ECO 401-002, 003
Spring 2011
Problem Set \#5

Due: Monday, March 21, 2011.

Use graph paper and large diagrams for questions 3 and 4!!

1. Two sisters contemplate forming an equal partnership and opening a shop in Lexington selling knick-knacks to tourists here to see the local horse industry. Both of them would work full time in the shop. One is a college drop-out and the other has her MBA degree. They come to different conclusions about the prospective economic profitability of such a venture. Is it possible for each of them to be correct, or does this mean that one of them has made a mistake in her calculations? Explain.
2. Problem 8.2, Besanko and Braeutigam.
3. A firm's long-run total cost curve is given by $T C(Q)=1000 Q-30 Q^{2}+Q^{3}$. Plot the total cost curve over the range of output from $\mathrm{Q}=0$ to $\mathrm{Q}=25$. Derive expressions for ATC and MC. Illustrate these on a separate diagram. At what output is minimum efficient scale?
4. Refer to the production function given in problem set \#4 for your lawn-care business. The per-hour rate that you pay to rent labor services (w) is $\$ 6$, and the per hour rate that you pay to rent machines (v) is $\$ 6$.
a) If you decide to mow and trim 4 yards per day, what combination of L and K will minimize costs? Illustrate your answer in a diagram that contains the isoquant for $\mathrm{Q}=4$ and isocost lines that pass through or are tangent to the different input combinations that you might use to produce $\mathrm{Q}=4$. Label these combinations (a).
b) Suppose that K is fixed at $\mathrm{K}=4$. You decide to increase your daily output of yards mowed from 4 to 6 . How much labor will you use and what will total costs be? Illustrate with another isocost line in your diagram and label the input combination (b).
c) K is still fixed at $\mathrm{K}=4$, but now you decide to reduce output to two yards per day. What input combination will you use? What will total costs be?
d) Graph the three above points on your SRATC curve when K is fixed at $\mathrm{K}=4$. Label the three points that correspond to (a), (b), and (c).
e) Suppose that you are planning on expanding your business. If both capital and labor are variable, what is the average cost of producing $\mathrm{Q}=6$? $\mathrm{Q}=8$? Illustrate your long-run average cost curve in the diagram you drew in (d), and label these two new points (e).

2 point bonus: Suppose that $\mathrm{w}=\$ 6$ and $\mathrm{v}=\$ 24$. What combination of L and K would minimize the cost of $\mathrm{Q}=4$? To illustrate this, draw a new diagram similar to 4(a) above that shows the isoquant and isocost lines. (Hint: can you calculate MP_{L} and MP_{K} from the production function $\mathrm{Q}=\mathrm{L}^{.5} \mathrm{~K}^{.5}$?)

