.9221);
run;
quit;
proc print data=res;
run;
quit;

Obs    subject    residual
1      1.81620     1.38640

To compare model 10.5 and 10.6 we create a macro `mixcomp`. This will refit both models and use the probchi function to calculate the p-value for the model comparison test. We omit the refits of both models and only show the final model comparison output. The macro uses ods and the proc `mixed` ods output dataset `Mixed.InfoCrit`.

%macro mixcomp;
ods trace on;
proc mixed ic data=orthodont;
ods output Mixed.InfoCrit=m105;
class subject;
model distance=age fem fem*age/solution intercept;
random subject;
REPEATED / GROUP=fem;
run;
quit;
quit;
ods trace off;
ods listing;
ods trace on;
proc mixed ic data=orthodont;
ods output Mixed.InfoCrit=m106;
class subject;
model distance=age fem fem*age/solution intercept;
random subject;
run;
quit;
ods trace off;
ods listing;

data m105;
set m105;
ml05nll = Neg2LogLike;
order=1;
run;
quit;
data m106;
set m106;
ml06nll = Neg2LogLike;
order=1;
run;
quit;
proc sort data=m105;
by order;
run;
quit;
proc sort data=m106;
by order;
run;
quit;
data together;
merge m105 m106;
by order;
run;
quit;
data lrpval;
set together;
teststat = ml06nll-ml05nll;
pval = 1-probchi(teststat,1);
keep teststat pval;
run;
quit;
proc print data=lrpval;
run;
quit;
%mend mixcomp;
*p. 345 p-value;
Now we will draw figure 10.7  We refit model 10.5 using proc mixed. In the model statement, the outp option gives the random fitted values in the dataset fitrand. The fixed fitted values are output via the outpm option in the dataset fitfit.

```
proc mixed data=orthodont;
 class subject;
 model distance=age fem fem*age/solution intercept outp=fitrand outpm=fitfix;
 random subject/solution;
 REPEATED / GROUP=fem;
 run;
 quit;
```

We use data steps, proc sort, and finally a data step with the merge statement, to put the random and fixed fitted values together in one dataset. This dataset is called together and the fitted values are called predrand and predfix.

```
data fitrand;
 set fitrand;
 predrand=pred;
 drop pred;
 run;
 quit;

data fitfix;
 set fitfix;
 predfix=pred;
 drop pred;
 run;
 quit;
```

```
proc sort data=fitrand;
 by subject age;
 run;
 quit;
```

```
proc sort data=fitfix;
 by subject age;
 run;
 quit;
```

```
data together;
 merge fitrand fitfix;
 by subject age;
 run;
 quit;
```
The Bayes residuals are obtained by the difference of the random fitted and fixed fitted values. We use a **data** step to compute them. Then the average residual for each subject is computed with **proc means**.

```plaintext
data together;
set together;
bayesred=predrand-predfix;
run;
quit;

proc means data=together noprint;
var bayesred;
by subject;
output out=together4qq MEAN=;
run;
quit;
```

Finally, we redefine our qq-plot macro and invoke it to draw figure 10.7.

```plaintext
%macro qqplot(var=, dsn=);
goptions reset = all htext=1.5;
title1 height=2 font=times "Normal Q-Q";
symbol1 value=circle color=black;
proc univariate data = &dsn noprint;
qqplot &var/normal(mu=est sigma=est l=1 color=black)
 vminor=0 hminor=0 font=times
 vaxislabel = "&var";
run;
quit;
%mend qqplot;

%qqplot(var=bayesred,dsn=together4qq);
```

![Normal Q-Q plot of the estimated random effects from model (10.5)](image)

**Fig. 10.7** Normal Q–Q plot of the estimated random effects from model (10.5)
Now we will produce the correlation output for the marginal residuals on page 347. Figure 10.8 will also be produced. Unsurprisingly, they are both produced from the same call to proc corr with the ods. We begin by calculating the marginal residuals, the response minus the fixed fitted values in a data step.

```plaintext
data resfitfix;
set fitfix;
marginalres = distance-predfix;
keep subject age marginalres;
run;
quit;
```

Then we use proc transpose to re-arrange the data so that there are separate marginal residual variables for each age (*MRAge14-MRAge8*). This data is used in proc corr to produce the output on page 347 and figure 10.8.

```plaintext
proc transpose data=resfitfix out=transfitfix prefix=MRAge;
by subject;
id age;
run;
quit;

*p. 347, fig. 10.8;
ods graphics on;
proc corr data=transfitfix;
var MRAge14 MRAge12 MRAge10 MRAge8;
run;
quit;
ods graphics off;
```

The CORR Procedure

4 Variables: MRAge14 MRAge12 MRAge10 MRAge8

Simple Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Sum</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRAge14</td>
<td>27</td>
<td>0.0889</td>
<td>2.1907</td>
<td>2.4000</td>
<td>-4.5864</td>
<td>4.1781</td>
</tr>
<tr>
<td>MRAge12</td>
<td>27</td>
<td>-0.0352</td>
<td>2.4915</td>
<td>-0.9500</td>
<td>-4.1273</td>
<td>5.2469</td>
</tr>
<tr>
<td>MRAge10</td>
<td>27</td>
<td>-0.1963</td>
<td>2.0175</td>
<td>-5.3000</td>
<td>-3.6844</td>
<td>3.8156</td>
</tr>
<tr>
<td>MRAge8</td>
<td>27</td>
<td>0.1426</td>
<td>2.2864</td>
<td>3.8500</td>
<td>-5.6156</td>
<td>4.8844</td>
</tr>
</tbody>
</table>
Pearson Correlation Coefficients, N = 27

Prob > |r| under H0: Rho=0

<table>
<thead>
<tr>
<th></th>
<th>MRAge14</th>
<th>MRAge12</th>
<th>MRAge10</th>
<th>MRAge8</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRAge14</td>
<td>1.00000</td>
<td>0.72773</td>
<td>0.71819</td>
<td>0.52232</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>0.0052</td>
<td></td>
</tr>
<tr>
<td>MRAge12</td>
<td>0.72773</td>
<td>1.00000</td>
<td>0.55989</td>
<td>0.66004</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td></td>
<td>0.0024</td>
<td>0.0002</td>
</tr>
<tr>
<td>MRAge10</td>
<td>0.71819</td>
<td>0.55989</td>
<td>1.00000</td>
<td>0.55959</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>0.0024</td>
<td></td>
<td>0.0024</td>
</tr>
<tr>
<td>MRAge8</td>
<td>0.52232</td>
<td>0.66004</td>
<td>0.55959</td>
<td>1.00000</td>
</tr>
<tr>
<td></td>
<td>0.0052</td>
<td>0.0002</td>
<td></td>
<td>0.0024</td>
</tr>
</tbody>
</table>

Fig. 10.8 Scatter plot matrix of the marginal residuals from model (10.5)

Next we will do the same thing, producing correlations and a matrix plot, for the conditional residuals. First we compute the conditional residuals, response minus fitted random values in a data step.

```plaintext
data resfitrand;
set fitrand;
condres = distance-predrand;
keep subject age condres;
run;
quit;
```

Now we use proc transpose and proc corr with ods again. The correlation output on page 348 is produced and figure 10.8 is drawn.
**proc transpose** data=resfitrand out=transfitrand **prefix=CRAge**;
**by** subject;
**id** age;
**run**;
**quit**;

*p. 348, fig. 10.9;*
ods graphics on;
**proc corr** data=transfitrand;
var CRAge14 CRAge12 CRAge10 CRAge8;
run;
**quit**;
ods graphics off;

---

**Fig. 10.9** Scatter plot matrix of the conditional residuals from model (10.5)

---

The CORR Procedure

4 Variables: CRAge14 CRAge12 CRAge10 CRAge8

Simple Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Sum</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRAge14</td>
<td>27</td>
<td>0.0889</td>
<td>1.07765</td>
<td>2.40000</td>
<td>-1.69726</td>
<td>2.77499</td>
</tr>
<tr>
<td>CRAge12</td>
<td>27</td>
<td>-0.03519</td>
<td>1.29221</td>
<td>-0.95000</td>
<td>-1.61824</td>
<td>5.11712</td>
</tr>
<tr>
<td>CRAge10</td>
<td>27</td>
<td>-0.19630</td>
<td>1.16038</td>
<td>-5.30000</td>
<td>-3.81413</td>
<td>1.94024</td>
</tr>
<tr>
<td>CRAge8</td>
<td>27</td>
<td>0.14259</td>
<td>1.35140</td>
<td>3.85000</td>
<td>-5.01876</td>
<td>2.29265</td>
</tr>
</tbody>
</table>
Pearson Correlation Coefficients, N = 27
Prob > |r| under H0: Rho=0

<table>
<thead>
<tr>
<th></th>
<th>CRAge14</th>
<th>CRAge12</th>
<th>CRAge10</th>
<th>CRAge8</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRAge14</td>
<td>1.00000</td>
<td>-0.08311</td>
<td>-0.00529</td>
<td>-0.62031</td>
</tr>
<tr>
<td></td>
<td>0.6802</td>
<td>0.9791</td>
<td>0.0006</td>
<td></td>
</tr>
<tr>
<td>CRAge12</td>
<td>-0.08311</td>
<td>1.00000</td>
<td>-0.54446</td>
<td>-0.12001</td>
</tr>
<tr>
<td></td>
<td>0.6802</td>
<td>0.0033</td>
<td>0.5510</td>
<td></td>
</tr>
<tr>
<td>CRAge10</td>
<td>-0.00529</td>
<td>-0.54446</td>
<td>1.00000</td>
<td>-0.30695</td>
</tr>
<tr>
<td></td>
<td>0.9791</td>
<td>0.0033</td>
<td>0.1194</td>
<td></td>
</tr>
<tr>
<td>CRAge8</td>
<td>-0.62031</td>
<td>-0.12001</td>
<td>-0.30695</td>
<td>1.00000</td>
</tr>
<tr>
<td></td>
<td>0.0006</td>
<td>0.5510</td>
<td>0.1194</td>
<td></td>
</tr>
</tbody>
</table>

Now we will draw figure 10.10. We re-fit model 10.6 using proc mixed. Storing the predicted data in *mod106*. We store the conditional residuals as *condres*, and then create separate male and female datasets through several *data* steps.

```plaintext
proc mixed data=orthodont;
 class subject;
 model distance=age fem fem*age/solution intercept outp=mod106;
 random subject;
run;
quit;

data mod106;
 set mod106;
 condres=distance-pred;
 keep subject pred condres;
run;
quit;

data malemod106;
 set mod106;
 if substr(subject,1,1)='M' then output;
run;
quit;

data femalemod106;
 set mod106;
 if substr(subject,1,1)='F' then output;
run;
quit;
```

Then we use two *gplot* calls to draw figure 10.10.

```plaintext
goptions reset = all;
symbol1 v=circle c=blue;
axis1 label =(h=2 font=times angle=90 "Residuals (mm)") value=(font=times h=1)
 order=(-5 to 5 by 2);
axis2 label =(h=2 font=times "Fitted Values (mm)") value =(font=times h=1)
```

7/30/2010 265
*fig. 10.10;*  
**proc gplot data = malemod106;**
  title 'Male';
  plot condres*pred=1 /vaxis=axis1 haxis=axis2;
**run;**
**quit;**
**proc gplot data = femalemod106;**
  title 'Female';
  plot condres*pred=1 /vaxis=axis3 haxis=axis2;
**run;**
**quit;**

**Fig. 10.10** Plots of conditional residuals vs fitted values from model (10.6)

We draw figure 10.11 in an analogous fashion. This time we store the predictions in *mod105* and use the repeated option for the *fem* gender identifier in proc *mixed*.

**proc mixed data=orthodont;**
  class subject;
  model distance=age fem fem*age/solution intercept outp=mod105;
  random subject;
  REPEATED / GROUP=fem;
  run;
  quit;

**data** mod105;
  set mod105;
  condres=distance-pred;
  keep subject pred condres;
  run;
  quit;

**data** malemod105;
  set mod105;
  if substr(subject,1,1)='M' then output;
  run;
  quit;
We end our exploration of the orthodontic data with figure 10.12. We first create a new gender identifier variable *male*, taking 1 for male subjects and 0 for female subjects. The ~ operator allows this negation.

*fig. 10.12;
data orthodont;
set orthodont;
    male = ~female;
run;
quit;

Fig. 10.11 Plots of conditional residuals vs fitted values from model (10.5)
Then we refit models 10.6 and 10.5 using proc `mixed`. The fixed predicted values are stored in the `mod106` and `mod105` datasets. Moreover, the `VCIRY` option tells SAS to output the cholesky residuals in the `outpm` specified dataset.

```sas
proc mixed data=orthodont;
class subject;
model distance=age fem fem*age/solution intercept outpm=mod106 VCIRY;
random subject;
run;
quit;

proc mixed data=orthodont;
class subject;
model distance=age fem fem*age/solution intercept outpm=mod105 VCIRY;
random subject;
REPEATED / GROUP=fem;
run;
quit;
```

Finally, we draw figure 10.12 using the `cholresboxplot` macro.

```sas
%macro cholresboxplot(data=,model =);
goptions reset = all;
proc sort data = &data;
 by &var;
run;
quit;
proc gplot data = &data;
 axis1 label=(f=times h=2 "Sex") minor=none
 order=(-1 0.2 0.8 2) value=(f=times h=1
 t=1 ' ' t=2 'Female' t=3 'Male' t=4 ' ');
 axis2 label=(f=times h=2 angle=90 "Cholesky Residuals from Model &model")
 value=(f=times h=1);
 symbol1 value = circle interpol=boxt bwidth=36;
 plot ScaledResid*male/ haxis=axis1 vaxis=axis2 vminor=0;
run;
quit;
%MEND;
%cholresboxplot(data=mod106,model=10.6);
%cholresboxplot(data=mod105,model=10.5);
```
10.2 Models with Covariance Structures Which Vary Over Time

Now we move to the pig weight dataset. We start by drawing figure 10.13. First we bring the data in via proc import. Then the data are sorted through proc sort.

```
proc import datafile="data/pigweights.csv"
 out=pigs replace;
getnames=yes;
run;
quit;

proc sort data=pigs;
by pigid weeknumber;
run;
quit;
```

We define the macro `symbolfit`, which defines `gplot` symbols via the statements `symbol1-symbol48`. Then we draw figure 10.13 with proc `gplot`. A separate line is overlaid for each pig by using `=pigid` in the `plot` statement in `gplot`.

```
%macro symbolfit();
 %do i = 1 %to 48;
 symbol&i interpol=join
 value=circle;
 %end;
%mend;

%symbolfit;

proc gplot data = pigs;
plot weight*weeknumber=pigid/vaxis=axis1 haxis=axis2;
run;
quit;
```
Fig. 10.13 Plot of pig weights over time

Now we provide the correlation information on page 354 and the matrix plot in figure 10.14. A new dataset is created, that through proc **transpose**, contains one observation per pig with a separate variable for each week’s weight.

```plaintext
data pigwide;
set pigs;
keep pigid weeknumber weight;
run;
quit;

proc transpose data=pigwide out=pigwide let;
by pigid;
id weeknumber;
run;
quit;
```

```plaintext
data pigwide;
set pigwide;
T1 = _1;
T2 = _2;
T3 = _3;
T4 = _4;
T5 = _5;
T6 = _6;
T7 = _7;
T8 = _8;
T9 = _9;
run;
quit;
```

Now proc **corr** and ods are used to create the output on page 354 and figure 10.14.
*pg. 354, fig. 10.14;
ods graphics on;
proc corr data=pigwide plots=matrix;
  var T1 T2 T3 T4 T5;
run;
quit;
ods graphics off;

ods graphics on;
proc corr data=pigwide plots=matrix;
  with  T1 T2 T3 T4 T5;
  var T6 T7 T8 T9;
run;
quit;
ods graphics off;

ods graphics on;
proc corr data=pigwide plots=matrix;
  with T6 T7 T8 T9;
  var T1 T2 T3 T4 T5;
run;
quit;
ods graphics off;

ods graphics on;
proc corr data=pigwide plots=matrix;
  var  T6 T7 T8 T9;
run;
quit;
ods graphics off;

The CORR Procedure

5 Variables:  T1      T2      T3      T4      T5

Simple Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Sum</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>48</td>
<td>25.02</td>
<td>2.47</td>
<td>1201</td>
<td>20.00</td>
<td>31.00</td>
</tr>
<tr>
<td>T2</td>
<td>48</td>
<td>31.78</td>
<td>2.79</td>
<td>1526</td>
<td>26.50</td>
<td>39.00</td>
</tr>
<tr>
<td>T3</td>
<td>48</td>
<td>38.86</td>
<td>3.54</td>
<td>1866</td>
<td>32.50</td>
<td>48.00</td>
</tr>
<tr>
<td>T4</td>
<td>48</td>
<td>44.39</td>
<td>3.73</td>
<td>2131</td>
<td>37.00</td>
<td>54.00</td>
</tr>
<tr>
<td>T5</td>
<td>48</td>
<td>50.16</td>
<td>4.53</td>
<td>2408</td>
<td>38.50</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Pearson Correlation Coefficients, N = 48
Prob > |r| under H0: Rho=0

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1.00</td>
<td>0.92</td>
<td>0.80</td>
<td>0.79</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>&lt;.001</td>
<td>&lt;.001</td>
<td>&lt;.001</td>
<td>&lt;.001</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.92</td>
<td>1.00</td>
<td>0.91</td>
<td>0.90</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The CORR Procedure

5 With Variables: T1  T2  T3  T4  T5
4  Variables:   T6  T7  T8  T9

### Simple Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Sum</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>48</td>
<td>25.020</td>
<td>2.46887</td>
<td>1201</td>
<td>20.000</td>
<td>31.000</td>
</tr>
<tr>
<td>T2</td>
<td>48</td>
<td>31.781</td>
<td>2.79038</td>
<td>1526</td>
<td>26.500</td>
<td>39.000</td>
</tr>
<tr>
<td>T3</td>
<td>48</td>
<td>38.865</td>
<td>3.54416</td>
<td>1866</td>
<td>32.500</td>
<td>48.000</td>
</tr>
<tr>
<td>T4</td>
<td>48</td>
<td>44.396</td>
<td>3.73448</td>
<td>2131</td>
<td>37.000</td>
<td>54.000</td>
</tr>
<tr>
<td>T5</td>
<td>48</td>
<td>50.156</td>
<td>4.53492</td>
<td>2408</td>
<td>38.500</td>
<td>60.000</td>
</tr>
<tr>
<td>T6</td>
<td>48</td>
<td>56.448</td>
<td>4.44977</td>
<td>2710</td>
<td>48.000</td>
<td>67.500</td>
</tr>
<tr>
<td>T7</td>
<td>48</td>
<td>62.458</td>
<td>4.97315</td>
<td>2998</td>
<td>52.500</td>
<td>76.000</td>
</tr>
<tr>
<td>T8</td>
<td>48</td>
<td>69.302</td>
<td>5.42428</td>
<td>3327</td>
<td>59.500</td>
<td>81.500</td>
</tr>
<tr>
<td>T9</td>
<td>48</td>
<td>75.219</td>
<td>6.33540</td>
<td>3611</td>
<td>64.000</td>
<td>88.000</td>
</tr>
</tbody>
</table>

Pearson Correlation Coefficients, N = 48
Prob > |r| under HO: Rho=0

<table>
<thead>
<tr>
<th></th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.70507</td>
<td>0.65511</td>
<td>0.62550</td>
<td>0.55810</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>T2</td>
<td>0.83528</td>
<td>0.77591</td>
<td>0.71329</td>
<td>0.66381</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>T3</td>
<td>0.90582</td>
<td>0.84346</td>
<td>0.81674</td>
<td>0.76889</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>T4</td>
<td>0.93273</td>
<td>0.86814</td>
<td>0.82925</td>
<td>0.78561</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>T5</td>
<td>0.92194</td>
<td>0.85455</td>
<td>0.81044</td>
<td>0.78563</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
</tr>
</tbody>
</table>
### Simple Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Sum</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>48</td>
<td>56.44792</td>
<td>4.44977</td>
<td>2710</td>
<td>48.00000</td>
<td>67.50000</td>
</tr>
<tr>
<td>T7</td>
<td>48</td>
<td>62.45833</td>
<td>4.97315</td>
<td>2998</td>
<td>52.50000</td>
<td>76.00000</td>
</tr>
<tr>
<td>T8</td>
<td>48</td>
<td>69.30208</td>
<td>5.42428</td>
<td>3327</td>
<td>59.50000</td>
<td>81.50000</td>
</tr>
<tr>
<td>T9</td>
<td>48</td>
<td>75.21875</td>
<td>6.33540</td>
<td>3611</td>
<td>64.00000</td>
<td>88.00000</td>
</tr>
<tr>
<td>T1</td>
<td>48</td>
<td>25.02083</td>
<td>2.46887</td>
<td>1201</td>
<td>20.00000</td>
<td>31.00000</td>
</tr>
<tr>
<td>T2</td>
<td>48</td>
<td>31.78125</td>
<td>2.79038</td>
<td>1526</td>
<td>26.50000</td>
<td>39.00000</td>
</tr>
<tr>
<td>T3</td>
<td>48</td>
<td>38.86458</td>
<td>3.54416</td>
<td>1866</td>
<td>32.50000</td>
<td>48.00000</td>
</tr>
<tr>
<td>T4</td>
<td>48</td>
<td>44.39583</td>
<td>3.73448</td>
<td>2131</td>
<td>37.00000</td>
<td>54.00000</td>
</tr>
<tr>
<td>T5</td>
<td>48</td>
<td>50.15625</td>
<td>4.53492</td>
<td>2408</td>
<td>38.50000</td>
<td>60.00000</td>
</tr>
</tbody>
</table>

### Pearson Correlation Coefficients, N = 48

<table>
<thead>
<tr>
<th></th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.70507</td>
<td>0.83528</td>
<td>0.90582</td>
<td>0.93273</td>
<td>0.92194</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>T2</td>
<td>0.65511</td>
<td>0.77591</td>
<td>0.84346</td>
<td>0.86814</td>
<td>0.85455</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>T3</td>
<td>0.62550</td>
<td>0.71329</td>
<td>0.81674</td>
<td>0.82925</td>
<td>0.81044</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>T4</td>
<td>0.55810</td>
<td>0.66381</td>
<td>0.76889</td>
<td>0.78561</td>
<td>0.78563</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
</tr>
</tbody>
</table>
Now we fit model 10.13, providing the output on page 356-357. We use proc **mixed**. We specify that **pigid** is categorical with the class statement. However, we do not use a random effect for pig. This is unlike our previous models, which had a random effect for each subject. But we do use the **repeated** statement. We specify the **subject** option as **pigid** instead of the **group** option. If we had specified **group** as **pigid**, SAS would try to fit different variances and covariances for each separate pig. By using **subject** instead, we merely tell SAS to expect a block diagonal error covariance, with the same block repeated for each pig. The **type=UN** option tells SAS that each covariance parameter in the block may be different. The **rcorr=1** option in the repeated statement makes SAS output the correlation information on page 357.

<table>
<thead>
<tr>
<th></th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>1.00000</td>
<td>0.96329</td>
<td>0.92801</td>
<td>0.88929</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>T7</td>
<td>0.96329</td>
<td>1.00000</td>
<td>0.95859</td>
<td>0.91701</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td></td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>T8</td>
<td>0.92801</td>
<td>0.95859</td>
<td>1.00000</td>
<td>0.96946</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td></td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>T9</td>
<td>0.88929</td>
<td>0.91701</td>
<td>0.96946</td>
<td>1.00000</td>
</tr>
<tr>
<td></td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td>&lt;.0001</td>
<td></td>
</tr>
</tbody>
</table>

**Fig. 10.14** Scatter plot matrix of the pig weights at weeks 1 to 9
proc mixed data=pigs;
class pigid;
model weight=weeknumber/solution intercept;
repeated /subject=pigid type=UN rcorr=1;
run;
quit;

The Mixed Procedure

Model Information

Data Set WORK.PIGS
Dependent Variable weight
Covariance Structure Unstructured
Subject Effect pigid
Estimation Method REML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values
pigid 48 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43
44 45 46 47 48

Dimensions

Covariance Parameters 45
Columns in X 2
Columns in Z 0
Subjects 48
Max Obs Per Subject 9

Number of Observations

Number of Observations Read 432
Number of Observations Used 432
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion
0 1 2506.94483280
1 2 1541.95236487 0.00002340
2 1 1541.94339955 0.00000002

7/30/2010
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1541.94339123</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Convergence criteria met.

Estimated R Correlation Matrix for pigid 1

<table>
<thead>
<tr>
<th>Row</th>
<th>Col1</th>
<th>Col2</th>
<th>Col3</th>
<th>Col4</th>
<th>Col5</th>
<th>Col6</th>
<th>Col7</th>
<th>Col8</th>
<th>Col9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td>0.8937</td>
<td>0.7219</td>
<td>0.7675</td>
<td>0.7418</td>
<td>0.6942</td>
<td>0.6498</td>
<td>0.6023</td>
<td>0.5463</td>
</tr>
<tr>
<td>2</td>
<td>0.8937</td>
<td>1.0000</td>
<td>0.8953</td>
<td>0.9103</td>
<td>0.8790</td>
<td>0.8362</td>
<td>0.7744</td>
<td>0.7202</td>
<td>0.6691</td>
</tr>
<tr>
<td>3</td>
<td>0.7219</td>
<td>0.8953</td>
<td>1.0000</td>
<td>0.9457</td>
<td>0.8887</td>
<td>0.8755</td>
<td>0.8055</td>
<td>0.8122</td>
<td>0.7527</td>
</tr>
<tr>
<td>4</td>
<td>0.7675</td>
<td>0.9103</td>
<td>0.9457</td>
<td>1.0000</td>
<td>0.9559</td>
<td>0.9303</td>
<td>0.8627</td>
<td>0.8353</td>
<td>0.7888</td>
</tr>
<tr>
<td>5</td>
<td>0.7418</td>
<td>0.8790</td>
<td>0.8887</td>
<td>0.9559</td>
<td>1.0000</td>
<td>0.9229</td>
<td>0.8566</td>
<td>0.8096</td>
<td>0.7883</td>
</tr>
<tr>
<td>6</td>
<td>0.6942</td>
<td>0.8362</td>
<td>0.8755</td>
<td>0.9303</td>
<td>0.9229</td>
<td>1.0000</td>
<td>0.9632</td>
<td>0.9270</td>
<td>0.8914</td>
</tr>
<tr>
<td>7</td>
<td>0.6498</td>
<td>0.7744</td>
<td>0.8055</td>
<td>0.8627</td>
<td>0.8566</td>
<td>0.9632</td>
<td>1.0000</td>
<td>0.9526</td>
<td>0.9170</td>
</tr>
<tr>
<td>8</td>
<td>0.6023</td>
<td>0.7202</td>
<td>0.8122</td>
<td>0.8353</td>
<td>0.8096</td>
<td>0.9270</td>
<td>0.9526</td>
<td>1.0000</td>
<td>0.9685</td>
</tr>
<tr>
<td>9</td>
<td>0.5463</td>
<td>0.6691</td>
<td>0.7527</td>
<td>0.7888</td>
<td>0.7883</td>
<td>0.8914</td>
<td>0.9170</td>
<td>0.9685</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN(1,1)</td>
<td>pigid</td>
<td>6.1347</td>
</tr>
<tr>
<td>UN(2,1)</td>
<td>pigid</td>
<td>6.2167</td>
</tr>
<tr>
<td>UN(2,2)</td>
<td>pigid</td>
<td>7.8878</td>
</tr>
<tr>
<td>UN(3,1)</td>
<td>pigid</td>
<td>6.7084</td>
</tr>
<tr>
<td>UN(3,2)</td>
<td>pigid</td>
<td>9.4333</td>
</tr>
<tr>
<td>UN(3,3)</td>
<td>pigid</td>
<td>14.0751</td>
</tr>
<tr>
<td>UN(4,1)</td>
<td>pigid</td>
<td>7.1776</td>
</tr>
<tr>
<td>UN(4,2)</td>
<td>pigid</td>
<td>9.6539</td>
</tr>
<tr>
<td>UN(4,3)</td>
<td>pigid</td>
<td>13.3971</td>
</tr>
<tr>
<td>UN(4,4)</td>
<td>pigid</td>
<td>14.2577</td>
</tr>
<tr>
<td>UN(5,1)</td>
<td>pigid</td>
<td>8.3088</td>
</tr>
<tr>
<td>UN(5,2)</td>
<td>pigid</td>
<td>11.1633</td>
</tr>
<tr>
<td>UN(5,3)</td>
<td>pigid</td>
<td>15.0773</td>
</tr>
<tr>
<td>UN(5,4)</td>
<td>pigid</td>
<td>16.3221</td>
</tr>
<tr>
<td>UN(5,5)</td>
<td>pigid</td>
<td>20.4493</td>
</tr>
<tr>
<td>UN(6,1)</td>
<td>pigid</td>
<td>7.6577</td>
</tr>
<tr>
<td>UN(6,2)</td>
<td>pigid</td>
<td>10.4591</td>
</tr>
<tr>
<td>UN(6,3)</td>
<td>pigid</td>
<td>14.6284</td>
</tr>
<tr>
<td>UN(6,4)</td>
<td>pigid</td>
<td>15.6438</td>
</tr>
<tr>
<td>UN(6,5)</td>
<td>pigid</td>
<td>18.5851</td>
</tr>
<tr>
<td>UN(6,6)</td>
<td>pigid</td>
<td>19.8330</td>
</tr>
<tr>
<td>UN(7,1)</td>
<td>pigid</td>
<td>7.9928</td>
</tr>
<tr>
<td>UN(7,2)</td>
<td>pigid</td>
<td>10.8006</td>
</tr>
<tr>
<td>UN(7,3)</td>
<td>pigid</td>
<td>15.0085</td>
</tr>
<tr>
<td>UN(7,4)</td>
<td>pigid</td>
<td>16.1770</td>
</tr>
<tr>
<td>UN(7,5)</td>
<td>pigid</td>
<td>19.2366</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN(7,6)</td>
<td>pigid</td>
<td>21.3018</td>
</tr>
<tr>
<td>UN(7,7)</td>
<td>pigid</td>
<td>24.6631</td>
</tr>
<tr>
<td>UN(8,1)</td>
<td>pigid</td>
<td>8.1739</td>
</tr>
<tr>
<td>UN(8,2)</td>
<td>pigid</td>
<td>11.0825</td>
</tr>
<tr>
<td>UN(8,3)</td>
<td>pigid</td>
<td>16.6942</td>
</tr>
<tr>
<td>UN(8,4)</td>
<td>pigid</td>
<td>17.2819</td>
</tr>
<tr>
<td>UN(8,5)</td>
<td>pigid</td>
<td>20.0593</td>
</tr>
<tr>
<td>UN(8,6)</td>
<td>pigid</td>
<td>22.6194</td>
</tr>
<tr>
<td>UN(8,7)</td>
<td>pigid</td>
<td>25.9204</td>
</tr>
<tr>
<td>UN(8,8)</td>
<td>pigid</td>
<td>30.0192</td>
</tr>
<tr>
<td>UN(9,1)</td>
<td>pigid</td>
<td>8.5842</td>
</tr>
<tr>
<td>UN(9,2)</td>
<td>pigid</td>
<td>11.9218</td>
</tr>
<tr>
<td>UN(9,3)</td>
<td>pigid</td>
<td>17.9167</td>
</tr>
<tr>
<td>UN(9,4)</td>
<td>pigid</td>
<td>18.8977</td>
</tr>
<tr>
<td>UN(9,5)</td>
<td>pigid</td>
<td>22.6170</td>
</tr>
<tr>
<td>UN(9,6)</td>
<td>pigid</td>
<td>25.1879</td>
</tr>
<tr>
<td>UN(9,7)</td>
<td>pigid</td>
<td>28.8925</td>
</tr>
<tr>
<td>UN(9,8)</td>
<td>pigid</td>
<td>33.6662</td>
</tr>
<tr>
<td>UN(9,9)</td>
<td>pigid</td>
<td>40.2539</td>
</tr>
</tbody>
</table>

Fit Statistics

-2 Res Log Likelihood          1541.9
AIC (smaller is better)        1631.9
AICC (smaller is better)       1642.7
BIC (smaller is better)        1716.1

Null Model Likelihood Ratio Test

<table>
<thead>
<tr>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr &gt; ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>965.00</td>
<td>&lt;.0001</td>
</tr>
</tbody>
</table>

Solution for Fixed Effects

| Effect     | Estimate | Error | DF | t Value | Pr > |t| |
|------------|----------|-------|----|---------|------|---|
| Intercept  | 19.0728  | 0.3293| 47 | 57.93   | <.0001|
| weeknumber | 6.1744   | 0.07916| 47 | 78.00   | <.0001|
The Mixed Procedure

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num</th>
<th>Den</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>47</td>
<td>3355.35</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>weeknumber</td>
<td>1</td>
<td>47</td>
<td>6084.35</td>
<td>&lt;.0001</td>
</tr>
</tbody>
</table>

Next we will draw figure 10.15. We begin by refitting model 10.13 with proc `mixed`. The fixed fitted values and scaled residuals (via `outpm` and `VCIRY` model options) are output in the `mod10p13` dataset.

``` Sas
proc mixed data=pigs;
class pigid;
model weight=weeknumber/solution intercept outpm=mod10p13 VCIRY;
repeated /subject=pigid type=UN;
run;
quit;
```

We have the scaled residuals, but we need $x^*$. We again refit the model and use `ods` this time. The proc `mixed` `ods` output dataset `Mixed.R` contains the estimate of the block that is repeated in the error covariance matrix.

``` Sas
ods trace on;
proc mixed data=pigs;
ods output Mixed.R=c;
class pigid;
model weight=weeknumber/solution intercept outpm=mod10p13 VCIRY;
repeated /subject=pigid type=UN R;
run;
quit;
ods trace off;
ods listing;
```

Now we move to proc `iml`. Here we calculate the cholesky root of this $R$ matrix apply it to our predictor data. This gives us $x^*$. For convenience we keep the scaled residuals with the data, now calling them $y$. The $x^*$ values are now stored in $x$.

``` Sas
proc iml;
*reset log print;
use mod10pl3;
read all;
y = ScaledResid;
x = weeknumber;
x = J(nrow(x),1,1) || x ;
use c;
read all;
sn = Col1 || Col2 || Col3 || Col14 || Col15 || Col16 || Col17 || Col18 || Col19;
sn = ginv(root((sn))`);
print sn;
xp = x;
```
do piglet = 1 to 48 ;
xp[((piglet-1)*9+1):((piglet-1)*9+9)',1] = sn *
xp[((piglet-1)*9+1):((piglet-1)*9+9)',1];
xp[((piglet-1)*9+1):((piglet-1)*9+9)',2] = sn *
xp[((piglet-1)*9+1):((piglet-1)*9+9)',2];
end;
print xp;
x = xp[,2];
create fig10p15 var{y x};
append;
quit;

Next we will use proc loess to fit a loess estimate of the scaled residuals given \( x^* \). We use .1 as a smoothing parameter due to the discreteness of our data. Then we sort the data on \( x^* \) and use proc gplot to draw figure 10.15

```plaintext
proc loess data = fig10p15;
 model y=x / smooth=0.1;
 ods output OutputStatistics=loessout;
run;

data fit;
 set fig10p15;
 set loessout;
proc sort data = fit;
 by x;
run;

goptions reset = all;
symbol1 v=circle c=black;
symbol2 i=join c=black;
 axis1 label = (font=times h=2 angle=90 'Cholesky Residuals')
 value=(font=times h=1);
 axis2 label = (font=times h=2 'x*')
 value=(font=times h=1);
proc gplot data = fit;
 plot /*points:/ y*x=1 /loess:/
 Pred*x=2/ overlay hminor=0 vminor=0
 vaxis=axis1 haxis=axis2 vref=0;
run;
```
Now we will apply splines to our pig data analysis. We begin by defining the splines in a `data` step.

```plaintext
data pigspline;
set pigs;
Time = weeknumber;
TimeM2Plus = (Time>2)*(Time-2);
TimeM3Plus = (Time>3)*(Time-3);
TimeM4Plus = (Time>4)*(Time-4);
TimeM5Plus = (Time>5)*(Time-5);
TimeM6Plus = (Time>6)*(Time-6);
TimeM7Plus = (Time>7)*(Time-7);
TimeM8Plus = (Time>8)*(Time-8);
run;
quit;
```

Then we fit model 10.15 and provide the output on page 360. Again, proc `mixed` is used. We provide the correlation matrix estimate via the `rcorr`=1 option.
*p 360, Model 10.15;
proc mixed data=pigspline;
class pigid;
model weight=Time TimeM2Plus TimeM3Plus TimeM4Plus TimeM5Plus TimeM6Plus
    TimeM7Plus TimeM8Plus/solution intercept;
repeated /subject=pigid type=UN rcorr=1;
run;
quit;

The Mixed Procedure

Model Information

Data Set WORK.PIGSPLINE
Dependent Variable weight
Covariance Structure Unstructured
Subject Effect pigid
Estimation Method REML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values
pigid 48 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43
44 45 46 47 48

Dimensions

Covariance Parameters 45
Columns in X 9
Columns in Z 0
Subjects 48
Max Obs Per Subject 9

Number of Observations

Number of Observations Read 432
Number of Observations Used 432
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion
0 1 2490.65537070
1 1 1505.83406541 0.00000000

7/30/2010
The Mixed Procedure

Convergence criteria met.

Estimated R Correlation Matrix for pigid 1

<table>
<thead>
<tr>
<th>Row</th>
<th>Col1</th>
<th>Col2</th>
<th>Col3</th>
<th>Col4</th>
<th>Col5</th>
<th>Col6</th>
<th>Col7</th>
<th>Col8</th>
<th>Col9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td>0.9156</td>
<td>0.8015</td>
<td>0.7958</td>
<td>0.7494</td>
<td>0.7051</td>
<td>0.6551</td>
<td>0.6255</td>
<td>0.5581</td>
</tr>
<tr>
<td>2</td>
<td>0.9156</td>
<td>1.0000</td>
<td>0.9118</td>
<td>0.9084</td>
<td>0.8809</td>
<td>0.8353</td>
<td>0.7759</td>
<td>0.7133</td>
<td>0.6638</td>
</tr>
<tr>
<td>3</td>
<td>0.8015</td>
<td>0.9118</td>
<td>1.0000</td>
<td>0.9582</td>
<td>0.9280</td>
<td>0.9058</td>
<td>0.8435</td>
<td>0.8167</td>
<td>0.7689</td>
</tr>
<tr>
<td>4</td>
<td>0.7958</td>
<td>0.9084</td>
<td>0.9582</td>
<td>1.0000</td>
<td>0.9621</td>
<td>0.9327</td>
<td>0.8681</td>
<td>0.8293</td>
<td>0.7856</td>
</tr>
<tr>
<td>5</td>
<td>0.7494</td>
<td>0.8809</td>
<td>0.9280</td>
<td>0.9621</td>
<td>1.0000</td>
<td>0.9219</td>
<td>0.8546</td>
<td>0.8104</td>
<td>0.7856</td>
</tr>
<tr>
<td>6</td>
<td>0.7051</td>
<td>0.8353</td>
<td>0.9058</td>
<td>0.9327</td>
<td>0.9219</td>
<td>1.0000</td>
<td>0.9633</td>
<td>0.9280</td>
<td>0.8893</td>
</tr>
<tr>
<td>7</td>
<td>0.6551</td>
<td>0.7759</td>
<td>0.8435</td>
<td>0.8681</td>
<td>0.8546</td>
<td>0.9633</td>
<td>1.0000</td>
<td>0.9586</td>
<td>0.9170</td>
</tr>
<tr>
<td>8</td>
<td>0.6255</td>
<td>0.7133</td>
<td>0.8167</td>
<td>0.8293</td>
<td>0.8104</td>
<td>0.9280</td>
<td>0.9586</td>
<td>1.0000</td>
<td>0.9695</td>
</tr>
<tr>
<td>9</td>
<td>0.5581</td>
<td>0.6638</td>
<td>0.7689</td>
<td>0.7856</td>
<td>0.7856</td>
<td>0.8893</td>
<td>0.9170</td>
<td>0.9695</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN(1,1)</td>
<td>pigid</td>
<td>6.0953</td>
</tr>
<tr>
<td>UN(2,1)</td>
<td>pigid</td>
<td>6.3078</td>
</tr>
<tr>
<td>UN(2,2)</td>
<td>pigid</td>
<td>7.7862</td>
</tr>
<tr>
<td>UN(3,1)</td>
<td>pigid</td>
<td>7.0135</td>
</tr>
<tr>
<td>UN(3,2)</td>
<td>pigid</td>
<td>9.0176</td>
</tr>
<tr>
<td>UN(3,3)</td>
<td>pigid</td>
<td>12.5611</td>
</tr>
<tr>
<td>UN(4,1)</td>
<td>pigid</td>
<td>7.3373</td>
</tr>
<tr>
<td>UN(4,2)</td>
<td>pigid</td>
<td>9.4661</td>
</tr>
<tr>
<td>UN(4,3)</td>
<td>pigid</td>
<td>12.6824</td>
</tr>
<tr>
<td>UN(4,4)</td>
<td>pigid</td>
<td>13.9464</td>
</tr>
<tr>
<td>UN(5,1)</td>
<td>pigid</td>
<td>8.3903</td>
</tr>
<tr>
<td>UN(5,2)</td>
<td>pigid</td>
<td>11.1466</td>
</tr>
<tr>
<td>UN(5,3)</td>
<td>pigid</td>
<td>14.9152</td>
</tr>
<tr>
<td>UN(5,4)</td>
<td>pigid</td>
<td>16.2932</td>
</tr>
<tr>
<td>UN(5,5)</td>
<td>pigid</td>
<td>20.5655</td>
</tr>
<tr>
<td>UN(6,1)</td>
<td>pigid</td>
<td>7.7458</td>
</tr>
<tr>
<td>UN(6,2)</td>
<td>pigid</td>
<td>10.3713</td>
</tr>
<tr>
<td>UN(6,3)</td>
<td>pigid</td>
<td>14.2854</td>
</tr>
<tr>
<td>UN(6,4)</td>
<td>pigid</td>
<td>15.4998</td>
</tr>
<tr>
<td>UN(6,5)</td>
<td>pigid</td>
<td>18.6041</td>
</tr>
<tr>
<td>UN(6,6)</td>
<td>pigid</td>
<td>19.8004</td>
</tr>
<tr>
<td>UN(7,1)</td>
<td>pigid</td>
<td>8.0434</td>
</tr>
<tr>
<td>UN(7,2)</td>
<td>pigid</td>
<td>10.7673</td>
</tr>
<tr>
<td>UN(7,3)</td>
<td>pigid</td>
<td>14.8666</td>
</tr>
<tr>
<td>UN(7,4)</td>
<td>pigid</td>
<td>16.1232</td>
</tr>
<tr>
<td>UN(7,5)</td>
<td>pigid</td>
<td>19.2726</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN(7,6)</td>
<td>pigid</td>
<td>21.3169</td>
</tr>
<tr>
<td>UN(7,7)</td>
<td>pigid</td>
<td>24.7323</td>
</tr>
<tr>
<td>UN(8,1)</td>
<td>pigid</td>
<td>8.3766</td>
</tr>
<tr>
<td>UN(8,2)</td>
<td>pigid</td>
<td>10.7962</td>
</tr>
<tr>
<td>UN(8,3)</td>
<td>pigid</td>
<td>15.7014</td>
</tr>
<tr>
<td>UN(8,4)</td>
<td>pigid</td>
<td>16.7981</td>
</tr>
<tr>
<td>UN(8,5)</td>
<td>pigid</td>
<td>19.9358</td>
</tr>
<tr>
<td>UN(8,6)</td>
<td>pigid</td>
<td>22.3990</td>
</tr>
<tr>
<td>UN(8,7)</td>
<td>pigid</td>
<td>25.8586</td>
</tr>
<tr>
<td>UN(8,8)</td>
<td>pigid</td>
<td>29.4228</td>
</tr>
<tr>
<td>UN(9,1)</td>
<td>pigid</td>
<td>8.7294</td>
</tr>
<tr>
<td>UN(9,2)</td>
<td>pigid</td>
<td>11.7350</td>
</tr>
<tr>
<td>UN(9,3)</td>
<td>pigid</td>
<td>17.2643</td>
</tr>
<tr>
<td>UN(9,4)</td>
<td>pigid</td>
<td>18.5871</td>
</tr>
<tr>
<td>UN(9,5)</td>
<td>pigid</td>
<td>22.5715</td>
</tr>
<tr>
<td>UN(9,6)</td>
<td>pigid</td>
<td>25.0701</td>
</tr>
<tr>
<td>UN(9,7)</td>
<td>pigid</td>
<td>28.8923</td>
</tr>
<tr>
<td>UN(9,8)</td>
<td>pigid</td>
<td>33.3155</td>
</tr>
<tr>
<td>UN(9,9)</td>
<td>pigid</td>
<td>40.1373</td>
</tr>
</tbody>
</table>

Fit Statistics

-2 Res Log Likelihood          1505.6
AIC (smaller is better)        1595.6
AICC (smaller is better)       1606.6
BIC (smaller is better)        1679.8

Null Model Likelihood Ratio Test

<table>
<thead>
<tr>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr &gt; ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>985.02</td>
<td>&lt;.0001</td>
</tr>
</tbody>
</table>

Solution for Fixed Effects

| Standard Effect | Estimate | Error  | DF | t Value | Pr > |t| |
|-----------------|----------|--------|----|---------|-------|
| Intercept       | 18.2604  | 0.3801 | 47 | 48.04   | <.0001|
| Time            | 6.7604   | 0.1624 | 47 | 41.63   | <.0001|
| TimeM2Plus      | 0.3229   | 0.2294 | 47 | 1.41    | 0.1659|
The Mixed Procedure

Solution for Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Estimate</th>
<th>Error</th>
<th>DF</th>
<th>t Value</th>
<th>Pr &gt;</th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TimeM3Plus</td>
<td>-1.5521</td>
<td>0.2926</td>
<td>47</td>
<td>-5.30</td>
<td>&lt;.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TimeM4Plus</td>
<td>0.2292</td>
<td>0.2432</td>
<td>47</td>
<td>0.94</td>
<td>0.3509</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TimeM5Plus</td>
<td>0.5313</td>
<td>0.3932</td>
<td>47</td>
<td>1.35</td>
<td>0.1831</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TimeM6Plus</td>
<td>-0.2813</td>
<td>0.2646</td>
<td>47</td>
<td>-1.06</td>
<td>0.2933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TimeM7Plus</td>
<td>0.8333</td>
<td>0.2975</td>
<td>47</td>
<td>2.80</td>
<td>0.0074</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TimeM8Plus</td>
<td>-0.9271</td>
<td>0.2757</td>
<td>47</td>
<td>-3.36</td>
<td>0.0015</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num</th>
<th>Den</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>47</td>
<td>2307.54</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Time</td>
<td>1</td>
<td>47</td>
<td>1733.03</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>TimeM2Plus</td>
<td>1</td>
<td>47</td>
<td>1.98</td>
<td>0.1659</td>
</tr>
<tr>
<td>TimeM3Plus</td>
<td>1</td>
<td>47</td>
<td>28.14</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>TimeM4Plus</td>
<td>1</td>
<td>47</td>
<td>0.89</td>
<td>0.3509</td>
</tr>
<tr>
<td>TimeM5Plus</td>
<td>1</td>
<td>47</td>
<td>1.83</td>
<td>0.1831</td>
</tr>
<tr>
<td>TimeM6Plus</td>
<td>1</td>
<td>47</td>
<td>1.13</td>
<td>0.2933</td>
</tr>
<tr>
<td>TimeM7Plus</td>
<td>1</td>
<td>47</td>
<td>7.85</td>
<td>0.0074</td>
</tr>
<tr>
<td>TimeM8Plus</td>
<td>1</td>
<td>47</td>
<td>11.31</td>
<td>0.0015</td>
</tr>
</tbody>
</table>

We compare model 10.15 and model 10.13 with the \texttt{mixcomp} macro, redefined to fit the new models. We thus obtain the p-value result on page 361.

\%macro mixcomp;
ods trace on;
ods output Mixed.InfoCrit=m1015;
    class pigid;
    model weight=Time TimeM2Plus TimeM3Plus TimeM4Plus TimeM5Plus TimeM6Plus TimeM7Plus TimeM8Plus/solution intercept;
run;
quit;
ods trace off;
ods listing;
ods trace on;
ods output Mixed.InfoCrit=m1013;
    class pigid;
    model weight=weeknumber/solution intercept;
run;
quit;
ods trace off;
Now we remove the insignificant splines and fit model 10.16. Again we use proc `mixed`. We obtain the output for model 10.16 on page 363.
*p 363, Model 10.16;
proc mixed data=pigspline;
class pigid;
model weight=Time TimeM3Plus TimeM7Plus TimeM8Plus/solution intercept;
repeated /subject=pigid type=UN rcorr=1;
run;
quit;

The Mixed Procedure

Model Information

Data Set WORK.PIGSPLINE
Dependent Variable weight
Covariance Structure Unstructured
Subject Effect pigid
Estimation Method REML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values
pigid 48 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43
44 45 46 47 48

Dimensions

Covariance Parameters 45
Columns in X 5
Columns in Z 0
Subjects 48
Max Obs Per Subject 9

Number of Observations

Number of Observations Read 432
Number of Observations Used 432
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

7/30/2010
287
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2500.51549032</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1508.56337741</td>
<td>0.00013253</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1508.51288880</td>
<td>0.00000097</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1508.51253522</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Convergence criteria met.

Estimated R Correlation Matrix for pigid 1

<table>
<thead>
<tr>
<th>Row</th>
<th>Col1</th>
<th>Col2</th>
<th>Col3</th>
<th>Col4</th>
<th>Col5</th>
<th>Col6</th>
<th>Col7</th>
<th>Col8</th>
<th>Col9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td>0.9159</td>
<td>0.7997</td>
<td>0.7955</td>
<td>0.7492</td>
<td>0.7030</td>
<td>0.6514</td>
<td>0.6199</td>
<td>0.5535</td>
</tr>
<tr>
<td>2</td>
<td>0.9159</td>
<td>1.0000</td>
<td>0.9094</td>
<td>0.9092</td>
<td>0.8814</td>
<td>0.8322</td>
<td>0.7706</td>
<td>0.7059</td>
<td>0.6575</td>
</tr>
<tr>
<td>3</td>
<td>0.7997</td>
<td>0.9094</td>
<td>1.0000</td>
<td>0.9552</td>
<td>0.9241</td>
<td>0.9061</td>
<td>0.8439</td>
<td>0.8162</td>
<td>0.7687</td>
</tr>
<tr>
<td>4</td>
<td>0.7955</td>
<td>0.9092</td>
<td>0.9552</td>
<td>1.0000</td>
<td>0.9625</td>
<td>0.9294</td>
<td>0.8627</td>
<td>0.8209</td>
<td>0.7786</td>
</tr>
<tr>
<td>5</td>
<td>0.7492</td>
<td>0.8814</td>
<td>0.9241</td>
<td>0.9625</td>
<td>1.0000</td>
<td>0.9181</td>
<td>0.8487</td>
<td>0.8016</td>
<td>0.7779</td>
</tr>
<tr>
<td>6</td>
<td>0.7030</td>
<td>0.8322</td>
<td>0.9061</td>
<td>0.9294</td>
<td>0.9181</td>
<td>1.0000</td>
<td>0.9636</td>
<td>0.9275</td>
<td>0.8922</td>
</tr>
<tr>
<td>7</td>
<td>0.6514</td>
<td>0.7706</td>
<td>0.8439</td>
<td>0.8627</td>
<td>0.8487</td>
<td>0.9636</td>
<td>1.0000</td>
<td>0.9586</td>
<td>0.9174</td>
</tr>
<tr>
<td>8</td>
<td>0.6199</td>
<td>0.7059</td>
<td>0.8162</td>
<td>0.8209</td>
<td>0.8016</td>
<td>0.9275</td>
<td>0.9586</td>
<td>1.0000</td>
<td>0.9696</td>
</tr>
<tr>
<td>9</td>
<td>0.5535</td>
<td>0.6575</td>
<td>0.7687</td>
<td>0.7786</td>
<td>0.7779</td>
<td>0.8892</td>
<td>0.9174</td>
<td>0.9696</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN(1,1)</td>
<td>pigid</td>
<td>6.0874</td>
</tr>
<tr>
<td>UN(2,1)</td>
<td>pigid</td>
<td>6.3034</td>
</tr>
<tr>
<td>UN(2,2)</td>
<td>pigid</td>
<td>7.7814</td>
</tr>
<tr>
<td>UN(3,1)</td>
<td>pigid</td>
<td>6.9839</td>
</tr>
<tr>
<td>UN(3,2)</td>
<td>pigid</td>
<td>8.9799</td>
</tr>
<tr>
<td>UN(3,3)</td>
<td>pigid</td>
<td>12.5301</td>
</tr>
<tr>
<td>UN(4,1)</td>
<td>pigid</td>
<td>7.3257</td>
</tr>
<tr>
<td>UN(4,2)</td>
<td>pigid</td>
<td>9.4663</td>
</tr>
<tr>
<td>UN(4,3)</td>
<td>pigid</td>
<td>12.6195</td>
</tr>
<tr>
<td>UN(4,4)</td>
<td>pigid</td>
<td>13.9304</td>
</tr>
<tr>
<td>UN(5,1)</td>
<td>pigid</td>
<td>8.3686</td>
</tr>
<tr>
<td>UN(5,2)</td>
<td>pigid</td>
<td>11.1323</td>
</tr>
<tr>
<td>UN(5,3)</td>
<td>pigid</td>
<td>14.8097</td>
</tr>
<tr>
<td>UN(5,4)</td>
<td>pigid</td>
<td>16.2645</td>
</tr>
<tr>
<td>UN(5,5)</td>
<td>pigid</td>
<td>20.4982</td>
</tr>
<tr>
<td>UN(6,1)</td>
<td>pigid</td>
<td>7.7191</td>
</tr>
<tr>
<td>UN(6,2)</td>
<td>pigid</td>
<td>10.3316</td>
</tr>
<tr>
<td>UN(6,3)</td>
<td>pigid</td>
<td>14.2742</td>
</tr>
<tr>
<td>UN(6,4)</td>
<td>pigid</td>
<td>15.4377</td>
</tr>
<tr>
<td>UN(6,5)</td>
<td>pigid</td>
<td>18.5004</td>
</tr>
<tr>
<td>UN(6,6)</td>
<td>pigid</td>
<td>19.8076</td>
</tr>
<tr>
<td>UN(7,1)</td>
<td>pigid</td>
<td>8.0082</td>
</tr>
<tr>
<td>UN(7,2)</td>
<td>pigid</td>
<td>10.7106</td>
</tr>
<tr>
<td>UN(7,3)</td>
<td>pigid</td>
<td>14.8837</td>
</tr>
<tr>
<td>UN(7,4)</td>
<td>pigid</td>
<td>16.0439</td>
</tr>
<tr>
<td>UN(7,5)</td>
<td>pigid</td>
<td>19.1453</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN(7,6)</td>
<td>pigid</td>
<td>21.3687</td>
</tr>
<tr>
<td>UN(7,7)</td>
<td>pigid</td>
<td>24.8265</td>
</tr>
<tr>
<td>UN(8,1)</td>
<td>pigid</td>
<td>8.3285</td>
</tr>
<tr>
<td>UN(8,2)</td>
<td>pigid</td>
<td>10.7228</td>
</tr>
<tr>
<td>UN(8,3)</td>
<td>pigid</td>
<td>15.7317</td>
</tr>
<tr>
<td>UN(8,4)</td>
<td>pigid</td>
<td>16.6830</td>
</tr>
<tr>
<td>UN(8,5)</td>
<td>pigid</td>
<td>19.7611</td>
</tr>
<tr>
<td>UN(8,6)</td>
<td>pigid</td>
<td>22.4763</td>
</tr>
<tr>
<td>UN(8,7)</td>
<td>pigid</td>
<td>26.0095</td>
</tr>
<tr>
<td>UN(8,8)</td>
<td>pigid</td>
<td>29.6506</td>
</tr>
<tr>
<td>UN(9,1)</td>
<td>pigid</td>
<td>8.6762</td>
</tr>
<tr>
<td>UN(9,2)</td>
<td>pigid</td>
<td>11.6529</td>
</tr>
<tr>
<td>UN(9,3)</td>
<td>pigid</td>
<td>17.2869</td>
</tr>
<tr>
<td>UN(9,4)</td>
<td>pigid</td>
<td>18.4627</td>
</tr>
<tr>
<td>UN(9,5)</td>
<td>pigid</td>
<td>22.3767</td>
</tr>
<tr>
<td>UN(9,6)</td>
<td>pigid</td>
<td>25.1425</td>
</tr>
<tr>
<td>UN(9,7)</td>
<td>pigid</td>
<td>29.0419</td>
</tr>
<tr>
<td>UN(9,8)</td>
<td>pigid</td>
<td>33.5449</td>
</tr>
<tr>
<td>UN(9,9)</td>
<td>pigid</td>
<td>40.3657</td>
</tr>
</tbody>
</table>

Fit Statistics

-2 Res Log Likelihood: 1508.5
AIC (smaller is better): 1598.5
AICC (smaller is better): 1609.4
BIC (smaller is better): 1682.7

Null Model Likelihood Ratio Test

<table>
<thead>
<tr>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr &gt; ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>992.00</td>
<td>&lt;.0001</td>
</tr>
</tbody>
</table>

Solution for Fixed Effects

| Effect          | Estimate | Error  | DF | t Value | Pr > |t|  |
|-----------------|----------|--------|----|---------|-------|-----|
| Intercept       | 18.2569  | 0.3550 | 47 | 51.42   | <.0001|
| Time            | 6.8206   | 0.1378 | 47 | 49.51   | <.0001|
| TimeM3Plus      | -0.9817  | 0.1382 | 47 | -7.10   | <.0001|
The Mixed Procedure

Solution for Fixed Effects

| Effect    | Estimate | Error  | DF | t Value | Pr > |t| |
|-----------|----------|--------|----|---------|------|---|
| TimeM7Plus | 0.8287   | 0.2106 | 47 | 3.93    | 0.0003 |
| TimeM8Plus | -0.7680  | 0.2497 | 47 | -3.08   | 0.0035 |

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num</th>
<th>Den</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>47</td>
<td>2644.33</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Time</td>
<td>1</td>
<td>47</td>
<td>2451.09</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>TimeM3Plus</td>
<td>1</td>
<td>47</td>
<td>50.45</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>TimeM7Plus</td>
<td>1</td>
<td>47</td>
<td>15.48</td>
<td>0.0003</td>
</tr>
<tr>
<td>TimeM8Plus</td>
<td>1</td>
<td>47</td>
<td>9.46</td>
<td>0.0035</td>
</tr>
</tbody>
</table>

Again, we redefine **mixcomp** to allow comparison of models 10.16 and 10.15. The formulation of the likelihoods is slightly different in SAS and R, but our conclusion remains the same. We accept the null hypothesis model 10.16.

*p. 363, p-value;

```sas
%macro mixcomp;
ods trace on;
proc mixed ic data=pigspline;
ods output Mixed.InfoCrit=m1015;
class pigid;
model weight=Time TimeM2Plus TimeM3Plus TimeM4Plus TimeM5Plus TimeM6Plus TimeM7Plus TimeM8Plus/solution intercept;
repeated /subject=pigid type=UN rcorr=1;
run;
quit;
ods trace off;
ods listing;
ods trace on;
proc mixed ic data=pigspline;
ods output Mixed.InfoCrit=m1016;
class pigid;
model weight=Time TimeM3Plus TimeM7Plus TimeM8Plus/solution intercept;
repeated /subject=pigid type=UN rcorr=1;
run;
quit;
ods trace off;
ods listing;
data m1016;
set m1016;
m1016nll = Neg2LogLike;
```
Now we fit model 10.17 with proc mixed.
model weight=Time TimeM3Plus TimeM5Plus TimeM7Plus TimeM8Plus/solution intercept;
repeated /subject=pigid type=UN rcorr=1;
run;
quit;

The Mixed Procedure

Model Information

Data Set WORK.PIGSPLINE
Dependent Variable weight
Covariance Structure Unstructured
Subject Effect pigid
Estimation Method REML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class    Levels    Values
pigid        48    1 2 3 4 5 6 7 8 9 10 11 12 13
             14 15 16 17 18 19 20 21 22 23
             24 25 26 27 28 29 30 31 32 33
             34 35 36 37 38 39 40 41 42 43
             44 45 46 47 48

Dimensions

Covariance Parameters 45
Columns in X 6
Columns in Z 0
Subjects 48
Max Obs Per Subject 9

Number of Observations

Number of Observations Read 432
Number of Observations Used 432
Number of Observations Not Used 0

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Res Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2498.86400814</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1506.69623040</td>
<td>0.000000081</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1506.69593511</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Convergence criteria met.

Estimated R Correlation Matrix for pigid 1

<table>
<thead>
<tr>
<th>Row</th>
<th>Col1</th>
<th>Col2</th>
<th>Col3</th>
<th>Col4</th>
<th>Col5</th>
<th>Col6</th>
<th>Col7</th>
<th>Col8</th>
<th>Col9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td>0.9158</td>
<td>0.8002</td>
<td>0.7955</td>
<td>0.7491</td>
<td>0.7042</td>
<td>0.6545</td>
<td>0.6244</td>
<td>0.5571</td>
</tr>
<tr>
<td>2</td>
<td>0.9158</td>
<td>1.0000</td>
<td>0.9098</td>
<td>0.9086</td>
<td>0.8805</td>
<td>0.8334</td>
<td>0.7752</td>
<td>0.7118</td>
<td>0.6623</td>
</tr>
<tr>
<td>3</td>
<td>0.8002</td>
<td>0.9098</td>
<td>1.0000</td>
<td>0.9573</td>
<td>0.9273</td>
<td>0.9063</td>
<td>0.8433</td>
<td>0.8172</td>
<td>0.7693</td>
</tr>
<tr>
<td>4</td>
<td>0.7955</td>
<td>0.9086</td>
<td>0.9573</td>
<td>1.0000</td>
<td>0.9625</td>
<td>0.9322</td>
<td>0.8679</td>
<td>0.8284</td>
<td>0.7849</td>
</tr>
<tr>
<td>5</td>
<td>0.7491</td>
<td>0.8805</td>
<td>0.9273</td>
<td>0.9625</td>
<td>1.0000</td>
<td>0.9219</td>
<td>0.8546</td>
<td>0.8103</td>
<td>0.7854</td>
</tr>
<tr>
<td>6</td>
<td>0.7042</td>
<td>0.8334</td>
<td>0.9063</td>
<td>0.9322</td>
<td>0.9219</td>
<td>1.0000</td>
<td>0.9631</td>
<td>0.9284</td>
<td>0.8897</td>
</tr>
<tr>
<td>7</td>
<td>0.6545</td>
<td>0.7752</td>
<td>0.8433</td>
<td>0.8679</td>
<td>0.8546</td>
<td>0.9631</td>
<td>1.0000</td>
<td>0.9584</td>
<td>0.9169</td>
</tr>
<tr>
<td>8</td>
<td>0.6244</td>
<td>0.7118</td>
<td>0.8172</td>
<td>0.8284</td>
<td>0.8103</td>
<td>0.9284</td>
<td>0.9584</td>
<td>1.0000</td>
<td>0.9695</td>
</tr>
<tr>
<td>9</td>
<td>0.5571</td>
<td>0.6623</td>
<td>0.7693</td>
<td>0.7849</td>
<td>0.7854</td>
<td>0.8897</td>
<td>0.9169</td>
<td>0.9695</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN(1,1)</td>
<td>pigid</td>
<td>6.0869</td>
</tr>
<tr>
<td>UN(2,1)</td>
<td>pigid</td>
<td>6.2985</td>
</tr>
<tr>
<td>UN(2,2)</td>
<td>pigid</td>
<td>7.7710</td>
</tr>
<tr>
<td>UN(3,1)</td>
<td>pigid</td>
<td>7.0011</td>
</tr>
<tr>
<td>UN(3,2)</td>
<td>pigid</td>
<td>8.9940</td>
</tr>
<tr>
<td>UN(3,3)</td>
<td>pigid</td>
<td>12.5750</td>
</tr>
<tr>
<td>UN(4,1)</td>
<td>pigid</td>
<td>7.3242</td>
</tr>
<tr>
<td>UN(4,2)</td>
<td>pigid</td>
<td>9.4523</td>
</tr>
<tr>
<td>UN(4,3)</td>
<td>pigid</td>
<td>12.6686</td>
</tr>
<tr>
<td>UN(4,4)</td>
<td>pigid</td>
<td>13.9261</td>
</tr>
<tr>
<td>UN(5,1)</td>
<td>pigid</td>
<td>8.3671</td>
</tr>
<tr>
<td>UN(5,2)</td>
<td>pigid</td>
<td>11.1116</td>
</tr>
<tr>
<td>UN(5,3)</td>
<td>pigid</td>
<td>14.8872</td>
</tr>
<tr>
<td>UN(5,4)</td>
<td>pigid</td>
<td>16.2604</td>
</tr>
<tr>
<td>UN(5,5)</td>
<td>pigid</td>
<td>20.4959</td>
</tr>
<tr>
<td>UN(6,1)</td>
<td>pigid</td>
<td>7.7408</td>
</tr>
<tr>
<td>UN(6,2)</td>
<td>pigid</td>
<td>10.3518</td>
</tr>
<tr>
<td>UN(6,3)</td>
<td>pigid</td>
<td>14.3208</td>
</tr>
<tr>
<td>UN(6,4)</td>
<td>pigid</td>
<td>15.4998</td>
</tr>
<tr>
<td>UN(6,5)</td>
<td>pigid</td>
<td>18.5978</td>
</tr>
<tr>
<td>UN(6,6)</td>
<td>pigid</td>
<td>19.8540</td>
</tr>
<tr>
<td>UN(7,1)</td>
<td>pigid</td>
<td>8.0300</td>
</tr>
<tr>
<td>UN(7,2)</td>
<td>pigid</td>
<td>10.7454</td>
</tr>
<tr>
<td>UN(7,3)</td>
<td>pigid</td>
<td>14.8699</td>
</tr>
<tr>
<td>UN(7,4)</td>
<td>pigid</td>
<td>16.1063</td>
</tr>
<tr>
<td>UN(7,5)</td>
<td>pigid</td>
<td>19.2402</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN(7,6)</td>
<td>pigid</td>
<td>21.3397</td>
</tr>
<tr>
<td>UN(7,7)</td>
<td>pigid</td>
<td>24.7275</td>
</tr>
<tr>
<td>UN(8,1)</td>
<td>pigid</td>
<td>8.3645</td>
</tr>
<tr>
<td>UN(8,2)</td>
<td>pigid</td>
<td>10.7741</td>
</tr>
<tr>
<td>UN(8,3)</td>
<td>pigid</td>
<td>15.7352</td>
</tr>
<tr>
<td>UN(8,4)</td>
<td>pigid</td>
<td>16.7861</td>
</tr>
<tr>
<td>UN(8,5)</td>
<td>pigid</td>
<td>19.9191</td>
</tr>
<tr>
<td>UN(8,6)</td>
<td>pigid</td>
<td>22.4612</td>
</tr>
<tr>
<td>UN(8,7)</td>
<td>pigid</td>
<td>25.8763</td>
</tr>
<tr>
<td>UN(8,8)</td>
<td>pigid</td>
<td>29.4818</td>
</tr>
<tr>
<td>UN(9,1)</td>
<td>pigid</td>
<td>8.7145</td>
</tr>
<tr>
<td>UN(9,2)</td>
<td>pigid</td>
<td>11.7059</td>
</tr>
<tr>
<td>UN(9,3)</td>
<td>pigid</td>
<td>17.2970</td>
</tr>
<tr>
<td>UN(9,4)</td>
<td>pigid</td>
<td>18.5721</td>
</tr>
<tr>
<td>UN(9,5)</td>
<td>pigid</td>
<td>22.5447</td>
</tr>
<tr>
<td>UN(9,6)</td>
<td>pigid</td>
<td>25.1343</td>
</tr>
<tr>
<td>UN(9,7)</td>
<td>pigid</td>
<td>28.9077</td>
</tr>
<tr>
<td>UN(9,8)</td>
<td>pigid</td>
<td>33.3780</td>
</tr>
<tr>
<td>UN(9,9)</td>
<td>pigid</td>
<td>40.2014</td>
</tr>
</tbody>
</table>

Fit Statistics

-2 Res Log Likelihood          1506.7
AIC (smaller is better)        1596.7
AICC (smaller is better)       1607.6
BIC (smaller is better)        1680.9

Null Model Likelihood Ratio Test

<table>
<thead>
<tr>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr &gt; ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>992.17</td>
<td>&lt;.0001</td>
</tr>
</tbody>
</table>

Solution for Fixed Effects

| Effect     | Estimate  | Error | DF | t Value | Pr > |t|  |
|------------|-----------|-------|----|---------|-------|
| Intercept  | 18.1865   | 0.3572| 47 | 50.92   | <.0001|
| Time       | 6.8092    | 0.1379| 47 | 49.37   | <.0001|
| TimeM3Plus | -1.0997   | 0.1528| 47 | -7.20   | <.0001|
The Mixed Procedure

Solution for Fixed Effects

| Effect        | Estimate | Error  | DF  | t Value | Pr > |t| |
|---------------|----------|--------|-----|---------|------|---|
| TimeM5Plus    | 0.4067   | 0.2246 | 47  | 1.81    | 0.0766 |
| TimeM7Plus    | 0.5555   | 0.2591 | 47  | 2.14    | 0.0372 |
| TimeM8Plus    | -0.7888  | 0.2500 | 47  | -3.16   | 0.0028 |

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num</th>
<th>Den</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>47</td>
<td>2592.91</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Time</td>
<td>1</td>
<td>47</td>
<td>2437.72</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>TimeM3Plus</td>
<td>1</td>
<td>47</td>
<td>51.80</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>TimeM5Plus</td>
<td>1</td>
<td>47</td>
<td>3.28</td>
<td>0.0766</td>
</tr>
<tr>
<td>TimeM7Plus</td>
<td>1</td>
<td>47</td>
<td>4.60</td>
<td>0.0372</td>
</tr>
<tr>
<td>TimeM8Plus</td>
<td>1</td>
<td>47</td>
<td>9.96</td>
<td>0.0028</td>
</tr>
</tbody>
</table>

Again we redefine `mixcomp` to compare 10.17 and 10.16. We accept the null model 10.16 again.

*p 366, pvalue;
%macro mixcomp;
ods trace on;
proc mixed ic data=pigspline;
ods output Mixed.InfoCrit=m1017;
class pigid;
model weight=Time TimeM3Plus TimeM5Plus TimeM7Plus TimeM8Plus/solution intercept;
repeated /subject=pigid type=UN rcorr=1;
run;
quit;
ods trace off;
ods listing;

ods trace on;
proc mixed ic data=pigspline;
ods output Mixed.InfoCrit=m1016;
class pigid;
model weight=Time TimeM3Plus TimeM7Plus TimeM8Plus/solution intercept;
repeated /subject=pigid type=UN rcorr=1;
run;
quit;
ods trace off;
ods listing;

data m1016;
set m1016;
m1016nll = Neg2LogLike;
Now we fit model 10.16 with auto-regressive errors. This is a simple call to proc **mixed**. We change the **Type** option in repeated to be AR(1) instead of UN.

*p 367, Model 10.16 AR;*

```sas
proc mixed data=pigspline;
class pigid;
model weight=Time TimeM3Plus TimeM7Plus TimeM8Plus/solution intercept;
repeated /subject=pigid type=AR(1) rcorr=1;
run;
quit;
```
The Mixed Procedure

Model Information

Data Set                     WORK.PIGSPLINE
Dependent Variable           weight
Covariance Structure         Autoregressive
Subject Effect               pigid
Estimation Method            REML
Residual Variance Method     Profile
Fixed Effects SE Method      Model-Based
Degrees of Freedom Method    Between-Within

Class Level Information

Class  Levels  Values
      pigid  48  1 2 3 4 5 6 7 8 9 10 11 12 13
                            14 15 16 17 18 19 20 21 22 23
                            24 25 26 27 28 29 30 31 32 33
                            34 35 36 37 38 39 40 41 42 43
                            44 45 46 47 48

Dimensions

Covariance Parameters             2
Columns in X                      5
Columns in Z                      0
Subjects                         48
Max Obs Per Subject               9

Number of Observations

Number of Observations Read             432
Number of Observations Used             432
Number of Observations Not Used           0

Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Evaluations</th>
<th>-2 Res Log Like</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2500.51549032</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1663.73620919</td>
<td>0.00226685</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1662.63915646</td>
<td>0.00006578</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1662.60975631</td>
<td>0.00000005</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion
4 1 1662.60973365 0.00000000

Convergence criteria met.

Estimated R Correlation Matrix for pigid 1

<table>
<thead>
<tr>
<th>Row</th>
<th>Col1</th>
<th>Col2</th>
<th>Col3</th>
<th>Col4</th>
<th>Col5</th>
<th>Col6</th>
<th>Col7</th>
<th>Col8</th>
<th>Col9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td>0.9507</td>
<td>0.9037</td>
<td>0.8591</td>
<td>0.8167</td>
<td>0.7764</td>
<td>0.7381</td>
<td>0.7017</td>
<td>0.6671</td>
</tr>
<tr>
<td>2</td>
<td>0.9507</td>
<td>1.0000</td>
<td>0.9507</td>
<td>0.9037</td>
<td>0.8591</td>
<td>0.8167</td>
<td>0.7764</td>
<td>0.7381</td>
<td>0.7017</td>
</tr>
<tr>
<td>3</td>
<td>0.9037</td>
<td>0.9507</td>
<td>1.0000</td>
<td>0.9507</td>
<td>0.9037</td>
<td>0.8591</td>
<td>0.8167</td>
<td>0.7764</td>
<td>0.7381</td>
</tr>
<tr>
<td>4</td>
<td>0.8591</td>
<td>0.9037</td>
<td>0.9507</td>
<td>1.0000</td>
<td>0.9507</td>
<td>0.9037</td>
<td>0.8591</td>
<td>0.8167</td>
<td>0.7764</td>
</tr>
<tr>
<td>5</td>
<td>0.8167</td>
<td>0.8591</td>
<td>0.9037</td>
<td>0.9507</td>
<td>1.0000</td>
<td>0.9507</td>
<td>0.9037</td>
<td>0.8591</td>
<td>0.8167</td>
</tr>
<tr>
<td>6</td>
<td>0.7764</td>
<td>0.8167</td>
<td>0.8591</td>
<td>0.9037</td>
<td>0.9507</td>
<td>1.0000</td>
<td>0.9507</td>
<td>0.9037</td>
<td>0.8591</td>
</tr>
<tr>
<td>7</td>
<td>0.7381</td>
<td>0.7764</td>
<td>0.8167</td>
<td>0.8591</td>
<td>0.9037</td>
<td>0.9507</td>
<td>1.0000</td>
<td>0.9507</td>
<td>0.9037</td>
</tr>
<tr>
<td>8</td>
<td>0.7017</td>
<td>0.7381</td>
<td>0.7764</td>
<td>0.8167</td>
<td>0.8591</td>
<td>0.9037</td>
<td>0.9507</td>
<td>1.0000</td>
<td>0.9507</td>
</tr>
<tr>
<td>9</td>
<td>0.6671</td>
<td>0.7017</td>
<td>0.7381</td>
<td>0.7764</td>
<td>0.8167</td>
<td>0.8591</td>
<td>0.9037</td>
<td>0.9507</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Covariance Parameter Estimates

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(1)</td>
<td>pigid</td>
<td>0.9507</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>21.9377</td>
</tr>
</tbody>
</table>

Fit Statistics

-2 Res Log Likelihood 1662.6
AIC (smaller is better) 1666.6
AICC (smaller is better) 1666.6
BIC (smaller is better) 1670.4

Null Model Likelihood Ratio Test

<table>
<thead>
<tr>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr &gt; ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>837.91</td>
<td>&lt;.0001</td>
</tr>
</tbody>
</table>
The Mixed Procedure

Solution for Fixed Effects

Effect	Estimate	Error	DF	t Value	Pr >	t
Intercept	18.0755	0.7231	47	25.00	<.0001	
Time	6.9208	0.1483	380	46.66	<.0001	
TimeM3Plus	-1.0220	0.1857	380	-5.50	<.0001	
TimeM7Plus	0.9462	0.2401	380	3.94	<.0001	
TimeM8Plus	-0.9271	0.3040	380	-3.05	0.0025	

Type 3 Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num</th>
<th>Den</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>47</td>
<td>624.80</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Time</td>
<td>1</td>
<td>380</td>
<td>2177.41</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>TimeM3Plus</td>
<td>1</td>
<td>380</td>
<td>30.29</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>TimeM7Plus</td>
<td>1</td>
<td>380</td>
<td>15.53</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>TimeM8Plus</td>
<td>1</td>
<td>380</td>
<td>9.30</td>
<td>0.0025</td>
</tr>
</tbody>
</table>

We end chapter 10 by redefining mixcomp to compare the AR(1) version of model 10.16 with the unstructured covariance version of model 10.16.

*p 367, pvalue;
%macro mixcomp;
ods trace on;
proc mixed ic data=pigspline;
od output Mixed.InfoCrit=m1016AR;
class pigid;
model weight=Time TimeM3Plus TimeM7Plus TimeM8Plus/solution intercept;
repeated /subject=pigid type=AR(1) rcorr=1;
run;
quit;
od trace off;
od listing;
ods trace on;
proc mixed ic data=pigspline;
od output Mixed.InfoCrit=m1016;
class pigid;
model weight=Time TimeM3Plus TimeM7Plus TimeM8Plus/solution intercept;
repeated /subject=pigid type=UN rcorr=1;
run;
quit;
od trace off;
od listing;
data m1016;
set m1016;
m1016nll = Neg2LogLike;
order=1;
run;
quit;

data m1016AR;
set m1016AR;
m1016ARNll = Neg2LogLike;
order=1;
run;
quit;

proc sort data=m1016AR;
by order;
run;
quit;
proc sort data=m1016;
by order;
run;
quit;

data together;
merge m1016AR m1016;
by order;
run;
quit;

proc print data=together;
run;
quit;

data lrpval;
set together;
teststat = m1016ARNll-m1016nll;
pval = 1-probchi(teststat,45);
keep teststat pval;
run;
quit;

proc print data=lrpval;
run;
quit;
%mend;
%mixcomp;

    Obs    teststat       pval
    1      154.097    7.3386E-14