Childhood Welfare Exposure and Economic Outcomes for Adult Daughters and Sons*

Robert Paul Hartley School of Social Work, Columbia University New York, NY 10027, United States

Carlos Lamarche
Department of Economics, University of Kentucky
Lexington, KY 40506, United States

James P. Ziliak
Department of Economics, University of Kentucky
Lexington, KY 40506, United States

October 2025

Abstract: We investigate how length of time on welfare during childhood affects economic outcomes in early adulthood. Using intergenerationally linked mother-child pairs from the Panel Study of Income Dynamics, we adopt a nonlinear difference-in-differences framework to estimate average and quantile treatment effects on intensity of welfare use and earnings in adulthood. Additional childhood welfare exposure leads to more adulthood years on the broader safety net, yet this positive relationship only applies below moderate levels of dependency. The analysis also shows that increasing childhood welfare exposure implies lower earnings in adulthood for daughters, but not for sons. This earnings penalty for daughters from additional childhood welfare exposure operates primarily through reduced labor supply.

Keywords: intergenerational welfare; nonlinear difference-in-differences; quantile correlations; quantile treatment effects

^{*} Address correspondence to Robert Paul Hartley, 1255 Amsterdam Avenue, Room 710, New York, NY 10027; email: r.hartley@columbia.edu; phone: 212-853-7023.

I. Introduction

A longstanding concern among some scholars and policymakers is that prolonged exposure to welfare during childhood may alter tastes and expectations for work, and thus diminish human capital investments while young, resulting in low incomes and long-term dependence on assistance in adulthood (Banfield 1970; Murray 1984; Olasky 1992; Himmelfarb 1995). This concern underpinned much of the motivation behind the 1990s welfare reforms (DeParle 2004; Haskins 2007). While the typical spell on relief in the years before reform was under a year (Blank 1989; Moffitt 1992), nearly a quarter of total time on welfare was comprised of a small share of cases lasting over a decade, and one-half lasting four or more years (Blank 1997). This suggests that there might be important heterogeneity in adult economic outcomes depending on length of welfare exposure in childhood (Gottschalk and Moffitt 1994). With few exceptions, however, the intergenerational welfare transmission literature has focused primarily on the participation margin and not length of time on assistance (Duncan et al. 1988; Solon et al. 1988; Antel 1992; Gottschalk 1992, 1996; Levine and Zimmerman 1996; Pepper 2000; Hartley et al. 2022). Moreover, the literature has focused on outcomes for daughters despite the fact that daughters and sons share similar rates of childhood exposure to family participation. Because single parenthood is more common among women, differential gender expectations could imply different intergenerational welfare patterns, yet men may also experience long-term economic effects from childhood exposure. In this paper, we use recent methodological advances in conjunction with welfare reform to present novel evidence on the heterogeneous effects of the intensity of childhood welfare exposure on the distributions of adult economic outcomes of both daughters and sons.¹

The prototypical approach in the welfare transmission literature is modeled on the economic mobility research pioneered by Becker and Tomes (1979) whereby the child's welfare participation in adulthood is regressed on their parent's welfare participation when the child was living at home, with the coefficient on the parent's welfare indicator yielding

_

¹ See Bitler et al. (2006), Kline and Tartari (2016), and Hartley and Lamarche (2018) for research examining the contemporaneous heterogeneous effects of welfare reform on adult women's earnings.

the intergenerational welfare correlation. The evidence from the 1980s and 1990s literature strongly pointed toward a positive correlation, meaning that a child exposed to welfare is more likely to participate as an adult relative to a child not exposed. However, there was no consensus on whether this relationship was causally linked, that is, the parent transmits program knowledge and use across generations, or just spurious because both parent and child generations have low incomes and are thus eligible for assistance. Disentangling these two pathways is challenging because of potential endogeneity of the parent's welfare decision owing to shared unobservable factors across generations (Lindbeck et al. 1999; Durlauf and Shaorshadze 2014). Recently, Hartley et al. (2022) leveraged the welfare reforms of the 1990s that replaced the Aid to Families with Dependent Children (AFDC) program with Temporary Assistance to Needy Families (TANF) to implement a differencein-differences estimator to identify a transmission channel from mother to daughter. They found that mother's AFDC use increased AFDC participation of the daughter later in adulthood by at least 25 percentage points, but that intergenerational transmission fell by 50 percent under TANF relative to the pre-reform baseline. At the same time, they found no diminution in dependence on the wider social safety net, nor improved earnings in adulthood. Like most of the extant literature, Hartley et al. (2022) focused on the extensivemargin welfare participation and work decisions of daughters.

We advance the welfare transmission literature in four directions. First, instead of focusing on whether families received welfare, we examine the duration of participation in both childhood and adulthood. This permits us to study the intergenerational effects of growing up in households with short-term versus long-term welfare reliance on the intensity of duration in adult participation. It is well established that families cycle on and off welfare during adulthood (Bane and Ellwood 1994; Blank and Ruggles 1996). This implies that a dichotomous indicator of currently on welfare can miss some of the longer-term exposure to welfare during childhood from families moving on and off assistance during key stages of child development (Gottschalk and Moffitt 1994). Despite this, few studies have applied measures of total time on welfare to generational contexts, and those that have are decades old, based solely on the former AFDC program, and with limited

years of observing children in adulthood (Duncan et al. 1988; Gottschalk 1992; Pepper 2000).

The present study is the first to empirically address the intensity of welfare participation as continuous outcomes in each generation, leveraging the variation offered by the 1990s welfare reforms. The TANF program is vastly different from AFDC in that it is not an entitlement program, it has binding work requirements and time limits for most adults on the program, and it imposes stiff sanctions for failing to meet program rules, often resulting in removal of benefits for either or both the parents and children (Moffitt 2003; Grogger and Karoly 2005; Ziliak 2016). These program reforms were designed to limit time on welfare, and thus it is possible that the distribution of childhood time spent on the program has shifted post reform along with the corresponding distribution of adulthood time on welfare. We focus on the childhood exposure measure of the proportion of time on AFDC/TANF because the 1990s reform period offers a clean policy change that is directly related to whether families participate and for how long if they do participate. For our main welfare outcome in adulthood, we rely on adult participation in the broader safety net cash assistance from AFDC/TANF, food assistance from the Supplemental Nutrition Assistance Program (SNAP), or disability assistance from Supplemental Security Income (SSI). In the post-reform era, SNAP has become a work support for economically vulnerable families in low-wage jobs (see Ziliak 2015; Ganong and Liebman 2018; Hardy et al. 2018), and child disability cases on SSI grew rapidly in the 1990s, some of whom age out of the program after age 18 (Kubik 1997; Schmidt and Sevak 2004; Deshpande 2016).² Since welfare reform shifted AFDC/TANF participation, our outcomes address welfare dependence in government assistance broadly across these means-tested programs.

A second advance to the literature is that we move beyond second-generation welfare use to also examine how the share of childhood spent on welfare affects the distribution of earnings in adulthood, while also providing first estimates of welfare exposure impacts on next-generation hourly wages and labor supply. A major thrust of

_

² Because welfare reform was directed primarily at the AFDC program, and not SNAP or SSI per se, we focus on exposure to AFDC/TANF in childhood as the continuous treatment variable. In the online supplement we also examine exposure to broader welfare programs, and welfare as a share of total income.

welfare reform was toward economic self-sufficiency by redirecting the social safety net to a work-based system using both carrots such as implicit wage subsidies from programs like the Earned Income Tax Credit as well as sticks like work requirements and time limits for means-tested cash assistance. Thus, we explore dependence in terms of self-sufficiency through earnings as a percent of the federal poverty level in early adulthood. We also decompose earnings into its component parts of hourly wage rates and hours worked in the labor market, both conditional on employment as well as unconditionally to capture extensive-margin effects of moving in and out of the labor force.

The third contribution is that we compare daughters and sons who may have had similar childhood exposures but different long-run trajectories. Generational outcomes among men are typically not included in most studies on AFDC/TANF because singlemother families comprise the vast majority of cases. However, there is no reason to expect that sons would have childhood exposure to welfare different from daughters. Moreover, there is more gender parity in terms of early adult participation in other safety net programs like SNAP and SSI, allowing us to address new questions on the efficacy of welfare reform. Indeed, while in a typical year about 90 percent of TANF adults are women (Lichtman-Sadot 2024), nearly 40 percent of nonelderly adults on SNAP are men (Cronquist and Eiffes 2022) and this share is just over 45 percent among adults on SSI (Messel and Trenkamp 2022). If childhood welfare exposure leads to greater participation in the broader safety net in adulthood because of expectations of future eligibility for cash assistance, then daughters' earnings may be more dependent than sons' given their differential probabilities to become single custodial parents. Welfare reform in that case would be expected to weaken the influence of welfare exposure on earnings especially among daughters at the lower end of the earnings distribution, both from an eligibility standpoint as well as via the role of work-conditioned assistance under TANF. For sons, the effect of welfare reform might be more ambiguous, and any implications of intergenerational dependence related to earnings may suggest new considerations for effective income support policy. Recent evidence from Lichtman-Sadot (2024) suggests that male labor supply responded to the introduction of welfare time limits, and we extend that work to the intergenerational setting.

Our fourth advance to the literature is the application of recent methods for continuous outcomes in the setting of welfare participation and self-sufficiency. We first adopt a quantile approach from Li et al. (2015), here used to describe the correlation along different points in the individual's outcome distribution in early adulthood relative to the fraction of time during childhood on AFDC/TANF. We separate the samples into pre- and post-welfare reform eras to describe potential changes in correlation patterns across periods. We then move beyond correlations to causally identify the intergenerational effect of childhood welfare exposure taking advantage of the 1990s welfare reforms. We implement the approach developed by D'Haultfœuille et al. (2023) for identification and estimation of the heterogeneous effect of our continuous endogenous treatment, exposure to AFDC/TANF in childhood. This estimator is used to measure the impact of additional AFDC/TANF exposure as a potential welfare trap separately from the concept of a poverty trap where early life disadvantages persist into lesser opportunities in adulthood. Rather than testing the validity of instruments in a regression model, or parallel trends in a standard difference-in-differences framework, identification for this estimator primarily relies on a test whether the cumulative distribution functions of welfare exposure cross before and after reform. We verify this crossing condition holds for children spending less than onequarter of childhood on AFDC/TANF. The distributional similarity for children with lowintensity exposure before and after reform allows estimation of a common time trend used to construct a counterfactual distribution over the range of differences. In this sense, time serves as an instrument given exogenously induced changes from welfare reform.

Using the Panel Study of Income Dynamics (PSID) with repeated cross-sections before and after welfare reform, we find that intergenerational quantile correlations follow similar patterns for both daughters and sons with the exception that sons have lower extensive-margin participation in the broader safety net, the latter consistent with greater lone-parenthood of women. More daughters and sons have positive quantile correlations post reform because of secular increases in participation, largely driven by SNAP, yet the correlation falls by at least one-third after reform at the highest quantiles of adult welfare participation. Childhood welfare exposure is correlated with larger earnings penalties

toward the lower tail of the earnings distribution, and these negative correlations likewise fall by about one-third after reform to magnitudes closer to those in the upper earnings distribution before reform, still significantly negative.

The nonlinear difference-in-differences estimates imply that childhood welfare exposure leads both daughters and sons to participate more in the broader safety net among those with lower intensities of adult participation, yet the effect declines with intensity, and actually becomes negative for adults with the highest levels of broader safety net participation. An additional percentage point of childhood exposure leads to an equal point increase in time on welfare as an adult in the first decile for both daughters and sons, but this effect size falls to zero for daughters and 0.6 for sons at the median, and then to -0.6 for daughters and -0.4 for sons at the 90th percentile of the adult distribution of time on the broader safety net. The implication is that as welfare reform reduced childhood exposure, adulthood time on assistance decreased among daughters and sons who spent relatively less of their early adulthood years in the wider safety net. However, time on assistance increased among daughters and sons who spent much of their young adulthood in the broader safety net, and in particular, among daughters growing up under chronic levels of childhood exposure.

The estimates of childhood welfare exposure effects on earnings reveal greater gender differences. Daughters experience large and significant earnings penalties for those with relatively lower adult earnings, with the adult earnings relative to the federal poverty level falling one to two points for each percentage point increase in childhood exposure. However, we find no significant earnings penalties for sons across the distribution. Decomposing earnings into its wage and hours components reveals that sons do not experience any negative effects from childhood welfare exposure on wages or hours, while daughters experience an hours penalty from childhood welfare exposure. There is some suggestive evidence of a wage penalty for daughters once we allow for spells of nonemployment, consistent with the importance of experience effects (Blundell et al. 2016). Again, the implication of welfare reform with its reduced childhood exposure is that

daughters' earnings and hours appear to be boosted after reform among those in the bottom half of the earnings distribution.

Our work is complementary to, but distinct from, a burgeoning literature examining the long-term consequences of access to the safety net when young (Page 2024). This includes research on human capital investments from the Head Start program (Deming 2009); food assistance from the Food Stamp Program (Hoynes et al. 2016; Bailey et al. 2024); housing assistance from vouchers (Chetty et al. 2016); health insurance from Medicaid (Miller and Wherry 2019; East et al. 2023); refundable tax credits from the Earned Income Tax Credit (Bastian and Michelmore 2018; Barr et al. 2022); cash assistance from the precursor to the AFDC program (Aizer et al. 2016); and disability assistance from SSI (Hawkins et al. 2024). Most, but not all, of these papers define welfare exposure as the percent of time in childhood (or age ranges of childhood) eligible for the program, but not actual receipt. That is, the parameter of interest is the intent-to-treat, whereas we seek to identify the treatment-on-the treated. Some of the studies present estimates for both daughters and sons, as we do here, but a key distinction also lies with our focus on distributional outcomes in the intergenerational context.

In the remainder of the paper, we first provide a brief background on welfare reform and the potential pathways for welfare dependence in Section II. In Section III, we describe the methods for estimating quantile correlations and present the evidence on how those distributional correlations have changed pre- and post-welfare reform. Section IV presents an overview of estimating average and quantile treatment effects with a continuous treatment, leveraging welfare reform as our source of identification. Section V contains our main empirical results. Section VI discusses potential mechanisms and offers evidence about the robustness of our results to a variety of specifications, including the inclusion of survey weights, changes in the definition of early adulthood, sample attrition, and misclassification error. Section VII concludes. Further evidence is provided in an online supplement, as referenced throughout.

³ See Dahl et al. (2014) and Dahl and Giehlen (2021) for related research on the causal transmission of disability insurance across generations in Norway and The Netherlands, respectively.

II. Welfare Reform and Parental Influence on Daughters and Sons

The political demand for welfare reform grew from rising caseloads and an effort to return decision-making power to state policymakers (DeParle 2004; Haskins 2007). During the 1990s, welfare reform thus began as a series of state-level waivers from the federal rules of AFDC governing who was eligible for assistance and for how long, which culminated in the passage of the Personal Responsibility and Work Opportunity Reconciliation Act (PRWORA) in 1996, introducing TANF as the new program for cash assistance. Arguably the most salient aspect of welfare reform to affect childhood exposure is time limits. Eligibility for the former AFDC program required low income and asset levels, and the presence of a dependent child under age 18. There was no cap on the number of years of assistance provided those criteria were met, which opened the possibility of long spells on assistance, and the prospect of multigenerational "welfare dynasties". The intent of time limits was to interrupt those processes, with the federal lifetime limit set at no more than five years of cash assistance (conditional on meeting other eligibility criteria). However, about one-half of states deviated from the federal rules, with most opting to shorten the lifetime limit — some as low as two years — and others imposing intermittent time limits such as no more than two years in any five-year interval.⁴

These time limits did not operate in isolation to reduce the duration of childhood exposure as TANF also initiated the first binding work requirements for non-disabled custodial parents, and failure to meet these requirements often resulted in sanctioning of the benefit, which in some states included removal of the entire family from the caseload. While the economic upswing of the late 1990s explained much of the initial caseload reductions (Ziliak et al. 2000), work requirements, sanctions, and particularly time-limited assistance all contributed to steep declines in cross-sectional participation (Moffitt 2003; Grogger and Karoly 2005; Ziliak 2016). Participation in the TANF program never rebounded in size from its initial fall —over 7 in 10 children whose family incomes fell

⁴ Time limits only affect federal assistance, and a few states opted to use state funds to provide assistance beyond the federal limit. In addition, the time limit only applies to the adult on the case, and thus so-called child-only cases are not subject to the limit.

below the poverty line were served by AFDC, but that plummeted to just over 2 in 10 two decades later under TANF (Bitler and Hoynes 2016).

Theoretical models of intergenerational transmission such as in Lindbeck et al. (1999), as well as the formation of dynastic poverty traps discussed in Durlauf and Shaorshadze (2014), suggest that attitudes and social norms around work and public assistance are likely to be most affected by long spells of exposure in childhood. This suggests that standard dichotomous measures of participation are unlikely to capture notions of dependence at the core of these models, as well as at the fore of policymakers' thinking on welfare reform when designing time limits and work requirements. Gottschalk and Moffitt (1994) were early proponents of more continuous measures of welfare participation. Specifically, they recommended using the number of time periods over a fixed time interval, or the amount of transfer income as a proportion of total income over a given interval. We refer to these measures as the proportion of time on (PTO) welfare and the percent of total income (PTI) from welfare. Since welfare reforms in the 1990s primarily targeted time spent on welfare instead of benefit generosity per se, we focus on the PTO measure of childhood exposure. Further, if the long-run effects of cash welfare participation are related more to program-specific exposure to AFDC/TANF instead of the dollar value of transfers, then PTO is again the more salient measure.⁵

To fix ideas, in Figure 1 we present the time series of childhood PTO for adult cohorts from survey years 1975 to 2019 using data from the PSID linking family histories from childhood years into early adulthood. Our sample includes families from both the PSID core Survey Research Center (SRC) subsample, as well as the Survey of Economic Opportunity (SEO) subsample with an oversample of low-income families and those racialized as Black.⁶ For our intergenerational setting, we define the observation time period by age intervals in childhood and early adulthood. Childhood AFDC/TANF

⁵ Most states left nominal welfare benefits unchanged, though about 20 states implemented a policy known as a "family cap" whereby the size of the monthly benefit was capped beyond a certain number of dependents, usually three (Ziliak 2016). As discussed later, we show evidence related to PTI from welfare in Section S.2 of the online supplement.

⁶In Section VI.C.1, we examine the robustness of our main results to the inclusion of PSID sample weights.

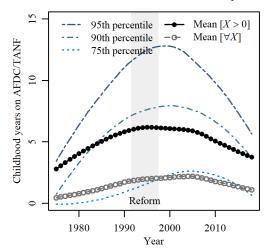


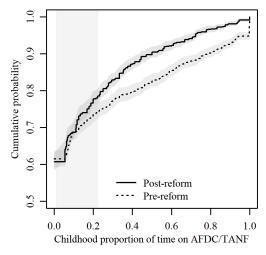
Figure 1. Trends in Childhood AFDC/TANF Years of Exposure, by Adult Cohorts

Note: Estimates are conditional on observing at least five years during childhood and correspond to current years for rolling cohorts of adults aged 19 to 27. The variable *X* denotes years of childhood exposure, and the percentiles correspond to the unconditional distribution of childhood years. PSID longitudinal sample weights are used in estimation.

exposure may influence long-run outcomes through early development channels or potentially through learning about program access and expected returns on investing in labor market skills. Early adulthood is an economically volatile time period because of the higher probability of unstable income and experiencing a first childbirth, which correlates with means-tested program participation. For childhood, we use the mother's AFDC/TANF participation from the child's birth through age 18 and not yet an adult (by forming a separate family unit or by childbirth). We require at least 5 years of observations during childhood. Early adulthood corresponds to ages 19 to 27 when the child has formed their own family unit, and we require at least 3 years of data in adulthood. The online supplement offers a detailed description of the data, with summary statistics shown in Table S.1.

Figure 1 shows that on average individuals in early adulthood in 1975 had spent about 3 years of childhood on AFDC conditional on any receipt, or about half of a year unconditionally (i.e., including both participants and nonparticipants). By the first full year of welfare waivers in 1993, the conditional mean exposure rose above 6 years, and about 2 years unconditionally. Twenty years after PRWORA, these means for childhood exposure to TANF fell back to around 4 years conditional on any receipt, or 1 year unconditionally.

The figure suggests a significant retrenchment in average childhood exposure to cash welfare from AFDC/TANF in the years after welfare reform. A shortcoming of the average PTO exposure is that it does not capture potential heterogeneity in welfare exposure, which may translate into stronger or weaker long-run dependence intergenerationally. Thus, in Figure 1 we also present the 75th and 95th percentiles of the childhood PTO AFDC/TANF distribution where we see steeper changes occurring at higher ranks in the distribution. The 95th percentile of childhood exposure over this period moved from 4 years in 1975 to a peak of 14 years and back down to 6 years in 2018. It was this right tail of long childhood spells that animated much of the policy debate surrounding welfare reform, and below we provide the first causal evidence of welfare transmission in the tails.


Given the changing trends in welfare exposure after the 1990s reforms, we focus the remainder of our analysis on time periods observing both generations either before or after the welfare reform era of 1990s waivers from AFDC through the transition to TANF in 1996. The pre-reform sample corresponds to early adult observations by age 27 within the years 1986 to 1992, and the post-reform sample to adult observations within 2008 to 2018. All sample individuals are observed within either the pre-reform or post-reform era for at least 5 years during childhood ages 12 to 18, a time period where "welfare learning" is likely most acute (Hartley et al. 2022), and about 75 percent of those in the post-reform are age 8 or younger at the time of reform. Childhood exposure is still defined as mother's AFDC/TANF participation when the child is under age 19 and not yet an adult, while in adulthood we examine a PTO measure for participation in means-tested programs more broadly (AFDC/TANF, SNAP, or SSI), as well as the ratio of family earnings to the federal poverty level (FPL) — so-called earnings to needs. These variables are sample averages obtained from the first year as an adult up to age 27. Our estimation samples include 703

_

⁷ By limiting the sample to those years before welfare waivers were introduced for the pre-reform period, and to those years after all states implemented TANF for the post-reform years, we avoid complications associated with staggered timing of welfare reform implementation across states and over time highlighted in the work of Goodman-Bacon (2021) and Callaway and Sant'Anna (2021).

⁸ Figure S.1 in the online supplement shows the ages of the post-reform sample at the time of state implementation, as well as the distribution of these individuals' childhoods under time limits by type.

Figure 2. Empirical Cumulative Distribution Function for Childhood Proportion of Time On AFDC/TANF, by Welfare Regime

Note: The shaded regions of childhood PTO AFDC/TANF values from 0.01 to 0.225 and 0.99 to 1 highlight distribution crossing regions. Pointwise 90-percent confidence intervals are shown. The shaded area denotes childhood observations with overlapping distributions.

mother-daughter pairs before welfare reform and 615 after reform, and there are 547 mother-son pairs before reform and 464 after reform.⁹

In Figure 2, we compare the empirical cumulative distribution functions (CDFs) for childhood PTO AFDC/TANF by welfare reform regime. For positive welfare exposure spanning around one-quarter of childhood and lower, the distributions appear similar prereform and post-reform with evidence of the distributions crossing in areas of equivalence. Distributional differences become evident above one-quarter of childhood on AFDC/TANF. The higher CDF post-reform is expected if welfare reform implies less participation because each point on the curve indicates the probability that childhood exposure was less than a given proportion of time on TANF. For example, the evidence implies that 17.1 percent of children were exposed to AFDC for more than half of their

and possible sample attrition.

_

⁹ See descriptive statistics in Table S.1 in the online supplement. Note that there are more daughters in our sample than sons. This discrepancy is partly addressed by sample weights suggesting that there are differences by attrition, and there are also gender differences in meeting our sample restrictions by the number of years observed as an adult having formed a new family by moving out or childbirth. In the supplement, and discussed in Section VI.C, we provide evidence that our main results are robust to both sample weights

childhood in the pre-reform era compared to 9.5 percent exposed to TANF for more than half of their childhood in the post-reform era.

Figures 1 and 2 reveal significant changes in childhood exposure by welfare regime, which motivates our analysis of the relative impacts of these changes on intergenerational dependence and economic status. In Section IV below, we describe how we leverage the distributional similarity highlighted in Figure 2 to identify the intergenerational effect of childhood welfare exposure within a nonlinear difference-in-differences framework. We first, however, present descriptive intergenerational quantile correlations in the next section.

III. Intergenerational Quantile Correlations for Daughters and Sons

Welfare reform, by design, aims to restrict long-term participation in adulthood through time limits and discourages short-term participation through work requirements, and therefore, simple correlations between mean exposure during childhood and adulthood outcomes are not informative to understand whether the reform had its intended effects. In recent years, more informative measures of dependence have been proposed, including ranks, quantile correlations, and correlations at the tails (see Dahl and DeLeire 2008; Chetty et al. 2014; Li et al. 2015; Han et al. 2016; Chetty and Hendren 2018; Mogstad and Torsvik 2023). In this section, we present novel intergenerational quantile correlations between childhood PTO AFDC/TANF and economic outcomes in early adulthood.

We consider a correlation coefficient that measures the association between childhood exposure and the event that an adult measure crosses its marginal τ -th quantile. For instance, if the interest is on exposure and greater-intensity adult welfare outcomes, say at the 90th percentile, the parameter measures the intergenerational correlation between childhood PTO AFDC/TANF and adulthood PTO AFDC/TANF, SNAP, or SSI that ranks at the 90th percentile of adult participation. Likewise, if the interest is on exposure and lesser-intensity adult outcomes, say at the 10th percentile, the parameter measures the intergenerational correlation between childhood PTO AFDC/TANF and adulthood PTO AFDC/TANF, SNAP, or SSI that ranks at the 10th percentile of welfare use. A similar

mapping applies when considering the correlation between childhood PTO AFDC/TANF and earnings to needs in adulthood.

The quantile correlation coefficient is defined as

$$\varphi_{\tau}(Y,X) = \frac{\text{cov}_{\tau}(I(Y > Q_{Y}(\tau)), X)}{\sqrt{\tau(1-\tau)\sigma_{x}^{2}}} = \frac{E[\psi_{\tau}(Y - Q_{Y}(\tau))(X - E[X])]}{\sqrt{\tau(1-\tau)\sigma_{x}^{2}}},$$
 (1)

where childhood PTO AFDC/TANF is denoted by X, and the variable $I(Y > Q_Y(\tau))$ is an indicator variable that equals 1 if the early adulthood variable Y is greater than its τ -th quantile, $Q_Y(\tau)$. The parameter σ_X^2 is the variance of X, the function $\psi_\tau(u) = \tau - I(u < 0)$ is the quantile regression score function, and $\tau \in (0,1)$. To estimate the parameter in (1), we use a sample of pairs $\{(Y_i, X_i): i: 1, 2, ..., n\}$ and adopt the estimator proposed in Li et al. (2015),

$$\hat{\varphi}_{\tau}(Y,X) = \frac{1}{\sqrt{\tau(1-\tau)\hat{\sigma}_{x}^{2}}} \frac{1}{n} \sum_{i=1}^{n} \psi_{\tau} \left(Y_{i} - \hat{Q}_{Y}(\tau) \right) (X_{i} - \bar{X}), \tag{2}$$

where the sample mean $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$, the sample variance $\hat{\sigma}_x^2 = n^{-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$, and the empirical quantile function $\hat{Q}_Y(\tau) = \inf\{y: F_n(y) \ge \tau\}$, with $F_n(y) = n^{-1} \sum_{i=1}^{n} I(Y_i \le y)$. We use the generalized bootstrap procedure proposed by Hartley et al. (2023) to construct confidence intervals for the estimator in (2).

Figure 3 illustrates how childhood AFDC/TANF exposure correlates with the event that adult wider safety net participation or earnings-to-needs is higher than a given level determined by the unconditional quantile $Q_Y(\tau)$ of the adult variable. The figure contrasts pre- and post-welfare reform estimates between childhood PTO AFDC/TANF and adulthood PTO AFDC/TANF, SNAP, or SSI in panels A and B, and adult earnings-to-needs ratios in panels C and D. Results for daughters are shown in the left two panels and results for sons shown on the right. The estimates are obtained from equation (2) and displayed at each quantile τ . Thus, the horizontal axis corresponds to the distribution of the child's outcome as an adult, as indicated by each panel subtitle by outcome and child's gender, and

15

¹⁰ The quantile of *Y* is defined as $Q_Y(\tau) := \inf\{y : F_Y(y) \ge \tau\}$, where the cumulative distribution is denoted by F_Y . As expected, the quantile correlation parameter is bounded, $-1 \le \varphi_\tau(Y, X) \le 1$, and it is equal to zero if *Y* and *X* are independent.

A. Adult Daughters PTO AFDC/TANF, SNAP, or SSI B. Adult Sons PTO AFDC/TANF, SNAP, or SSI 9.0 Pre-reform Pre-reform 0.5 Post-reform 0.5 Post-reform Quantile correlation Quantile correlation 0.4 0.3 0.4 0.3 0.2 0.1 0.0 0.0 0.2 0.2 0.4 0.6 0.8 0.4 0.6 0.8 C. Adult Daughters Earnings-to-Needs Ratio D. Adult Sons Earnings-to-Needs Ratio -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.0 Pre-reform Pre-reform -0.5 -0.4 -0.3 -0.2 -0.1 Post-reform Post-reform Quantile correlation Quantile correlation

Figure 3. Quantile Correlations of Proportion of Time On Childhood AFDC/TANF Exposure and Early Adulthood Outcomes, by Welfare Regime

Note: The child's early adulthood outcome is indicated by each panel heading. These quantile correlations are estimated unconditionally and without PSID sample weights, and 90-percent confidence intervals are shown based on 1000 bootstrap replications.

0.0

0.2

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

the vertical axis corresponds to the strength of quantile correlation with childhood welfare exposure. ¹¹ The shaded area around the point estimates represents a 90-percent pointwise confidence interval obtained after 1000 bootstrap repetitions. ¹²

Panel A in Figure 3 shows that, for daughters, the correlation coefficient for the prereform period rises from 0.44 at the 0.57 quantile of adult welfare participation to 0.49 at the 0.9 quantile. We continue to observe a slight upward slope of the correlation coefficient across quantiles in the period after reform, but the correlation sharply decreases by about one-third from 0.44 to 0.29 at the 0.57 quantile and from 0.49 to 0.35 at the 0.9 quantile.

¹¹ These estimates do not use PSID sample weights so that the comparisons between distributions and quantile correlations are more straightforward; some of the percentages may overstate participation given oversamples of lower-income families.

¹² The online supplement presents quantile correlations for PTO versus PTI measures of welfare exposure as well as total family income relative to the FPL in Figures S.2 and S.3.

Interestingly, there is a shift toward more extensive-margin participation in the broader safety net among adult daughters after reform, despite a decrease in the magnitude of quantile correlations. Specifically, there is zero correlation for the lower 56 percent of the sample pre-reform, which falls to 43 percent post-reform because more adult daughters participate at some point in the broader safety net. ¹³ Both can be true if participation in the broader safety net increases secularly despite decreasing associations between participation intensity and means-tested cash assistance from AFDC/TANF in the prior generation. Supplement Figure S.4 suggests that this decrease in the zero correlation comes from greater participation in SNAP and SSI, as the extensive margin participation in AFDC/TANF fell after welfare reform, consistent with Hartley et al. (2022).

As shown in panel B, the intergenerational correlations for sons experience similar shifts across quantiles. At the highest quantiles, the correlations for sons are around 0.4 pre-reform and 0.3 post-reform, similar to levels for daughters except that sons' correlation magnitudes fade at higher intensities of adult welfare participation and daughters' slightly rise. In another similarity, sons are more likely to have any welfare participation post-reform despite slightly lower levels of correlation with childhood exposure. Note that finding similar correlations across quantiles before and after reform does not imply similar distributions of outcomes between daughters and sons. In fact, they differ substantially. For example, Table S.1 in the online supplement shows that the 90th percentile of PTO for the broader safety net implies different intensities of participation. Daughters at the 90th percentile are observed 88 percent of adult years with AFDC/TANF, SNAP, or SSI before welfare reform, and 100 percent after reform. Sons are less likely to participate at such intense levels overall: 67 percent before reform at the 90th percentile and 78 percent after.

Panel C of Figure 3 shows that before welfare reform the earnings of adult daughters had stronger correlations with childhood welfare exposure when adult earnings were below the 30th percentile of the distribution, with quantile correlation estimates around -0.48. For earnings quantiles higher than 0.3, the correlations linearly decrease in

¹³ If $\hat{Q}_Y(\tau) = 0$, the coefficient $\hat{\varphi}_\tau(Y, X) = 0$, because $n^{-1} \sum_{i=1}^n \psi_\tau(Y_i - 0)(X_i - \bar{X}) = \tau n^{-1} \sum_{i=1}^n (X_i - \bar{X}) = 0$. Consistent with this finding, Table S.1 in the online supplement shows that the 50th percentile of PTO AFDC/TANF, SNAP, or SSI is 0.0 before reform, and 0.2 after reform.

magnitude toward a correlation of -0.18 at the 0.9 quantile. After welfare reform, the quantile correlations for daughters' earnings became much flatter at around -0.3 in the bottom half of the distribution up to a correlation at the top of the distribution approximately the same as in the pre-reform era. That is, the stronger association between low-earning daughters and childhood welfare descriptively evens out after reform with the levels of association seen for those with higher earnings; however, a correlation of -0.2 between adult earnings and childhood welfare is still economically significant.

In Figure 3 panel D, the association between sons' earnings and their childhood welfare exposure is again similar to that of daughters' earnings. If anything, correlations for sons exhibit the largest magnitude of association with childhood exposure around the 0.2 quantile of earnings with somewhat weaker associations at the 0.1 quantile, yet the trends across these distributions nearly overlay one another comparing sons to daughters. Again, the underlying levels of distributions differ, as seen in Table S.1. In the pre-reform era, sons in the lower quarter of the distribution of earnings had at least 30 percent higher earnings-to-needs ratios relative to daughters, yet this gap disappeared after welfare reform, with the possible exception for sons around the 10th percentile.

Comparing these quantile correlations to intergenerational elasticities at the means of the sample (Table S.2), the descriptive evidence implies general similarities between daughters' and sons' intergenerational associations with economic status and childhood welfare exposure. ¹⁴ However, the quantile correlations offer a broader view. After welfare reform, means-tested assistance became more prevalent on the extensive margin for both daughters and sons, with weaker intergenerational correlations across quantiles for those with any participation. Daughters and sons both experienced an improvement in terms of the negative association of childhood welfare exposure on adult earnings in the post-reform period, and the most important changes were among families with the lowest earnings-to-needs ratios.

¹⁴ The mean regression-based correlations shown in Table S.2 in the online supplement also suggest a reduction of exposure after reform, but the approach does not allow us to separate out the extensive-margin effect from the effect at the upper tail of the adult distribution.

IV. Identification and Estimation of Intergenerational Effects

While the quantile correlations presented in Section III are informative, we do not ascribe any causal exposure interpretation. The main variable of interest is endogenous because exposure during childhood and early adulthood can be related to income levels that are correlated across generations. In this section, we introduce a framework for the identification and estimation of the causal effect of additional childhood exposure to welfare use on adult outcomes (separate from unobserved within-family persistence in income status). Because childhood exposure to means-tested cash assistance was directly influenced by welfare reform, this section exploits the variation across welfare regimes induced by time limits and participation disincentives such as work requirements to estimate the causal parameters using a nonlinear difference-in-differences-type framework. Specifically, we aim to identify and estimate the average treatment effect on the treated (ATT) and the quantile treatment effect on the treated (QTT).

A. Differences-in-Differences with a Continuous Treatment

Define the outcome variable as $Y_t(x)$ with $t \in \{0,1\}$ for before and after reform, respectively. The ATT is the difference between the expected value of the outcome $Y_t(x)$, resulting from an exogenous change in exposure to welfare, x, say from x to x': $\Delta(x, x') := E(Y_t(x')|x) - E(Y_t(x)|x)$. Similarly, the QTT is the difference between the quantiles of the outcome $Y_t(x)$ from an exogenous change from x to x': $\delta(\tau, x, x') := Q_{Y_t(x')}(\tau|x) - Q_{Y_t(x)}(\tau|x)$. In order to identify these parameters, it is necessary to simultaneously deal with potential differential time trends of the counterfactual outcomes and endogeneity of welfare exposure. D'Haultfœuille et al. (2023) address these issues, offering identification results and consistent estimation of the ATT and QTT parameters.

If the change in childhood exposure to welfare by the reform is heterogeneous across regimes, as suggested by Figure 2, then there may exist both distributional differences as well as potential common points where $X_0 = X_1 = x^*$. These points, shown in Figure 2 on the x-axis below the shaded regions, provide identifying information to recover the underlying time trend and construct a comparison group. It is possible to show that, under the three assumptions discussed below in Section IV.B, $P(Y_1 \le y | X_1 = x^*)$

 $P(Y_0 \le g_0(y)|X_0 = x^*)$, where $g_0(\cdot)$ is a time trend function. The equality holds for the same distribution of unobservables and the same value of the treatment, allowing us to solve for the trend function as $g_0(y) = F_{Y_0|X_0 \in \mathcal{S}}^{-1}(F_{Y_1|X_1 \in \mathcal{S}}(y))$, where F denotes the CDF and \mathcal{S} is the set that includes all values of exposure before reform such that $X_0 = X_1 = x^*$. Moreover, the function $q_0(x) = F_{X_0}^{-1}(F_{X_1}(x))$ represents the exogenous change in exposure. The variable $q_0(x)$ is defined as the value of childhood PTO AFDC/TANF before the reform, X_0 , for a daughter (or son) who is at the same rank as another daughter (or son) whose childhood PTO AFDC/TANF after reform is $X_1 = x$.

The ATT and QTT parameters, $\Delta(x, x')$ and $\delta(\tau, x, x')$, respectively, are identified for any pair (x, x') such that $(x, x') = (x, q_0(x))$. Then, the ATT and QTT parameters can be redefined as:

$$\Delta(x, q_0(x)) = E(g_0(Y_0)|x = q_0(x)) - E(Y_1(x)|x),
\delta(\tau, x, q_0(x)) = Q_{g_0(Y_0)}(\tau|x = q_0(x)) - Q_{Y_1|X_1}(\tau|x).$$
(3)

It is important to emphasize that the ATT and QTT are heterogeneous with respect to different levels of childhood PTO AFDC/TANF. Moreover, the QTT in equation (3) varies by the quantile τ of the conditional distribution of the response variable. For instance, in the case of intergenerational effects of exposure, this implies that one can estimate the effect of a marginal increase in childhood welfare exposure among families with high (or low) welfare exposure during childhood and conditionally high (or low) welfare participation as an adult. We can therefore vary the level of intensity of exposure, x, and have a better understanding of how welfare exposure intergenerationally impacts the τ -th quantile of the adult outcome distribution.

B. Discussion of Identifying Assumptions

The identifying assumptions are stated in D'Haultfœuille et al. (2023), and they are similar to the conditions developed by Athey and Imbens (2006) for a binary treatment. The first condition requires that unobservables affecting childhood exposure have the same rank before and after reform. They are allowed to be different and move over time, but the relative positions in the distribution are invariant. This would imply, for instance, that any

potential stigma associated with a mother's participation during childhood — while potentially shifting in levels in response to changing social norms — is similarly distributed before and after reform. ¹⁵ The second condition is that trends are not group specific, creating changes in the distribution of potential outcomes. We argue that this is expected in our setting, since it has been documented that the decline in cross-sectional participation in AFDC/TANF is associated with reduced program access over time (Grogger and Karoly 2005; Ziliak 2016).

The third and key condition relates to the construction of the comparison group. The empirical evidence presented in Figure 2 suggests that welfare reform affected the distribution of childhood exposure to welfare use and its impact has been heterogeneous. The existence of common points, where $X_0 = X_1 = x^*$, can be tested because childhood PTO AFDC/TANF is observed before and after reform. Figure 2 supports the requirement that the CDFs of childhood PTO AFDC/TANF before and after reform cross. Kolmogorov-Smirnov tests fail to reject the null hypothesis of equality of CDFs in the shaded regions. For childhood PTO AFDC/TANF in the range of 0.25 to 0.85, an area with a substantial mass of the distribution away from extremes such as chronic exposure, we reject distributional equivalence based on a one-sided Kolmogorov-Smirnov test with a p-value of 0.001. Whereas a standard difference-in-differences approach relies on parallel time trends, in this nonlinear setting, identification comes through the crossing condition used to estimate the distributional time trends by outcome.

C. Estimating the ATT and QTT parameters

The procedure follows two main steps. In a first stage, we obtain $\hat{q}_0(x) = \hat{F}_{X_0}^{-1}(\hat{F}_{X_1}(x))$ and $\hat{g}_0(y) = \hat{F}_{Y_0|X_0 \in \mathcal{S}}^{-1}(\hat{F}_{Y_1|X_1 \in \mathcal{S}}(y))$ with the conditional distribution estimated by $\hat{F}_{Y_t|X_t \in \mathcal{S}}(y) = (\sum_{i=1}^n 1(Y_{it} \leq y) K((x-X_{it})/h_n))/(\sum_{i=1}^n K((x-X_{it})/h_n)),$

_

¹⁵ For example, if stigma increased after reform for chronic welfare recipients, this would not be an issue unless the distribution of stigma changed the rank order relative to participation intensity. See Chan and Moffitt (2018) for a recent discussion of the role of stigma in welfare participation decisions.

¹⁶ Moreover, we apply the testing procedure proposed in Goldman and Kaplan (2018) to find values of childhood PTO AFDC/TANF for which the equality of CDFs is rejected. The result of the test indicates that the null hypothesis is rejected at the 10 percent level in the interval [0.272,0.944], providing additional evidence consistent with the existence of crossing points, and thus the ability to construct comparison groups.

where the kernel function $K(\bullet)$ has bandwidth h_n .¹⁷ In the second stage, we obtain $\hat{\Delta}(x,\hat{q}_0(x))$ and $\hat{\delta}(\tau,x,\hat{q}_0(x))$ to estimate the ATT and QTT defined in equation (3).

Before turning to estimation of ATT and QTT, we present supporting quantitative evidence on the first stage of the procedure. Panel A in Figure 4 shows quantile-quantile plots comparing distributions of childhood welfare exposure pre- and post-reform. Points along the dotted 45-degree line demonstrate distributional equivalence between reform eras. The dashed line corresponds to childhood PTO AFDC/TANF estimated as $\hat{q}_0(x) =$ $\hat{F}_{X_0}^{-1}(\hat{F}_{X_1}(x))$, and the continuous line is a piecewise linear function, parameterized by ζ and estimated as $\tilde{q}_0(\hat{\zeta}, x)$, to smooth out potential noise in the estimates and improve the estimation of the parameters in the second stage. ¹⁸ The differences between the dashed and continuous lines appear to be inconsequential, and thus, we follow the practical recommendation in D'Haultfœuille et al. (2023) of adopting the piecewise linear function to estimate the parameters of interest. The result in Panel A indicates that childhood welfare

A. Childhood PTO AFDC/TANF B. Adult PTO AFDC/TANF, SNAP, SSI C. Adult Earnings-to-Needs Ratio Linearized Time trend Time trend 8.0 Actual 8.0 Post-reform 9.0 9.0 0.4 0.4 0.2 0.2 0.2 0.4 0.6 0.8 0.2 2 3 4 5 0.0 0.0 0.4 0.6 0.8 0 6 Pre-reform Pre-reform Pre-reform

Figure 4. Childhood Exposure and Early Adulthood Outcome Quantile-Quantile Plots

Note: The quantile-quantile plots represent shifts in childhood welfare exposure and adult outcome time trends identified based on the crossing condition shown in Figure 2. Estimates are shown with 90-percent confidence intervals based on 1000 bootstrap replications.

¹⁷ The conditions on the Kernel function and the bandwidth are standard. We use a triweight kernel and the bandwidth is selected as $h_n = 1.06 \,\hat{\sigma} \, n^{-1/5}$, where σ is the standard deviation of childhood exposure.

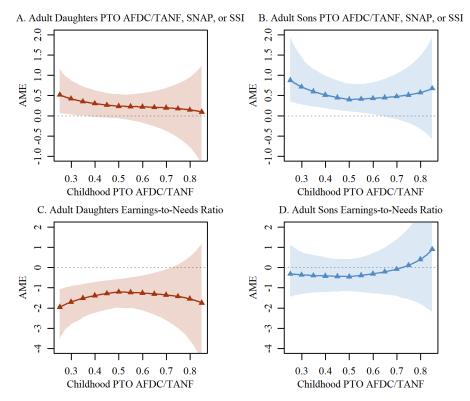
¹⁸ The piecewise linear estimate is based on a parameterized estimator of $q_t(x)$ as a function of the limits outside of the crossing-region where the CDF of X is approximately equivalent pre-post-welfare reform. The relevant limits include the broader range of childhood PTO AFDC/TANF affected by reform as well as an inner range where the distributional differences are greatest, denoted in ascending order as $\bar{x} =$ $(x_a, x_b, x_c, x_d) = (0.20, 0.25, 0.85, 0.99)$. See Figure 2 for illustrations of the regions defined by \bar{x} and Appendix C in D'Haultfœuille et al. (2023) for details on the piecewise linear estimator.

exposure is more prevalent in the pre-reform period for PTO AFDC/TANF roughly above 20 percent with little changes by reform for positive exposure levels below this cutoff. The remaining panels B and C in Figure 4 correspond to quantile-quantile plots for the two adult outcomes of interest, broader safety net participation and relative earnings, respectively. The continuous lines show time trend estimates $\hat{g}_0(y)$ and the grey areas correspond to the 90-percent confidence intervals. Once again, the empirical evidence is consistent with expectations. The time trends for adult outcomes by reform era reveal that broader safety net participation intensified post-reform particularly among all adults participating less than half of the years observed, whereas earnings-to-needs ratios were relatively lower post-reform for higher earners.

For ease of interpretation, we report in Sections V and VI the average marginal effect (AME) and quantile marginal effect (QME), obtained by dividing the sample analog estimators of the ATT and QTT parameters in equation (3) by the change between childhood welfare exposure and the rank-adjusted variable:

$$\widehat{AME}(x,\hat{q}_0(x)) = \frac{\hat{\Delta}(x,\hat{q}_0(x))}{\hat{q}_0(x) - x}, \quad \widehat{QME}(\tau,x,\hat{q}_0(x)) = \frac{\hat{\delta}(\tau,x,\hat{q}_0(x))}{\hat{q}_0(x) - x}. \tag{4}$$

Using (4), we estimate the intergenerational marginal effect of a percentage-point increase in PTO AFDC/TANF in childhood at a point between x and $\hat{q}_0(x)$, where x is normalized to points along the distribution of exposure in the post-reform period and $\hat{q}_0(x)$ is the counterfactual transformation of the distribution of pre-reform exposure. In practice, we focus on a midrange of childhood welfare exposure for the PTO AFDC/TANF interval [0.25, 0.85], because it is the range of PTO AFDC/TANF where distributional differences in Figure 2 are the greatest between welfare reform regimes, and away from extreme values, especially in the upper tail. This strategy improves our ability to detect effect sizes using welfare reform as an exogenous change to exposure. We estimate 500 points along these distributions yielding smooth, marginal changes with $\hat{q}_0(x) - x > 0$, and our main estimates represent exposure effects interpreted for those with middle-to-upper proportions of time on AFDC/TANF excluding those with either low or chronic participation in the first generation.


Lastly, to keep the notation simple, we did not include covariates in the definition of the parameters and their corresponding estimation procedures above. However, all models estimated in Sections V and VI condition on a vector of controls that include mother's age and its square during childhood, along with averages of time-varying policy and economic controls for the daughter's state of residence, including AFDC/TANF benefit standard, maximum federal/state Earned Income Tax Credit, poverty rate (Supplemental Poverty Measure), AFDC/TANF participation rate, and unemployment rate. D'Haultfœuille et al. (2023) discuss the potential use of control variables in their model, and our empirical application incorporating controls is an extension to their work, which may address concerns about other time differences across welfare regimes. Section S.4 in the online supplement shows that the empirical evidence presented in the next section is robust to variations of the nonlinear difference-in-differences specification with respect to the inclusion or choice of control variables as well as sample weighting.

V. Estimates of the Intergenerational Effect of Welfare Exposure

This section presents results of the intergenerational effect of childhood PTO AFDC/TANF from equation (4), where we start with the estimated AMEs, and then present the estimated QMEs, first along continuous outcomes across dimensions for each generation and then as summarized across the distribution of each adulthood outcome. Moreover, we also present specific results summarized over different ranges of childhood exposure intensity and quantiles of the adult outcome distributions.

Figure 5 shows AME estimates evaluated at different points of childhood welfare exposure in the interval [0.25, 0.85]. The area around the point estimates represents a 90-percent pointwise confidence interval, obtained considering the 5–95 quantiles of the bootstrap distribution after 1000 replications. As in Figure 3, we show results for adult PTO AFDC/TANF, SNAP, or SSI in panels A and B, and results for adult earnings-to-needs ratios in panels C and D. Estimates for daughters are shown in the left two panels and estimates for sons shown on the right.

Figure 5. Average Marginal Effects for Proportion of Time On Childhood AFDC/TANF Exposure on Early Adulthood Outcomes

Note: The child's early adulthood outcome is indicated by each panel heading. Pointwise 90-percent confidence intervals are shown based on 1000 bootstrap replications.

At first glance, we see in Figure 5 that the AMEs vary by length of exposure and by child's gender. Panel A shows that the intergenerational welfare exposure effect decreases from 0.5 for daughters who spent a quarter of their childhood on welfare to almost zero for daughters who spent the vast majority of childhood on welfare. Consider the implication for welfare reform reducing childhood exposure. This means that, on average, a daughter with a quarter of childhood on AFDC/TANF will reduce adult participation by a half percentage point for each percentage point decrease in childhood exposure, but there is no statistically significant causal effect for daughters with a marginal decrease in AFDC/TANF exposure among those spending the majority of childhood on welfare. As shown in panel B, the effect for sons has a similar profile across childhood exposure levels, with significant effects for sons with relatively low childhood exposure to insignificant effects for sons with high childhood exposure. When we turn to panels C and

D on earnings-to-needs, the differences by gender are amplified. The AMEs are large, negative and significant for daughters with low and moderate childhood exposure — the adult earnings-to-needs penalty falls in magnitude one to two points for each percentage-point reduction in childhood exposure — while the results for sons do not reveal significant intergenerational effects.

In order to summarize key findings shown in Figure 5, we detail AME estimates in the first column of Table 1 by daughters' and sons' outcomes and over specific childhood welfare exposure intervals. Our main estimates consider X = [0.25, 0.85], which we break down into subintervals for lower welfare exposure in childhood, $X_{low} = [0.25, 0.4]$, moderate $X_{mod} = [0.4, 0.6]$, high exposure $X_{high} = [0.6, 0.75]$, and chronic exposure $X_{chronic} = [0.75, 0.85]$. Ocnsistent with the evidence in Figure 5, the estimated effects vary by exposure, from 0.391 for daughters growing up with low welfare exposure to 0.141 for daughters growing up with chronic exposure. These AMEs evaluated at the different levels of welfare exposure are statistically insignificant (at conventional levels) for daughters and significant at the 10-percent level for sons growing up with low to moderate levels of welfare exposure. The evidence in panels C and D of Table 1 on earnings-to-needs does not lead to new conclusions relative to the evidence in Figure 5, although it is worth pointing out that the AME for daughters is statistically significant at the 5-percent level for the entire interval X = [0.25, 0.85], as well as for low and moderate subintervals.

The AMEs alone do not provide a good summary of the intergenerational effect across quantiles of the adult distribution in Table 1, and motivated by the sharp differences in quantile correlations in Section III, we now extend the empirical analysis to examine how PTO AFDC/TANF exposure effects vary across quantiles. The QMEs presented in Figure 6 are evaluated at the same range of childhood exposure shown in Figure 5.

¹⁹ The table allows us to compare results with the descriptive least-squares evidence in Table S.2, while simultaneously allowing the intensity of welfare use during childhood to vary by length. For instance, if we focus on the first column in Panel A of Table 1, the intergenerational effect of PTO AFDC/TANF exposure on PTO AFDC/TANF, SNAP, or SSI in early adulthood is 0.254, which is slightly larger than the post-reform OLS elasticity estimate of 0.235 in Table S.2.

Table 1. Average and Quantile Marginal Effects of Proportion of Time On Childhood AFDC/TANF Exposure on Early Adult Economic Outcomes, by Ranges of Childhood Exposure

	Average	$\tau = 0.10$	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	$\tau = 0.90$	
	(1)	(2)	(3)	(4)	(5)	(6)	
Childhood PTO	A. Adult Daughters: PTO AFDC/TANF, SNAP, or SSI						
AFDC/TANF		A. Adult D	aughters: PTO A	FDC/TANF, SN	AP, or SSI		
0.25-0.85	0.254	1.065	0.570	0.122	-0.341	-0.582	
	(0.283)	(0.382)	(0.407)	(0.399)	(0.302)	(0.278)	
0.25 - 0.40	0.391	1.167	0.709	0.313	-0.114	-0.551	
	(0.249)	(0.564)	(0.426)	(0.311)	(0.273)	(0.359)	
0.40 – 0.60	0.246	0.754	0.436	0.176	-0.136	-0.377	
	(0.190)	(0.286)	(0.281)	(0.263)	(0.207)	(0.198)	
0.60 - 0.75	0.201	1.009	0.510	0.052	-0.416	-0.582	
	(0.300)	(0.337)	(0.418)	(0.438)	(0.321)	(0.270)	
0.75 - 0.85	0.141	1.617	0.722	-0.171	-0.981	-1.035	
	(0.553)	(0.584)	(0.758)	(0.830)	(0.606)	(0.498)	
Childhood PTO		B. Adult Sons: PTO AFDC/TANF, SNAP, or SSI					
AFDC/TANF							
0.25 - 0.85	0.525	1.426	1.072	0.613	-0.292	-0.510	
	(0.316)	(0.395)	(0.398)	(0.425)	(0.401)	(0.360)	
0.25 - 0.40	0.665	1.533	1.217	0.811	-0.064	-0.479	
	(0.340)	(0.666)	(0.555)	(0.428)	(0.369)	(0.449)	
0.40 – 0.60	0.434	1.003	0.782	0.516	-0.102	-0.328	
	(0.218)	(0.306)	(0.288)	(0.289)	(0.274)	(0.257)	
0.60 - 0.75	0.466	1.362	1.001	0.532	-0.368	-0.512	
	(0.319)	(0.319)	(0.376)	(0.449)	(0.415)	(0.341)	
0.75 - 0.85	0.583	2.206	1.541	0.631	-0.901	-0.919	
	(0.579)	(0.547)	(0.682)	(0.839)	(0.759)	(0.599)	
Childhood PTO	C. Adult Daughters: Earnings-to-Needs Ratio						
AFDC/TANF							
0.25-0.85	-1.419	-0.633	-1.207	-1.468	-1.507	-2.167	
	(0.662)	(0.497)	(0.551)	(0.795)	(1.009)	(1.571)	
0.25 - 0.40	-1.622	-0.838	-1.373	-1.675	-1.358	-2.410	
	(0.585)	(0.482)	(0.544)	(0.698)	(0.796)	(1.283)	
0.40 – 0.60	-1.259	-0.559	-1.058	-1.324	-1.382	-1.794	
	(0.457)	(0.342)	(0.378)	(0.549)	(0.672)	(1.093)	
0.60-0.75	-1.334	-0.550	-1.136	-1.382	-1.557	-2.055	
0.75.005	(0.717)	(0.533)	(0.589)	(0.862)	(1.112)	(1.745)	
0.75–0.85	-1.564	-0.594	-1.364	-1.577	-1.908	-2.719	
CLUII INTO	(1.318)	(0.996)	(1.105)	(1.586)	(2.095)	(3.187)	
Childhood PTO	D. Adult Sons: Earnings-to-Needs Ratio						
AFDC/TANF	0.100	0.505	0.220	-0.609	1 (20	0.074	
0.25-0.85	-0.190	0.505	0.220		-1.630	-0.074	
0.25-0.40	(0.753)	(0.571)	(0.646)	(0.892)	(1.109) -1.482	(1.844)	
0.23-0.40	-0.376	0.315	0.073	-0.804		-0.289	
0.40-0.60	(0.634)	(0.559)	(0.675)	(0.724)	(0.965)	(1.573)	
0.40-0.00	-0.410 (0.510)	0.227	-0.072	-0.730	-1.466 (0.752)	-0.348	
0.60 0.75	(0.519)	(0.391)	(0.454)	(0.610)	(0.752)	(1.282)	
0.60-0.75	-0.132	0.562	0.260	-0.541 (0.057)	-1.677	-0.008	
0.75 0.95	(0.800)	(0.598)	(0.655)	(0.957)	(1.187)	(1.984)	
0.75–0.85	0.441	1.263	0.965	-0.175	-2.108	0.697	
Note: Estimates	(1.453)	(1.100)	(1.186)	(1.754)	(2.195)	(3.561)	

Note: Estimates correspond to quantile treatment effects at $\tau = \{0.10, 0.25, 0.50, 0.75, 0.90\}$ for the distribution of adult outcomes with respect to means across varying ranges of childhood PTO AFDC/TANF exposure, from 25 to 85 percent of years. Standard errors, shown in parentheses, are based on 1000 bootstrap replications.

However, Figure 6 extends the mean analysis to a distributional one, with the implication that we can add another layer of heterogeneity in terms of the quantile τ of the distribution of the adult outcome. By showing how QMEs vary by x and τ , Panels A and B in Figure 6 reveal a positive effect of childhood welfare exposure on the broader safety net participation among those who participate less intensely as adults, and these effects diminish at higher levels of adult participation. Corresponding to Figure 6 panel A, estimates in Table 1 panel A, columns (2)–(6), show the estimated QMEs at

A. Adult Daughters PTO AFDC/TANF, SNAP, or SSI

B. Adult Sons PTO AFDC/TANF, SNAP, or SSI

B. Adult Sons PTO AFDC/TANF, SNAP, or SSI

C. Adult Daughters Earnings-to-Needs Ratio

D. Adult Sons Earnings-to-Needs Ratio

Figure 6. Heterogeneous Quantile Marginal Effects for Proportion of Time On Childhood AFDC/TANF Exposure on Early Adulthood Outcomes

Note: Estimates correspond to the QME estimator defined in equation (4). Heterogeneous effects are shown for childhood PTO AFDC/TANF ranging from 25 to 85 percent of observed years. The child's early adulthood outcome is indicated by each panel heading, which corresponds to the distribution indicated by τ .

⁻

²⁰ The QTT results shown in the online supplement are qualitatively identical to QME results, since $\hat{q}_0(x) - x > 0$ for all $x \in [0.25, 0.85]$. For instance, consider x = 0.4 and recall that $\hat{q}_0(x) = \hat{F}_{X_0}^{-1}(\hat{F}_{X_1}(x))$. In this case, we find that $\hat{F}_{X_1}(0.4) \approx 0.875$ (see Figure 2), and then $\hat{q}_0(x) = \hat{F}_{X_0}^{-1}(0.875) \approx 0.667$. As discussed before, QMEs are easier to interpret.

 $X \in [0.25,0.85]$ on adult welfare ranges from 1.065 (s.e. = 0.382) at $\tau = 0.1$ and decreases to -0.582 (0.278) at $\tau = 0.9$. If we concentrate on results with relatively low childhood exposure ($X \in [0.25,0.40]$), the estimated effects in adulthood are similar, ranging from 1.167 (0.564) at $\tau = 0.1$ to -0.551 (0.359) at $\tau = 0.9$. Interestingly, considering all combinations of quantiles and childhood exposure, the most negative QME estimate is found at $\tau = 0.9$ for chronic childhood exposure with a significant estimate of -1.035 (0.498). That is, increased AFDC/TANF exposure in childhood implies that adults are less likely to participate at chronically high levels of welfare intensity. Table 1 panel B summarizes effects on sons' broader welfare participation, which are similar to the sloping patterns seen for daughters with the exception of the effect at the $\tau = 0.9$ for X_{chronic} childhood exposure which is statistically insignificant (though similar in magnitude).

Overall, these findings imply that the intergenerational effects of childhood welfare exposure on adult participation in the broader safety net are positive and economically large in the lower tail of the adult distribution and negative in the upper tail, and unlike the AMEs, the QMEs are generally statistically different from zero. To interpret this result, consider, for instance, the estimated QMEs for daughters at $X \in [0.25,0.85]$ in Table 1. Because welfare reform reduced exposure, the results suggest that for a percentage point decrease in PTO AFDC/TANF during childhood, adult daughters decreased their welfare use in the wider safety net slightly over one percentage point at the 0.1 quantile and increased their welfare use about half of a point at the 0.9 quantile.

Earnings relative to needs, as shown in Figure 6 panels C and D, reveal greater differences between daughters and sons, as well as interesting distributional patterns by adult outcome and childhood exposure. Panel C of Table 1 simplifies the evidence presented in Panel C of Figure 6 by showing point estimates and standard errors by quantile of the adult distribution and intervals of childhood exposure. We find that although all QMEs for daughters are negative, these effects are significantly different from zero mainly at or below the median quantile of adult earnings in the range of low to moderate childhood AFDC/TANF exposure. For X_{low} exposure, the QMEs reach -1.373 (0.544) and -1.675 (0.698) at adult earnings near the 0.25 and 0.5 quantiles, respectively, meaning that the

earnings-to-needs penalty would decrease between 1.4 to 1.7 points for each percentage point reduction in childhood AFDC/TANF exposure. In contrast with the evidence for daughters, only one QME estimate for sons in Panel D is significant at the 10-percent level (for moderate exposure at the 0.75 quantile), consistent with the null AMEs in Figure 5.

As a last summary of the main QME findings, Figure 7 presents results by averaging the effects across the different childhood exposure levels shown in Figure 6. Therefore, each point estimate corresponds to the average over $X \in [0.25,0.85]$ of the QMEs evaluated at a given quantile of the adult outcome distribution. The QMEs in Figure 7 panel A show that an increase in childhood welfare exposure has a large positive effect on adult PTO AFDC/TANF, SNAP, or SSI at the 0.1 quantile, and the estimated effect decreases nearly linearly with negative effects toward the 0.9 quantile. That is, an increase

A. Adult Daughters PTO AFDC/TANF, SNAP, or SSI B. Adult Sons PTO AFDC/TANF, SNAP, or SSI 2.0 1.5 0.5 1.0 0.5 0.0 0.0 -1.0 - 0.5-0.5 -1.0 0.0 0.2 1.0 0.0 0.2 0.8 1.0 0.4 0.6 0.8 0.6 C. Adult Daughters Earnings-to-Needs Ratio D. Adult Sons Earnings-to-Needs Ratio 0 OME ç ç 4 4 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 7. Quantile Marginal Effects for Proportion of Time On Childhood AFDC/TANF Exposure on Early Adulthood Outcomes

Note: Estimates correspond to the QME estimator defined in equation (4) shown for childhood PTO AFDC/TANF summarized as the mean for exposure ranging from 25 to 85 percent of observed years. The child's early adulthood outcome is indicated by each panel heading, which corresponds to the distribution indicated by τ . Pointwise 90-percent confidence intervals are shown based on 1000 bootstrap replications.

in the time on welfare during childhood leads to higher short-term adult participation in the broader safety net, but it actually appears to reduce high-intensity welfare participation in early adulthood, although the results are weakly significant for sons at the upper tail. Panels C and D of Figure 7 show that childhood welfare exposure implies lower earnings-to-needs in adulthood for daughters, particularly below the median of the outcome distribution where negative effects are estimated more precisely. The estimated effects for sons are statistically insignificant and tend to fluctuate around zero except for the highest quantiles.

VI. Potential Mechanisms and Robustness

We continue our investigation by studying in more detail potential mechanisms, including potential substitution across transfer programs, and gender comparisons in the effects of childhood exposure on wages and hours of work, followed by a discussion of the robustness of our estimates.

A. Asymmetries in Intergenerational Program Use and Substitution

Since the QME results in panels A and B of Table 1 and Figure 7 indicate a declining effect of welfare exposure that turns negative at the upper quantiles, the implication is that reducing childhood welfare exposure post reform actually increased the broader safety net participation among adults with long-term welfare reliance. This impact may follow if those with greater welfare dependence are harmed by reducing access to childhood assistance even if AFDC/TANF program participation has negative impacts for those that are not chronic recipients. Interestingly, welfare reform implies an asymmetric response whereby low-to-moderate-use recipients become less likely to participate altogether, yet chronic recipients increase their reliance on means-tested assistance outside of TANF.

The asymmetric marginal effects on broader welfare participation help explain a prominent feature of the descriptive quantile correlations in panels A and B of Figure 3. Among both daughters and sons, welfare reform reduced the strength of intergenerational correlations with childhood AFDC/TANF while at the same time expanding the share of the population with positive correlations. In descriptive evidence, Supplement Figure S.4 shows that reform unambiguously reduced quantile correlations for AFDC/TANF use

across generations, both in magnitude and extent, whereas the increased safety net use came from SNAP or SSI participation only, still at lower correlation magnitudes.²¹

It is instructive to also break out the QME evidence by welfare program in adulthood. In Figure S.6, we focus on estimates for SNAP alone as well as for SNAP or SSI considered together, which show that SNAP participation in adulthood is the critical program driving our main results, consistent with earlier work showing that SNAP has evolved into a key component of a work-based safety net (Hoynes et al. 2016; Ganong and Liebman 2018; Hardy et al. 2018). Relative to our estimates for SNAP alone, considering additional programs improves precision of the estimates, and including AFDC/TANF in adulthood strengthens the negative effects in the upper tail of the distribution of welfare use.

The asymmetric effects of welfare reform on the next generation are evident in adult welfare durations, therefore a related question is the degree to which these effects translate into income measures of self-sufficiency and well-being. The evidence presented in the online supplement suggests that intergenerational substitution effects imply more duration on other assistance programs for chronic recipients without a substantive change in reliance as a share of total income. ²² If SNAP is a major driver of second-generation welfare participation, as noted above, then greater reliance on food assistance among working adults may explain why PTI is less sensitive to PTO as a measure of dependence. Effects on daughters' income relative to needs are consistent with those for earnings, which again does not apply to sons.

B. Wages and Hours

The evidence in the prior section reveals that because of welfare reform daughters' childhood welfare exposure fell and thus earnings below the median were boosted, yet sons

²¹ Figure S.5 illustrates the changes in distributions of childhood welfare exposure by varying definitions: PTO and PTI, as well as AFDC/TANF versus the broader safety net. This evidence further supports the main analysis focusing on changes in PTO AFDC/TANF related to the specific policy changes during the 1990s welfare reforms.

²² We extend the analysis in Figure S.7 to report the corresponding QME estimates for income-based measures in adulthood. The exposure effect on PTI from the broader safety net in Figure S.7 is smaller in magnitude relative to the outcome of PTO broader safety net in Figure 7, and there is no evidence of negative effects at the upper tail of the distribution.

did not see similar changes in their earnings. In other words, while Figure 3 suggested a negative intergenerational correlation for both daughters' and sons' earnings, in Figure 6 and Table 1 we only identified a causal "penalty" of welfare exposure for daughters. What explains these differences? We note that the outcome is family-level earnings-to-needs ratios, so our findings might be related to the theory of assortative mating (Becker 1973). An extensive literature has found connections between within-economic-status marriage and income inequality (e.g., Atkinson et al. 1983; Lam and Schoeni 1994; Mulligan 1997; Fernández and Rogerson 2001; Greenwood et al. 2014; Eika et al. 2019). Even in the context of welfare reform and contemporaneous outcomes for men, Lichtman-Sadot (2024) finds that spouses explain some of the effects on family welfare participation and earnings. Given that changes to welfare program policy may influence human capital accumulation and work experience (Blundell et al. 2016), earnings differences by gender may be explained by both work experience and the return to experience. For considering potential mechanisms of childhood AFDC/TANF exposure effects, here we turn to effects on individual-level hourly wage and labor supply when daughters and sons are observed as either the family head or spouse.

If daughters and sons set different expectations about their future earnings based on observing AFDC/TANF participation while young, it is possible that daughters could interpret the higher chance of future eligibility as a signal to invest less in human capital for the labor market. Thus, daughters might be more responsive to childhood welfare exposure in terms of wages as a proxy for labor market productivity. Figure 8 panels A and B present the QMEs for wages akin to those in Figure 7. These results show that conditional on employment, there is no welfare exposure penalty on early adulthood wages for either daughters or sons. However, when we count years not employed as zero wages, daughters experience a wage penalty of around \$0.15 per hour. This is consistent with depressed human-capital returns for daughters from reduced labor-market experience as in a learning-by-doing context.

If wages, conditional on employment, do not describe the gender differences in earnings penalties, then the differences are likely to be in hours worked. Indeed, Figure 8

panels C and D imply that daughters have lower work hours as a result of childhood welfare exposure, which is not true for sons. ²³ Decreased hours worked through the year among daughters could include intensive-margin changes toward part-time work as well as extensive-margin changes to the number of weeks employed. In the supplement, Figure S.9 shows that the proportion of weeks worked are similarly penalized only among daughters. Women's work behavior may have shifted because of TANF work requirements, negating hours penalties in the lower tail of the distribution, whereas men would generally be less eligible for work-restricted cash assistance because of lower rates of single

A. Adult Daughters Hourly Wage Rate B. Adult Sons Hourly Wage Rate Conditional on employment 0.4 Unconditional 0.4 0.2 0.2 -0.2 0.0 -0.4 Conditional on employment Unconditional 0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 C. Adult Daughters Average Work Hours per Week D. Adult Sons Average Work Hours per Week Conditional on employment 0.2 0.2 Unconditional 0.0 -0.2 -0.4 - 0.29.0-8.0-Conditional on employment Unconditional 0.0 0.2 0.8 1.0 0.0 0.2 0.6 0.8 1.0 0.4

Figure 8. Quantile Marginal Effects for Proportion of Time On Childhood AFDC/TANF Exposure on Early Adulthood Hourly Wages and Labor Supply

Note: Estimates correspond to the QME estimator defined in equation (4) shown for childhood PTO AFDC/TANF summarized as the mean for exposure ranging from 25 to 85 percent of observed years. The child's early adulthood outcome is indicated by each panel heading, which corresponds to the distribution indicated by τ . Pointwise 90-percent confidence intervals are shown based on 1000 bootstrap replications.

_

²³ For detailed estimates on both wages and hours worked, Figure S.8 in the supplement shows heterogeneous QME estimates by both childhood PTO AFDC/TANF exposure and outcome distribution.

fatherhood. Since the mechanisms of an earnings penalty differ by gender according to hours worked, it is plausible that the explanation has to do with gendered differences in caring responsibilities for young children. Estimating QMEs among those with children present in early adulthood (Figure S.10), the evidence is consistent with labor supply disadvantages for daughters and not sons, with daughters more likely to live with children (Figure S.11).

C. Robustness

In the online supplement, we present several extensions and robustness checks. Here, we present a summary of the results.

C.1. Survey weights, controls, and potential state-level heterogeneity

We first examine the robustness of results to the inclusion of PSID survey weights, which help to balance the samples due to the oversample of low-income and racial-minority families in the SEO. It is important to verify that our results are not affected by the subsamples used for estimation since a large number of mothers and children linked over the PSID survey years are comprised of both the SRC and SEO subsamples. We present the QME results using Figures S.12 and S.13, which correspond to the outcomes of PTO AFDC/TANF, SNAP or SSI and earnings-to-needs ratios for daughters and sons as in Figure 7. There we show that our main QME estimates are not sensitive to including sample weights in our estimation procedure.

We continue our sensitivity analysis by investigating whether the main QME estimates are sensitive to the choice of control variables and use of sample weights. All of the models estimated in Section V control for quadratics in the child's mean age observed in adulthood and the mother's age during childhood, AFDC/TANF benefit standard, maximum federal/state EITC, poverty rate, AFDC/TANF participation rate, and unemployment rate. In Figures S.12 and S.13, we show estimates of the QMEs corresponding to Figure 7 using only the age profiles of the mother and child, and alternatively without and with survey weights. We find that the results are robust across different specifications. Furthermore, Figure S.14 explores QME heterogeneity for PTO on the wider safety net and earnings-to-needs by state-level characteristics including estimates

for low and high measures of AFDC/TANF benefit generosity and SPM poverty rates. Our main results do not vary dramatically by these select measures of heterogeneity, yet the magnitudes of welfare exposure disadvantages tend to be larger for states with above-median AFDC/TANF benefit levels and below-median poverty rates. It is possible that these results are related to social costs among marginal participants or social norms around participation, as implied by the literature on welfare stigma (e.g., see Lindbeck et al. 1999; Chan and Moffitt 2018).

C.2. Alternative sample definitions and heterogeneous subpopulations

We examine the sensitivity of the main QME results in Figure 7 to different definitions of early adulthood. In our main estimates, adult outcomes are measured over the ages 19 to 27. However, earnings penalties from childhood welfare exposure may be more pronounced or attenuated given longer periods of observation in adulthood, and thus in Figure S.15 we compare results for adulthood measured from age 19 to 29 as well as 19 to 31. There we see that the effect of childhood exposure on PTO in the wider safety net is robust when including higher ages in early adulthood. We also test whether our QME estimates are sensitive to the inclusion of multiple children from the same family, showing in Figure S.16 that the point estimates based on only one child per family are similar to our main results, with slightly less precision.

Although the QME estimator proposed by D'Haultfœuille et al. (2023) addresses trend changes across outcome distributions over time, some may be concerned about the identification through welfare reform that shifts endogenous AFDC/TANF exposure for the lower-income population relative to the inclusion of those likely never eligible for welfare or at very low risk of program take-up. We test the sensitivity of our QME results by restricting the sample to those with mean childhood family income below 300 percent of the FPL, or alternatively to those whose mothers have less than a college education. Figure S.17 shows that our findings are not sensitive to restricting to a lower-income sample,

36

²⁴ While sensitivity by age of exposure in childhood is of great interest, it is unfortunately complicated here by sample size and the continuity of the exposure measure for our QME approach. See Cholli (2025) for an exploration of heterogeneous effects of welfare reform in Denmark by age of exposure.

though the QMEs for welfare participation appear somewhat larger in magnitude and steeper when restricted to a sample by lower maternal education.

C.3. Attrition and misclassification

Lastly, we examine the robustness of our main results to potential biases from attrition in the PSID and misclassification of self-reported program participation. The core longitudinal sample weights in the PSID partially address attrition over time (see Figures S.12 and S.13). Fitzgerald et al. (1998) and Fitzgerald (2011) discuss attrition in the PSID and applications to intergenerational settings, and Hartley et al. (2022) show that intergenerational welfare participation estimates are generally insensitive to attrition-adjusted propensity weighting. In Figure S.18, we estimate QMEs using inverse probability weights to directly model attrition for the present sample and research design, and we find no meaningful differences from the results in Figure 7.

Next, we turn to the issue of misclassification. Meyer et al. (2015a) show that self-reported survey data has underrepresented social assistance program participation increasingly over time. For our setting, there is less concern about measuring childhood AFDC/TANF exposure because it is averaged over several years and occurs when reporting rates were relatively more accurate. Our main welfare outcome in adulthood is participation in either AFDC/TANF, SNAP, or SSI, which is also averaged over at least three years, and our main sample benefits from evidence that respondents to multiple panels tend to report more accurately (Bollinger and David 2005). Still, we use two measures to adjust for misclassification (see Figure S.19), one using estimates from Meyer et al. (2015b) extrapolating to recent years, and another that compares estimated participation rates in the PSID to average monthly recipients per year. For both sets of estimates, we very conservatively use the underreporting rates associated with AFDC/TANF despite expecting rates to be less biased for the wider safety net. Still, the results remain qualitatively robust with some loss of precision depending on the choice of reporting rates.

VII. Conclusion

Policymakers in the 1990s introduced fundamental changes in the U.S. safety net to end dependence on welfare. The majority of these new policies were designed to restrict access to the AFDC program. Time limits and work requirements were introduced to restrict long-term spells, and therefore, to reduce childhood exposure to cash assistance. Presumably, the dependence that is passed down intergenerationally from parent to child depends on the length of exposure to welfare when the mother shares knowledge and values with her child. Therefore, measuring how length of time on welfare during childhood affects early adulthood is of fundamental interest to understand how welfare reform affected families, which can vary heterogeneously with respect to welfare use and intergenerational outcomes. Throughout our study, we estimate average and quantile treatment effects for daughters and sons, who may have had similar childhood exposures but different long-run trajectories. The results here suggest mixed success in meeting those goals for children growing up on welfare, and underscore the importance of studying the distributional consequences of social assistance policies for economic mobility.

We estimate novel intergenerational correlations between childhood welfare exposure and economic outcomes in early adulthood including time spent on programs in the broader safety net and labor-market earnings. Descriptive intergenerational evidence reveals that more daughters and sons have a positive correlation between childhood and adulthood welfare duration after reform, but the correlation falls in magnitude by at least one-third in the top half of the welfare duration distribution. Likewise, the negative earnings correlation in adulthood with welfare exposure in childhood is lower after reform.

In addition to presenting descriptive intergenerational evidence, we employ a nonlinear difference-in-differences framework with continuous treatment to identify a causal relationship between childhood welfare exposure and adulthood dependence. We find that an increase in the time spent on welfare during childhood has an asymmetric effect across the distribution of welfare use in adulthood for both daughters and sons, with increased use among those who spend below median time on welfare and decreased use among those spending more than half of adulthood on welfare. Because welfare reform resulted in a reduction in childhood exposure the implication is that welfare reform lowered dependence on low-intensity users but increased dependence on longer-term users, suggesting a bifurcation in those who were able to move toward self-sufficiency after

reform and those who were not. Further, we find that increasing the length of childhood welfare exposure implies lower earnings in adulthood for daughters, however we find no evidence that it depresses the earnings of sons. Conditional on working, this earnings penalty for childhood welfare exposure appears to operate primarily through daughters' labor supply at both the extensive and intensive margins.

The 1990s welfare reforms to AFDC cemented some policymakers' long-term drive to redirect the safety net to a more work-centric, temporary assistance system. Over the past decade there have been calls to expand work requirements and time limits to other programs in the safety net, such as the health insurance program Medicaid, and to additional populations of recipients within the SNAP program such as single mothers with children. Indeed, recent legislation has codified this workfare approach in those two programs. The results of this study suggest that any future reforms affecting access to the safety net may have differential long-term effects on daughters and sons, whether intended or not, underscoring the need for additional intergenerational research that informs optimal program design.

Acknowledgements:

We are grateful for comments from Richard Blundell, Uta Bolt, Antoine Bozio, Neil Cholli, Erik French, Irv Garfinkel, David Green, Rachel Griffith, Brenda Jones Harden, David Margolis, Marianne Page, Jean-Marc Robin, Julien Teitler, and participants at the 2023 SEA conference, 2024 IFS Workshop on the Measurement of Poverty and Inequality, 2025 Atlanta Workshop on Public Policy and Child Well-being, 2025 World Congress of the Econometric Society, and seminars at Sciences Po and Paris School of Economics. All errors are our own.

REFERENCES

- Aizer, A., S. Eli, J. Ferrie, and A. Llerus-Muney. 2016. "The long-run impact of cash transfers to poor families," *American Economic Review*, 106 (4): 935–971.
- Antel, J.J. 1992. "The intergenerational transfer of welfare dependency: Some statistical evidence," *Review of Economics and Statistics*, 74 (3): 467–473.
- Athey, S., and G.W. Imbens. 2006. "Identification and inference in nonlinear difference in-difference models," *Econometrica*, 74 (2): 431–497.
- Atkinson, A.B., A.K. Maynard, and C.G. Trinder. 1983. *Parents and Children: Incomes in Two Generations*. London: Heinemann.
- Bailey, M.J., H.W. Hoynes, M. Rossin-Slater, and R. Walker, J. Ferrie. 2024. "Is the social safety net a long-term investment? Large-scale evidence from the Food Stamp Program," *Review of Economic Studies*, 91 (3): 1291–1330.
- Banfield, E.C. 1970. The Unheavenly City. Boston: Little, Brown and Company.
- Barr, A., J. Eggleston, and A.A. Smith. 2022. "Investing in infants: The lasting effects of cash transfers to new families," *Quarterly Journal of Economics*, 137 (4): 2539–2583.
- Bastian, J., and K. Michelmore. 2018. "The long-run impact of the Earned Income Tax Credit on children's education and employment outcomes," *Journal of Labor Economics*, 36 (4): 1127–1163.
- Becker, G.S. 1973. "A theory of marriage: Part I," *Journal of Political Economy*, 81 (4): 813–846.
- Becker, G.S., and N. Tomes. 1979. "An equilibrium theory of the distribution of income and intergenerational mobility," *Journal of Political Economy*, 87 (6): 1153–1189.
- Bitler, M., and H. Hoynes. 2016. "Strengthening Temporary Assistance for Needy Families," Hamilton Project Policy Proposal 2016-04, Brookings Institution.
- Bitler, M.P., J.B. Gelbach, and H.W. Hoynes. 2006. "What mean impacts miss: Distributional effects of welfare reform experiments," *American Economic Review*, 96 (4): 988–1012.
- Blank, R.M. 1989. "Analyzing the length of welfare spells," *Journal of Public Economics*, 39 (3): 245–273.
- ——. 1997. *It Takes a Nation: A New Agenda for Fighting Poverty*. Princeton, NJ: Princeton University Press.
- Blundell, R., M. Costa Dias, C. Meghir, and J. Shaw. 2016. "Female labor supply, human capital, and welfare reform," *Econometrica*, 84 (5): 1705–1753.
- Bollinger, C.R., and M.H. David. 2005. "I didn't tell, and I won't tell: Dynamic response error in the SIPP," *Journal of Applied Econometrics*, 20 (4): 563–569.
- Callaway, B., and P.H.C. Sant'Anna. 2021. "Difference-in-differences with multiple time periods," *Journal of Econometrics*, 225 (2): 200–230.
- Chan, M.K., and R. Moffitt. 2018. "Welfare reform and the labor market," *Annual Review of Economics*, 10: 347–381.
- Chetty, R., and N. Hendren. 2018. "The impacts of neighborhoods on intergenerational mobility I: Childhood exposure effects," *Quarterly Journal of Economics*, 133 (3): 1107–1162.

- Chetty, R., N. Hendren, and L.F. Katz. 2016. "The effects of exposure to better neighborhoods on children: New evidence from the Moving to Opportunity experiment," *American Economic Review*, 106 (4): 855–902.
- Chetty, R., N. Hendren, P. Kline, and E. Saez. 2014. "Where is the land of opportunity? The geography of intergenerational mobility in the United States," *Quarterly Journal of Economics*, 129 (4): 1553–1623.
- Cholli, N.A. 2025. "Does 'welfare-to-work' work? Evaluating long-run effects across a generation of cohorts," working paper (available via SSRN).
- Cronquist, K., and B. Eiffes. 2022. "Characteristics of Supplemental Nutrition Assistance Program households: Fiscal year 2020," Report, U.S. Department of Agriculture, Food and Nutrition Service.
- Dahl, G.B., and A.C. Gielen. 2021. "Intergenerational spillovers in disability insurance," *American Economic Journal: Applied Economics*, 13 (2): 116–150.
- Dahl, G.B., A.R. Kostøl, and M. Mogstad. 2014. "Family welfare cultures," *Quarterly Journal of Economics*, 129 (4): 1711–1752.
- Dahl, M., and T. DeLeire. 2008. "The association between children's earnings and fathers' lifetime earnings: Estimates using administrative data," Discussion paper no. 1342-08, Institute for Research on Poverty, University of Wisconsin–Madison.
- Deming, D. 2009. "Early childhood intervention and life-cycle skill development: Evidence from Head Start," *American Economic Review: Applied Economics*, 1 (3): 111–134.
- DeParle, J. 2004. American Dream: Three Women, Ten Kids, and a Nation's Drive to End Welfare. New York: Penguin Books.
- Deshpande, M. 2016. "Does welfare inhibit success? The long-term effects of removing low-income youth from the disability rolls," *American Economic Review*, 106 (11): 3300–3330.
- D'Haultfœuille, X., S. Hoderlein, and Y. Sasaki. 2023. "Nonparametric difference-in-differences in repeated cross-sections with continuous treatments," *Journal of Econometrics*, 234 (2): 664–690.
- Duncan, G.J., M.S. Hill, and S.D. Hoffman. 1988. "Welfare dependence within and across generations," *Science*, 239 (4839): 467–471.
- Durlauf, S.N., and I. Shaorshadze. 2014. "Intergenerational mobility," in *Emerging Trends in the Social and Behavioral Sciences*, R.A. Scott and S.M. Kosslyn (eds.), Sage Publishing, 505–537.
- East, C.N., S. Miller, M. Page, and L.R. Wherry. 2023. "Multigenerational impacts of childhood access to the safety net: Early life exposure to Medicaid and the next generation's health," *American Economic Review*, 113 (1): 98–135.
- Eika, L., M. Mogstad, and B. Zafar. 2019. "Educational assortative mating and household income inequality," *Journal of Political Economy*, 127 (6): 2795–2835.
- Fernández, R., and R. Rogerson. 2001. "Sorting and long-run inequality," *Quarterly Journal of Economics*, 116 (4): 1305–1341.
- Fitzgerald, J.M. 2011. "Attrition in models of intergenerational links using the PSID with extensions to health and to sibling models," *B.E. Journal of Economic Analysis and Policy*, 11 (3): 1–63.

- Fitzgerald, J.M., P.T. Gottschalk, and R.A. Moffitt. 1998. "An analysis of sample attrition in panel data: The Michigan Panel Study of Income Dynamics," *Journal of Human Resources*, 33 (2): 251–299.
- Ganong, P., and J.B. Liebman. 2018. "The decline, rebound, and further rise in SNAP enrollment: Disentangling business cycle fluctuations and policy changes," *AEJ: Economic Policy*, 10 (4): 153–176.
- Goldman, M., and D.M. Kaplan. 2018. "Comparing distributions by multiple testing across quantiles or CDF values," *Journal of Econometrics*, 206 (1): 143–166.
- Goodman-Bacon, A. 2021. "Difference-in-differences with variation in treatment timing," *Journal of Econometrics*, 225 (2): 254–277.
- Gottschalk, P.T. 1992. "The intergenerational transmission of welfare participation: Facts and possible causes," *Journal of Policy Analysis and Management*, 11 (2): 254–272.
- Gottschalk, P., and R.A. Moffitt. 1994. "Welfare dependence: Concepts, measures, and trends," *American Economic Review*, 84 (2): 38–42.
- Greenwood, J., N. Guner, G. Kocharkov, and C. Santos. 2014. "Marry your like: Assortative mating and income inequality," *American Economic Review: Papers and Proceedings*, 104 (5): 348–353.
- Grogger, J., and L.A. Karoly. 2005. *Welfare Reform: Effects of a Decade of Change*. Cambridge, MA: Harvard University Press.
- Han, H., O. Linton, T. Oka, and Y.-J. Whang. 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," *Journal of Econometrics*, 193 (1): 251–270.
- Hardy, B., T. Smeeding, and J.P. Ziliak. 2018. "The changing safety net for low-income parents and their children: Structural or cyclical changes in income support policy?" *Demography*, 55 (1): 189–221.
- Hartley, R.P., and C. Lamarche. 2018. "Behavioral responses and welfare reform: Evidence from a randomized experiment" *Labour Economics*, 54: 135–151.
- Hartley, R.P., C. Lamarche, and J.P. Ziliak. 2022. "Welfare reform and the intergenerational transmission of dependence," *Journal of Political Economy*, 130 (3): 523–565.
- Hartley, R.P., C. Lamarche, and J.P. Ziliak. 2023. "Bootstrapping quantile correlations with an application for income status across generations," *Economics Letters*, 228: 11160.
- Haskins, R. 2007. Work over Welfare: The Inside Story of the 1996 Welfare Reform Law. Washington, DC: Brookings Institution Press.
- Hawkins, A., C.A. Hollrah, S. Miller, L.R. Wherry, G. Aldana, and M.D. Wong. 2024. "The long-term effects of income for at-risk infants: Evidence from Supplemental Security Income," NBER working paper #31746, National Bureau of Economic Research.
- Himmelfarb, G. 1995. *The De-Moralization of Society: From Victorian Virtues to Modern Values*. New York: Alfred A. Knopf.
- Hoynes, H., D.W. Schanzenbach, and D. Almond. 2016. "Long-run impacts of childhood access to the safety net," *American Economic Review*, 106 (4): 903–934.
- Kline, P., M. Tartari. 2016. "Bounding the Labor Supply Responses to a Randomized Welfare Experiment: A Revealed Preference Approach," *American Economic Review*, 106 (4): 972–1014.

- Kubik, J. 1999. "Incentives for the identification and treatment of children with disabilities: The Supplemental Security Income program," *Journal of Public Economics*, 73 (2): 187–215.
- Lam, D., and R.F. Schoeni. 1994. "Family ties and labor markets in the United States and Brazil," *Journal of Human Resources*, 29 (4): 1235–1258.
- Levine, P.B. and D.J. Zimmerman. 1996. "The intergenerational correlation in AFDC participation: Welfare trap or poverty trap?" Discussion paper, University of Wisconsin Institute for Research on Poverty.
- Li, G., Y. Li, and C.-L. Tsai. 2015. "Quantile correlations and quantile autoregressive modeling," *Journal of the American Statistical Association*, 110 (509): 246–261.
- Lichtman-Sadot, S. 2024. "Men too: The effects of welfare payment time limits on male labor market outcomes," manuscript.
- Lindbeck, A., S. Nyberg, and J. W. Weibull. 1999. "Social norms and economic incentives in the welfare state," *Quarterly Journal of Economics*, 114 (1): 1–35.
- Messel, M., and B. Trenkamp. 2022. "Characteristics of noninstitutionalized DI, SSI, and OASI program participants, 2016 update," Research and statistics note no. 2022-01, Social Security Administration Office of Retirement and Disability Policy.
- Meyer, B., W. Mok, and J. Sullivan. 2015a. "Household surveys in crisis," *Journal of Economic Perspectives*, 29, 199–226.
- ———. 2015b. "The under-reporting of transfers in household surveys: Its nature and consequences," NBER working paper 15181. Updated version June 2015.
- Miller, S., and L.R. Wherry. 2019. "The long-term effects of early life Medicaid coverage," *Journal of Human Resources*, 54 (3): 785–824.
- Moffitt, R.A. 1992. "Incentive effects of the U.S. welfare system: A review," *Journal of Economic Literature*, 30, 1–61.
- ——. 2003. "Temporary Assistance for Needy Families," in *Means-Tested Transfer Programs in the United States*, R.A. Moffitt (ed.), Chicago: University of Chicago Press.
- Mogstad, M., and G. Torsvik. 2023. "Family background, neighborhoods, and intergenerational mobility," in *Handbook of the Economics of the Family*, vol. 1, S. Lundberg and A. Voena (eds.), Amsterdam: New Holland, 327–387.
- Mulligan, C.B. 1997. *Parental Priorities and Economic Inequality*. Chicago: University of Chicago Press.
- Murray, C. 1984. Losing Ground: American Social Policy, 1950-1980. New York: Basic Books.
- Olasky, M. 1992. The Tragedy of American Compassion. Wheaton, IL: Crossway.
- Page, M.E. 2024. "New advances on an old question: Does money matter for children's outcomes?" *Journal of Economic Literature*, 62 (3): 891–947.
- Panel Study of Income Dynamics. 2023. Public use dataset. Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI.
- Pepper, J.V. 2000. "The intergenerational transmission of welfare receipt: A nonparametric bounds analysis," *Review of Economics and Statistics*, 82 (3): 472–488.
- Schmidt, L., and P. Sevak. 2004. "AFDC, SSI, and welfare reform aggressiveness: Caseload reductions vs. caseload shifting," *Journal of Human Resources*, 39 (3): 792–812.

- Solon, G., M. Corcoran, R. Gordon, and D. Laren. 1988. "Sibling and intergenerational correlations in welfare program participation," *Journal of Human Resources*, 23 (3): 388–396.
- Ziliak, J.P. 2015. "Why are so many Americans on food stamps? The role of the economy, policy, and demographics," in *SNAP Matters: How Food Stamps Affect Health and Well Being*, J. Bartfeld, C. Gundersen, T. Smeeding, and J.P. Ziliak (eds.), Stanford, CA: Stanford University Press, 18–48.
- ———. 2016. "Temporary Assistance for Needy Families," in *Economics of Means-Tested Transfer Programs in the United States*, vol. 1, R.A. Moffitt (ed.), University of Chicago Press.
- Ziliak, J.P., D. Figlio, E. Davis, and L. Connolly. 2000. "Accounting for the decline in AFDC caseloads: Welfare reform or the economy?" *Journal of Human Resources*, 35 (3): 570–586.

ONLINE SUPPLEMENT

Childhood Welfare Exposure and Economic Outcomes for Adult Daughters and Sons*

Robert Paul Hartley School of Social Work, Columbia University New York, NY 10027, United States

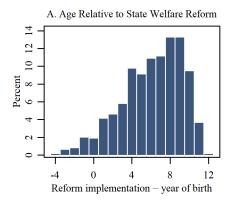
Carlos Lamarche
Department of Economics, University of Kentucky
Lexington, KY 40506, United States

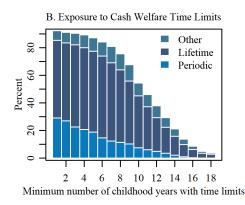
James P. Ziliak
Department of Economics, University of Kentucky
Lexington, KY 40506, United States

October 2025

This online supplement provides additional results not shown in the manuscript. We begin with data description in Section S.1, and then, in Section S.2, we expand the evidence in Section III of the manuscript by including quantile correlations for additional outcomes. Section S.3 presents evidence that complements Section VI.A on possible mechanisms and Section VI.B on the wage and labor supply components of earnings. Section S.4 offers a comprehensive sensitivity analysis of the main findings in Section V of the manuscript to changes in the control variables and survey weights, and Section S.5 provides additional robustness checks.

^{*} Address correspondence to Robert Paul Hartley, 1255 Amsterdam Avenue, Room 710, New York, NY 10027; email: r.hartley@columbia.edu; phone: 212-853-7023.


Section S.1. Data Description


We use data from the Panel Study of Income Dynamics (PSID) for survey years 1975–2019. The PSID is the longest-running longitudinal panel in the world that has followed the original sample members' children as well as subsequent generations of grandchildren and beyond as they split off to form their own families. The survey began in 1968 with 4,800 families and today consists of over 10,000 families and 24,000 individuals. The original sample consisted both of a random sample of the population, known as the Survey Research Center (SRC) sample, along with an oversample of low-income and racialized minority families as part of the Survey of Economic Opportunity (SEO) sample. The PSID was conducted annually through 1997, and biennially thereafter, collecting rich information about family demography, labor-market activity, and levels and sources of income.

The sample used in estimating the quantile correlations and the nonlinear difference-in-differences models consists of mother-child pairs that are observed either before welfare reform or after, with the pre-reform sample window of adult daughters measured in the years 1986–1992 and the post-reform sample window measured in the years 2008-2018. We define a child as an individual under age 19 who has not yet had a child of their own or moved out to form their own family unit, while we measure early adult outcomes during the ages of 19–27. To be included in the sample the child must be observed at least 5 years during ages 12–18, which following Hartley et al. (2022) and the prior literature is designated as the critical exposure years when welfare program knowledge transfer is likely most salient. The child as adult must be observed at least 3 years during ages 19-27. Both sample restrictions are designed to mitigate potential measurement error in survey responses to program participation and labor and nonlabor income questions. In order to ensure adequate sample sizes, we include observations from both the SRC and SEO subsamples, with the resulting samples containing 703 daughters before welfare reform and 615 after reform, along with 547 sons before welfare reform and 464 after reform.

For the post-reform sample, we require children to be observed at least 5 years after welfare reform, though we continue to use all child observations for defining AFDC/TANF exposure. This restriction is pragmatic for constructing similar windows of intergenerational observations on either side of the 1990s reform era. Since our causal empirical strategy relies on reform as an instrument that exogenously shifts welfare exposure, we demonstrate how the sample corresponds to reform implementation and time limits in Figure S.1. The adulthood observation window of ages 19 to 27 between years 2008 and 2018 limits the number of children observed who first experience welfare reform at later ages; all individuals are observed at ages 12 onward post reform, though most of our sample first experiences welfare reform at younger ages including some for their entire childhood (see panel A). The lifetime limit on cash assistance under TANF is set federally at 60 months, yet states have been able to set shorter limits as well as introduce periodic limits such as no more than X months of benefits for every Y month intervals. Thus, for our post-reform childhood observations, the earliest time limits could become binding as quickly as 21 months for a lifetime limit in Connecticut, or 6 months out of each 12 months in states like Arizona, whereas other states like New York might extend benefits beyond time limits using non-federal funds. Panel B of Figure S.1 shows that 92 percent of post-

Figure S.1. Post-Reform Sample by Age at Welfare Reform Implementation and Exposure to Time Limits

Note: The relative ages in panel A correspond to the cohort born between 1982 and 1996, with state welfare reform implementation years from 1992 to 1997. Panel B corresponds to the years of childhood exposed to periodic time limits, lifetime limits, or other limits including those associated with waiting periods, reduced benefits, or individualized plans. Some states effectively had no time limits by using alternative funding for cash assistance, yet the preponderance of the post-reform sample experienced at least 5 years with some limits.

reform individuals in our sample face time limits (because of those states extending eligibility with nonfederal funds, those exposed to at least 1 year of time limits is less than 100 percent), with 87 percent seeing at least 5 years of limits and 19 percent with periodic limits for at least 5 years. Beyond the direct effects of time limits, even families not yet limited by program rules exited early because of anticipatory effects (Grogger and Michalopoulos 2003; Grogger 2004). Further, other program rules like work requirements and sanctions could limit both short-term and longer-term participation, with the combined effect of decreased childhood exposure that may vary heterogeneously.

Table S.1 provides summary statistics for childhood PTO AFDC/TANF, defined as the share of years the family received assistance from AFDC before reform or TANF after reform. We use a broader measure of the safety net in adulthood to also include the proportion of time on food assistance from Supplemental Nutrition Assistance Program (SNAP) or on disability assistance from Supplemental Security Income (SSI). Labor-market outcomes in the table are defined by the mean family earningsto-needs ratio, which we show by daughters and sons in each welfare reform regime. The estimation sample includes only one aggregated observation per mother-child pair within each welfare regime. We construct PTO welfare by averaging across {0,1} participation indicators for both mother observations during childhood and child-as-an-adult observations. We similarly construct average earnings-to-needs over those same windows. The table shows summary statistics without sample weights in order to emphasize the distributional differences by reform era given our oversample of lower-income families as of the initial 1968 survey (results are robust to using survey weights in estimation, as shown in Section S.4). The changes in childhood PTO AFDC/TANF are smaller than the welfare reform effects shown in Hartley et al. (2022) because these are unconditional comparisons of the first- generation impacts, which corresponds to mothers without any prior generational learning mechanisms about the tradeoffs of welfare participation post-reform.

At the 90th percentile of childhood exposure to AFDC/TANF, children are observed with 75 to 80 percent of years in participating families pre-reform, and 44 to 53 percent post-reform. Mean adulthood participation in the broader safety net ranges from 16 to 35

Table S.1. Summary Statistics, by Gender and Welfare Regime

	Daug	ghters	So	ns
-	Before	After	Before	After
	(1)	(2)	(3)	(4)
Childhood PTO AFDC/TANF	0.183	0.136	0.189	0.128
s.d.	(0.315)	(0.243)	(0.312)	(0.226)
p10	0.000	0.000	0.000	0.000
p25	0.000	0.000	0.000	0.000
p50	0.000	0.000	0.000	0.000
p75	0.222	0.167	0.286	0.176
p90	0.800	0.533	0.750	0.444
Adulthood PTO AFDC/TANF, SNAP, or SSI	0.246	0.346	0.165	0.236
s.d.	(0.350)	(0.375)	(0.292)	(0.327)
p10	0.000	0.000	0.000	0.000
p25	0.000	0.000	0.000	0.000
p50	0.000	0.200	0.000	0.000
p75	0.444	0.667	0.250	0.429
p90	0.875	1.000	0.667	0.778
Adulthood earnings-to-needs ratio	2.212	1.986	2.310	1.988
s.d.	(1.786)	(1.630)	(1.605)	(1.607)
p10	0.264	0.312	0.474	0.350
p25	0.870	0.829	1.134	0.838
p50	1.932	1.612	2.070	1.650
p75	3.153	2.833	3.247	2.648
p90	4.640	4.132	4.435	4.121
Observations	703	615	547	464

Note: Sample means and related statistics are shown for aggregated mean observations over either childhood or early adulthood for individuals who would be aged 27 in the years 1986 to 1992 pre-reform and 2008 to 2018 post-reform. The sample is restricted to those observed at least 5 years before age 19 living with the mother, at least 5 years during ages 12 to 18, and at least 3 years as an adult aged 19 to 27. The post-reform sample indicates individuals who experienced the welfare reform regime from age 12 onward.

percent of observed years, which corresponds to PTO estimates that are about 40 percent larger in the post-reform era relative to pre-reform, and 30 percent larger for daughters relative to sons. The increase in the post-reform era is related to the SNAP and SSI expansion, that compensates for the declining probability of participating in AFDC/TANF. For family earnings-to-needs ratios in early adulthood, the 10th percentile results correspond to families with earnings lower than half of the federal poverty level (FPL), and the 90th percentile of earnings-to-needs is roughly between 4 and 5 times the FPL. The mean earnings-to-needs ratio fell from about 2.2 or 2.3 pre-reform to 2 post-reform.

To explore the potential associations between welfare reform and intergenerational dependence, in Table S.2 we report the unconditional ordinary least squares (OLS) estimates for childhood PTO AFDC/TANF associations with early adult outcomes, and we

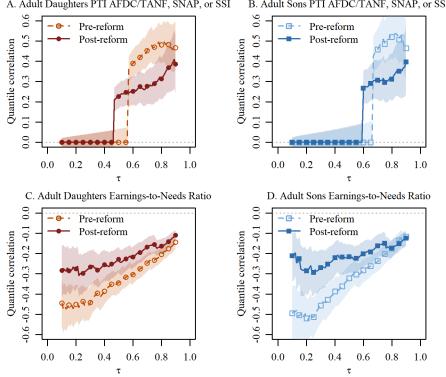
Table S.2. Intergenerational Correlations for Childhood Proportion of Time On AFDC/TANF Exposure and Early Adulthood Outcomes, by Welfare Regime

	Adultho	Adulthood AFDC/TANF, SNAP, or SSI				Adulthood Earnings-to-Needs Ratio			
	Daug	Daughters		Sons		Daughters		Sons	
	Before (1)	After (2)	Before (3)	After (4)	Before (5)	After (6)	Before (7)	After (8)	
Childhood PTO	0.646	0.583	0.468	0.400	-3.096	-2.721	-2.400	-2.004	
AFDC/TANF	(0.068)	(0.109)	(0.077)	(0.132)	(0.285)	(0.338)	(0.269)	(0.421)	
Elasticity	0.436 (0.045)	0.235 (0.042)	0.392 (0.062)	0.225 (0.069)	-0.102 (0.009)	-0.116 (0.014)	-0.081 (0.009)	-0.071 (0.014)	
Observations	703	615	547	464	703	615	547	464	

Note: Childhood exposure measures represent mean AFDC/TANF participation during the years when the child is under age 19 and living with the mother. Mean adult measures are taken for years observed between ages 19 and 27.

also show intergenerational elasticity estimates to put coefficient magnitudes into context. These mean-based estimates provide a baseline for comparison to the distributional analysis in the manuscript. Table S.2 shows that for daughters the elasticity between childhood PTO AFDC/TANF and adult PTO means-tested assistance falls from 0.436 pre-reform to 0.235 post-reform, and for sons the elasticity falls from 0.392 to 0.225 by reform era. The elasticities with earnings-to-needs ratios are negative implying that childhood welfare exposure corresponds to lower earnings in adulthood. For daughters, the association becomes more negative post-reform with a change from -0.102 to -0.116, and for sons the association becomes less negative from -0.081 to -0.071, though statistically these mean estimates are not different.

Section S.2. Quantile Correlations for Alternative Outcomes


This section presents additional empirical evidence obtained by the quantile correlation estimator defined in equation (2) of the manuscript. Recall that the correlation coefficient measures the association between childhood exposure and the event that an adult measure crosses its marginal τ -th quantile.

The main text Figure 3 presents the correlation between childhood PTO AFDC/TANF and PTO in adulthood on the wider safety net of AFDC/TANF, SNAP, or SSI, as well as earnings to needs in early adulthood. In Figure S.2, instead of the share of time we present the correlation between the percent of total income (PTI) from childhood AFDC/TANF and PTI from the wider safety net in adulthood as well as early adulthood earnings to needs. Both the qualitative level and pattern of correlations in Figure S.2 closely

Figure S.2. Quantile Correlations of Childhood Proportion of Total Income from AFDC/TANF and Early Adulthood Outcomes from Ages 19 to 27, by Welfare Regime

A. Adult Daughters PTI AFDC/TANF, SNAP, or SSI

B. Adult Sons PTI AFDC/TANF, SNAP, or SSI

Note: The child's early adulthood outcome is indicated by each panel heading. These quantile correlations are estimated unconditionally and without PSID sample weights, and 90-percent confidence intervals are shown based on 1000 bootstrap replications.

follow those in Figure 3 — higher extensive-margin participation in the wider safety net post reform, but with lower correlations and lower earnings penalties for both daughters and sons. This suggests that the baseline correlations are robust to using share of income in lieu of time. We note that the standard errors around the PTI correlations are slightly wider than those from PTO in Figure 3.

We next examine intergenerational correlations of our main PTO AFDC/TANF measure of childhood exposure with income-based measures in adulthood in Figure S.3, first by PTI from the broader safety net in panels A and B, then by total family income relative to the FPL (instead of earnings-to-needs) in panels C and D. The correlations in welfare dependence exhibit similar descriptive implications as the results shown in Figures 3 and S.2, as do the comparisons between family income and earnings in adulthood. The

A. Adult Daughters PTI AFDC/TANF, SNAP, or SSI B. Adult Sons PTI AFDC/TANF, SNAP, or SSI 9.0 Pre-reform Pre-reform 0.5 Post-reform 0.5 Post-reform Quantile correlation Quantile correlation 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.6 0.8 C. Adult Daughters Income-to-Needs Ratio D. Adult Sons Income-to-Needs Ratio -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.0 Pre-reform Pre-reform -0.5 -0.4 -0.3 -0.2 -0.1 Post-reform Quantile correlation Quantile correlation

Figure S.3. Quantile Correlations of Childhood Proportion of Time On AFDC/TANF and Early Adulthood Proportion of Total Income from Broader Safety Net and Income-to-Needs, by Welfare Regime

Note: The child's early adulthood outcome is indicated by each panel heading. These quantile correlations are estimated unconditionally and without PSID sample weights, and 90-percent confidence intervals are shown based on 1000 bootstrap replications.

9.0-

0.0

0.2

0.6

0.8

1.0

9.0-

0.0

0.2

0.4

0.6

0.8

1.0

negative income-to-needs correlations before welfare reform range from -0.4 to -0.5 at low levels of early adulthood income, and fall in magnitude to -0.3 after reform. At higher levels of adult income, the welfare exposure penalty is of comparable magnitude around -0.3 to -0.2 both before and after reform.

Lastly, Figure S.4 shows quantile correlations comparing the relationship between childhood AFDC/TANF exposure and early adult PTO AFDC/TANF alongside the outcome of PTO SNAP or SSI; that is, separating out cash assistance from the rest of the wider safety net. The figure makes transparent that the reduction in the zero correlation of participation in the wider safety net in adulthood after welfare reform discussed in the main text around Figure 3 is due to secular increases in SNAP and SSI, not TANF. Indeed, the sizable increase in the zero correlations of AFDC/TANF in Figure S.4 panel A is

A. Adult Daughters PTO AFDC/TANF B. Adult Sons PTO AFDC/TANF 9.0 Pre-reform Pre-reform 0.3 0.4 0.5 Post-reform 0.5 Post-reform Quantile correlation Quantile correlation 0.4 0.3 0.2 0.2 0.1 0.1 0.0 0.2 0.6 0.8 0.8 C. Adult Daughters PTO SNAP or SSI D. Adult Sons PTO SNAP or SSI 9.0 9.0 Pre-reform Pre-reform 0.5 0.5 Post-reform Post-reform Quantile correlation Quantile correlation 0.3 0.4 0.3 0.2 0.2 0.1 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure S.4. Quantile Correlations of Proportion of Time On Childhood AFDC/TANF Exposure and Early Adulthood Means-Tested Program Participation, by Welfare Regime

Note: The child's early adulthood outcome is indicated by each panel heading. These quantile correlations are estimated unconditionally and without PSID sample weights, and 90-percent confidence intervals are shown based on 1000 bootstrap replications.

consistent with the analysis presented in Hartley et al. (2022), which was restricted to the extensive margin of daughters, while the correlations in panel B for sons suggest that post reform so few sons receive TANF that identification below the 90th percentile is not possible.

Section S.3. Further Evidence on Mechanisms

S.3.1. Means-Tested Program Effects: Program Use and Substitution

Using Figures S.5 and S.6, we investigate the possibility that daughters and sons substitute programs over generations. Figure S.5 shows a comparison of CDFs for childhood PTO and PTI in AFDC/TANF (panels A and B) and CDFs for childhood PTO in AFDC/TANF, SNAP or SSI (panel C) and just SNAP or SSI (panel D). Panel A repeats Figure 2 in the main text, where we identify a clear crossing condition in the CDFs of

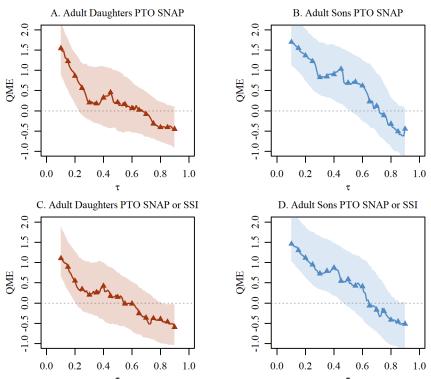
B. Proportion of Total Income from AFDC/TANF A. Proportion of Time on AFDC/TANF 1.0 Cumulative probability Cumulative probability 6.0 6.0 8.0 0.7 0.7 9.0 9.0 Post-reform Post-reform Pre-reform Pre-reform 0.6 0.8 0.2 0.6 0.8 0.2 0.4 1.0 0.4 1.0 Childhood PTO AFDC/TANF Childhood PTI from AFDC/TANF C. Proportion of Time on AFDC/TANF, SNAP, or SSI D. Proportion of Time on SNAP or SSI 6.0 Cumulative probability Cumulative probability 8.0 0.7 9.0 0.5 Post-reform Post-reform Pre-reform Pre-reform 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8

Figure S.5. Empirical Cumulative Distribution Function for Childhood Exposure to AFDC/TANF or the Broader Safety Net, by Welfare Regime

Note: The shaded regions of childhood PTO AFDC/TANF values from 0.01 to 0.225 and 0.99 to 1 highlight distribution crossing regions, and the distributional equivalence by reform between PTO values of 0.25 to 0.85 is rejected based on a one-sided Kolmogorov-Smirnov test p-value of 0.001. We do not show the same regions for panels B–D because of the differences in crossing regions. Pointwise 90-percent confidence intervals are shown.

Childhood PTO SNAP or SSI

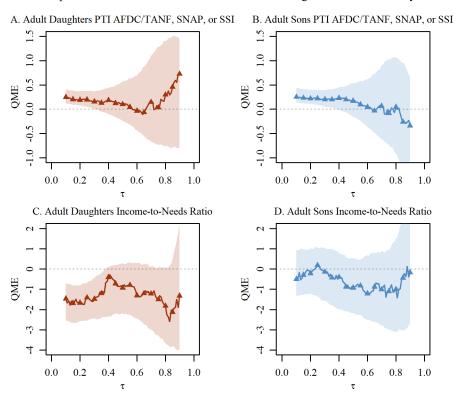
Childhood PTO AFDC/TANF, SNAP, or SSI


AFDC/TANF before and after welfare reform below 0.25, which as noted in the text, permits us to construct a counterfactual distribution for the region above 0.25 using the similar distributions below 0.25. Panel B of Figure S.5 suggests a strong separation across most of the distribution in PTI from AFDC/TANF, underscoring the validity of using the reform of AFDC as an instrumental variable. In contrast, the absence of any significant separation across exposure to the broader safety net by reform era, in Panel C, emphasizes the importance of the clean identification provided by the transition from AFDC to TANF leveraged throughout our main analysis. Panel D indicates the crossing condition below 0.25 for the SNAP or SSI distribution, and in fact the CDF after reform lies below the pre-

reform CDF indicating a greater share of time being spent on those programs after reform, consistent with program substitution.

Figure S.6 presents results for the quantile marginal effect (QME) estimated using equation (4) of the main text for adult PTO SNAP and SSI, instead of adult AFDC/TANF, SNAP, or SSI as depicted in Figure 7 of the paper. The results suggest that there is intergenerational substitution towards SNAP and SSI, predominantly driven by SNAP, possibly related to the fact that young adults face wage penalties associated with time spent on welfare in childhood (see Figure 8 of the manuscript), and those with high levels of welfare participation were no better off after welfare reform.

Figure S.6. Quantile Marginal Effects for Proportion of Time On Childhood AFDC/TANF Exposure on Early Adulthood Means-Tested Program Participation


A Adult Daughters PTO SNAP

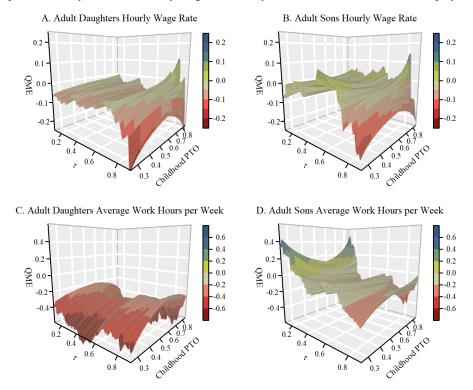
Note: Estimates correspond to the QME estimator defined in equation (4) in the manuscript shown for childhood PTO AFDC/TANF summarized as the mean for exposure ranging from 25 to 85 percent of observed years. The child's early adulthood outcome is indicated by each panel heading, which corresponds to the distribution indicated by τ . Pointwise 90-percent confidence intervals are shown based on 1000 bootstrap replications.

In another variation on the evidence in Figure 7 of the manuscript, Figure S.7 shows QME estimates for income-based measures similar to our main outcomes. Instead of focusing on time on the wider safety net in adulthood, panels A and B of Figure S.7 provide evidence on adult daughters' and sons' income from means-tested assistance as a proportion of total income, that is, our PTI from AFDC/TANF, SNAP, or SSI as opposed to the PTO measure used in Figure 7. Childhood welfare exposure implies less dependence in terms of income from the safety net in adulthood than it does for time participating in the safety net. The largest magnitude of effects for PTO were from 1 to 1.5 whereas they are around 0.25 at the lower end of the adult distribution of PTI. The marginal effects decrease in both cases through the median of the adult distribution, but the PTI estimates

Figure S.7. Quantile Marginal Effects for Proportion of Time On Childhood AFDC/TANF Exposure on Adulthood Proportion of Total Income from Broader Welfare Programs and Total Family Income-to-Needs

Note: Estimates correspond to the QME estimator defined in equation (4) in the manuscript shown for childhood PTO AFDC/TANF summarized as the mean for exposure ranging from 25 to 85 percent of observed years. The child's early adulthood outcome is indicated by each panel heading, which corresponds to the distribution indicated by τ . Pointwise 90-percent confidence intervals are shown based on 1000 bootstrap replications.

become much noisier at higher levels of participation in early adulthood. The null marginal effects at the upper tail of PTI from the broader safety net imply that any program substitution for chronic recipients is less associated with reliance on assistance as a proportion of total income relative duration of participation.

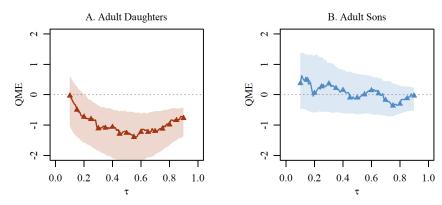

Panels C and D of Figure S.7 show QME estimates for income-to-needs rather than earnings-to-needs as shown in Figure 7 of the manuscript. Again, we emphasize the role of income, here by including non-labor sources in our measure of adulthood economic well-being. The results for income-to-needs are qualitatively and quantitatively quite similar to those considering only earnings — daughters with below-median relative incomes are again penalized in adulthood poverty status from the long-run impacts of childhood AFDC/TANF exposure, yet sons are not. Therefore, the main results still apply more generally, that the welfare dependence for daughters and sons is rather similar while lower-income daughters carry more penalty in well-being, which Figure 8 in the manuscript suggests may be related to differences in hours worked.

S.3.2. Second-Generation Wages and Labor Supply

Since work hours are especially relevant in interpreting our main results, we lastly turn to an extension of the evidence in Figure 8 of the manuscript.

Figure S.8 shows heterogeneous QME estimates evaluated across levels of childhood AFDC/TANF exposure and quantiles of the labor outcome distributions among those employed during the year. Evidence in panels A and B reveals that conditional on working welfare exposure has null effects for daughters' and sons' long-run wages, despite some suggestion of variation toward the upper tails of the distributions. In summary evidence covering ranges of childhood exposure on average and at select quantiles (following manuscript Table 1 layout, not shown here), none of the wage effects would be statistically significant conventional levels. In panels C and D of Figure S.8, the only meaningful effects are for daughters, with penalties on weekly hours worked that are more pronounced at both lower at and higher levels of the childhood exposure range, and for quantiles toward the lower half of the adult distribution.

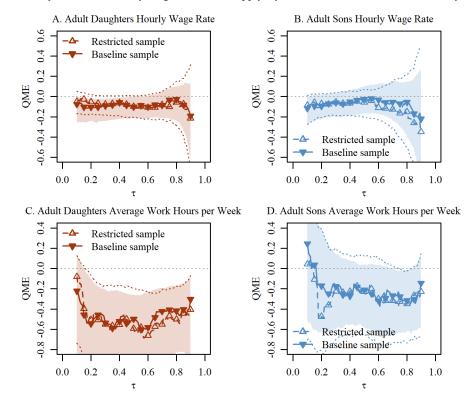
Figure S.8. Heterogeneous Quantile Marginal Effects for Proportion of Time On Childhood AFDC/TANF Exposure on Early Adulthood Hourly Wages and Yearly Hours Worked Conditional on Employment



Note: Estimates correspond to the QME estimator defined in equation (4) in the manuscript. Heterogeneous effects are shown for childhood PTO AFDC/TANF ranging from 25 to 85 percent of observed years. The child's early adulthood outcome is indicated by each panel heading, which corresponds to the distribution indicated by τ .

The outcomes shown in Figure S.8 are conditional on some yearly employment. Because we observe a welfare exposure penalty on daughters' unconditional wages in Figure 8 of the manuscript — that is, including zeros for years not employed — next we explore the degree of extensive-margin effects on the number of weeks worked in early adulthood. Figure S.9 shows QME estimates for an individual's proportion of total weeks worked, which are consistent with extensive-margin effects on weeks employed among daughters that do not exist for sons. These extensive-margin effects apply over most of the distribution of weeks worked except the far left tail, similar to yearly hours worked in the main manuscript.

The evidence in Figure 8 of the manuscript, along with Figures S.8 and S.9, implies that childhood welfare exposure penalizes daughters' earnings through hours worked. One


Figure S.9. Quantile Marginal Effects for Proportion of Time On Childhood AFDC/TANF Exposure on the Proportion of Total Weeks Worked in Adulthood

Note: Estimates correspond to the QME estimator defined in equation (4) in the manuscript shown for childhood PTO AFDC/TANF summarized as the mean for exposure ranging from 25 to 85 percent of observed years. The child's early adulthood outcome, proportion of weeks worked, corresponds to the distribution indicated by τ . Pointwise 90-percent confidence intervals are shown based on 1000 bootstrap replications.

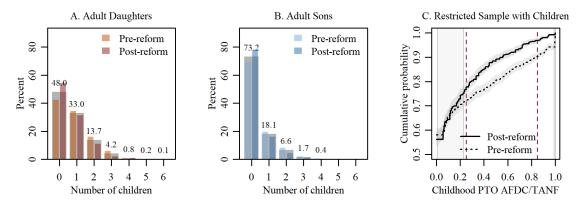
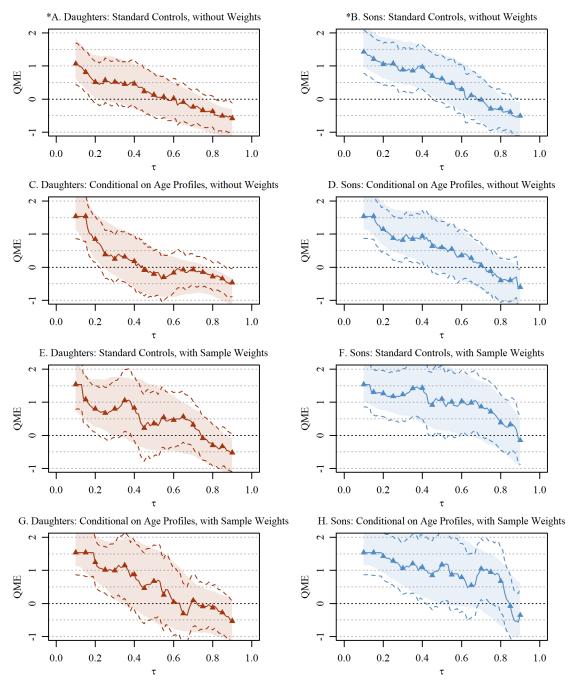

candidate explanation for the differences between daughters and sons with respect to welfare exposure effects on labor supply is differential gender expectations for household production such as caring for children. Figure S.10 reexamines our QME estimates for conditional wages and hours worked as shown in Figure 8 by using the presence of children during early adulthood as a potential moderator, both for a restricted subsample with children and an indicator for children interacted with childhood welfare exposure. The estimates for those with children present are consistent with the main results in the manuscript; the daughters' effects are similar to those before, yet now sons exhibit negative hours effects closer to daughters, however statistically no different from zero. In results not shown here, the unconditional version of Figure S.10 closely resembles the analogous estimates in Figure 8 with the same qualitative implications as in the conditional case. Figure S.11 shows that daughters are more likely to have children present in the home with only 48 percent with no children in early adulthood compared to 73 percent of sons with no children. Because the subset of individuals with children may have different trends before and after welfare reform, we confirm that the first-stage crossing condition and distributional differences hold for the same exposure ranges in the restricted sample (Figure S.11 panel C). The point estimates and confidence intervals for the restricted sample with

Figure S.10. Quantile Marginal Effects for Proportion of Time On Childhood AFDC/TANF Exposure on Early Adulthood Hourly Wage and Labor Supply, by Children Present in the Adult Family Unit

Note: Estimates correspond to the QME estimator defined in equation (4) in the manuscript shown for childhood PTO AFDC/TANF summarized as the mean for exposure ranging from 25 to 85 percent of observed years. The child's early adulthood outcome is indicated by each panel heading, which corresponds to the distribution indicated by τ . The restricted sample keeps those with children present, and the baseline sample interacts an indicator for children present with childhood AFDC/TANF exposure. Pointwise 90-percent confidence intervals are shown based on 1000 bootstrap replications.

Figure S.11. Adult Heterogeneity in Children Present and First-Stage Results for the Restricted Sample with Children

Note: Each measure in panels A and B is averaged across all adult observation years and summarized as the floor integer value, where the gray bars and number labels represent the values summarized across both welfare regimes. In panel C, the shaded regions of childhood PTO AFDC/TANF values from 0.01 to 0.225 and 0.99 to 1 highlight distribution crossing regions, and pointwise 90-percent confidence intervals are shown.


children correspond very closely to those shown for the moderator-interaction results shown in Figure S.10. These findings highlight important differential effects that may be related to the literature on gendered labor roles, both formal and informal, and discrimination (see Blau and Kahn 2017; Goldin 2006).

Section S.4. Specification Sensitivity for Sample Weights, Control Variables, and Potential State-level Heterogeneity

This section documents the sensitivity of our main estimates in Section V of the manuscript to specifications relating to the inclusion of PSID sampling weights and the set of control variables. As mentioned in the manuscript, the large number of mothers and daughters linked over the PSID survey years is comprised of both the Survey Research Center (SRC) and Survey of Economic Opportunity (SEO) subsamples. We examine the robustness of results to the inclusion of PSID survey weights, which help to balance the samples due to the oversample of low-income and minority families in the SEO.

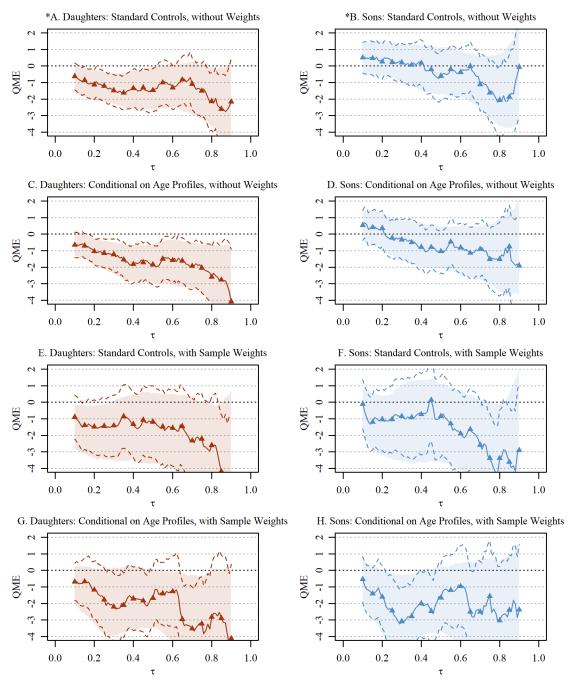

Specifically, in each of Figures S.12 and S.13, we present 8 specifications, with the first 4 in the top two rows without sample weights and the bottom two rows with sample weights. In addition to controlling for sample weights, the set of figures use different variations in the vector of controls. In the first and third rows (panels A, B, E, and F), we use the standard controls in the main analysis: a vector that includes quadratics in child's ages observed in adulthood and the mother's ages during the childhood observations, and early-adulthood averages for the state-level AFDC/TANF benefit standard, maximum federal/state Earned Income Tax Credit, poverty rate (Supplemental Poverty Measure), AFDC/TANF participation rate, and unemployment rate. In the second and fourth rows (panels C, D, G, and H), we show results conditional on age profiles only, using quadratics for both child's and mother's ages. The daughters' results are in the first column of panels and the sons' in the second. We estimate QMEs based on equation (4) of the manuscript for PTO AFDC/TANF, SNAP, or SSI (Figure S.12) and earnings-to-needs ratio (Figure S.13). In addition to the variation in the specifications explained above, we show two different confidence intervals. Gaussian confidence intervals are denoted by the dashed

Figure S.12. Quantile Marginal Effect Sensitivity to Covariates and Sample Weights: Proportion of Time On Childhood AFDC/TANF Exposure on Early Adulthood Broader Welfare Participation

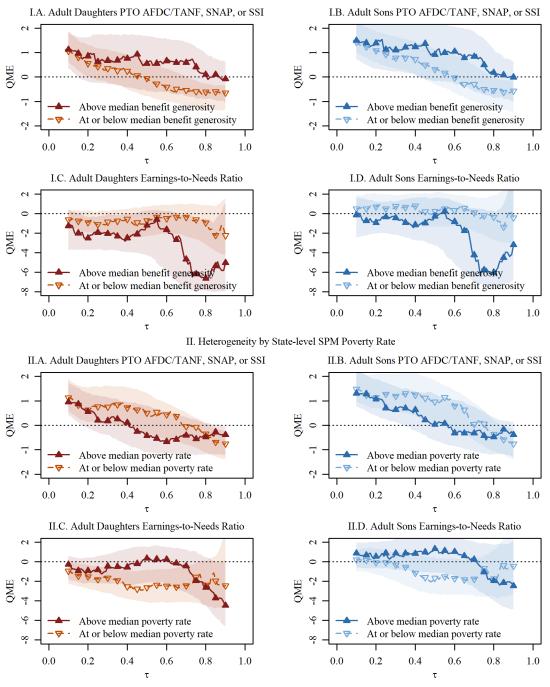
Note: Estimates correspond to the QME estimator defined in equation (4) in the manuscript shown for childhood PTO AFDC/TANF summarized as the mean for exposure ranging from 25 to 85 percent of observed years. Pointwise 90-percent confidence intervals are shown in the shaded region based on 1000 bootstrap replications, with Gaussian confidence intervals indicated by dashed lines. The asterisks denote the main analysis specification.

Figure S.13. Quantile Marginal Effect Sensitivity to Covariates and Sample Weights: Proportion of Time On Childhood AFDC/TANF Exposure on Early Adulthood Earnings-to-Needs Ratio

Note: Estimates correspond to the QME estimator defined in equation (4) in the manuscript shown for childhood PTO AFDC/TANF summarized as the mean for exposure ranging from 25 to 85 percent of observed years. Pointwise 90-percent confidence intervals are shown in the shaded region based on 1000 bootstrap replications, with Gaussian confidence intervals indicated by dashed lines. The asterisks denote the main analysis specification.

lines and 5-95 quantiles of the empirical distribution of the bootstrap estimator are shown in the shaded regions. The number of bootstrap replications is 1000.

The pattern of results in Figures S.12 and S.13 mimic those in panels A and B of Figure 7 of the main text, depicting sharp linear declines in the QME as intensity of our adult outcome measure increases, with the QME being positive in the bottom half of the distribution, and negative in the top half of adult daughters and sons. The implication is that the reduction in childhood exposure to TANF after reform results in lower PTO on the wider safety net in adulthood for those with low to moderate adult participation, and to higher PTO in adulthood among those with high intensity adult participation. This relationship holds with and without PSID sample weights except for the negative QMEs for sons that are statistically insignificant when using weights. We likewise find a similar pattern of results on earnings-to-needs in Figure S.13 as in panels C and D of Figure 7 in the main text, albeit with wider confidence intervals when we include sample weights.

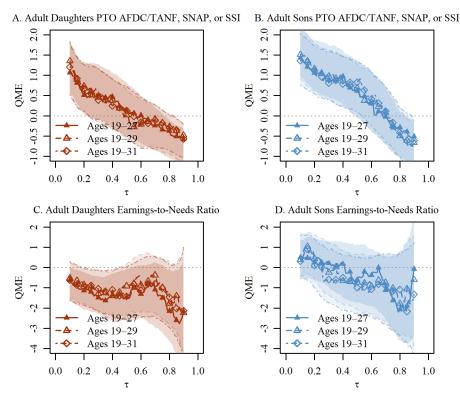

Next, in Figure S.14 we explore heterogeneity in the estimated QME for PTO on the wider safety net and earnings-to-needs. These estimates show the effects of childhood welfare exposure allowing for potential variation depending on conditionally low or high measures of state-level characteristics relative to the median: AFDC/TANF benefit generosity or SPM poverty rates. Our main results do not vary dramatically by these select measures of heterogeneity despite differences where the magnitudes of welfare exposure disadvantages are pronounced for states with higher AFDC/TANF benefit levels and lower poverty rates.

Section S.5. Further Robustness Checks

This section presents results that complement and expand upon the baseline estimates discussed in Section VI.C of the paper. The first set of results in Figures S.15 and S.16 includes additional QME robustness estimates on adult age sensitivity and subsamples without siblings, comparable to the main QME results in Figure 7 of the manuscript. Then, we investigate the sensitivity of our main estimates to restricting the sample to those most likely influenced by welfare reform (Figure S.17), followed by estimates showing

Figure S.14. Quantile Marginal Effect Heterogeneity by State-level Characteristics: Proportion of Time On Childhood AFDC/TANF Exposure on Early Adulthood Economic Outcomes

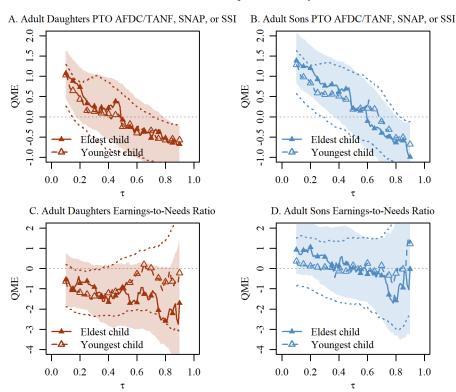
I. Heterogeneity by State-level AFDC/TANF Benefit Standard


Note: Estimates correspond to the QME estimator defined in equation (4) in the manuscript shown for childhood PTO AFDC/TANF summarized as the mean for exposure ranging from 25 to 85 percent of observed years. The adulthood outcome corresponds to the distribution indicated by τ , and each panel represents estimates for those with greater than a given cutoff for high values of each characteristic relative to otherwise low values. Pointwise 90-percent confidence intervals are shown based on 1000 bootstrap replications.

robustness to issues of sample attrition and underreported welfare participation (Figures S.18 and S.19, respectively).

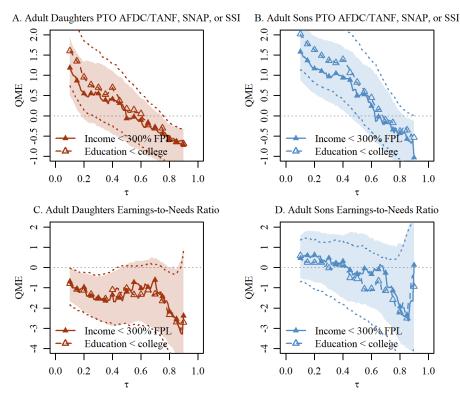
S.5.1. Sample Robustness and Heterogeneous Subpopulations

We first examine the sensitivity of the results in Figure 7 by varying the age range for defining early adulthood. In Figure S.15, we compare our baseline range of ages 19–27 by extending the upper age included to ages 19–29 as well as ages 19–31. There we see that the effect of childhood exposure on PTO in the wider safety net is unchanged when expanding the top age, yet the QME is estimated less precisely when including higher ages in early adulthood.


Figure S.15. Sensitivity by Age Range of Early Adulthood: Quantile Marginal Effects for Proportion of Time On Childhood AFDC/TANF Exposure on Early Adulthood Outcomes

Note: Estimates correspond to the QME estimator defined in equation (4) in the manuscript shown for childhood PTO AFDC/TANF summarized as the mean for exposure ranging from 25 to 85 percent of observed years. The child's early adulthood outcome is indicated by each panel heading, which corresponds to the distribution indicated by τ . Pointwise 90-percent confidence intervals are shown based on 1000 bootstrap replications.

The pooled samples by welfare regime may observe more than one child per family. As a check on the prevalence of siblings and sensitivity of our estimates, we reproduce the main QME results with only the eldest or youngest child in each welfare reform era. For daughters, there are 571 unique observations out of 703 in the pre-reform sample and 447 out of 615 post-reform. For sons, there are 456 unique observations out of 547 before reform and 349 out of 464 after. These sample reductions are about 73 to 83 percent of those in the baseline samples. Figure S.16 shows that there are no substantive differences between the main QME estimates and those from estimation samples without siblings except for some small loss of precision.


Figure S.16. Subsamples without Siblings: Quantile Marginal Effects for Proportion of Time On Childhood AFDC/TANF Exposure on Early Adulthood Outcomes

Note: Estimates correspond to the QME estimator defined in equation (4) in the manuscript shown for childhood PTO AFDC/TANF summarized as the mean for exposure ranging from 25 to 85 percent of observed years. The child's early adulthood outcome is indicated by each panel heading, which corresponds to the distribution indicated by τ . Pointwise 90-percent confidence intervals are shown based on 1000 bootstrap replications, with the shaded region denoting the eldest-child estimates and the dotted lines the youngest.

One of the conditions for identifying causal estimates following D'Haultfœuille et al. (2023) is that there are no group-specific trend differences in response to the exogenous shift in treatment. For our setting, we assume that welfare reform implies a monotonic decrease in program participation across the population. However, given that our recovery of the time trend function uses reform-induced changes in the distribution of childhood AFDC/TANF exposure, we test whether our estimator is robust to excluding any sample observations that are unlikely to respond to any welfare policy. In Figure S.17, we show QME estimates for two subsamples that only include observations with greater

Figure S.17. Restricted Samples by Lower Income or Education: Quantile Marginal Effects for Proportion of Time On Childhood AFDC/TANF Exposure on Early Adulthood Economic Outcomes

Note: The lower income sample restricts to those with mean childhood family income below 300 percent of the federal poverty level, and the lower education sample to those whose mothers completed less than 16 years of education as a proxy for less than a four-year college degree. Estimates correspond to the QME estimator defined in equation (4) in the manuscript shown for childhood PTO AFDC/TANF summarized as the mean for exposure ranging from 25 to 85 percent of observed years. The child's early adulthood outcome is indicated by each panel heading, which corresponds to the distribution indicated by τ . Pointwise 90-percent confidence intervals are shown based on 1000 bootstrap replications, with the shaded region for lower income and dotted lines for lower education.

probabilities of being eligible for means-tested assistance: those with mean childhood family income below 300 percent of the FPL, or those whose mothers have less than a college education. Relative to the full sample of 2329 daughters and sons across both welfare reform periods, there are 1704 individuals whose mean total income including transfers was less than 3 times the FPL, and 2000 individuals whose mothers had completed no more than 15 years of education. The results indicate no qualitative differences between these subsamples or notable differences from the manuscript evidence in Figure 7.

S.5.2. Sample Attrition in the PSID

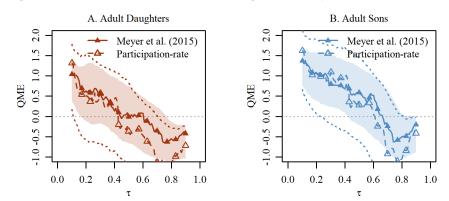
While the PSID offers rich data following families over time and across generations, nonrandom sample attrition can pose a source of bias. The largest attrition occurred in the earliest survey years, especially after the initial 1968 survey, and the PSID been validated for cross-sectional as well as intergenerational regression-based settings (Fitzgerald et al. 1998; Fitzgerald 2011; Hartley et al. 2022). We explore the sensitivity of our main QME estimates in Figure S.18 based on inverse probability weights constructed based on first-stage estimates of non-attrition, $s \in \{0,1\}$, where \hat{s} is the predicted probability of staying in sample as a parametric function of our main model covariates as well as reported income, welfare participation, race, family size, and survey subsample. We alternatively estimate the first stage by either logit or linear probability model, where the inverse probability weight (IPW) is given by

IPW =
$$s/\hat{s} + (1-s)/(1-\hat{s})$$
.

The relevance of correcting for attrition appears to be more prominent among the daughters, though the qualitative results are unchanged. Panel C of Figure S.18 suggests that the linear first-stage approach to modeling attrition is associated with an earnings penalty that continues to be statistically signification at the 10-percent level upward in the earnings distribution. The results for a logit first stage of attrition correction still closely resemble the main results in Figure 7 for daughters.

A. Adult Daughters PTO AFDC/TANF, SNAP, or SSI B. Adult Sons PTO AFDC/TANF, SNAP, or SSI 1.0 1.0 0.5 0.5 0.0 0.0 -0.5 IPW (logit) IPW (logit) IPW (LPM) IPW (LPM) 0.2 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0 C. Adult Daughters Earnings-to-Needs Ratio D. Adult Sons Earnings-to-Needs Ratio OME IPW (logit) IPW (logit) IPW (LPM) IPW (LPM) 1.0 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0

Figure S.18. Attrition-Adjusted Quantile Marginal Effects for Proportion of Time On Childhood AFDC/TANF Exposure on Early Adulthood Economic Outcomes


Note: Attrition-adjusted estimates use inverse probability weights (IPWs) estimated with either logit or a linear probability model (LPM) in the first stage. Estimates correspond to the QME estimator defined in equation (4) in the manuscript shown for childhood PTO AFDC/TANF summarized as the mean for exposure ranging from 25 to 85 percent of observed years. The child's early adulthood outcome is indicated by each panel heading, which corresponds to the distribution indicated by τ . Pointwise 90-percent confidence intervals are shown based on 1000 bootstrap replications, with the shaded region for logit first stage and dotted lines for LPM.

S.5.3. Misclassification of Self-Reported Welfare Participation

Another potential bias results from the nonrandom misclassification of welfare participation when respondents tend to underreport because of stigma associated with means-tested programs, which we explore with adjusted QME estimates in Figure S.19. Meyer et al. (2015) show that misclassification of program participation is substantial and a growing problem over time. For our analysis, the childhood welfare exposure is measured in earlier survey years and aggregated across several observations, so we focus our concern on second-generation welfare participation. Our main welfare outcome in adulthood is the PTO AFDC/TANF, SNAP, or SSI, and it is also aggregated across multiple observations. As a conservative test of the potential bias from underreported participation, we use two

corrective measures to the independent variables, each relying on estimated AFDC/TANF underreporting despite the higher likelihood that respondents accurately report any of the three means-tested programs. First, we use the Meyer et al. (2015) estimates by extrapolating the last available year from their results to each of our later years observed. Then, we use a consistent measure of AFDC/TANF recipients relative to the number of people with incomes below the FPL by year. The misclassification-corrected estimates are noisier than the main estimates in the manuscript, yet the point estimates are very similar and consistent with the conclusions in the main analysis.

Figure S.19. Misclassification-Adjusted Average and Quantile Marginal Effects for Proportion of Time On Childhood AFDC/TANF Exposure on Early Adulthood Economic Outcomes

Note: Misclassification-adjusted estimates are reweighted according to estimated reporting rates in Meyer et al. (2015), which are only available in limited years, as well as participation-rate estimates calculated comparing PSID self-reported participation relative to administrative reports of recipients per year. Estimates correspond to the QME estimator defined in equation (4) in the manuscript shown for childhood PTO AFDC/TANF summarized as the mean for exposure ranging from 25 to 85 percent of observed years. The child's early adulthood outcome is indicated by each panel heading, which corresponds to the distribution indicated by τ . Pointwise 90-percent confidence intervals are shown based on 1000 bootstrap replications, with the shaded region for Meyer et al. estimates and dotted lines for participation-rate estimates.

REFERENCES

- Blau, F.D., and L.M. Kahn. 2017. "The gender wage gap: Extent, trends, and explanations," *Journal of Economic Literature*, 55 (3): 789–865.
- Bowden, V., D. Azevedo-McCaffrey, and M. Manansala. 2025. "AFDC and TANF caseload and poverty data, 1978–2023," Data report, Center on Budget and Policy Priorities, April 11.
- Crouse, G. 1999. "State implementation of major changes to welfare policies, 1992–1998." Technical document, U.S. Department of Health and Human Services, Washington, DC.
- D'Haultfœuille, X., S. Hoderlein, and Y. Sasaki. 2023. "Nonparametric difference-in-differences in repeated cross-sections with continuous treatments," *Journal of Econometrics*, 234 (2): 664–690.
- Fitzgerald, J.M. 2011. "Attrition in models of intergenerational links using the PSID with extensions to health and to sibling models," *B.E. Journal of Economic Analysis and Policy*, 11 (3): 1–63.
- Fitzgerald, J.M., P.T. Gottschalk, and R.A. Moffitt. 1998. "An analysis of sample attrition in panel data: The Michigan Panel Study of Income Dynamics," *Journal of Human Resources*, 33 (2): 251–299.
- Goldin, C. 2006. "The quiet revolution that transformed women's employment, education, and family," *American Economic Review*, 96 (2): 1–21.
- Grogger, J. 2004. "Time limits and welfare use," *Journal of Human Resources*, 39 (2): 405–424.
- Grogger, J., and C. Michalopoulos. 2003. "Welfare dynamics under time limits," *Journal of Political Economy*, 111 (3): 530–554.
- Hartley, R.P., C. Lamarche, and J.P. Ziliak. 2022. "Welfare reform and the intergenerational transmission of dependence." *Journal of Political Economy*, 130 (3): 523–565.
- Meyer, B., W. Mok, and J. Sullivan. 2015. "The under-reporting of transfers in household surveys: Its nature and consequences," NBER working paper 15181. Updated June 2015.