5 questions, 12 pts. each. 60 pts. total.

1. Your professor's brother-in-law Bubba owns a restaurant/bar in Fort Walton Beach, Florida. On a recent visit Bubba shared the following information:

Income Statement for Bubba's Bar

Costs
Wholesale cost of food and beer
Wages and salaries
(including $\$ 20,000$) for himself)
taxes and insurance
interest paid on bank loans
\$100,000@10\%

Revenues
Sales of food and drinks $\$ 130,000$

Bubba has $\$ 50,000$ of his own money invested in the bar. He anticipates that business will continue like this for the foreseeable future. Bubba also has a standing offer of $\$ 30,000$ to manage another bar in Fort Walton Beach. Suppose a national restaurant/bar chain offers Bubba $\$ 150,000$ to sell his bar, which would enable him to pay back the $\$ 100,000$ bank loan and recoup his own $\$ 50,000$. Should he take the offer? (Hint: what are Bubba's economic profits?)

2. Because your sister-in-law happens to be mayor, you were fortunate enough to be awarded the monopoly franchise to provide cable TV services to your hometown. As such, you are the only provider and as long as you have no competition, the discounted present value of your economic profit stream is $\$ 24,000,000$. Trouble looms on the horizon, however, because a satellite TV company is considering entering your market. Your monopoly franchise rights only apply to hard-wired cable TV, and do not apply to satellite signals and rooftop 18 -inch satellite dishes. If entry occurs and you share the market with a competitor, your discounted present value of economic profits will fall to $\$ 10,000,000$. If you contest entry and fight a price "war," the discounted present value of economic profits is $\$ 1,000,000$.
a) You announce publicly that if entry occurs, you will fight. Is your threat credible?
b) In preparation to fight a price war, you could add capacity to your system, so that you could offer additional channels that your competitor did not. The cost of adding such capacity in preparation to battle for customers is $\$ 12,000,000$. Only if entry occurs would you find it necessary to utilize this capacity. Should you make such a commitment to deter entry? Explain why or why not.
(a) Your threat is mol undille, since your profits

(b) You should add capacity to deter entry if the prost-commintment the pre-commitment duopoly profits if you the net t fight a price us en is cuedilale.

$$
\begin{aligned}
& \text { (1) } \pi_{m}-c \stackrel{?}{>} \pi_{\alpha} \\
& 24-12>10 \\
& \text { (2) } \pi_{\omega} \stackrel{?}{>} \pi_{\alpha}-c \\
& -1>10-12
\end{aligned}
$$

3. There are two Ford dealerships in town, Woman-O'-Peace Ford and Paul Miller's Sister's Ford. Each of these new car dealers have three alternative strategies that they could pursue: (1) highlight service department quality; (2) be the low-price dealer on all automobile sales; or (3) hire a local well-known basketball coach and engage in extensive advertising in outlying small towns and rural areas. The payoffs (profits) of these strategies are listed below, with Woman-O'-Peace Ford's profits being the first number in each cell and Paul Miller's Sister's Ford's profits being the second number in each cell.

Woman-O'-
Peace Ford:

	Paul Miller's Sister's Ford:		
	Service	Low Cost	Advertising
- Service	24,73	18,36	15,42
Low Cost	36,47	$24(30$	$18) 24$
Advertising	33,18	$30(24)$	12,18

a) Does either firm have a dominant or dominated strategy? If so, explain why and what the implications are for their strategy.
b) What do you predict will be the outcome of this strategic interaction between these two firms? i.e. what strategy will each firm choose? Briefly explain why.
(a)
strategy foo luth firms. Nerve be eliminated
(b) analyzing the
we see that

 that pms will play the lowecrat stinter, anting strategy.
4. One large pig and one small pig are placed in a box. At one end is a lever which when pressed causes a dispenser at the other end of the box to release ten units of food. The effort expended in pressing the lever costs each pig two units. If the small pig presses the lever, the big pig eats nine units of food and only one unit is left for the small pig (i.e. the small pig receives a net payoff of -1 units.) If the big pig presses the lever, the small pig can consume four units of food by the time the big pig has crossed the box. If both pigs press the lever, the small pig can get to the food first, but can only consume three units of food by the time the big pig arrives and shoves it aside. If neither pig presses the lever, each gets zero.
a) Illustrate the payoff matrix for this game.
b) What do you predict will be the outcome and why?
c) Is your predicted outcome a Nash equilibrium? Explain why or why not.

small Pig	
press	
wait	
5,1	
9,1	

(b) for the small $\underset{\sim}{\operatorname{sig}}$ is to wait. Realising that, the big pig g will choose to press the lever.
(c) The purdicted outcome is a Mach equilibuime. Jiver that the pig chooses to wait, the big prig's beat strategy is to press. Diver that the ling pig chores to press, the small pis best strategy is to wait.
5. Suppose that the oil industry consists of only two producers, Iran and Iraq. Each country chooses between producing either 2 million or 4 million barrels of oil per day. Depending on their decisions, total output in the world market will be 4,6 , or 8 million barrels. Suppose that the world price of oil will be $\$ 25, \$ 15$, or $\$ 10$ depending on how much oil is produced by the two nations. Extraction costs are $\$ 2$ per barrel in Iran and $\$ 4$ per barrel in Iraq. Illustrate the choices of strategy and the profit payoffs of each nation in a 2×2 matrix. What do you predict will be the outcome of this game if played only once? If played repeatedly?

Iran
Iraq

If they play the game orly pore, each country is likely to play their dominant strategy and produce 4 million bonds. Wold output will be 8 m bowels and price will be $\$ 10$.
Dan will have profits of $\$ 32 \mathrm{~m}$ and that will eam 524 m .

If they play the game rypatedly, it is likely that both will realize that they can do better if they cooperate (collude) and restrict output. If both restrict output to 2 m bowels pun day, profits car he increased to $\$ 46 \mathrm{~m}$ for than and $\$ 42 \mathrm{~m}$ for brag.

