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Abstract

We examine a �rm that can license its production technology to a rival when

�rms are heterogeneous in production costs. We show that a complete technology

transfer from one �rm to another always increases joint pro�t under weakly concave

demand when at least three �rms remain in the industry. A jointly pro�table

transfer may reduce social welfare, although a jointly pro�table transfer from the

most e¢ cient �rm always increases welfare. We also consider two auction games

under complete information: a standard �rst-price auction and a menu auction

by Bernheim and Whinston (1986). With natural re�nement of equilibria, we show

that the resulting licensees are ordered by degree of e¢ ciency: menu auction, simple

auction, and joint-pro�t maximizing licensees, in (weakly) descending order.

JEL:D4, L24, L4

Keywords: licensing, technology transfer

�This paper is an extensively expanded version of our past papers circulated under the titles

�Goldilocks and the licensing �rm: Choosing a partner when rivals are heterogeneous,� and �Technol-

ogy transfer when rivals are heterogeneous.�We thank Jay Pil Choi, Carl Davidson, Thomas Jeitschko,

Joshua Gans, Noriaki Matsushima, and Chun-Hui Miao, as well as participants at the IIOC meeting

2010, APET meeting 2011, and the seminars at Emory, Kobe, and Michigan State universities for their

comments on this paper. Of course, all errors are our own.
yDepartment of Economics, University of Kentucky. (e-mail) acr233@email.uky.edu
zDepartment of Economics, National University of Singapore. (e-mail) ecscyk@nus.edu.sg
xCorresponding author: Hideo Konishi, Department of Economics, Boston College, 140 Common-

wealth Avenue, Chestnut Hill, MA 02467. (e-mail) hideo.konishi@bc.edu



1 Introduction

We examine the licensing of production technology to a rival �rm in a product market

while relaxing the standard assumption that the rivals are homogeneous in their pro-

duction technologies. Speci�cally, we assume that �rms engage in Cournot competition

and di¤er in their constant marginal costs of production, and that a technology transfer

reduces the licensee�s marginal cost to the level of the licensor.1 We are interested in

the direct e¤ects of licensing; so, to abstract from any possible e¤ects of collusion, we

adopt the standard assumption in the literature that the production decisions of �rms

remain independent after transfer. We focus on a setting of complete information where a

single licensor chooses an exclusive licensing partner from heterogeneous rivals, resulting

in negative externalities of licensing to third-party �rms.2 We allow for the possibility

of some third-party �rms�shutting down after the transfer. We analyze �rst the gains

in joint pro�t for the licensor and a licensee from licensing, and then the social welfare

gains. Then, we consider two auction games to determine the licensee.

We begin, following the seminal work by Katz and Shapiro (1985), by analyzing

whether such a transfer is always jointly pro�table in a Cournot model.3 Katz and Shapiro

(1985) have shown that a complete technology transfer (where the licensee ends up with

the same cost as the licensor) could reduce joint pro�t in a duopoly if the licensor has a

near-monopoly position, because the transfer would reduce the licensor�s near-monopoly

pro�t. La Manna (1993) shows that when there are at least three �rms in the market,

a complete technology transfer to another �rm is always joint pro�t improving if the

demand is linear. We show that La Manna�s result extends even if we allow for weakly

concave demand. This is not a trivial exercise: we can neither explicitly calculate equilib-

rium nor use simple comparative static techniques, because a partial technology transfer

can reduce joint pro�t.4 Nevertheless, by introducing arti�cial markets as a device, we

can show that a complete technology transfer is always jointly pro�table if the demand

curve is weakly concave and there are at least three �rms in the market after the transfer

(Theorem 1). That is, a complete transfer is always jointly pro�table independent of its

1This implies that the size of the technology transfer varies with the licensee�s e¢ ciency (a less e¢ cient

rival receives a larger transfer).
2For example, Jehiel et al. (1996) and Jehiel and Moldovanu (2000) in examining a single transfer

allow for the presence of private information at the auction stage. In this paper, we analyze auction

methods in licensing, but we concentrate on the e¤ects of (negative) externalities on auction outcomes.
3This is also equivalent to �xed fee licensing, examined by Kamien and Tauman (1986).
4See Creane and Konishi (2009b).
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absolute size and the relative e¢ ciency of the licensor.5

We then focus on which partner would maximize joint pro�t. At �rst glance, one

might expect that this would be the most ine¢ cient rival. We �nd that for weakly

concave demand, neither the very ine¢ cient nor the very e¢ cient rival maximizes joint

pro�t (Observation 1). With heterogeneous �rms, the less e¢ cient the licensee is, the

greater the technology transfer will be. On the one hand, a technology transfer to a

nearly equally e¢ cient rival is very small and holds little bene�t for the rival�s pro�t,

although such a transfer does not substantially reduce the market price and the licensor�s

pro�t. On the other hand, a technology transfer to a very ine¢ cient �rm bene�ts the

licensee greatly but reduces the licensor�s output and pro�t through a large reduction in

the market price. Given that pro�t is convex in output, the licensor�s pro�t reduction is

large if the technology transfer is made to a very ine¢ cient �rm. Hence, the licensor is

better o¤ choosing a partner who is neither very e¢ cient nor very ine¢ cient.

Turning to the welfare e¤ects of a technology transfer, it is known that making an

ine¢ cient �rm slightly more e¢ cient can actually reduce welfare (Lahiri and Ono 1988).

This implies that, as a corollary of Theorem 1, a jointly pro�table transfer can reduce

social welfare if there are more than two �rms and if both the licensor and licensee

are su¢ ciently similar and ine¢ cient (Observation 2). In contrast, Katz and Shapiro

(1985) �nd that pro�table transfers never reduce welfare in a duopoly, which underlies

the importance of considering non-duopoly markets. Katz and Shapiro (1986) and Sen

and Tauman (2007) �nd that with homogeneous �rms, licensing always raises welfare, so

heterogeneity is important in evaluating the welfare implications of licensing. Although a

transfer from a su¢ ciently ine¢ cient licensor can reduce welfare, we show that if the most

e¢ cient �rm makes a complete transfer then social welfare always increases under general

demand (Theorem 2). However, a joint-pro�t-maximizing licensee is not necessarily a

social-welfare-maximizing licensee, because the joint-pro�t-maximizing selection does not

take into account the negative externalities imposed on other �rms. Since technology

transfers a¤ect the rival �rms�production decisions, including those of e¢ cient rivals,

total costs can be lower with a more e¢ cient licensee. The conclusion for the policy

maker whose goal is to maximize social welfare is that the most e¢ cient �rm should not

be discouraged from licensing its technology to rivals; but technology transfers between

marginal �rms should bear some scrutiny.

Analyzing the joint-pro�t-maximizing licensee is a natural benchmark because it al-

lows comparisons to Katz and Shapiro (1985) as well as work that examines �xed-fee

setting licensing (e.g., Kamien and Tauman 1986), and, as we will see, it is useful for

5The licensor does not have to be the most e¢ cient �rm for this result to hold.
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later analysis.6 However, when there is more than one rival, licensing to a joint-pro�t-

maximizing partner does not exploit the entire possible gains for the licensor if the licen-

sor can credibly threaten to �nd a new partner during negotiations. That is, competition

among potential licensees over the technology transfer should be more pro�table in the

presence of externalities. Katz and Shapiro (1986), and others since,7 have taken this into

account when they examine an auction game in a homogeneous licensee environment by

endogenizing the number of licenses. We follow their approach, but do so in a setting

with heterogeneous �rms, and ask which �rm would win the right to use the technology

and how much the licensor would collect from licensing. Speci�cally, we examine what

happens when the most e¢ cient �rm (the natural analogy to homogeneous rivals) uses

�rst-price auction mechanisms to sell the right to use its technology. In the �rst-price

auction method (a simple auction game), which is a modi�cation of the method used by

Katz and Shapiro (1986) to take into account a heterogeneous �rm environment, each

potential licensee submits a bid and only the winner pays for the bid. Since there are

many Nash equilibria and most of them are not very plausible, we re�ne the set of Nash

equilibria by stipulating that non-licensees would not be worse o¤ if the licensor happens

to choose it: truthful Nash equilibrium (TNE in simple auction). Roughly speaking, this

is akin to a �trembling-hand� re�nement. In this re�ned set of Nash equilibria, the li-

censing fee can be pinned down, and the licensee is the partner that maximizes the joint

pro�t of the licensee, the licensor, and any other potential rival.

Given the complex negative externalities created by technology transfer, even if a �rm

is not willing to bid enough to win the license it might �nd it pro�table to bribe the licensor

to in�uence which of its rivals does obtain the license.8 For this reason, we also consider

a menu auction (Bernheim and Whinston 1986) in which each potential licensee submits

a menu that speci�es contingent payments to the licensor for each possible licensee the

licensor might select. We again re�ne the set of Nash equilibria to the set of truthful Nash

equilibria (TNEs in menu auction).9 We show that a simple auction licensee is at least

6This can also be justi�ed by noting that often a licensee is selected and then the two parties negotiate

the contract. Since negotiating a technology transfer is not trivial, it may be too costly for the licensor

to credibly threaten to license to a di¤erent �rm, and so the fee should be determined as a function of

the increase in their joint pro�t. In this case, the joint-pro�t-maximizing licensee should be selected by

the licensor as the recipient of the technology.
7For a review of auctions in licensing, see Giebe and Wolfstetter (2007).
8For example, recently, when it looked like Google would acquire bankrupt Nortel�s patents, a coalition

of Apple, EMC, Ericsson, Microsoft, Research In Motion, and Sony outbid Google (Claburn, 2011).
9Truthful Nash equilibria in a simple auction and in a menu auction appear to be similar in their

de�nitions, but their implications are somewhat di¤erent. In a simple auction, TNE is a rather innocuous

re�nement of Nash equilibrium, whereas in a menu auction, TNE has implications for communication-
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as e¢ cient as a joint-pro�t-maximizing partner, and a menu auction licensee is at least

as e¢ cient as a simple auction licensee (Theorem 3).

In the next section, we introduce the basic modeling assumptions. Section 3 examines

the e¤ect of the amount of technology transferred on pro�t and examines the implications

of partner type. Section 4 contains the welfare analysis. Section 5 identi�es which �rm will

get the right to use the technology in license auction games. Section 6 provides extensions

of our analysis in the case of multiple licensees and license contracts with royalties. We

provide a number of intriguing observations, but the results are sensitive to the setup of

the license game. It seems di¢ cult to obtain general results.

2 The Model

We consider a basic Cournot market structure. There is a commodity besides a numeraire

good, and its (inverse) demand is a continuous function P (Q) in [0; �Q] that is twice

continuously di¤erentiable with P 0(Q) < 0 for all Q 2 (0; �Q) and P ( �Q) = 0. There are K
�rms in the market with no �xed cost of production.

Firms are indexed as i 2 f1; : : : ; Kg and di¤er in their constant marginal costs ci. We
order �rms by degree of e¢ ciency: c1 � c2 � : : : � cK . With a small abuse of notation,
let the set f1; 2; : : : ; Kg be denoted by K as well.

Each �rm i�s production level is denoted by qi. Firm i�s pro�t function is written as

�i(qi; q�i) = (P (Q)� ci) qi;

where Q =
P

i2K qi. The �rst-order condition for pro�t maximization (assuming an

interior solution) is

P 0(Q)qi + P (Q)� ci = 0: (1)

This implies

qi =
(P (Q)� ci)
�P 0(Q) ;

and �rm i�s pro�t is written as

�i(qi; q�i) =
(P (Q)� ci)2

�P 0(Q) :

We assume the strategic substitutability condition throughout the paper: for all
i 2 K,

P 00(Q)qi + P
0(Q) � 0:

based re�nement (Bernheim and Whinston 1986).
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Note that the second-order condition for pro�t maximization (P 00(Q)qi + 2P 0(Q) � 0)

is guaranteed by strategic substitutability. Strategic substitutability is weaker than the

requirement that the demand is weakly concave P 00(Q) � 0.10 In proving some of our
main results, we strengthen strategic substitutability condition by the weak concavity of

demand. The strategic substitutability condition guarantees the uniqueness of equilib-

rium. Let C =
P

i2K ci denote the aggregate marginal cost. We now present a standard

result, whose derivation, which can be found in the appendix along with all subsequent

proofs, will be useful for later analysis.

Lemma 1. Under the strategic substitutability condition, the equilibrium is unique.

Moreover, keeping other �rms�marginal costs intact, an increase in cj decreases the equi-

librium aggregate output Q if cj < P (Q), and has no e¤ect otherwise.

3 Production Technologies and Transfers

Each �rm i has its own technology for producing the commodity (the marginal cost of

production is ci), and it has the property right to its own technology (e.g., it holds a

patent). We adopt the standard assumption in the literature that the output decisions

remain independent after any transfer, a condition that is usually imposed by competi-

tion authorities. Firm i can license its technology with an exclusive usage agreement to

another �rm. As is also standard in the literature (Katz and Shapiro 1986, etc.), we as-

sume complete technology transfer throughout the paper: the obtaining �rm j (licensee)
reduces its marginal cost to that of �rm i. That is, if �rms i and j have technologies with

marginal costs ci and cj with ci < cj, respectively, then �rm j can reduce its marginal

cost of production to ci by adopting �rm i�s technology.

The following lemma also plays a key role in the subsequent analysis.

Lemma 2. Suppose that there are initially K �rms engaging in production. Pick three

�rms i, j, and j0 with ci < cj < cj0, and consider two scenarios: (i) �rm i transfers its

technology to �rm j, and (ii) �rm i transfers its technology to �rm j0. Then, equilibrium

aggregate output Q̂ in scenario (i) is not more than equilibrium aggregate output ~Q in

scenario (ii), resulting in P (Q̂) � P ( ~Q).
10That is, the weak concavity of demand implies the second-order condition for pro�t maximization.
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3.1 Jointly Pro�table Transfers

Katz and Shapiro (1985) show that complete transfers could reduce joint pro�ts in a

duopoly; here, we examine whether this result can extend to markets with more than two

�rms. We can show that under weakly concave demand (which includes linear demand),

a complete technology transfer is always pro�table if there is at least one other �rm in

the market. This somewhat surprising result has been known under a linear demand

assumption by La Manna (1993). However, with more general demand, Katz and Shapiro

(1985) found such transfers could be unpro�table when there are only two �rms in the

market, and Creane and Konishi (2009b) show that partial transfers (i.e., the licensee�s

cost is not completely reduced to the licensor�s cost) when �rms are heterogeneous could

reduce joint pro�t. Since we have to compare pro�t levels of two discrete cases and a

small transfer may reduce joint pro�t, we cannot simply rely on comparative statics on

technology transfers: we need to utilize an arti�cial economy to prove the theorem.

Theorem 1. Consider �rms i; j 2 K with ci < cj. Assume that �rm i is in operation

originally, and that even after �rm i transfers technology to �rm j, another �rm k is still

in operation (qk > 0) with ck 6= ci. If demand is weakly concave (P 00(Q) � 0), then a

complete technology transfer from �rm i to �rm j is joint pro�t improving.

Notice that we assume that at least three �rms remain in the market after the technol-

ogy transfer. Although Katz and Shapiro (1985) obtain conditions for a complete transfer

to reduce joint pro�t, they examine a duopoly case. The existence of a third �rm drives

the theorem, as part of the gain to the licensee comes from the lost pro�ts of the other

�rm(s). However, since a partial transfer could reduce joint pro�t, one may wonder how a

complete transfer always increases joint pro�t. To intuitively see the reason for this, con-

sider what happens when a partial technology transfer would reduce joint pro�t. In this

case, consider what happens if, instead, the licensee�s cost is increased (thereby raising

joint pro�t) until the licensee is driven out of the market. Joint pro�t has now increased.

At this point we note from the divisionalization literature (Baye et al. 1996) that if the

licensee could create a second, identical division, then its pro�ts would increase.

3.2 Joint-Pro�t-Maximizing Partner

Whereas in the previous subsection we considered the pro�tability of technology transfers,

in this subsection we consider which partner would maximize joint pro�t. That is, for

�rm i, which �rm j would create the greatest increase in joint pro�t from a technology
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transfer? Recall that when the licensor chooses a less e¢ cient partner, this leads to a

larger technology transfer.

Since we need to compare pro�ts when di¤erent partners have been chosen, for heuristic

reasons it is more convenient to use linear demand with explicit solutions and assume that

all �rms are in operation: qk > 0 for all k 2 K. Let P (Q) = 1 � Q. With this demand
curve we have Q = K�C

K+1
, P = 1+C

K+1
, and qi = 1+C

K+1
� ci. Then the change in the joint pro�t

by �rms i and j from the technology transfer is

(joint pro�t after transfer)� (joint pro�t before transfer)

= 2

�
1 + C � (cj � ci)

K + 1
� ci

�2
�
�
1 + C

K + 1
� ci

�2
�
�
1 + C

K + 1
� cj

�2
=

�
1 + C

K + 1
� ci �

cj � ci
K + 1

�2
�
�
1 + C

K + 1
� ci � (cj � ci)

�2
| {z }

increase in �rm j�s pro�t

+

�
1 + C

K + 1
� ci �

cj � ci
K + 1

�2
�
�
a+ C

K + 1
� ci

�2
| {z }

decrease in �rm i�s pro�t

= 2

�
1 + C

K + 1
� ci

�
(cj � ci)�

(K (K + 2)� 1) (cj � ci)2

(K + 1)2
:

This is a quadratic function in the di¤erence in marginal costs cj � ci. The �rst positive
term increases if �rm j is a less e¢ cient partner, while the second negative term gains

in magnitude as �rm j is a less e¢ cient partner. Hence, the gain is highest when cj is

neither too big nor too small. Firm i should choose some �rm in the middle. Although

the above analysis is based on an assumption of linear demand, a quantitatively similar

result applies for general demand (see Creane and Konishi 2009b).

Observation 1. With a complete transfer, a joint-pro�t-maximizing partner for a �rm is
neither too e¢ cient nor too ine¢ cient relative to the �rm under weakly concave demand.

This condition is intuitive: you cannot make a rival who is already e¢ cient that much

more e¢ cient. Thus, there is some bene�t to picking a less e¢ cient rival, as there is a

greater transfer and so an expected increase in pro�t of the licensee from the transfer.

However, you do not want to pick too ine¢ cient of a rival. The reason is that as you

pick a more ine¢ cient rival the technology transfer causes the price to fall more, harming

you as well as the rival. At the same time, when considering su¢ ciently ine¢ cient �rms,

a slightly more ine¢ cient �rm will not yield that much less pro�t (since its output is

approaching zero, i.e., marginal cost is approaching the price) and the gain from selecting

a slightly more ine¢ cient rival approaches zero.
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4 Welfare E¤ects

We now investigate the e¤ects of technology transfers on social welfare, which is the sum

of the �rms�pro�ts and consumer surplus. Since technology transfers reduce production

cost, social welfare tends to increase with the amount of technology transferred. Indeed,

Katz and Shapiro (1985) show that in a duopoly, licensing that increases joint pro�t

always increases welfare (and welfare-decreasing licensing always decreases joint pro�t).

Likewise, Sen and Tauman (2007) �nd licensing to be welfare improving under general

licensing schemes when �rms are homogeneous.

However, a pro�table licensing could reduce welfare when �rms are heterogeneous.

This possibility arises if a very ine¢ cient �rm obtains a technology transfer that reduces

its cost only slightly; then its resulting increase in production will displace the production

of more e¢ cient �rms, thereby reducing social welfare. This result has already been

observed by Lahiri and Ono (1988). The question, then, is whether this implies that

jointly pro�table licensing can reduce welfare, contrary to previous results. Combining

Theorem 1 with Lahiri and Ono�s result, we are able to state that the previous results do

not generalize to the case where there are more than two �rms and �rms are heterogeneous:

pro�table licensing can be welfare reducing.

Given this result, one may wonder if there are conditions that guarantee that a tech-

nology transfer raises welfare. We show that if the most e¢ cient �rm makes a complete

technology transfer, then welfare increases. The policy implications of these results appear

straightforward. On the one hand, competition authorities should pay close attention to

technology transfers (through licensing, joint venture, or merger) between marginal �rms

(in the technological e¢ ciency sense) in an industry. On the other hand, the most e¢ cient

�rm within an industry should not be discouraged from making a technology transfer to

a rival.

4.1 Welfare-reducing Pro�table Licensing

We begin by presenting Lahiri and Ono�s (1988) condition that a reduction in the marginal

cost of an ine¢ cient �rm reduces social welfare.

Observation 2. (Lahiri and Ono 1988): When �rm j�s marginal cost (cj) decreases, social
welfare decreases if cj is su¢ ciently high, though consumer welfare (surplus) increases.

This observation leads to an immediate corollary to Theorem 1 that yields a result

contrary to previous ones in the literature: there are pro�table technology transfers that

reduce total welfare while bene�ting consumers.
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Corollary 1. Suppose that demand is weakly concave and that there are more than
two �rms. Then, if �rm j has a su¢ ciently high marginal cost (cj) and �rm i�s marginal

cost is su¢ ciently close to �rm j�s, then �rm i licensing its technology to �rm j is jointly

pro�table and welfare reducing even though consumer welfare (surplus) increases.

Previous results in the literature may at �rst glance appear to be similar even though

they are quite distinct. First, Katz and Shapiro (1985) have shown that in a duopoly

a technology transfer can reduce welfare, but only when it reduces joint pro�t. Hence,

such transfers would never actually occur. In contrast, here there can be technology

transfers that reduce welfare, but increase joint pro�t. Second, Faulí-Oller and Sandonís

(2002) have shown that in a duopoly pro�table licensing can reduce welfare, but this

requires the use of a royalty (raising the recipient�s marginal cost) and only occurs in

price competition. As they note, �the royalty works as a collusive device�and so reduces

welfare. More generally, licensing contracts can reduce welfare if these contracts have

collusive e¤ects (e.g., Shapiro 1985). However, such e¤ects are absent in our model.

4.2 Welfare-improving Pro�table Licensing

Since technology transfers between ine¢ cient �rms can reduce welfare, the next question

is whether there are conditions that guarantee that transfers increase welfare. Since the

social welfare is reduced only because relatively ine¢ cient �rms�production crowds out

more e¢ cient �rms�production, we can naturally propose that if the licensor is the most

e¢ cient �rm then the social welfare should improve. Indeed, we can show that this is the

case. For this result, we need no condition on demand function.

Theorem 2. Suppose that the most e¢ cient �rm (�rm 1) makes a complete transfer to

any �rm j (c1 � c2 � ::: � cj � : : : � cK and c1 < cj). Then, the social welfare improves.

Interestingly, a social-welfare-maximizing partner is not necessarily the least e¢ cient

�rm. Although aggregate output and consumer surplus are maximized by choosing the

least e¢ cient �rm as partner, industry pro�t, which is also part of social welfare, may not

be maximized. The following example illustrates how the harm to industry pro�t shows

that welfare is not maximized by licensing to the least e¢ cient �rm.

Example 1. Consider a market with �ve �rms with marginal costs c1 = 0, c2 = 0:05,

c3 = 0:1, c4 = 0:14, and c5 = 0:2. The demand function is linear P (Q) = 1�Q. Firm 1 is
the unique licensor (i = 1). The following table shows the resulting pro�ts for all possible
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transfers:

i = 1 P �1 �2 �3 �4 �5 industry CS SW

j = 1 0:24833 0:06167 0:03934 0:022 0:01174 0:00234 0:13708 0:28250 0:41958

j = 2 0:24 0:0576 0:0576 0:0196 0:01 0:0016 0:1464 0:2888 0:4352

j = 3 0:23167 0:05367 0:033 0:05367 0:0084 0:001 0:14975 0:29517 0:44492

j = 4 0:225 0:05063 0:03063 0:01563 0:05063 0:00063 0:14813 0:30031 0:44844

j = 5 0:215 0:04623 0:02723 0:01323 0:00563 0:04623 0:13853 0:30811 0:44664

The social-welfare-maximizing partner is �rm 4, the consumer-surplus-maximizing partner

is �rm 5, and the industry-pro�t-maximizing partner is �rm 3. A di¤erent way to see

why �rm 4 maximizes social welfare is to note that social welfare equals consumers�

total bene�t less the cost of production (which appears in industry pro�t). Licensing

to the least e¢ cient �rm (�rm 5) does result in the greatest cost reduction; however,

two countervailing e¤ects result in lower total costs when �rm 4 is licensed. First, total

production by the lowest-cost �rms is greater when �rm 4 is licensed (the price is higher).

Second, when �rm 4 is licensed, the least e¢ cient �rm still produces (�rm 5), but its

production is quite small so its contribution to total cost is negligible, whereas when �rm

5 is licensed �rm 4�s production is several times larger. As a result, in the above example,

although licensing �rm 5 increases output by 0:01, total cost increases by 0:004, yielding

a �marginal cost�of 0:4 well above the price.�

5 Choosing a Licensee through Auctions

In this section, we study (i) which �rm wins the right to use the technology and (ii) how

much is paid when the technology is licensed by auction. In a duopoly, there is only one

potential licensee, and so a �xed-price licensing fee (calculated as the di¤erence between

the licensee�s post-transfer pro�t minus its original pro�t) is optimal. However, if there

are multiple potential licensees, then they compete over the exclusive license. As noted

by Katz and Shapiro (1986), if one �rm obtains the license, its rivals su¤er from the

market price reduction caused by the licensing. A �rm�s auction bid, then, must take

this externality into consideration. However, unlike in Katz and Shapiro (1986), here the

potential licensees are heterogeneous, and so the non-licensees di¤er in the harm from a

given �rm winning the license and so in their willingness-to-pay.

We consider two types of auctions: In the �rst, each potential licensee bids for the

right to use the technology, and when a winner is selected, only the winner pays the

license fee according to its bid (simple auction). In the second, each potential licensee
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o¤ers a menu that describes how much it will pay the licensor depending on which of the

potential licensees gets the technology; when a winner is selected all potential licensees

pay the licensor according to their bids for that particular winner (menu auction). These

two license auctions have both advantages and disadvantages. A simple auction can be

considered as a �natural�auction, since only the winner of the license auction pays for

the license. However, the externalities created by potential licensees are not identical.

If a �rm is harmed more by �rm j getting the license than �rm k, it obviously would

prefer that �rm k instead of �rm j obtain the license and so might be willing to pay

to bring this about. Hence, a menu auction captures a �rm�s willingness to help one

�rm obtain the license in order to lessen the negative externality from another �rm in a

licensing market, although it seems less �natural�at �rst glance (and for this reason may

be viewed disfavorably by competition authorities).

For the rest of the paper we assume that the licensor is the most e¢ cient
�rm, �rm 1: i.e., c1 < c2 � c3 � : : : � cK . This is a natural setup for the licensing

problem as it is (trivially) the structure discussed in the literature when the licensees

are homogeneous, and as Theorem 2 assures, such a licensing will certainly improve the

welfare. With a small abuse of notation, we denote �k(j) as the pro�t of �rm k when �rm

j obtains the license from �rm 1 for k for j = 1; : : : ; K.

5.1 Simple Auction

A simple auction is a version of the �rst-price auction played by �rms 2; 3; : : : ; K, in
which each �rm k 2 f2; : : : ; Kg simultaneously o¤ers Tk � 0 to be the unique licensee to
the licensor who chooses as a licensee �rm (say, �rm j) that maximizes the sum of �rm 1�s

pro�t and Tj: i.e., j 2M(T ) � argmaxk2f1;:::;Kg (�1(k) + Tk), where T = (T1; T2; : : : ; TK).
(Recall that when j = 1, �rm 1�s technology is not transferred to any �rm.) Knowing

this, �rm k 2 f2; : : : ; Kg chooses its bid Tk. In a simple auction, an outcome (j�; T �)
is a Nash equilibrium if j� 2 M (T �) and there is no k 2 f2; : : : ; Kg and Tk such
that k 2 M

�
Tk; T

�
�k
�
and Uk (k; T ) > Uk (j

�; T ), where Uk(k; T ) = �k(k) � Tk and
Uk(j; T ) = �k(j) if j 6= k. Although Nash equilibrium is the most basic equilibrium

concept, there are too many equilibria including unnatural ones in which the winner of

license may pay a high license fee only to match another �rm�s o¤er that is an empty

threat because the latter �rm would not want its o¤er accepted). In the light of this,

we consider a reasonable re�nement of Nash equilibrium that is a version of truthful

equilibrium. The idea is loosely related to the trembling-hand argument for the licensor.

The licensor may make a slight mistake in choosing a potential licensee. Hence, each

11



�rm would be better o¤ by making a weakly dominant o¤er relative to the equilibrium

outcome. For �rm j 2 Knf1g, a strategy Tj is truthful relative to �j if and only if
either (i) Uj (j; T ) = Uj (�j; T ) or (ii) Uj (j; T ) < Uj (�j; T ) and Tj (j) = 0. A truthful
Nash equilibrium (TNE) is a Nash equilibrium (j�; T �) such that each �rm chooses a

truthful strategy relative to j�. With this re�nement, we can pin down and characterize

the unique equilibrium in the above example.

Proposition 1. No licensing is a TNE of the simple auction game if and only if �1(1)+
�j(1) � �1(j)+�j(j) for all j = 2; :::; K. Suppose that no licensing is not a TNE. Then, an
outcome (j�; T �) is a TNE with licensing (j� > 1), if and only if T �j� = maxj2Knf1gf�1 (j)�
�1 (j

�)+�j (j)��j (j�)g, T �j = �j(j)��j(j�) for all j 6= j�, and �1 (j�)+�j� (j�)+�j (j�) �
�1 (j) + �j (j) + �j� (j) for all j 6= 1.

The last condition means that �rm j� is willing to challenge �rm j by paying more

if �rm j gets the license. Suppose �rm j receives the license. Then �rm j��s payo¤ is

�j�(j), and �rms 1 and j are jointly earning �1(j) + �j(j). That is, the sum of these

three �rms�payo¤s is �1 (j) + �j (j) + �j� (j). Now, if �rm j� receives the license, then

the total pro�t of these three �rms is �1 (j�) + �j� (j�) + �j (j�). If this value exceeds

�1(j) + �j(j) + �j�(j), �rm j� can beat �rm j. If �rm j� can beat all other potential

licensees, �rm j� wins the licensing auction. As a corollary of the �rst part of Proposition

1 and Theorem 1 (joint pro�t increases), we can state the following.

Corollary 2. Under weakly concave demand, no licensing is not a TNE of the simple
auction game if at least three �rms remain in operation after licensing.

We call the licensee in a truthful Nash equilibrium outcome a simple auction li-
censee. Without negative externalities, a joint-pro�t-maximizing partner is a simple
auction licensee. Taking externalities into account, a �rm is a simple auction licensee if

and only if such a transfer maximizes the joint pro�t of the licensor, the licensee, and

any one potential licensee �rm�that is, if the licensor�s pro�t plus the licensee�s gain from

another potential licensee�s not getting the license is greater than the licensor�s pro�t

and the gain of this other potential licensee. Comparing a simple auction licensee and a

joint-pro�t-maximizing partner, it turns out that a simple auction licensee, if one exists,

is at least as e¢ cient as a joint-pro�t-maximizing partner.

Proposition 2. Under weakly concave demand, a simple auction licensee (if one exists)
is at least as e¢ cient as a joint-pro�t-maximizing partner.

12



From the characterization of TNE (Proposition 1), it is easy to see that a Nash equi-

librium in pure strategy must satisfy many inequalities. If there are only two potential

licensees (K = 3), then it is easy to show the existence of TNE and to characterize it.

However, if there are more than two potential licensees, �nding a Nash equilibrium (in

pure strategies) is hard. Although we are unable to show the existence of a TNE in a

simple auction game under weakly concave demand, we can show that it always exists if

demand is linear and no �rm shuts down after any transfers (see Creane, Ko, and Konishi

2012).

5.2 Menu Auction

When �rm 1 (the most e¢ cient �rm) chooses to license its technology to a �rm (the

licensee) j 2 N = Knf1g = f2; : : : ; Kg, there is a negative externality from the technology
transfer for the other �rms not receiving the transfer (non-licensees Nnf1; jg). Non-
licensees would like to in�uence the licensing decision and may be willing to o¤er money

for �rm 1 not to license to �rm j. We try to capture such strategic interactions using the

menu auction framework proposed by Bernheim and Whinston (1986).

A menu auction game � in our context is described by (N + 2) tuples:

� �
�
N; (�k)k2N[f1g

	
;

such that �k : A! R+ is �rm k�s pro�t function, where A is the set of licensor�s actions.

That is, �k(a) denotes �rm k�s pro�t when �rm 1 chooses action a 2 A. (In this section,
A will be the set of potential licensees � who to license: A = K and a = 1 means �no

license.�) In the extensive form of the game, the potential licensees simultaneously o¤er

contingent payments to the licensor, who subsequently chooses an action that maximizes

her total payo¤. A strategy for each potential licensee k 2 N is a transfer function

Tk : A! [b;1), which is a monetary reward (or punishment) of Tk(a) to the licensor for
selecting action a 2 A, where b is the lower bound for transfer (we set b = 0 except for
royalty case in Section 5). For each action a, potential licensee k receives a net payo¤:

Uk(a; T ) = �k(a)� Tk(a);

where T = (Tk0)k02N is a strategy pro�le. The licensor chooses an action that maximizes

its total payo¤: the licensor selects an action in the set M (T ) with:

M (T ) � argmax
a2A

"
�1(a) +

X
k2N

Tk (a)

#
:
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The menu auction game is merely a game among potential licensees, although, strictly

speaking, a tie-breaking rule among M(T ) needs to be speci�ed for the licensor. An

outcome of a menu auction game � is (a; T ). An outcome (a�; T �) is aNash equilibrium
if a� 2M (T �) and there is no k 2 N such that Tk : A! [b;1) and a 2M

�
Tk; T

�
�k
�
such

that Uk (a; T ) > Uk (a
�; T ). Unfortunately, with so many coordination problems among

the many players (potential licensees), there are too many Nash equilibria in a menu

auction game.

To get plausible predictions among the many allocations supported by Nash equi-

librium, Bernheim and Whinston (1986) consider a reasonable re�nement on the set

of Nash equilibria and argue that �truthful strategies� are quite crucial in menu auc-

tions. A strategy Tk is truthful relative to �a if and only if for all a 2 N either (i)

Uk (a; T ) = Uk (�a; T ) or (ii) Uk (a; T ) < Uk (�a; T ) and Tk (a) = 0. An outcome (a�; T �)

is a truthful Nash equilibrium (TNE) if and only if it is a Nash equilibrium, and
T �k is truthful relative to a

� for all k 2 N . Bernheim and Whinston (1986) show that

an e¢ cient action (it will be the industry-pro�t-maximizing licensee in our context) is

chosen by the licensor in every TNE outcome in a menu auction: if (a�; T �) is a TNE,

then we have a� 2 argmaxa2A[
P

i2N �i (a) + �1 (a)]. Moreover, Bernheim and Whin-

ston (1986) characterize the set of (potential licensees�) TNE equilibrium payo¤ vectors

u = (u2; :::; uK) 2 RN . Let S � N be a subset of potential licensees, and let

WNnS(�) � max
a2A

X
k2N[f1gnS

�k(a); (2)

where �k(a) is �rm k�s pro�t (k = 1; :::; K) when the set of potential licensees is a.

That is, WNnS is the maximum amount of group NnS�s total pro�t that can be achieved
without help from S. Speci�cally, W;(�) = maxa2A �1(a) denotes the pro�t that the

licensor can achieve without having a licensee, and WN(�) denotes the total industry

pro�ts. Bernheim and Whinston (1986) show that the set of TNE payo¤s of licensors u is

the Pareto-frontier (for licensees, N) of the following set: for all S � N such that S 6= ;,

U� �
(
u 2 RN :

P
k2N uk � WN(�)�W;(�)P

k2S uk � WN(�)�WNnS(�) 8S � N;S 6= ;

)
: (3)

They also show that in menu auction games, the set of truthful Nash equilibria (TNE)

and the set of coalition-proof Nash equilibria (CPNE) are equivalent in this utility space.

Now, we let the set of actions be the set of potential licensees, A = N = Knf1g, to
apply menu auction game to a licensee selection problem. The agent is the licensor �rm

1. We call the licensee in a TNE of a menu auction a menu auction licensee. We can
show the following result.
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Proposition 3. A menu auction licensee is at least as e¢ cient as a simple auction

licensee (if one exists).

The underlying intuition of this proposition is that as a menu auction licensee is an

industry-pro�t-maximizing partner, and a simple auction licensee is a three-�rm-pro�t-

maximizing partner. Thus, the negative externality of the technology transfer would make

an industry-pro�t-maximizing �rm more e¢ cient than a three-�rm-pro�t-maximizing

partner to counteract the e¤ect of the greater negative externality. Propositions 2 and 3

can be summarized as the licensing partners�e¢ ciency ranking among di¤erent regimes

in the following Theorem.

Theorem 3. Suppose that �rm 1 is licensing technology to another �rm. Under weakly

concave demand, the licensing partner that maximizes the gains in their joint pro�t is

weakly less e¢ cient than the partner determined in a simple auction (if one exists), and

the latter is weakly less e¢ cient than the partner determined by a menu auction: i.e.,

menu auction

licensee
� simple auction

licensee
� joint-pro�t-maximizing

partner
;

where �rms are ordered by e¢ ciency in a descending manner.

The following example illustrates that a joint-pro�t-maximizing (competitive equilib-

rium) partner, a simple auction licensee, and a menu auction licensee can be di¤erent.

Example 1 (revisited). Consider a market with �ve �rms with marginal costs c1 = 0,
c2 = 0:05, c3 = 0:1, c4 = 0:14, and c5 = 0:2. The demand function is linear P (Q) = 1�Q.
Recall the table showing the resulting pro�ts for all possible transfers:

i = 1 P �1 �2 �3 �4 �5

j = 1 0:24833 0:06167 0:03934 0:022 0:01174 0:00234

j = 2 0:24 0:0576 0:0576 0:0196 0:01 0:0016

j = 3 0:23167 0:05367 0:033 0:05367 0:0084 0:001

j = 4 0:225 0:05063 0:03063 0:01563 0:05063 0:00063

j = 5 0:215 0:04623 0:02723 0:01323 0:00563 0:04623

It is easy to see that �rm 3 is the menu auction licensee, since it is the industry-pro�t-

maximizing partner, as we have seen before. With the characterization in Proposition 1,

we can con�rm that �rm 4 is the simple auction licensee. It is also easy to see that �rm

5 is the joint-pro�t-maximizing partner (maximizes �1(j) + �j(j) � �1(1) � �j(j) over
j = 2; :::; 5). Finally, for comparison, recall that �rm 4 is the social-welfare-maximizing

partner.�
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6 Conclusion and Extensions

We have analyzed which rival a licensor would choose as a partner when rivals are hetero-

geneous. We assume that licensing entails a complete technology transfer and show that

licensing between any pair of �rms would improve joint pro�ts (thus licensing is pro�table)

as long as there are more than two �rms in the industry. However, jointly pro�table li-

censing can be welfare reducing. These results are in contrast with the ones in the duopoly

case examined by Katz and Shapiro (1985), as well as the welfare results others have found

with homogeneous rivals (Katz and Shapiro 1986; Sen and Tauman 2007). However, we

show that licensing the most e¢ cient �rm�s technology always improves social welfare,

although a welfare-maximizing licensee might not be a joint-pro�t-maximizing licensee.

Hence, when the licensee is determined by either a simple or a menu auction, the licensor

might not select a welfare-maximizing licensee under these schemes, and the e¢ ciency of

the licensee can be ordered by the licensing method: a joint-pro�t-maximizing licensee

is less e¢ cient than a simple auction licensee, which in turn is less e¢ cient than a menu

auction licensee.

In the previous sections, we assume that at most one �rm can get a license from

the licensor, and that license contracts are restricted to �xed fees only. Although these

simplifying assumptions are helpful in comparing licensees in di¤erent licensing schemes

and criteria, it is obviously interesting to allow multiple licenses and more �exible licensing

contracts (with royalties). We will analyze these extensions by simplifying the model, since

these extensions clearly complicate the analysis. Thus, we will assume a linear demand

P = 1�Q, and we discuss what can happen if we depart from the benchmark. There are a
licensor, �rm 1, and K�1 potential licensees. We order �rms according to their marginal
costs of production c1 < c2 � ::: � cK , and the licensor �rm 1�s marginal cost is normalized
to zero: c1 = 0. Since �rms whose marginal cost is less than market price P = 1 � Q
survive, the equilibrium demand is written as �Q +

PK
k=1max f0; (1�Q)� ckg = 0 by

adding up the �rst-order conditions. Suppose that �rms 1; :::; j stay in the market. Then,

equilibrium allocation is described by

�Q+ j(1�Q)�
jX
k=1

ck = 0, or P = 1�Q =
1 +

Pj
k=1 ck

j + 1
:

Note that �rm j + 1�s exiting the market implies that if �rm j + 1 remains in the market

then cj+1 is not less than the market price, resulting in nonpositive pro�ts:

1 +
Pj+1

k=1 ck
j + 2

� cj+1, or
1 +

Pj
k=1 ck

j + 1
� cj+1:
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That is, �rm j + 1 is out if and only if cj+1 is higher than the market price when j �rms

remain in the market. In this environment, we let �rm 1 choose a subset of �rms to license

its technology to maximize its total pro�ts (own pro�ts and license fees). We will use

menu auction as the rule of the game here, since there are widespread externalities among

potential licensees and the menu auction by Bernheim and Whinston (1986) provides a

tool for systematic analysis in such an environment by letting the licensor�s action set

A � 2N be the set of all subsets of potential licensees N = f2; :::; Kg. We �rst illustrate
the complications generated by allowing multiple licenses by the following example.

Example 2. Suppose that K = 7 with marginal costs being c2 = c3 = c4 = 0:2, and

c5 = c6 = c7 = 0:23. In this case, originally, market equilibrium price is 1+3�0:2+3�0:23
8

. In

this case, if �rms 2, 3, and 4 get licenses, then �rms 5, 6, and 7 will be driven out of the

market (inactive), since the market price is driven down to 0:2. However, this is not the

equilibrium choice of licensees in a menu auction, as is seen by the following table. The

equilibrium choice does not drive any �rm out of the market.

licensee(s) price industry pro�ts # of survivors

; 0:28625 0:11375 7

f2g 0:26125 0:14694 7

f5g 0:2575 0:14404 7

f2;3g 0:23625 0:16887 7

f2; 5g 0:2325 0:16429 7

f5; 6g 0:22875 0:15946 6

f2; 3; 4g 0:20000 0:16000 4

Note that in every truthful Nash equilibrium in a menu auction, the industry pro�ts are

maximized. Thus, the equilibrium set of licensees is f2; 3g (or f2; 4g or f3; 4g, since �rms
2, 3, and 4 are symmetric). Note that the set of equilibrium licensees does not achieve the

lowest number of surviving �rms in this example. That is, we can see that the predation

itself is not the reason for the optimal set of the licensees. The TNE payo¤s can be

calculated easily in this example due to this symmetry. Firm 2 is replaceable, so the

license fees are (0:23625� 0)2 � (0:23625� 0:2)2 = 0:0545 (they can also be derived by
solving the TNE payo¤s from the system (2) and (3)). With a slight modi�cation, we

obtain a very di¤erent result: if c5 = c6 = c7 = 0:24 instead of 0:23, then we can again

show that f2; 3g is one of the equilibrium sets of licensees, while �rms 5, 6, and 7 are

predated and the number of survivors is four including nonlicensed �rm 4. Note that

licensing �rms 2, 3, and 4 predates �rms 5, 6, and 7 as well, but the licensor does not give

17



three licenses. Thus, in this case, the licensor chooses the smallest set of licensors that

achieves the smallest number of active �rms in the industry.�

Although Example 2 is intriguing, it also shows that it is di¢ cult to obtain general

results in a multiple licensing case. Note that this example is one of the simplest ones with

heterogeneous potential licensees and possibilities of predation. Adding more elements will

complicate the analysis further. For example, adding �xed cost of operation (the �xed cost

that needs to be paid in order to stay in the market) a¤ects the results of licensing, since

predation e¤ect on the ine¢ cient �rms would be stronger � licensing superior technology

to (possibly multiple) �rms reduces the pro�ts of nonrecepient �rms of the technology,

forcing them out of the market. This idea has been analyzed by Creane and Konishi

(2009a) in the case where technology transfer is made without monetary transfer.11 With

a licensing fee, this motivation is strengthened further since potential licensees would

compete over technology more vigorously when their survival in the industry is at stake.

Moreover, the licensor (and surviving �rms) might prefer licensing technology to a very

ine¢ cient �rm to push the market price su¢ ciently low to predate many other �rms. Once

�rms exit, the market price jumps up again, increasing the pie to be shared. Although this

sort of motivation for licensing complicates the analysis even further, the general tendency

of the results can be simpli�ed � the licensor tends to choose a subset of licensees to

drive out as many �rms as possible.

We conclude this paper by providing an example that allows royalties in the licensing

contract. Sen and Tauman (2007) and others analyze license contracts involving royalties

and �xed fees. The usefulness of including royalties for the licensor is that it o¤ers a tool

to control a licensee�s output level and the market price. That is, the licensor�s action

is written as a = (S; (rk)k2S), where rk 2 R is �rm k�s royalty. The set of actions is

denoted by A, and potential licensee k�s strategy is Tk : A! [b;1): i.e., Tk(S; (rk0)k02S)
is the licensee fee that �rm k 2 N pays when the set of licensees is S and their royalties

are (rk0)k02S. However, because including royalties greatly complicates the problem, we

will only consider a symmetric licensee case, identical marginal costs c > 0. Let n 2
f0; 1; :::; K � 1g be the number of non-licensees. Using n, the number of licensees is
described by K � 1� n. For each case, the highest pro�t that the licensor and licensees
can achieve together (joint pro�t �(n)) is to jointly produce Q(n) taking n �rms best

responses into account. It is easy to calculate the Stackelberg allocation for each n < K�1
(n = K � 1 means no licensee). Let P (n) be the market price, Q(n) and �(n) be joint
11There has been a recent increase in interest in how endogenous market structures can a¤ect strategies.

See, e.g., Etro (2006).
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output and joint pro�t of the licensor and licensees, and q(n) and �(n) be the output and

pro�t of each non-licensee.

1. If c � 1
n+2
, then Q(n) = 1+nc

2
, q(n) = 1�(n+2)c

2(n+1)
, P (n) = 1+nc

2(n+1)
, �(n) = (1+nc)2

4(n+1)
, and

�(n) =
�
1�(n+2)c
2n+2

�2
.

2. If c � 1
n+2
, then Q(n) = 1� c, q(n) = 0, P (n) = c, �(n) = c (1� c), �(n) = 0.

Using the above formulas, we can determine the TNE menu auction license allocations

of the following simple example.

Example 3. Suppose that K = 5 and potential licensees are all homogeneous: c2 =

c3 = c4 = c5 = 0:2. This is equivalent to the Stackelberg allocation. The licensor chooses

royalties to achieve such Q(n) (implementing the Stackelberg allocation in Cournot-Nash

equilibrium).

n P Q q � � r

0 0:5 0:5 0 0:25 0 0:5 Monopoly

1 0:3 0:6 0:1 0:18 0:01 0:2

2 0:2333 0:7 0:0333 0:1633 0:0011 0

3 0:2 0:8 0 0:16 0 �0:4
4 0:3 0:3 0:1 0:09 0:01 NnA Cournot

Note that �(n) corresponds to WNnS(�) with jSj = n in (2). If n = 1 (one non-licensee),
then royalty and the marginal cost are the same (r = c = 0:2) and the market outcome

looks identical to the Cournot outcome (n = 4). However, in the n = 1 case, three

licensees�marginal costs are actually zero, so the licensor can exploit all royalty fees

although production levels are the same. If n = 2, then the licensor does not charge

royalties. If n = 3 (one licensee), then in this case, the royalty is negative: that is,

the licensor gives the licensee a production subsidy. Note that the market price is just

marginal cost, and all three non-licensees cannot produce anything. The licensor uses the

licensee as a dummy to shut out other �rms from the market. This is how subsidy is

given to the licensee. Finally, if n = 0 (WNnS(�) = WN(�)), then it is clearly a monopoly

allocation. The licensor charges P = r = 0:5, forcing licensees to shut down. This means

that the license-�xed fee needs to be negative. This can be done if the lower bound for

transfer takes a negative value. We consider two cases: a �exible license contract case and

a contracts with nonnegative �xed fees and royalties case. The TNE equilibrium payo¤

vectors (u1; u2; :::; u7) and license fee vectors can be analyzed by using (2) and (3) (u1 can

be calculated from u = (u2; :::; u7)).
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1. Fully �exible license contracts: Here, let us allow for negative �xed fees and negative

royalties. With such full �exibility of license contracts, the menu auction TNE is

characterized by: (i) the licensor gives all potential licensees licenses; (ii) the payo¤

vectors are (u1; u2; u3; u4; u5) = (0:13; 0:3; 0:3; 0:3; 0:3); and (iii) the license contract

is (T; r) = (�0:3; 0:5) such that all licensees shut down by receiving transfers 0:3
(negative �xed fees: assume b � �0:3). This is derived by the following inequalities:X

k2N=f2;:::;5g

uk � WN �W; = 0:25� 0:09 = 0:16 (4)

X
k2S

uk � WN(�)�WNnS(�) = 0:25� 0:16 = 0:09 8S � N with jSj = 3 (5)

X
k2S

uk � WN(�)�WNnS(�) = 0:25� 0:1633 = 0:0867 8S � N with jSj = 2 (6)

X
k2S

uk � WN(�)�WNnS(�) = 0:25� 0:18 = 0:07 for all S � N with jSj = 1 (7)

The binding constraint is (5), and together with Pareto e¢ ciency among licensees

N (
P

k2N[f1g uk = WN), implies u2 = u3 = u4 = u5 = 0:03; thus �rm 1 gets

0:25� 0:12 = 0:13.

2. Restricted license contracts (nonnegative �xed fees and royalties): In this case,

WN(�) = 0:25 no longer holds, since without negative �xed fees, no licensee has an

incentive to sign a contract that asks it to shut down its production. In this case,

the most e¢ cient license choice is to give licenses to three �rms (n = 1): WN(�) =

�(1) + �(1) = 0:19. Moreover, in the case of n = 3, r � 0 is imposed, so the best
allocation for the licensor is simply to set r = 0. This implies a Cournot equilibrium

with two zero marginal cost �rms and three non-licensees, which generates �(3) =

0:142. In this case, the modi�cation of (7) will be binding:

uk � WN(�)�WNnfkg(�) = 0:19� 0:18 = 0:01 8k 2 N

Thus, u2 = u3 = u4 = u5 = 0:01, and u1 = 0:15. The menu auction TNE license

contract is a combination of �no �xed fee�and a royalty of 0:2 to three licensees,

leaving one �rm unlicensed. This result may seem to contradict a result in Sen and

Tauman (2007), since they show that there is no equilibrium with royalties only.

This di¤erence arises from a di¤erence in the rules of the game: they consider a

game in which the licensor announces a licensing policy, unlike our menu auction

game.
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By allowing �xed fees and production-prohibitive royalties (case 1), the licensor can

e¤ectively achieve a monopoly and licensing becomes an anti-competitive act. It is in-

teresting to note that the licensor earns higher pro�t in the restricted case 2. This is

because both WN(�) and Wfkg(�) are modi�ed by the restrictions, and the binding con-

straint changes from (5) to (7). This observation con�rms that allowing di¤erent classes

of licensing contracts complicates the results further. Moreover, the results are sensitive

to the setup and restrictions of the game.�

Appendix A

Proof of Lemma 1. First note that the equilibrium output of �rm i, qi, is expressed by
equation

qi =
(P (Q)� ci)
�P 0(Q) ;

if P (Q) > ci, and qi = 0 if P (Q) � ci. Recall that c1 � c2 � : : : � cK . Summing up the
�rst-order conditions for pro�t maximization over �rms in subset L � K, and assuming
that these �rms produce positive outputs, we obtain

P 0(Q)Q+ LP (Q) =
X
`2L

c`;

where L also denotes the number of �rms in L. If the solution of the above equation Q

satis�es P (Q) � c` for all ` 2 L, and P (Q) < ck for all k 2 KnL, then Q is the equilibrium
aggregate output. Rewriting the above equation, we obtain

P 0(Q)Q+
X
`2L

(P (Q)� c`) = 0;

or

P 0(Q)Q+
X
k2K

max f0; P (Q)� ckg = 0:

The LHS of the above equation is continuous in Q, although it is not continuously di¤er-

entiable since �rms stop producing in order as Q increases.12 However, for each L � K,
the LHS is di¤erentiable for Q satisfying P (Q) � c` for all ` 2 L, and P (Q) < ck for all
k 2 KnL, and the derivative is

d (LHS)

dQ
= P 00(Q)Q+ (L+ 1)P 0(Q)

12Firm i produces a positive output qi earning a positive pro�t if and only if P (Q) > ci, as is easily

seen from the formula above.
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Summing the strategic substitutability conditions up over �rms ` 2 L, we obtain

P 00(Q)Q+ LP 0(Q) � 0:

This implies that the LHS of the aggregated �rst-order condition is decreasing in Q since

P 0(Q) < 0. This implies that equilibrium aggregate output Q is uniquely determined for

every marginal cost pro�le (c1; : : : ; cK).

Now, we conduct a comparative static analysis with respect to cj. By the above

analysis, it is easy to see that Q decreases as cj increases if P (Q) > cj, and Q is intact

otherwise.�

Proof of Lemma 2. In scenario (i) cj goes down to ci, while in scenario (ii) cj0 goes
down to ci. Suppose that in scenario (i), �rms ` 2 L remain in operation: q` > 0 (and
�rms k 2 KnL chooses qk = 0). Clearly, �rms i and j will be in operation after technology
transfer: i; j 2 L. First consider the case where j0 2 L in scenario (i). Then, the aggregate
output Q̂ in scenario (i) is described by (recall that �rm j�s cost is ci)

0 = P 0(Q̂)Q̂+
X
`2L

�
P (Q̂)� c`

�
= P 0(Q̂)Q̂+

X
`2Lnfj;j0g

�
P (Q̂)� c`

�
+
�
P (Q̂)� ci

�
+
�
P (Q̂)� cj0

�
< P 0(Q̂)Q̂+

X
`2Lnfj;j0g

�
P (Q̂)� c`

�
+
�
P (Q̂)� ci

�
+
�
P (Q̂)� cj

�
:

Since P 0(Q)Q+
P

k2K max f0; P (Q)� ckg is a decreasing function in Q, the equilibrium
aggregate output ~Q in scenario (ii) satis�es Q̂ < ~Q.

Second, consider the case where j0 =2 L in scenario (i). Since cj < cj0 and P (Q̂) < cj0,
the aggregate output Q̂ in scenario (i) is

0 = P 0(Q̂)Q̂+
X
`2L

�
P (Q̂)� c`

�
= P 0(Q̂)Q̂+

X
`2Lnfjg

�
P (Q̂)� c`

�
+
�
P (Q̂)� ci

�
� P 0(Q̂)Q̂+

X
`2Lnfj;j0g

�
P (Q̂)� c`

�
+max

n
0; P (Q̂)� cj

o
+
�
P (Q̂)� ci

�
:

Thus, as before, the equilibrium aggregate output Q̂ in scenario (ii) satis�es Q̂ < ~Q if

P (Q̂)� cj > 0, and Q̂ = ~Q, otherwise.�

Proof of Theorem 1. The proof utilizes an arti�cial market. This device is useful
because transferring technology partially can reduce the joint pro�t. We �rst replace �rm
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j with an arti�cial (public: not pro�t-maximizing) �rm i0 with marginal cost ci, but control

its output level so that the joint pro�t between �rms i and i0 increases monotonically. After

that, we return to the original economy.

Consider an arti�cial market parametrized by � 2 [0; 1], in which �rm j (ci < cj) is

replaced by an arti�cial �rm i0 that satis�es (i) ci0 = ci, (ii) qi0(�) = �qi(�), and (iii)

(qk(�))k 6=i0 is a solution of the system of equations: qk(�) = max
n
0; P (Q(�))�ck�P 0(Q(�))

o
for all

k 6= i0 and Q(�) =
P

k 6=i0 qk(�) + �qi(�). That is, although the output decision by �rm i0

is linked with that of �rm i, �rms k 6= i0 do not use this information by choosing the best
response to Q�k(�) =

P
` 6=k q`(�) (the standard Cournot behavior, not the Stackelberg

one). Note that when � = 1, Q(1) is the aggregate Cournot equilibrium output after the

complete technology transfer from �rm i to �rm j, since the best response by �rm i0 is

identical to the one by �rm i when � = 1.

In the following, we will show that in this arti�cial market, the joint pro�t of �rms

i and i0, �J(�) = (1 + �)�i(�) =
(1+�)(P (Q(�))�ci)2

�P 0(Q(�)) , increases monotonically as � goes

up (step 1). Then, we connect this arti�cial economy with the original economy before

technology transfer (step 2).

(Step 1) The best response by �rm k 6= i0 is described by

qk(�) = min

�
0;
P (Q(�))� ck
�P 0(Q(�))

�
:

Since �rm i will be in operation after technology transfer, we have

qi(�) =
P (Q(�))� ci
�P 0(Q(�)) ;

thus we can write

qi0(�) = ��
P (Q(�))� ci
�P 0(Q(�)) :

Let L(�) � fk 2 K : qk(�) > 0g. As before, we denote the cardinality of L(�) by L(�)
as well. Summing up these equations, we haveX

`2L(�)

q`(�) = (1 + �)
P (Q(�))� ci
�P 0(Q(�)) +

X
`2L(�)nfi;i0g

P (Q(�))� c`
�P 0(Q(�)) ;

or

P 0(Q(�))Q(�) + (L(�)� 1 + �)P (Q(�))�

0@ X
`2L(�)

c` � (1� �)ci

1A = 0:

Totally di¤erentiating the above, we have

(P 00 (Q (�))Q (�) + P 0 (Q (�)) + (L(�)� 1 + �)P 0 (Q (�))) dQ+ (P (Q (�))� ci)d� = 0
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so that
dQ

d�
=

P (Q(�))� ci
�P 00(Q(�))Q(�)� (L(�) + �)P 0(Q(�)) :

Since Q(�) =
P

`2L(�) q`(�) and P
00(Q)q`+P

0(Q) � 0 holds for all ` 2 L(�)nfi0g, we have

�P 00(Q(�))Q(�)� (L(�) + �)P 0(Q(�))
= �

X
`2L(�)nfi;i0g

(P 00(Q(�))q`(�) + P
0(Q(�)))� (1 + �) (P 00(Q(�))qi(�) + P 0(Q(�)))

> 0:

The inequality is strict as long as there is at least one �rm with a di¤erent marginal

cost from others (i.e., if P 00(Q)qk + P 0(Q) = 0 holds then P 00(Q)q` + P 0(Q) < 0 must

hold due to the strategic substitutability assumption). That is, for each L � K with

L = L(�) for some range of � 2 [0; 1], dQ
d�
> 0 holds for the range of �. This implies

that Q(�) monotonically increases as � increases, resulting in monotonic reduction of

P (Q(�)). Since �rms shut down their production in order from higher marginal cost ones

(if any �rm does), the set of active �rms L(�) shrinks in a nested manner: L(�0) � L(�)
for all �0 > �.

Now, we show �J(�) = (1+�)(P (Q(�))�ci)2
�P 0(Q(�)) increases as � increases. We consider (To

save space, we omit Q (�) for P (Q (�)).)

d�J

d�

=
(P � ci)2

�P 0 + (1 + �)� 2(P � ci)P
0(�P 0) + P 00 (P � ci)2

(�P 0)2 � P � ci
�P 00Q� (L(�) + �)P 0

= A�
h
(�P 0)(�P 00Q� (L(�) + �)P 0) + (1 + �)

n
�2 (�P 0)2 + P 00 (P � ci)

oi
= A�

�
f(L(�) + �)� 2(1 + �)g (�P 0)2 + (�P 00) f�P 0Q� (1 + �) (P � ci)g

�
= A�

�
(L(�)� 2� �) (�P 0)2 + (�P 00) f(�P 0) (Q� (1 + �)qi)� (1 + �) (P 0qi + P � ci)g

�
where A = (P�ci)2

(�P 0)2(�P 00Q�(L(�)+�)P 0) > 0. We can determine the sign of d�J

d�
. Note that

P 0 < 0 and P 00 � 0. Since L(�) � 3, L(�) � 2 � � � 0 must follow, and the �rst term

in the bracket of the last line is nonnegative for all � 2 [0; 1]. Since L(�) � 3 with

interior solution, we have Q > (1+�)qi, and P 0qi+P � ci = 0 holds by �rm i�s �rst-order
condition. This implies that the second term is positive. Thus, we can conclude that
d�J

d�
> 0 holds for all � 2 (0; 1).13

13Strictly speaking, �J is not continuously di¤erentiable (the right and left derivatives are di¤erent)

at � with P (Q(�)) = ck for some k 2 K, though it is a continuous function. However, it is clear that �J

is monotonically increasing in �.
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(Step 2) Now, we show that the equilibrium allocation with �rm j is mimicked by an

equilibrium allocation in our arti�cial market at a certain �̂ 2 (0; 1). Let (P̂ ; (q̂k)Kk=1) be
the Cournot equilibrium allocation before �rm j received a complete technology trans-

fer. Let �̂ =
q̂j
q̂i
. Since cj > ci, we have q̂i > q̂j � 0 and 0 < �̂ < 1. Thus,

(P̂ ; (q̂k)
K
k=1) = (P (�̂); (qk(�̂))

K
k=1) holds, and the initial equilibrium allocation is mim-

icked by the equilibrium in an arti�cial market with � = �̂. Since q̂j = �̂q̂i = �̂qi(�̂), we

have

�̂i + �̂j =
�
P̂ � ci

�
q̂i +

�
P̂ � cj

�
q̂j

= (P (�̂)� ci) qi(�̂) + (P (�̂)� cj) �̂qi(�̂)
< (P (�̂)� ci) qi(�̂) + (P (�̂)� ci) �̂qi(�̂)
= �J(�̂):

Since �J(�) is monotonically increasing in �, we have �J(�̂) < �J(1). Since �J(1) is the

same as the joint pro�t by �rms i and j after the complete technology transfer from �rm

i to �rm j, we can conclude that the joint pro�t by �rms i and j must increase after the

complete technology transfer.�

Proof of Theorem 2. By Lemma 1, we know that if a technology transfer is made from
a technologically superior �rm to a technologically inferior �rm, the equilibrium aggregate

output Q increases. Now consider �rm k. If C decreases keeping ck constant, Q increases

while qk shrinks. We can represent the relationship between Q and qk (through changes

in C behind) as follows:

qk(Q) =
P (Q)� ck
�P 0(Q) :

Denote the original (before transfer) equilibrium by �hat,�and the new equilibrium

by �tilde.�Since �rm j�s marginal cost cj only goes down from ĉj = cj to ~cj = ci keeping

all other marginal costs constant, we have Q̂ < ~Q and q̂k > ~qk for all k 6= j.14 Then, we
have q̂j < ~qj and ~qj � q̂j > ~Q� Q̂.
Since the social welfare is written as

SW = (total bene�t)� (total cost) =
Z Q

0

P (Q0)dQ0 �
KX
k=1

ckqk;

we have

gSW =

Z ~Q

0

P (Q0)dQ0 �
KX
k=1

ck~qk

14If �rm k is not in operation before the transfer, then q̂k = ~qk = 0.
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=

Z Q̂

0

P (Q0)dQ0 +

Z ~Q

Q̂

P (Q0)dQ0 �
X
k 6=j

ck~qk � c1~qj

=

Z Q̂

0

P (Q0)dQ0 +

Z ~Q

Q̂

P (Q0)dQ0 �
X
k 6=j

ck~qk � c1( ~Q� Q̂)� c1
�
~qj � ( ~Q� Q̂)

�
=

Z Q̂

0

P (Q0)dQ0 �
X
k 6=j

ck~qk � c1
�
~qj � ( ~Q� Q̂)

�
+

Z ~Q

Q̂

P (Q0)dQ0 � c1( ~Q� Q̂):

The last two terms are obviously positive since P ( ~Q) > c1. Thus, we have

gSW �dSW >

Z Q̂

0

P (Q0)dQ0 �
X
k 6=j

ck~qk � c1
�
~qj � ( ~Q� Q̂)

�
�dSW

=

Z Q̂

0

P (Q0)dQ0 �
X
k 6=j

ck~qk � c1
�
~qj � ( ~Q� Q̂)

�
�
Z Q̂

0

P (Q0)dQ0 +
KX
k=1

ckq̂k

=
KX
k=1

ckq̂k �
X
k 6=j

ck~qk � c1
�
~qj � ( ~Q� Q̂)

�
=

X
k 6=j

ck (q̂k � ~qk) + cj q̂j � c1

 
~qj �

KX
k=1

(~qk � q̂k)
!

=
X
k 6=j

(ck � c1) (q̂k � ~qk) + (cj � c1) q̂j > 0:

Hence, we conclude gSW > dSW .�
Appendix B: Licensing Equilibria

We �rst characterize the set of Nash equilibria. Although �rm 1 is not a bidder, we let

T1 � 0 for notational convenience.

Lemma 3. In a simple auction, an outcome (j�; T �) is a Nash equilibrium if and only if

(a) �1 (j�) + T �j� � �1 (j) + T �j for all j.
(b) If j� > 1, then �1 (j�) + �j (j�) + T �j� � �1 (j) + �j (j) for all j 6= j�.
(c) If j� > 1 and T �j� > 0, then �1 (j�) + T �j� = �1 (j) + T

�
j for some j 6= j� and

�1 (j
�) + T �j� = �1

�
~j
�
+ T �~j implies �j� (j

�)� T �j� � �j�
�
~j
�
.
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Proof. Consider a Nash equilibrium outcome (j�; T �). Condition (a) is obvious from

the structure of the game. For (b), suppose we have some j 6= j� such that �j (j�) <

�j (j)�
��
�1 (j

�) + T �j�
�
� �1 (j)

�
. Then �rm j can o¤er ~Tj = �1 (j�)+T �j���1 (j)+"j for

some "j > 0 so that Uj
�
j; ~Tj; T

�
�j

�
� Uj (j�; T �) and U1

�
j; ~Tj; T

�
�j

�
� U1

�
k; ~Tj; T

�
�j

�
for

all k. What remains is condition (c). If there is no j such that �1 (j�)+T �j� = �1 (j)+T
�
j ,

then from condition (a), we have �1 (j�) + T �j� > �1 (j) + T
�
j for all j. Then �rm j�

can o¤er ~Tj� = T �j� � "j� for some "j� > 0 so that Uj�
�
j�; ~Tj� ; T

�
�j�
�
� Uj (j

�; T �) and

U1

�
j�; ~Tj� ; T

�
�j�
�
� U1

�
k; ~Tj� ; T

�
�j�
�
for all k. If there is some ~j with �1 (j�) + T �j� =

�1
�
~j
�
+ T �~j such that �j� (j

�) � T �j� < �j�
�
~j
�
, then �rm j� can deviate to ~Tj� = 0 so

that Uj�
�
~j; ~Tj� ; T

�
�j�
�
� Uj (j

�; T �) and U1
�
~j; ~Tj� ; T

�
�j�
�
� U1

�
k; ~Tj� ; T

�
�j�
�
for all k.

Therefore, any Nash equilibrium satis�es all three conditions.

Suppose to the contrary that an outcome (j�; T �) satis�es the three conditions but is

not a Nash equilibrium. Condition (a) implies that �rm 1 selects �rm j�. First, consider

the case where j� has incentive to deviate from T �j� to ~Tj�. It is clear that ~Tj� < T
�
j� because

~Tj� � T �j� would still make �rm j� be the licensee with no less payment. However, condition
(c) implies that when j� reduces payment, there exists ~j 6= j�, �1

�
~j
�
+ T �~j = �1 (j

�) + T �j�

with �j� (j�)�Tj� (j�) � �j�
�
~j
�
to be chosen as the licensee, which violates the condition

that j� will deviate. Now consider j 6= j� deviates from T �j to ~Tj. Then we have ~Tj � 0
such that �1 (j)+ ~Tj � �1 (k)+T �k for all k 6= j and �j (j)� ~Tj > �j (j

�). From condition

(b), we have �1 (j�) + �j (j�) + T �j� � �1 (j) + �j (j). Hence, we have �1 (j�) + T �j� � ~Tj >

�1 (j). From condition (c), we have for some ~j 6= j�, �1 (j�) + T �j� = �1
�
~j
�
+ T �~j , so that

�1
�
~j
�
+ T �~j � ~Tj > �1 (j), which contradicts the condition that j deviates.�

Proof of Proposition 1. First suppose that no licensing is a TNE. Then, �1(j) + T �j �
�1(1) and �j(j) = �j(1)+T �j holds for all j 6= 1. Thus, �1(1)+�j(1) � �1(j)+�j(j) holds.
Conversely, if �1(1) + �j(1) � �1(j) + �j(j) holds for all j 6= 1, then �1(j) + T �j � �1(1)
and �j(j) = �j(1) + T �j holds.

Second, we consider the case with licensing. Let (j�; T �) be a TNE. In a TNE, we have

T �j = �j (j)��j (j�) for all j 6= j�. From condition (a) of Lemma 3, we have �1 (j�)+T �j� �
�1 (j)+T

�
j for all j 6= 1 so that T �j� = maxj2Knf1;j�gf�1 (j)+�j (j)��j (j�)��1 (j�)g. This

implies condition (b) of Lemma 3. By condition (c) of Lemma 3, we have ~j 6= j� such that
�1 (j

�)+T �j = �1
�
~j
�
+T �~j and �j� (j

�)�T �j� � �j�
�
~j
�
. Hence, we have �1 (j�)+�j� (j�)�

�j�
�
~j
�
� �1

�
~j
�
+�~j

�
~j
�
��~j (j�). Since �1

�
~j
�
+�~j

�
~j
�
��~j (j�) � �1 (j)+�j (j)��j (j�)

for all j 6= j�, we have �1 (j�) + �j� (j�) + �j (j�) � �1 (j) + �j� (j) + �j (j) for all j 6= 1.
Consider �1 (j�) + �j� (j�) + �j (j�) � �1 (j) + �j� (j) + �j (j) for all j 6= 1. De�ne
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T �j = �j (j)��j (j�) for all j 6= j� and T �j� = maxj2Knf1gf�1 (j)+�j (j)��j (j�)g��1 (j�).
It is easy to check that all conditions for a Nash equilibrium are satis�ed.�

Proof of Proposition 2. Let j� 2 argmaxj2K [(�1 (j) + �j (j))� (�1 (1) + �j (1))] be a
joint-pro�t-maximizing partner. Suppose to the contrary that there exists k > j� with

ck > cj� such that �1 (k) + �k (k) + �j� (k) > �1 (j�) + �k (j�) + �j� (j�). Since we have

�1 (j
�) + �j� (j

�) � �j� (1) � �1 (k) + �k (k) � �k (1), it is easy to see �j� (k) � �k (j�) >
�j� (1)��k (1) > 0. First consider �j� (k) = 0. Then �k (j�) = 0, which is a contradiction.
Second, consider �k (j�) = 0. Then we have P (Qj�) � ck where Qj is the equilibrium

aggregate output when �rm j obtains the license. However,

�j� (1)� �k (1) =
(2P (Q1)� cj� � ck) (ck � cj�)

�P 0 (Q1)

>
(2P (Q1)� cj� � ck) (P (Qj�)� cj�)

�P 0 (Qk)

� (P (Qk)� cj�)2

�P 0 (Qk)
= �j� (k)

where the second inequality comes from �P 0 (Q1) < �P 0 (Qk) and the third inequality
comes from P (Q1) > P (Qj�) � P (Qk). This is a contradiction. Finally, consider

�j� (k) � 0 and �k (j�) � 0. We have

�j� (k)� �k (j�) =
(P (Qk)� cj�)2

�P 0 (Qk)
� (P (Qj

�)� ck)2

�P 0 (Qj�)

<
(P (Qk)� cj�)2

�P 0 (Qj�)
� (P (Qj

�)� ck)2

�P 0 (Qj�)

since �P 0 (Qj�) < �P 0 (Qk) by weak concavity of P and Lemma 2. Then we have

(P (Qk)� cj�)2

�P 0 (Qj�)
� (P (Qj

�)� ck)2

�P 0 (Qj�)

=
(P (Qk) + P (Qj�)� cj� � ck) (P (Qk)� P (Qj�) + ck � cj�)

�P 0 (Qj�)

<
(2P (Q1)� cj� � ck) (ck � cj�)

�P 0 (Q1)
= �j� (1)� �k (1)

since 2P (Q1) � P (Qk)+P (Qj�), �P 0 (Q1) < �P 0 (Qj�) and from equilibrium conditions
we have ck � cj� = [�P 0 (Qk)]Qk � [�P 0 (Qj�)]Qj� + K [P (Qj�)� P (Qk)] so that 0 �
P (Qk)�P (Qj�)+ ck� cj� � ck� cj�. Hence, we have �j� (k)��k (j�) < �j� (1)��k (1),
which is a contradiction.�
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Proof of Proposition 3. Denote with jS and jM a simple auction licensee and a menu

auction licensee. By the property of a TNE in a menu auction, we have
P

h2K �h
�
jM
�
�P

h2K �h
�
jS
�
. First, suppose jS = 1. By Proposition 1, we have �1 (1) + �jM (1) �

�1
�
jM
�
+ �jM

�
jM
�
. Hence, we have

P
h2Knf1;jMg �h

�
jM
�
�
P

h2Knf1;jMg �h (1). This

implies that jM = 1 .

Now suppose, jS > 1. By Proposition 1, we have �1
�
jS
�
+ �jM

�
jS
�
+ �jS

�
jS
�
�

�1
�
jM
�
+�jS

�
jM
�
+�jM

�
jM
�
. Hence, we have

P
h2Knf1;jS ;jMg �h

�
jM
�
�
P

h2Knf1;jS ;jMg �h
�
jS
�
.

This implies that jM � jS .�
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