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Abstract

We develop a general-equilibrium asset-pricing model with dynamic games of

price competition. Price war risks arise endogenously from declines in long-run

growth as firms’ incentive to undercut prices grows stronger with a worse growth

outlook. The triggered price wars have amplification effects by narrowing profit

margins. In industries with higher capacity for radical innovation, firms compete

more fiercely for future market dominance. Their incentive for price undercutting is

less responsive to long-run growth shocks, and they are more immune to price war

risks and long-run growth shocks. Our results shed new light on the relationship

between competition and equity returns.
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1 Introduction

A price war occurs when rival firms aggressively undercut prices to gain market shares.
The risks of entering a price war are critical and concern investors, partly because product
markets are highly concentrated, featuring rich strategic competition among leading firms
(see, e.g., Autor et al., 2017; Loecker and Eeckhout, 2017).1 According to U.S. Census data,
the top four firms within each four-digit Standard Industrial Classification (SIC) industry
account for about 48% of that industry’s total revenue, and the top eight firms have a
combined market share exceeding 60% (see Online Appendix Figure OA.5). However,
little is known about which primitive forces drive price war risks or how price war risks
systematically affect asset prices. This paper is the first to study endogenous price war
risks and their asset pricing implications.

We document three stylized facts motivating our study. First, there is significant
positive comovement between the average profit margin of industries and the long-run
consumption growth rate (Panels A–D of Figure 1).2 Second, price war coverage by the
media and analyst reports spikes during periods of low long-run growth (Panels E and F).
Together, these two stylized facts suggest the existence of a systematic component in price
war risks. Third, the pattern of long-run growth predicting one-year-ahead profit margins
is more pronounced in industries with a low capacity for radical innovation (Panels G and
H). These empirical findings raise three relevant questions: (1) What primitive economic
force drives the systematic component of price war risks? (2) How do industries expose
heterogeneously to price war risks? (3) To what extent can price war risks amplify the
asset pricing implications of long-run growth shocks by generating time-varying cash
flow volatility?

Our paper takes the first step toward answering these three questions in a unified

1The implications of price war risks on stock returns and profit margins have been extensively covered
by the media and analysts. We list a few headline quotes in Online Appendix A and a few examples of
analyst reports in Online Appendix B.

2The average profit margin is the simple average of industries’ profit margins as in Machin and
Van Reenen (1993), so the comovement is not because of a composition effect from time-varying industry
size. We focus on the comovement between long-run growth and profit margins, instead of product
markups, because profit margins are related directly to price war risks. Our stylized fact is consistent
with the literature, which suggests that profit margins are strongly pro-cyclical (see, e.g., Machin and
Van Reenen, 1993; Hall, 2012; Anderson, Rebelo and Wong, 2018). Although markups and profit margins
are related, the empirical evidence on the cyclicality of markups is mixed, primarily because measuring
markups is challenging (see Blanchard, 2009; Anderson, Rebelo and Wong, 2018). For example, Domowitz,
Hubbard and Petersen (1986), Nekarda and Ramey (2011, 2013), Hall (2014), and Braun and Raddatz (2016)
find that markups are pro-cyclical, whereas Bils (1987) and Chevalier and Scharfstein (1996) find markups
to be countercyclical.
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Note: Panels A–D plot the yearly time series of average profit margins and long-run growth rates of consumption, using an HP filter
with a smoothing parameter of 6.25 (see Ravn and Uhlig, 2002). Panels E and F plot media and analyst coverage of price wars. See
Appendix A for detailed explanations on the variable construction. Panels G and H plot long-run growth rates (annualized based on
filtered consumption growth rate in the last quarter of the year) against the one-year-ahead percentage change in Compustat-based
profit margins in industries with a high (Panel G) and a low (Panel H) capacity for radical innovation. An industry has a low capacity
for radical innovation if rival firms conduct similar innovation. We construct a measure of industry-level innovation similarity in
Section 5.1 (see, Jaffe, 1986; Bloom, Schankerman and Van Reenen, 2013).

Figure 1: Profit margins, price wars, and long-run growth.

framework. First, we develop a model showing that long-run growth shocks (as in Bansal
and Yaron, 2004) can drive price war risks. Second, the model and the data show that an
industry’s exposure to price war risks — and thus long-run growth shocks — is higher if
the industry has a lower capacity for radical innovation. Our results shed new light on
how long-run growth shocks are priced in the cross section (see, e.g., Bansal, Dittmar and
Lundblad, 2005; Hansen, Heaton and Li, 2008; Bansal, Dittmar and Kiku, 2009; Malloy,
Moskowitz and Vissing-Jørgensen, 2009; Ai, 2010; Koijen et al., 2010; Constantinides
and Ghosh, 2011; Gârleanu, Panageas and Yu, 2012; Ai, Croce and Li, 2013; Ferson,
Nallareddy and Xie, 2013; Kung and Schmid, 2015; Bansal, Kiku and Yaron, 2016; Dittmar
and Lundblad, 2017; Gârleanu and Panageas, 2018). Third, we use the calibrated model
to quantify the impact of price war risks. The model implies that endogenous price
war risks can amplify the effects of long-run growth shocks by as high as 30% in terms
of the equity premium, and more importantly, endogenous price war risks are crucial
for long-run growth shocks to be priced in the cross section of industries sorted on the
capacity for radical innovation.

Theoretically, what is a price war? A full-blown price war is a non-collusive price
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competition that serves as an enforcement device to sustain implicit collusion on prices
(see, e.g., Friedman, 1971; Green and Porter, 1984; Porter, 1985; Abreu, Pearce and
Stacchetti, 1986; Athey, Bagwell and Sanchirico, 2004; Sannikov and Skrzypacz, 2007).
More broadly, a price war can also be a collusive price competition in which prices
drop because of a decline in firms’ market power (see, e.g., Rotemberg and Saloner,
1986; Lambson, 1987; Haltiwanger and Harrington, 1991). Sufficient narrowing of profit
margins triggers a full-blown price war in the equilibrium, featuring a regime shift from a
collusive equilibrium to a non-collusive equilibrium. Thus, price war risks are also related
inherently to the risk of jumping from a collusive regime to a non-collusive regime.

To answer the three questions motivated by the stylized facts in Figure 1, we develop
a general-equilibrium asset pricing model incorporating dynamic games of price com-
petition among firms. We first introduce in Section 2 a baseline model of endogenous
price war risks. The baseline model highlights the key mechanism: price war risks
rise endogenously because of declines in long-run growth, from which the first stylized
fact (in Panels A–D) emerges. In Section 3, we extend the baseline model by allowing
full-blown price wars. This extended model highlights the self-fulfilling endogenous
regime shifting from a collusive regime to a non-collusive regime. The probability of
entering a full-blown price war endogenously increases as long-run growth declines, a
result consistent with the second stylized fact (in Panels E and F). However, the model
with full-blown price war risks cannot account for the third stylized fact (in Panels G and
H) because, by design, cross-sectional heterogeneity does not exist across industries. In
Section 4, we further extend to a full model by allowing firms to innovate and snatch
their competitors’ customer base within each industry. Industries are heterogeneous in
terms of their capacities for radical innovation. The full model allows us to analyze the
cross-sectional implications of endogenous price war risks (as well as long-run growth
shocks) for cash flows and stock returns. It offers a rich set of cross-sectional testable
implications of the key mechanism. Most importantly, the full model sheds new light
on the relationship between stock returns and industry competition: to appreciate the
relationship of competition and stock returns, what matters more is the competition
for future market shares (i.e., the future market structure), captured by the capacity for
radical innovation, rather than the current market structure.

Our baseline model in Section 2 deviates from the standard Lucas-tree economy
mainly in two aspects: (1) consumers have deep habits (see Ravn, Schmitt-Grohé and
Uribe, 2006; van Binsbergen, 2016) over firms’ products, and thus firms find it valuable
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to maintain their customer base; and (2) there is a continuum of industries, and each
industry features a dynamic Bertrand duopoly with differentiated products and implicit
price collusion.3 In our baseline model, duopolists can collude implicitly with each
other to set high product prices and obtain high profit margins.4 Knowing that the
competitor will honor the collusive price-setting agreement, a firm can boost its short-run
revenue by undercutting prices to attract more customers; however, deviating from the
collusive price-setting scheme may reduce revenue in the long run if the competitor finds
out and punishes the firm. Following the literature (see, e.g., Green and Porter, 1984;
Brock and Scheinkman, 1985; Rotemberg and Saloner, 1986), we adopt the non-collusive
Nash equilibrium as the incentive-compatible punishment for deviation. The implicit
collusive price levels depend on firms’ deviation incentives: a higher implicit collusive
price can only be sustained by a lower deviation incentive, which is further shaped by
firms’ tradeoff between short-term and long-term cash flows. In other words, higher
collusive prices are more difficult to sustain when long-run growth is lower, because
future punishment becomes less threatening when firms expect a persistent decline in
aggregate consumption demand. As a result, collusive prices decline following negative
long-run-growth shocks, generating endogenous price war risks.

In the extended model in Section 3, we augment the baseline model by adding one
ingredient — imperfect monitoring. In particular, we assume that firms may need to
incur a non-pecuniary cost to monitor their competitors for potential deviation. Imperfect
monitoring has been argued to be a major channel through which full-blown price wars
break out in equilibrium (see Green and Porter, 1984). With large negative long-run
growth shocks, collusive prices decline significantly, and the benefit of collusion exceeds
its cost. As a result, firms optimally abandon collusion, and the industry falls into a
non-collusive equilibrium — a full-blown price war occurs. Importantly, a full-blown
price war generates a significant downward jump in profit margins and amplifies the
impact of long-run growth shocks. The endogenous equilibrium switching driven by
fundamental shocks is similar in spirit to that of Tsyvinski, Mukherji and Hellwig (2006),
Angeletos, Hellwig and Pavan (2007), Bebchuk and Goldstein (2011), and Goldstein, Dow

3Tirole (1988, Chapter 6) builds oligopoly models with Bertrand price competition and obtains similar
price war implications to those of the models of Cournot quantity competition (see Green and Porter, 1984;
Rotemberg and Saloner, 1986).

4Even though explicit collusion is illegal in many countries including the US, Canada, and most of the
EU because of antitrust laws, implicit collusion in the form of price leadership and tacit understanding still
takes place. For example, Intel and AMD implicitly colluded on the prices of graphic cards and central
processing units in the 2000s, although a price war was waged between the two companies in October 2018.
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and Guembel (2017), among others. Further, the probability of jumping into a full-blown
price war is endogenously time-varying and driven negatively by long-run growth shocks.

In the full model in Section 4, we incorporate the competition role of innovation.
Firms can snatch their competitors’ customer base and dominate their industries through
successful radical innovations. A successful radical innovation creates products suffi-
ciently distinctive from existing ones, allowing firms to disrupt the market and rapidly
grab substantial market shares.5 The capacity for radical innovation is a fundamental
and persistent industry characteristic; it is the only ex-ante heterogeneity in the model.
The full model sheds new light on industries’ heterogeneous exposure to price war risks
and thus long-run growth shocks. The model and the data show that firms in industries
with a higher capacity for radical innovation (see, e.g., Jaffe, 1986; Christensen, 1997;
Manso, 2011; Bena, Garlappi and Grüning, 2015; Kelly et al., 2018) are more immune
to price war risks. Intuitively, in such industries, the market structure is more likely to
experience dramatic changes and to become highly concentrated in the future. Firms
in such industries find it more difficult to collude with each other because they all ra-
tionally expect a highly concentrated product market to emerge, so the punishment for
deviation becomes less threatening. As a result, these industries feature low collusive
prices regardless of long-run growth rates, and their profit margins are less responsive
to long-run growth fluctuations. By contrast, in industries with a lower capacity for
radical innovation, the market structure is relatively stable, making the punishment for
deviation more threatening. As a result, firms are more eager to maintain their existing
customer base and collude to set higher prices. Their profit margins are more sensitive to
fluctuations in long-run growth, and these industries are more exposed to price war risks
and long-run growth shocks.

Empirically, our full model has the following testable cross-sectional implications.
First, in industries with a lower capacity for radical innovation, profit margins are higher
and decrease to a greater extent after negative long-run growth shocks. Second, these
industries are more exposed to long-run growth shocks, and investors demand higher
(risk-adjusted) expected excess returns on their equity. To test these predictions, we
first construct an innovation similarity measure based on US patenting activities from
1976 to 2017 to capture the capacity for radical innovation across industries. In light
of previous studies (see, e.g., Jaffe, 1986; Bloom, Schankerman and Van Reenen, 2013),
our innovation similarity measure is constructed based on the technology classifications

5A prominent example involves Apple Inc., a company that disrupted the mobile phone market by
cobbling together an amazing touch screen with a user-friendly interface.

5



of firms’ patents within industries. An industry is associated with a higher innovation
similarity measure if the patents produced by firms within the industry have more similar
technology classifications, and such an industry is expected to have a lower capacity for
radical innovation.

Consistent with our theory, we find that the average profit margin of industries
comoves positively with the long-run growth rate. In the cross section, we show that
profit margins are more exposed to long-run growth shocks in industries with a lower
capacity for radical innovation. By exploiting detailed product-level data, we find that
product prices are more exposed to long-run growth shocks in industries with a lower
capacity for radical innovation. In particular, our event-type study shows these industries
to have been more likely to engage in price wars in response to the Lehman crash in
September 2008, a time when the US economy experienced a prominent negative long-run
growth shock according to the estimation of Schorfheide, Song and Yaron (2018). Finally,
we find that the stock returns and dividend growth of industries with a lower capacity
for radical innovation are more exposed to long-run growth shocks. These industries
have higher (risk-adjusted) expected excess returns.

Related Literature. Our paper contributes to the burgeoning literature on the intersec-
tion between industrial organization, marketing, and finance (see, e.g., Phillips, 1995;
Kovenock and Phillips, 1997; Allen and Phillips, 2000; Aghion et al., 2005; Morellec and
Zhdanov, 2005; Hou and Robinson, 2006; Zhdanov, 2007; Morellec and Zhdanov, 2008;
Carlin, 2009; Aguerrevere, 2009; Hoberg and Phillips, 2010; Hackbarth and Miao, 2012;
Phillips and Zhdanov, 2013; Carlson et al., 2014; Hackbarth, Mathews and Robinson,
2014; Hoberg, Phillips and Prabhala, 2014; Bustamante, 2015; Weber, 2015; Hoberg and
Phillips, 2016; Loualiche, 2016; Bustamante and Donangelo, 2017; Corhay, 2017; Corhay,
Kung and Schmid, 2017; Andrei and Carlin, 2018; D’Acunto et al., 2018; Dong, Massa and
Zaldokas, 2018; Yang, 2018; Dou and Ji, 2018; Dou et al., 2018; Hackbarth and Taub, 2018;
Roussanov, Ruan and Wei, 2018; Zhdanov and Morellec, 2019).6 In a closely related paper,
Corhay, Kung and Schmid (2017) develop a novel general-equilibrium production-based
asset pricing model to understand the endogenous relation between markups and stock
returns amid strategic competition among firms. Their model implies that industries with
higher markups are associated with higher expected returns. Our model yields a similar

6There is also a strand of literature that studies the asset pricing implications of imperfect competition
in the market micro-structure setting (see, e.g., Christie and Schultz, 1994; Biais, Martimort and Rochet,
2000; Atkeson, Eisfeldt and Weill, 2015; Liu and Wang, 2018).
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implication through firms’ dynamic strategic competition. We show that industries with
a lower capacity for radical innovation have higher equilibrium profit margins and are
more exposed to price war risks and long-run growth shocks. Theoretically, our paper
advances the literature by developing a general-equilibrium model incorporated with
dynamic games, in which price war risks arise endogenously from declines in long-run
growth.

Our paper is also related to a growing literature that studies the implications of
innovation on asset prices (see, e.g., Li, 2011; Gârleanu, Kogan and Panageas, 2012;
Gârleanu, Panageas and Yu, 2012; Hirshleifer, Hsu and Li, 2013; Kung and Schmid, 2015;
Kumar and Li, 2016; Hirshleifer, Hsu and Li, 2017; Kogan et al., 2017; Corhay, Kung and
Schmid, 2017; Dou, 2017; Fitzgerald et al., 2017; Kogan, Papanikolaou and Stoffman, 2018;
Kogan et al., 2018). One of the key results from the work of Corhay, Kung and Schmid
(2017) is that extensive and intensive margins of innovation endogenously drive volatility
risks and long-run growth shocks. This result deepens our understanding of the economic
origins of the fluctuations in risk premia. Our model abstracts away from the growth
effect of innovation (see, e.g., Acemoglu et al., 2018) and focuses on the competition role
of innovation. We contribute to this literature by showing that industries with a higher
capacity for radical innovation are less exposed to price war risks and are associated
with lower (risk-adjusted) expected excess returns. Importantly, we emphasize that the
capacity for radical innovation provides forward-looking information on the degree of
competition in the product market, complementing the traditional static measures of
competition such as the Herfindahl-Hirschman Index (HHI) and the product similarity
measure (see Hoberg and Phillips, 2016).

Our paper also contributes in two ways to the macroeconomics and industrial orga-
nization literature on implicit collusion and price wars in dynamic oligopoly industries
(see, e.g., Stigler, 1964; Green and Porter, 1984; Rotemberg and Saloner, 1986; Haltiwanger
and Harrington, 1991; Rotemberg and Woodford, 1991; Staiger and Wolak, 1992; Bagwell
and Staiger, 1997; Athey, Bagwell and Sanchirico, 2004; Opp, Parlour and Walden, 2014).
First, we analyze the asset pricing implications of price war risks. Second, the model and
the data show that the exposure to price war risks varies across industries with different
capacities for radical innovation.

Finally, our paper is situated in the vast literature on cross-sectional asset pricing (see,
e.g., Cochrane, 1991; Berk, Green and Naik, 1999; Gomes, Kogan and Zhang, 2003; Pastor
and Stambaugh, 2003; Ait-Sahalia, Parker and Yogo, 2004; Lustig and Van Nieuwerburgh,
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2005; Nagel, 2005; Yogo, 2006; Lustig and Verdelhan, 2007; Campbell, Hilscher and
Szilagyi, 2008; Livdan, Sapriza and Zhang, 2009; Gomes and Schmid, 2010; Garlappi and
Yan, 2011; Lustig, Roussanov and Verdelhan, 2011; Papanikolaou, 2011; Belo and Lin,
2012; Ai and Kiku, 2013; Kogan and Papanikolaou, 2013; Belo, Lin and Bazdresch, 2014;
Donangelo, 2014; Kogan and Papanikolaou, 2014; Gandhi and Lustig, 2015; Hackbarth
and Johnson, 2015; Herskovic et al., 2016; Tsai and Wachter, 2016; Dou, 2017; Koijen,
Lustig and Van Nieuwerburgh, 2017; Kozak, Nagel and Santosh, 2017; Ai et al., 2018;
Belo, Lin and Yang, 2018; Gomes and Schmid, 2018; Gu, Hackbarth and Johnson, 2018).
Nagel (2013) provides a comprehensive survey. We show that the exposure to price war
risks varies across industries with different capacities for radical innovation. Our paper is
related particularly to the works investigating the cross-sectional stock return implications
of firms’ fundamental characteristics through intangible capital (see, e.g., Ai, Croce and
Li, 2013; Eisfeldt and Papanikolaou, 2013; Belo, Lin and Vitorino, 2014; Dou et al., 2018).
Another closely related paper is van Binsbergen (2016), which studies the implications of
multiple goods for asset prices based on the framework of deep habits developed by Ravn,
Schmitt-Grohé and Uribe (2006). Monopolistically competitive firms offer individual
varieties of goods. The demand elasticities of each monopolist are time-varying and
proportional to the consumption surplus ratio for the monopolist’s good. Firms with
low demand elasticities are more sensitive to aggregate shocks because of low operating
flexibility on cash flows.

2 The Baseline Model

The economy contains a continuum of industries indexed by i ∈ I ≡ [0, 1]. Each industry
i is a duopoly, consisting of two all-equity firms indexed by j ∈ F ≡ {1, 2}. We label
a generic firm with ij, referring to firm j in industry i, and its competitor by i j̄. All
firms are owned by a continuum of atomistic homogeneous households. Firms produce
differentiated goods and set prices strategically to maximize shareholder value.

Households are homogeneous and have stochastic differential utility as in the work of
Duffie and Epstein (1992a,b), defined recursively as follows:

U0 = E0

[∫ ∞

0
f (Ct, Ut)dt

]
, (2.1)

8



where

f (Ct, Ut) = βUt
1− γ

1− 1/ψ

 C1−1/ψ
t

[(1− γ)Ut]
1−1/ψ

1−γ

− 1

 . (2.2)

This preference is a continuous-time version of the recursive preferences proposed by
Kreps and Porteus (1978), Epstein and Zin (1989), and Weil (1990). The felicity function
f (Ct, Ut) is an aggregator over the current consumption rate Ct of the final consumption
good and future utility level Ut. Coefficient β is the subjective discount rate, γ is the
relative risk aversion parameter for one-period consumption, and ψ is the elasticity of
intertemporal substitution (EIS) for deterministic consumption paths.

The final consumption good Ct is determined by a two-layer aggregation. Following
the functional form of relative deep habits (see Ravn, Schmitt-Grohé and Uribe, 2006),7

industry i’s composite Ci,t is determined by aggregating firm-level differentiated goods

Ci,t =

[
∑
j∈F

(
Mij,t

Mi,t

) 1
η

C
η−1

η

ij,t

] η
η−1

, (2.3)

where parameter η > 1 captures the elasticity of substitution among goods produced
in the same industry. Mij,t/Mi,t captures the relative deep habits of firm j in industry i,
where Mi,t is defined as Mi,t = ∑j∈F Mij,t.

Further, the demand for the final consumption good Ct is determined through the
aggregation of industry composites

Ct =

(∫ 1

0
M

1
ε
i,tC

ε−1
ε

i,t di
) ε

ε−1

, (2.4)

where parameter ε > 1 captures the elasticity of substitution among industry composites.
Consistent with the literature (see, e.g., Atkeson and Burstein, 2008; Corhay, Kung and
Schmid, 2017), we assume η ≥ ε > 1, meaning that products within the same industry are
more substitutable. For example, the elasticity of substitution between the Apple iPhone
and the Samsung Galaxy is much higher than that between a cell phone and coffee.

7The specification of relative deep habits is inspired by the habit formation of Abel (1990), which features
catching up with the Joneses. The habit formation arises endogenously from the pecuniary externality of
the competition over scarce resources (see DeMarzo, Kaniel and Kremer, 2007, 2008). The key difference
between the formation of relative deep habits and the formation of habits is that in the former, agents form
habits over individual varieties of goods as opposed to a composite consumption good.
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2.1 Customer Base

The habit coefficient Mij,t in equation (2.3) is persistent over time, which can be interpreted
as customer inertia to firm j’s products (see Klemperer, 1995). From the firm’s perspective,
the customer inertia Mij,t can be viewed as its customer base, as Mij,t determines the
demand for its products Cij,t.

Demand Curves. Let Pi,t denote the price of industry i’s composite. Given Pi,t and Ct,
we obtain Ci,t by solving a standard expenditure minimization problem:

Ci,t =

(
Pi,t

Pt

)−ε

Mi,tCt, with Pt =

(∫ 1

0
Mi,tP1−ε

i,t di
) 1

1−ε

, (2.5)

where Pt is the price index for the final consumption good. Without loss of generality, we
normalize Pt ≡ 1 so that the final consumption good is the numeraire. Next, given Ci,t,
the demand for firm j’s good is

Cij,t =

(
Pij,t

Pi,t

)−η

P−ε
i,t Mij,tCt, with Pi,t =

[
∑
j∈F

(
Mij,t

Mi,t

)
P1−η

ij,t

] 1
1−η

. (2.6)

In equation (2.6), the demand for firm j’s good increases with Mij,t. Thus, it is natural
to think of Mij,t as capturing firm j’s customer base and Mi,t as capturing industry i’s
total customer base. Moreover, equation (2.6) implies that firm j has more influence on
the price index Pi,t when the share of its customer base Mij,t/Mi,t is higher. Thus, firm j
has the incentive to accumulate Mij,t to increase demand and gain market power.

Endogenous Price Elasticity. The short-run price elasticity of demand for firm j is

∂ ln Cij,t

∂ ln Pij,t
= sij,t

∂ ln Ci,t

∂ ln Pi,t︸ ︷︷ ︸
between industry

+ (1− sij,t)
∂ ln(Cij,t/Ci,t)

∂ ln(Pij,t/Pi,t)︸ ︷︷ ︸
within industry

= sij,tε + (1− sij,t)η, (2.7)

where sij,t is the (revenue) market share of firm j in industry i:

sij,t =
Pij,tCij,t

Pi,tCi,t
=

(
Pij,t

Pi,t

)1−η Mij,t

Mi,t
. (2.8)
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Equation (2.7) shows that the short-run price elasticity of demand is given by the average
of the within-industry elasticity of substitution η and the between-industry elasticity of
substitution ε weighted by the firm’s market share. Although η and ε are constant, the
short-run elasticity ln Cij,t/ ln Pij,t is time-varying given the two-layer competition.

Depending on sij,t, firm j’s short-run price elasticity of demand lies in [ε, η]. On the
one hand, when firm j’s market share sij,t is small, within-industry competition becomes
more relevant, so firm j’s price elasticity of demand depends more on η. In the extreme
case of sij,t = 0, firm j becomes atomistic and takes the industry price index Pi,t as given.
As a result, firm j’s price elasticity of demand is exactly η. On the other hand, when sij,t

is large, between-industry competition becomes more relevant and thus firm j’s price
elasticity of demand depends more on ε. In the extreme case of sij,t = 1, firm j becomes
the monopoly in industry i and its price elasticity of demand is exactly ε.

Each firm’s price has a non-negligible effect on the price index of the duopoly industry.
The magnitude of this effect is determined by sij,t. Thus, when setting prices, each firm
internalizes the effect of its own price on Pi,t, which in turn determines the demand for the
industry’s goods given the between-industry elasticity of substitution ε. If a continuum
of firms exist in each industry, as in standard monopolistic competition models, each
firm is atomistic and has no influence on the industry’s price index. Between-industry
competition would have no impact on the firm’s price elasticity of demand.

Dynamics of Customer Base. Firms can attract consumers through undercutting prices
or offering discounts. Lowering prices temporarily can have a persistent effect on
increasing the firm’s demand due to consumption inertia, information frictions, and
switching costs. Lower prices can attract new customers to buy the firm’s products, and
some are likely to be satisfied and to become “loyal” to the firm. To capture this idea,
following Phelps and Winter (1970) and Ravn, Schmitt-Grohé and Uribe (2006), we model
the evolution of firm j’s customer base as

dMij,t = −δMij,tdt + z(Cij,t/Ct)dt, (2.9)

where parameter z ≥ 0 determines the speed of customer base accumulation. Intuitively,
a lower price Pij,t increases the current demand Cij,t, allowing the firm to accumulate
more customer base over [t, t + dt]. Parameter δ > 0 captures customer base depreciation.

The firm’s price-setting decision depends on the value of z and its customer base
Mij,t. To elaborate, if z = 0, the firm’s optimal price-setting decision is static, chosen to
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maximize current profits. If z > 0, the firm’s price-setting decision becomes dynamic,
capturing the tradeoff between increasing contemporaneous profits by setting higher
prices to exploit the existing customer base Mij,t and increasing future profits by setting
lower prices to accumulate more customer base for the future (see, e.g., Chevalier and
Scharfstein, 1996; Gilchrist et al., 2017; Dou and Ji, 2018). Consistent with the empirical
evidence, the customer base Mij,t is sticky, which implies that the long-run price elasticity
of demand is higher (but not by much) than the short-run elasticity (see, e.g., Rotemberg
and Woodford, 1991; Gilchrist et al., 2017). In other words, coefficient z needs to be a
small positive value to capture the sticky property of the customer base.

Consumption Risks for the Long Run. We directly model the dynamics of aggregate
consumption demand Ct. Thus, our model essentially incorporates product market
frictions into a Lucas-tree model (see Lucas, 1978) with homogeneous agents and complete
financial markets. Many extensions of the basic Lucas-tree model have been developed in
the literature by incorporating frictions, market incompleteness, and multi-asset features.8

Our Lucas-tree economy has multiple sectors whose shares in the whole economy are
determined endogenously in equilibrium. Specifically, Ct evolves according to

dCt

Ct
= θtdt + σcdZc,t, where dθt = κ(θ − θt)dt + ϕθσcdZθ,t. (2.10)

The consumption growth rate contains a persistent component θt, which determines
the conditional expectation of consumption growth (see, e.g., Kandel and Stambaugh,
1991; Müller and Watson, 2018, for empirical evidence). The parameter θ captures the
average long-run growth rate. The parameter κ determines the persistence of the expected
growth rate process. The parameter ϕθ determines the exposure to long-run growth
shocks. The standard Brownian motions dZc,t and dZθ,t are independent. Unlike other
models with long-run growth shocks, the key feature of our model is that firm-level

8For example, Bansal and Yaron (2004), Longstaff and Piazzesi (2004), Santos and Veronesi (2006), and
Wachter (2013) consider leveraged dividends and implicitly incorporate labor market frictions in the Lucas-
tree model; Menzly, Santos and Veronesi (2004), Santos and Veronesi (2006, 2010), Cochrane, Longstaff
and Santa-Clara (2007), Martin (2013), Tsai and Wachter (2016), and van Binsbergen (2016) consider a
multi-asset (or multi-sector) Lucas-tree economy. Heterogeneous-agent complete-market Lucas-tree models
have also been developed and used widely in the asset pricing literature. For example, Chan and Kogan
(2002) introduced heterogeneous risk aversions, Xiong and Yan (2010) introduced information frictions,
Albuquerque and Wang (2008), He and Krishnamurthy (2013), and Kaniel and Kondor (2013) introduced
agency problems, and Basak and Cuoco (1998), Wang (2003), Lustig and Van Nieuwerburgh (2005), Chien
and Lustig (2009), and Chien, Cole and Lustig (2011) introduced market incompleteness.
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demand is endogenous and depends on strategic competition.

Stochastic Discount Factors in Equilibrium. The stochastic discount factor (SDF) Λt is

Λt = exp
[∫ t

0
fU(Cs, Us)ds

]
fC(Ct, Ut). (2.11)

The SDF evolves according to

dΛt

Λt
= −rtdt− γσcdZc,t −

γ− ψ−1

h + κ
ϕθσcdZθ,t, (2.12)

where rt is the interest rate given by

rt = β + ψ−1θt −
1
2

γ(1 + ψ−1)σ2
c −

1
2
(1− ψ−1)(γ− ψ−1)

(h + κ)2 ϕ2
θσ2

c . (2.13)

In equations (2.12) and (2.13), h = exp
(

ln C/W
)

is the long-run deterministic steady-state
consumption-wealth ratio determined in equilibrium. It suffices to solve the equilibrium
by solving h. The detailed derivations are given in Online Appendix G.

2.2 Price-setting Dynamic Games

Firm Production and Cash Flows. The marginal cost for a firm to produce a flow of
goods is ω with ω > 0. That is, the firm incurs cost with intensity ωYij,t in producing a
flow of goods with intensity Yij,t over [t, t + dt]. Given Cij,t and Pij,t, firm j’s optimal net
profits over [t, t + dt] are

dEij,t = max
Yij,t≥0

[
Pij,t min

{
Yij,t, Cij,t

}
−ωYij,t

]
dt. (2.14)

In equilibrium, the firm would never produce more than the demand Cij,t because
production is costly. Therefore, the firm finds it optimal to choose Pij,t > ω and produce
up to Cij,t in equilibrium, and the optimal net profits (2.14) can be written as

dEij,t =
(

Pij,t −ω
)

Cij,tdt, with Pij,t > ω. (2.15)

All net profits are paid out as dividends, as the model has no financial friction. We
do not explicitly model firms’ entry or exit. In fact, most entries and exits in the data
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are associated with small firms (see, e.g., Haltiwanger, 2012; Tian, 2018), while our
model focuses on the major players in an industry. Moreover, our model emphasizes the
cyclicality of profit margins driven by firms’ endogenous time-varying collusion incentive,
while evidence on the cyclicality of business startups is mixed given the existence of
countervailing forces (see, e.g., Parker, 2009; Fairlie, 2013). The data do not suggest strong
cyclical patterns in firms’ entry rates (see, e.g., Stangler and Kedrosky, 2010).

Substituting equation (2.6) into equation (2.15) gives

dEij,t = Πij(Pij,t, Pi j̄,t)Mij,tdt, (2.16)

where Πij(Pij,t, Pi j̄,t) is the locally deterministic profit rate defined by

Πij(Pij,t, Pi j̄,t) ≡
(

Pij,t −ω
) (Pij,t

Pi,t

)−η

P−ε
i,t Ct, where Pi,t is defined in (2.6). (2.17)

Equation (2.17) shows that Πij(Pij,t, Pi j̄,t) depends on competitor j̄’s product price Pi j̄,t

through the industry’s price index Pi,t, which reflects the direct externality of firm j̄’s
decisions. For example, if firm j̄ sets a lower price Pi j̄,t, the price index Pi,t will drop,
increasing firm j’s price elasticity of demand. This will motivate firm j to set a lower
price Pij,t, so the two firms’ price-setting decisions exhibit strategic complementarity.

Markov Perfect Nash Equilibrium. The duopolists in the same industry play a dy-
namic game (see Friedman, 1971), in which the stage games of setting prices are played
continuously and repeated infinitely with exogenous and endogenous state variables
varying over time. Formally, a subgame perfect Nash equilibrium for the dynamic game
consists of a collection of price-setting strategies that constitute a Nash equilibrium for
every history of the game. We do not consider all such equilibria, only Markov perfect
Nash equilibria that allow for collusive pricing arrangements enforced by punishment
schemes. All strategies are allowed to depend upon both “payoff-relevant” physical
states xi,t = {Mi1,t, Mi2,t, Ct, θt} in state space X, as in Maskin and Tirole (1988a,b), and
a set of indicator functions that track whether any firms have deviated from a collusive
price-setting agreement in the past, as in Fershtman and Pakes (2000, Page 212).9

Particularly, there exists a non-collusive equilibrium, which is the repetition of one-
shot Nash equilibrium and thus is Markov perfect. Meanwhile, there also exist multiple

9For notational simplicity, we omit the indicator states of historical deviations.

14



Markov perfect collusive equilibria in which price-setting strategies are sustained by
conditional punishment strategies.10

Non-collusive Equilibrium. Non-collusive equilibrium is characterized by price-setting
scheme PN

i (·) = (PN
i1 (·), PN

i2 (·)), a pair of functions defined in state space X, such that
each firm j chooses price Pij,t ≡ Pij(xi,t) to maximize shareholder value VN

ij,t ≡ VN
ij (xi,t),

under the assumption that its competitor j̄ will set the one-shot Nash-equilibrium price
PN

ij̄,t ≡ PN
ij̄ (xi,t). Following the recursive formulation in dynamic games for characterizing

Markov perfect Nash equilibrium (see, e.g., Pakes and McGuire, 1994; Ericson and Pakes,
1995; Maskin and Tirole, 2001), optimization problems can be formulated recursively by
Hamilton-Jacobi-Bellman (HJB) equations:

0 = max
Pij,t

ΛtΠij(Pij,t, PN
ij̄,t)Mij,tdt + Et

[
d(ΛtVN

ij,t)
∣∣∣Pij,t, PN

ij̄,t

]
. (2.18)

The solutions to the coupled HJB equations give the non-collusive equilibrium prices PN
ij,t

with j = 1, 2, which are chosen based on intertemporal tradeoff considerations because
PN

ij,t determines the continuation value VN
ij,t+dt by altering the customer base Mij,t+dt.

Collusive Equilibrium. In collusive equilibrium, firms “implicitly collude” on setting
higher prices to gain higher profit margins, with any deviation triggering a switch to
non-collusive Nash equilibrium. The collusion is “implicit” in the sense that it can be
enforced without relying on legal contracts. Each firm is deterred from breaking the
collusion agreement because provoking fierce non-collusive competition is a credible
threat. Consider a generic collusive equilibrium in which firms follow a collusive price-
setting scheme. Both firms can costlessly observe the other’s product price, so that price
deviation can be detected and punished. The assumption of perfect information follows
the work of Rotemberg and Saloner (1986), Haltiwanger and Harrington (1991), Staiger
and Wolak (1992), and Bagwell and Staiger (1997).

In particular, if one firm deviates from collusive equilibrium, the competitor will
implement a punishment strategy with probability ξdt over [t, t + dt]. The punishment is
to set non-collusive prices in the future forever. Setting non-collusive prices is considered

10In the industrial organization and macroeconomics literature, this equilibrium is called collusive
equilibrium or collusion (see, e.g., Green and Porter, 1984; Rotemberg and Saloner, 1986). Game theorists
generally call it the equilibrium of repeated game (see Fudenberg and Tirole, 1991) in order to distinguish
it from one-shot Nash equilibrium (i.e., our non-collusive equilibrium).
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a punishment strategy because the industry will switch to non-collusive equilibrium,
which features the lowest profit margins.11 We use the idiosyncratic Poisson process
Nij,t to characterize whether a firm can successfully implement a punishment strategy.
One interpretation of Nij,t is that, with 1− ξdt probability, the deviator can persuade its
competitor not to enter the non-collusive Nash equilibrium over the period [t, t + dt].12

Thus, the punishment intensity ξ can be viewed as a parameter governing the credibility
of the punishment for deviating behavior. A higher ξ leads to a lower deviation incentive
and thus sustains collusion better.

Formally, the set of incentive-compatible collusion agreements, denoted by C, consists
of all continuous price-setting schemes PC

i (·) ≡ (PC
i1(·), PC

i2(·)), such that the incentive
compatibility (IC) constraints are satisfied:

VD
ij (x) ≤ VC

ij (x), for all x ∈ X and j = 1, 2. (2.19)

Here, VC
ij,t ≡ VC

ij (xi,t) is firm j’s value in the collusive equilibrium, pinned down recur-
sively according to

0 =ΛtΠij(PC
ij,t, PC

ij̄,t)Mij,tdt + Et

[
d(ΛtVC

ij,t)
∣∣∣PC

ij,t, PC
ij̄,t

]
, (2.20)

where PC
ij,t ≡ PC

ij (xi,t) with j = 1, 2 are the collusive prices. Further, VD
ij,t ≡ VD

ij (xi,t) is firm
j’s highest shareholder value if it deviates from the implicit collusion:

0 =max
Pij,t

ΛtΠij(Pij,t, PC
ij̄,t)Mij,tdt + Et

[
d(ΛtVD

ij,t)
∣∣∣Pij,t, PC

ij̄,t

]
︸ ︷︷ ︸

if not punished

+Λt

(
VN

ij,t −VD
ij,t

)
ξdt,︸ ︷︷ ︸

if punished

In fact, there exist infinitely many elements in C and hence infinitely many collusive
equilibria. We focus on a subset of C, denoted by C, which consists of all price-setting
schemes PC

i (·) such that the IC constraints (2.19) are binding state by state, i.e., VD
ij (x) =

VC
ij (x) for all x ∈ X and j = 1, 2.13 It is obvious that the subset C is nonempty since it

11We adopt the non-collusive equilibrium as the incentive-compatible punishment for deviation, which
follows the literature (see, e.g., Green and Porter, 1984; Rotemberg and Saloner, 1986). We can extend the
setup to allow for finite-period punishment. The quantitative results are not altered significantly if the
punishment lasts long enough.

12Ex-post renegotiations can happen because the non-collusive equilibrium is not “immune to collective
rethinking” or renegotiation-proof (see Farrell and Maskin, 1989). The strategy we consider is essentially a
probabilistic punishment strategy.

13Such equilibrium refinement in a GE framework is similar in spirit to Alvarez and Jermann (2000) and
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contains the non-collusive Nash equilibrium price-setting scheme. We further narrow our
focus to the “Pareto-efficient frontier” of C, denoted by Cp, consisting of all pairs of PC

i (·)
such that there does not exist another pair P̃C

i (·) ∈ C with P̃ij(x) ≥ Pij(x) for all x ∈ X and
j = 1, 2, and with strict inequality holding for some x and j.14 Our numerical algorithm
follows a method similar to those of Abreu, Pearce and Stacchetti (1990), Cronshaw and
Luenberger (1994), Pakes and McGuire (1994), and Judd, Yeltekin and Conklin (2003).15

Deviation never occurs on the equilibrium path. Using the one-shot deviation principle
(see Fudenberg and Tirole, 1991), it is clear that the collusive equilibrium characterized
above is a subgame perfect Nash equilibrium.

2.3 Price Wars and Long-run Growth

In this subsection, we illustrate price war risks in collusive equilibria. We show that price
war risks endogenously arise from long-run growth shocks and as a result, they amplify
industries’ exposure to long-run growth shocks. All figures in Sections 2 - 4 are plotted
based on the calibrated parameter values in Table 11.

Key Mechanisms. In our model, price war risks endogenously arise from long-run
growth shocks. When the long-run growth rate θt declines, profit margins follow suit
because of endogenous declines in collusive prices PC

ij,t. Intuitively, the incentive to collude
on higher prices depends on how much firms value future revenues relative to their
contemporaneous revenues. By deviating from collusive price-setting schemes, firms
can obtain higher contemporaneous revenues and expand their customer base in the
short run; however, firms run into the risk of losing future revenue because once the
deviation is punished by the other firm, non-collusive equilibrium will be implemented.
During periods with low long-run growth, firms expect lower future cash flows, so the
future punishment for deviation becomes less costly. This situation makes firms more
impatient for cash flows and gives them a stronger incentive to undercut their competitors’

Alvarez and Jermann (2001).
14It can be shown that the “Pareto-efficient frontier” is not empty based on the fundamental theorem

of the existence of Pareto-efficient allocations (see, e.g., Mas-Colell, Whinston and Green, 1995), as C is
non-empty and compact, and the order we are considering is complete, transitive, and continuous.

15Proving the uniqueness of the equilibrium under our selection criterion is beyond the scope of the
paper. We use different initial points in our numerical algorithm and find robust convergence to the same
equilibrium.
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prices.16 Therefore, a decline in long-run growth intensifies price competition, and reduces
equilibrium product prices by weakening firms’ market power, leading to a price war (see,
e.g., Rotemberg and Saloner, 1986; Lambson, 1987; Haltiwanger and Harrington, 1991).

Importantly, the decrease in profit margins after negative long-run growth shocks
is caused by intensified competition and reduced market power rather than weakening
aggregate demand. Although the two firms still maintain collusive price-setting schemes,
the collusive prices are endogenously lower because of lower long-run growth rates. To
elaborate on this point, in Panel A of Figure 2, we plot the supply and demand curves for
firm j’s product in collusive equilibrium. Fixing firm j’s customer base Mij,t, the supply
curve (blue solid line) is flat because firm j agrees to sell its product at collusive price
PC

ij,t irrespective of the level of its contemporaneous demand. The demand curve (black
dashed line) is downward-sloping, and represents equation (2.6). The initial equilibrium
is given by point O0.

A negative shock to the long-run growth rate θt reduces collusion incentives and
weakens market power, shifting the supply curve downward to the blue dotted line. If
the demand curve were unchanged, the new equilibrium would feature a much lower
price and a much higher demand for firm j’s goods (point O′). However, the demand
curve also shifts downward to the black dash-dotted line, because the industry’s price
index Pi endogenously declines dramatically due to the self-fulfilling price undercutting.
The new equilibrium is given by point O1, featuring a price war with a much lower
equilibrium price and a slightly higher equilibrium demand for firm j’s goods (see (2.7)
– (2.8)). As illustrated in Panel D, the price war driven by negative long-run growth
shocks is caused initially by the downward shift in firm j’s supply curve owing to the
self-fulfilling decline in its market power. The shift in the supply curve reduces firm j’s
relative price Pij,t/Pi,t, which in turn increases firm j’s price elasticity of demand. When
firm j’s price elasticity of demand is higher, forming a collusion is more difficult from
competitor j̄’s perspective, because now firm j has more incentives to undercut prices. The
diminished collusion incentive further induces a downward shift in firm j̄’s supply curve,
which further reduces firm j̄’s relative price Pi j̄,t/Pi,t, increasing firm j̄’s price elasticity of
demand. Such a feedback loop leads to self-fulfilling weakened market power and thus
price wars.

16The intuition is related to the Folk Theorem in game theory. The Folk Theorem asserts that provided
players are sufficiently patient, repeated interaction can allow many subgame perfect outcomes, but more
importantly subgame perfection can allow virtually any outcome in the sense of average payoffs. The
effective discount rate is given approximately by rt − θt. Thus, the periods with low θt feature high discount
rates and less patience.
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D. An illustration of how negative long-run growth shocks can result in a price war
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Figure 2: Impact of demand and supply shocks on equilibrium prices and quantities.

By contrast, Panels B and C highlight that short-run shocks cannot lead to self-fulfilling
declines in firms’ market power. Panel B shows that a negative short-run demand shock
(i.e., a decline in Ct) only generates a downward shift in the demand curve without
affecting the supply curve. As a result, the change in equilibrium price and demand
depends purely on the price elasticity of supply. Given a flat supply curve (infinite price
elasticity of supply), firm j’s price in the new equilibrium (point O1) is exactly the same
as the initial equilibrium price (point O0).17 Panel C shows that a negative short-run
supply shock (i.e., an increase in ω) only generates an upward shift in the supply curve
without affecting the demand curve. As a result, the change in equilibrium demand
and supply purely depends on the price elasticity of demand. As the demand curve
is downward-sloping, the new equilibrium (point O1) has a higher price and a lower
demand for firm j’s goods.

Thus, the price war caused by negative long-run growth shocks involves shifts in both

17If the marginal cost of production increases with output, the supply curve would be upward-sloping.
Then, a negative short-run demand shock would result in a lower equilibrium price and a lower equilibrium
demand for firm j’s good. This is the standard negative effect of demand shocks on equilibrium prices
in models with decreasing-return-to-scale production technology. We intentionally assume a constant
marginal cost of production ω to eliminate this effect and cleanly present the price war effect.
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Figure 3: Price war risks and the industry’s exposure to long-run growth shocks.

the demand and the supply curves owing to self-fulfilling intensified competition and
weakened market power. Price war risks are generated by long-run growth shocks, not
by short-run demand or supply shocks. In Online Appendix E.2, we show that price war
risks subside when growth shocks become less persistent; specifically, price war risks
become negligible if only short-run shocks are considered.

Price War Risks. We illustrate price war risks numerically in Figure 3. By exploiting the
model’s homogeneity in Mi,tCt, we can reduce the model to two state variables, Mi1,t/Mi,t

and θt (see Online Appendix H.1 for more discussion). We solve normalized firm values
vC

ij(Mi1/Mi,t, θt) and product prices PC
ij,t(Mi1/Mi,t, θt) in a collusive equilibrium.

Panels A and B plot firm 1’s equilibrium product price for different long-run growth
rates θt. The blue solid line represents high long-run growth rates (i.e., θH). As shown
in Panel A, a decrease in the long-run growth rate (from θH to θL) leads to a price war.
Panel B shows dramatically narrowed profit margins.

Panel C illustrates the magnitude of price war risks by plotting the difference in profit
margins between periods with high and low long-run growth rates. Price war risks
display an inverted U shape, and are the largest when the two firms have comparable
customer base shares (i.e., Mi1/Mi = 0.5). Intuitively, in an almost monopolistic industry,
firms have weak collusion incentives because the difference between collusive and non-
collusive profit margins is small. As a result, the variation in profit margins is small when
long-run growth rates fluctuate. More discussion is presented in Online Appendix D.2.

The time-varying collusion incentive amplifies the effect of long-run growth shocks
because during periods with low long-run growth rates, firms not only face low demand,
they also have low profit margins caused by weakened market power. To illustrate
this amplification effect, we calculate the industry-level beta βi,t as the value-weighted
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firm-level beta βij,t:

βi,t = ∑
j∈F

wij,tβij,t, with βij,t = vC
ij,t(θH)/vC

ij,t(θL)− 1 and wij,t = vC
ij,t(θL)/(∑

k∈F
vC

ik,t(θL)).

Panel D shows that the industry’s beta displays an inverted U shape (see the blue
solid line) due to the price war risks exhibiting an inverted U shape. As a benchmark, the
red dotted line plots the industry’s beta in the absence of price war risks (i.e., under the
counterfactual that collusive prices do not change). When the two firms have comparable
customer base shares, price war risks significantly amplify the industry’s exposure to
long-run growth shocks owing to the large endogenous variation in profit margins.

3 The Extended Model with Full-blown Price Wars

In the baseline model, firms can costlessly monitor their competitors’ potential deviation
from the collusive price-setting scheme, and as a result, the collusive price-setting scheme
is always maintained in equilibrium. In that model, price wars are essentially endogenous
declines in firms’ prices within the collusive regime. In this section, we introduce
monitoring costs to generate endogenous full-blown price wars that involve shifts from
the collusive regime to the non-collusive regime.

3.1 Imperfect Monitoring

Monitoring their competitors’ potential deviation over [t, t + dt] requires firms’ share-
holders to make an effort with intensity νi,t per unit of customer base. The effort νi,t can
be viewed as an industry-specific non-pecuniary monitoring cost; it follows a two-state
Markov process taking values in V ≡ {νL, νH} with νL = 0 and νH > 0. The transition
intensity from νL to νH is qνL,νH , and that from νH to νL is qνH ,νL .

The fact that firms monitor each other is common knowledge. So if either firm chooses
not to monitor the other, both firms would set non-collusive prices.18 The implication
is that when deciding whether or not to implement collusive pricing, both firms must
weigh the benefit of collusion against the disutility of making an effort to monitor the

18Intuitively, because monitoring is common knowledge, if firm j does not monitor, firm j̄ will know
and will rationally deviate from collusive pricing. Firm j knows this. As a result, firm j will also deviate
conditional on firm j’s deviation, and so on. This scenario completely rules out any collusive equilibrium,
making the non-collusive equilibrium a unique one.
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other’s price. If the benefit is lower than the cost for either firm, both firms will abandon
collusion temporarily and enter into non-collusive price competition; hereafter, such a
regime shift is referred to as a full-blown price war (see, e.g., Friedman, 1971; Green and
Porter, 1984; Porter, 1985; Abreu, Pearce and Stacchetti, 1986).

Formally, we define the extended state vector as yi,t ≡ (xi,t, νi,t) and the extended state
space as Y ≡ X× V. The set of incentive-compatible collusion agreements, denoted by C,
consists of all continuous price-setting schemes PC

i (·) = (PC
i1(·), PC

i2(·)), a pair of functions
defined in state space Y, such that the following IC constraints are satisfied:

VD
ij (y) ≤ VC

ij (y), for all y ∈ Y and j = 1, 2. (3.1)

Here VD
ij (yi,t) is the highest shareholder value for firm j if it decides to deviate from the

implicit collusion. Its theoretical characterization can be found in Appendix B. Further,
VC

ij,t ≡ VC
ij (yi,t) is firm j’s value in the equilibrium where collusion and non-collusion are

chosen optimally, pinned down by

0 =


ΛtΠij(PC

ij,t, PC
ij̄,t)Mij,tdt + Et

[
d
(

ΛtVC
ij,t

)∣∣∣PC
ij,t, PC

ij̄,t

]
, if Γij,t ≥ νi,t for all j, (I)

max
Pij,t

ΛtΠij(Pij,t, PN
ij̄,t)Mij,tdt + Et

[
d
(

ΛtVC
ij,t

)∣∣∣Pij,t, PN
ij̄,t

]
, otherwise, (I I)

where PC
ij,t ≡ PC

ij (yi,t) with j = 1, 2 in (I) are collusive prices and PN
ij,t ≡ PN

ij (yi,t) with
j = 1, 2 in (I I) are non-collusive prices, which are the solution to the joint problems of
(I I)19, and Γij,t is the benefit intensity of collusion relative to non-collusion, defined by

Γij,t ≡ Πij(P
C
i,t)−Πij(P

N
i,t)︸ ︷︷ ︸

gain in profits

+
Et

[
Λt+dtVC

ij,t+dt

∣∣∣PC
i,t

]
−Et

[
Λt+dtVC

ij,t+dt

∣∣∣PN
i,t

]
ΛtMij,tdt

.︸ ︷︷ ︸
gain in continuation values

where PC
i,t = (PC

i1,t, PC
i2,t) and PN

i,t = (PN
i1,t, PN

i2,t) are the collusive price and non-collusive
price vectors, respectively. The intuition behind characterizations (I) and (I I) of VC

ij (yi,t)

is straightforward: firms of industry i would choose to collude on the price-setting
scheme PC

i (·) over [t, t + dt] if the benefit of collusion exceeds the non-pecuniary cost (i.e.,
Γij,t ≥ νi,t for both j = 1, 2). In this case, the relationship between VC

ij (yi,t) and VC
ij (yi,t+dt)

is characterized by (I). Alternatively, firms of industry i would choose not to collude and

19Nash equilibrium PN
i,t is different from those in (2.18) because of the difference in continuation value.
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Figure 4: Full-blown price wars with regime shifts.

would enter a full-blown price war over [t, t + dt] if the benefit of collusion is smaller than
the non-pecuniary cost (i.e., Γij,t < νi,t for some j). In this case, the relationship between
VC

ij (yi,t) and VC
ij (yi,t+dt) is characterized by (I I).

Because the benefit of collusion is monotonically increasing with the long-run growth
rate θt, the benefit of collusion can dominate the largest possible non-pecuniary cost νH

when θt is high enough. In this case, full-blown price wars would never occur. When θt is
low, the benefit of collusion can be dominated by νH, and full-blown price wars would
break out once νi,t switches from νL to νH.

Numerical Illustrations. We illustrate full-blown price wars numerically in Figure 4. In
Panel A, we consider a significant decrease in the long-run growth rate θt from θH to θL.
In the state of θL, firms find the collusion benefit too small to justify monitoring cost νH,
so they enter a full-blown price war by setting non-collusive prices (black dashed line).
By contrast, with νt = νL, full-blown price wars do not occur (gray dash-dotted line).

In Panel B, we consider a moderate decrease in θ from θH to θM > θL. In the
state of a medium long-run growth rate θM, whether the two firms collude with each
other depends on their relative customer base shares because the benefit from collusion
is smaller in a more concentrated industry (see our earlier discussion for Panel C of
Figure 3). In particular, when the two firms’ customer base is not very different (i.e.,
0.25 ≤ Mi1/Mi ≤ 0.75), they will choose to maintain collusion, even though a lower
long-run growth rate dampens the collusion incentive and results in lower collusive
profit margins. However, when the industry is more concentrated (i.e., Mi1/Mi < 0.25 or
Mi1/Mi > 0.75), the two firms will choose instead to enter a full-blown price war.
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Importantly, although full-blown price wars occur only when the long-run growth
rate is low, a decrease in the long-run growth rate increases the probability of entering a
full-blown price war in the near future. Therefore, the occurrence of regime switching
is endogenous in our model, but more importantly so is its time-varying probability. In
Panel C, we plot the simulated probability that a full-blown price war will take place in
the next five years. When the annualized long-run growth rate is above 5%, the probability
for a full-blown price war to occur is virtually zero. When the long-run growth rate
decreases to −15%, the probability increases to 37%.

4 The Full Model with Creative Destruction

In this section, we further extend the model with full-blown price wars by allowing firms
to snatch competitors’ customer bases through innovation. We emphasize the competition
role of innovation activities for two reasons. First, product innovation is an important
channel through which firms snatch competitors’ customer bases, besides strategic price
undercutting. We show that the extent to which firms can collude crucially depends on
their capacities for radical innovation, which determines the future market structure (i.e.,
the concentration of customer base in the industry). Second, introducing the competition
role of innovation yields new important cross-sectional predictions, thereby expanding
the scope of testing our asset pricing theory of price war risks. In particular, our model
predicts that industries with a lower capacity for radical innovation are more exposed to
price war risks and long-run growth shocks, and thus have higher expected stock returns.

4.1 Modeling the Competition Role of Innovation

Firms conduct innovation, with a constant success rate µ that is independent across
firms. A successful innovation allows the innovating firm to snatch a τij,t fraction of its
competitor’s customer base, where τij,t follows the Bernoulli distribution with two values:

τij,t =

{
τn, with probability λi,t,
τr, with probability 1− λi,t.

(4.1)

We assume 0 ≈ τn << τr ≈ 1 to capture two different types of innovation. The
event of snatching a small fraction τn reflects a successful non-radical innovation that
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cannot disrupt peer firms.20 One example of such type of innovation is Motorola Razr
flip phone, which is similar to existing phones in the mobile phone market. The event
of snatching a large fraction τr reflects a successful radical innovation (see Jaffe, 1986;
Christensen, 1997; Manso, 2011; Bena, Garlappi and Grüning, 2015; Kelly et al., 2018) that
creates distinctive technologies and products to replace the existing ones, and disrupt
peer firms. One example of radical innovation is the disruption of the mobile phone
market by the first Apple iPhone. Variable λi,t captures innovation similarity, which is the
only industry characteristic that is ex-ante heterogeneous across industries. Intuitively,
a lower λi,t means that industry i has a higher capacity for radical innovation at time
t. Similarly, Acemoglu et al. (2018) also emphasize the importance of heterogeneous
innovation capacities across firms and industries. In Section 5.1, we use patent data to
construct an innovation similarity measure to capture λi,t.

In our model, the long-run growth of aggregate consumption Ct is specified exoge-
nously by equation (2.10). However, in principle, firms’ innovation can also drive the
growth of aggregate consumption. In general, innovation can affect the economy through
two channels: the technology diffusion channel and the product-market competition chan-
nel (see, e.g., Aghion et al., 2005; Bloom, Schankerman and Van Reenen, 2013; Acemoglu,
Akcigit and Kerr, 2016). Our model focuses on the product-market competition channel
and its asset pricing implications (see, e.g., Gârleanu, Kogan and Panageas, 2012; Kogan
et al., 2017; Gârleanu and Panageas, 2018). We intentionally shut down the technology
diffusion channel for endogenous growth to keep the model simple and transparent.21

We assume that the value of λi,t remains the same unless it is hit by an idiosyncratic
Poisson shock with rate χ. Conditional on receiving the Poisson shock, a new charac-
teristic is drawn randomly from the set {λ1, ..., λN} each with equal probability, where
0 < λ1 < ... < λN ≤ 1. With the competition role of innovation, the dynamics of the
customer base (2.9) is modified as

dMij,t = −δMij,tdt + z(Cij,t/Ct)dt + τij,tMi j̄,tdIij,t − τi j̄,tMij,tdIi j̄,t (4.2)

where Iij,t and Ii j̄,t are independent Poisson processes capturing the success of firm j’s
and j̄’s innovation, respectively.

20The non-radical innovation is often referred to as incremental innovation in the literature.
21Incorporating the asset pricing implications of endogenous long-run growth driven by innovations, like

Gârleanu, Panageas and Yu (2012) and Corhay, Kung and Schmid (2017), would be an interesting extension
of our model, but it is out of the scope of the current paper.
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Cross-Sectional Implications. We now study the implication of innovation characteris-
tics for an industry’s exposure to price war risks. To fix ideas, consider two industries
different in innovation similarity λi,t. Panel A of Figure 5 plots the collusive equilibrium
prices in the two industries with high and low long-run growth rates.

Two main implications are worth mentioning. First, profit margins are much lower in
the industry with a higher capacity for radical innovation (i.e., lower λi,t) regardless of
the long-run growth rate θt

22 Second, profit margins drop more deeply in the industry
with a lower capacity for radical innovation (i.e., higher λi,t) in response to a decline in θt

from θH to θL; in other words, the cash flows of firms in such industries are more exposed
to long-run growth shocks. As discussed in Section 2.3, the incentive to collude exhibits
an inverted U shape and becomes the lowest in monopoly industries. An industry with
a higher capacity for radical innovation is more likely to be concentrated in the future
because one firm may capture a large market share upon successful radical innovation. So
even if the two firms currently have comparable customer base shares, the possibility of
having a successful radical innovation in the future will largely dampen today’s collusion
incentive, resulting in low collusive prices and low profit-margin sensitivities to long-run
growth shocks. Our idea echoes and formalizes the important generic insight of Maskin
and Tirole (1988a) and Fershtman and Pakes (2000): the tacit collusion among oligopolists
arises in industries where each firm expects others to remain in the market for a long
time; but if only one firm will end up dominating the market in the future, the incentive
for collusive behavior becomes weaker.

Panel B confirms the above intuition by showing that the industry with a higher
capacity for radical innovation has more dispersed market shares in the future. In Panel
C, we compare the two industries’ exposure to long-run growth shocks for different levels
of industry concentration, as reflected by firm 1’s customer base share. Conditional on
the same level of concentration, firms in the industry with a higher capacity for radical
innovation are less exposed to long-run growth shocks. The industry-level value-weighted
beta exhibits an inverted U-shape in both industries. The difference in beta across the two
industries is the largest when the two firms within the same industry have comparable
customer base shares (Mi1/Mi = 0.5).

22Moreover, when Mi1/Mi,t → 0, firm 1’s profit margin in both industries converges to the profit margin
determined by the within-industry elasticity of substitution η, as we have shown in equation (2.7). When
Mi1/Mi,t → 1, firm 1’s profit margin in both industries converges to the profit margin determined by the
between-industry elasticity of substitution ε. The limits of profit margins are almost the same in the two
industries because all firms face exactly the same η and ε.
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Note: When plotting Panel B, we consider two firms having equal (revenue) market shares in each industry. We simulate the
industry dynamics for 10 years and calculate the dispersion of market shares, measured by the standard deviation of the two firms’
market shares in year 10. Panel B plots the simulated probability density function of the dispersion of market shares across 10,000
simulations for each industry. The industry with a higher capacity for radical innovation will have a more right-skewed distribution
(red bars) than the industry with a lower capacity for radical innovation (blue bars). This pattern also holds for the steady state.

Figure 5: Implications across industries with different capacities for radical innovation.

5 Empirical Analyses

In this section, we empirically test the main predictions of our model, and as a companion
section, Section 6 reports the quantitative analyses of our model’s implications. We first
use patent data to construct an innovation similarity measure for industry characteristic
λi,t in our model. We then test the mechanism of our model by examining the time-series
and cross-sectional property of profit margins. We find that average profit margins
comove positively with long-run growth. In the cross section, we find that the profit
margins of industries with higher innovation similarity are higher and more exposed to
long-run growth shocks. We further exploit detailed product-price data and find these
industries are more exposed to price war risks, and their product prices decrease to
a greater extent in response to negative long-run growth shocks. In particular, these
industries were more likely to engage in price wars after the Lehman crash in 2008.
Finally, we test the asset pricing implications of our model. We find that the stock returns
and dividend growth of industries with higher innovation similarity are more exposed
to long-run growth shocks. These industries have higher average excess returns and
risk-adjusted returns.

5.1 Data and the Innovation Similarity Measure

We first introduce the patent data and explain the construction of the innovation similarity
measure. We then provide external validation tests for our measure and contrast it with
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the product similarity measure developed by Hoberg and Phillips (2016).

Patent Data and Our Merged Sample. We obtain the patent issuance data from
PatentsView, a patent data visualization and analysis platform. PatentsView contains
detailed and up-to-date information on granted patents from 1976 onward. Its coverage
of recent patenting activities is more comprehensive than the National Bureau of Eco-
nomic Research (NBER) patent data (see, Hall, Jaffe and Trajtenberg, 2001) and the patent
data assembled by Kogan et al. (2017) combined.23 Patent assignees in PatentsView are
disambiguated and their locations and patenting activities are tracked longitudinally.
PatentsView categorizes patent assignees into different groups, such as corporations,
individuals, and government agencies. The platform also provides detailed information
of individual patents, including their grant dates and technology classifications.

We match patent assignees in PatentsView to US public firms in CRSP/Compustat,
and to US private firms and foreign firms in Capital IQ.24 Private firms are included
in our sample because they play an important role in industry competition (see, e.g.,
Ali, Klasa and Yeung, 2008). We drop patents granted to individuals and government
agencies. We use a fuzzy name-matching algorithm to obtain a pool of potential matches
from CRSP/Compustat and Capital IQ for each patent assignee in PatentsView. We
then manually screen these potential matches to identify the exact matches based on
patent assignees’ names and addresses. In Online Appendix C.2, we detail our matching
procedure. In total, we match 2, 235, 201 patents to 10, 139 US public firms, 132, 100
patents to 3, 080 US private firms, 241, 582 patents to 300 foreign public firms, and 35, 597
patents to 285 foreign private firms. The merged sample covers 13, 804 firms in 523
four-digit SIC industries from 1976 to 2017.25

Innovation Similarity Measure. In light of previous studies (see, e.g., Jaffe, 1986; Bloom,
Schankerman and Van Reenen, 2013), we construct our industry-level innovation similarity
measure (called “innosimm”) based on the technology classifications of an industry’s
patents. In Appendix C, we detail the construction method for innosimm. An industry in

23The PatentsView data cover all patents granted by the US Patent and Trademark Office (USPTO) from
1976 to 2017, while the NBER data and the data assembled by Kogan et al. (2017) only cover patents granted
up to 2006 and 2010, respectively.

24Capital IQ is one of the most comprehensive datasets covering private and foreign firms.
25We use four-digit SIC codes in Compustat and Capital IQ to identify the industries of patent assignees.

Both Compustat and Capital IQ are developed and maintained by S&P Global, and the SIC industry
classifications in these two datasets are consistent with each other.
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which firms have more similar patents has a higher innosimm.
The primary purpose of constructing the innosimm measure is to approximate indus-

tries’ capacity for radical innovation because radical innovation is necessarily distinctive
to peers’. So industries with a lower innosimm tend to have a higher capacity for radical
innovation. Our approach of approximating the capacity for radical innovation using
innosimm is similar in spirit to those adopted by Bloom, Schankerman and Van Reenen
(2013), Lin, Liu and Manso (2016), and Kelly et al. (2018).

Panel A of Figure 6 presents the time series of several industries’ innosimm measures.
In the industry of “Search, Detection, Navigation, Guidance, Aeronautical, and Nautical
Systems and Instruments”, innosimm is low throughout our sample period, suggesting
that firms in this industry are able to consistently generate radical innovation. Innosimm
keeps increasing in the “Drilling Oil and Gas Wells” industry, while it peaks in the early
2000s in the “Rubber and Plastics Footwear” industry.
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Note: Panel A plots the innosimm (unstandardized) for three industries: rubber and plastics footwear (SIC 3021); drilling oil and
gas wells (SIC 1381); and search, detection, navigation, guidance, aeronautical, and nautical systems and instruments (SIC 3812).
Panel B plots the annualized long-run growth rates. The red solid line represents filtered consumption growth rates (annualized)
as in Schorfheide, Song and Yaron (2018). The black dotted line represents eight-quarter cumulative consumption growth rates
(annualized). Panel C plots the long-run growth shocks in the post-war period (from 1947q1 to 2015q4), which are the residuals of
the AR(1) model for the quarterly time series of filtered consumption growth rates. The gray dash-dotted lines represent the 95%
confidence interval of the long-run growth shocks. The red bars highlight the three prominent negative shocks in 1958q1, 1990q4,
and 2008q3, which represent the Eisenhower recession, the Iraq war, and the Lehman crash, respectively.

Figure 6: Examples of innosimm, consumption growth, and long-run growth shocks.

Validation of the Innosimm Measure. We perform two external validation tests for
justifying the relationship between our innosimm measure and industries’ capacity for
radical innovation. In the first validation test, we examine the relationship between
innosimm and the brand perception of consumers. If a lower innosimm captures a higher
capacity for radical innovation in an industry, we expect consumers to perceive firms’
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brands to be more distinctive from their peers’ within industries of lower innosimm. We
test this hypothesis by examining the relationship between innosimm and the relative
change in brand distinctiveness over time, measured using the BAV consumer survey
data.26 Column (1) of Table 1 shows that innosimm is negatively correlated with the two-
year percentage change in industry-level brand distinctiveness, suggesting that industries
with higher innosimm are associated with lower brand distinctiveness in the future.

We emphasize that our innosimm measure is conceptually different from the prod-
uct similarity measure (called “prodsimm”) constructed by Hoberg and Phillips (2016).
Innosimm captures to the extent to which firms in an industry can differentiate their
products from peers’ products through innovation. It is a forward-looking measure
that captures the (potential) similarity/distinctiveness of firms’ products in the future.
Prodsimm, on the other hand, is derived from textual analyses based on firms’ current
product descriptions (see Hoberg and Phillips, 2016). Therefore, it reflects the similarity
of products produced by different firms as of today, rather than the potential similar-
ity/distinctiveness of firms’ products in the future. In other words, prodsimm contains
little information, if at all, about firms’ innovation activities, which are the necessary
inputs for making products distinctive in the future. The conceptual difference between
the two measures is confirmed formally by column (2) of Table 1, which shows that
innosimm is unrelated to prodsimm.27 In Sections 5.3 and 5.4, we further show that,
unlike innosimm, prodsimm is neither related to industries’ price war risks nor priced in
the cross section.

In the second validation test, we examine the relationship between innosimm and
dispersion of firms’ market shares. As explained in Figure 5, we expect that firms
in industries with a lower capacity for radical innovation are associated with more
evenly distributed market shares. If our innosimm measure is associated negatively with
industries’ capacity to generate radical innovation, we expect industries with higher
innosimm to have a lower dispersion of market shares. This is indeed reflected in the
data (see columns 3 and 4 of Table 1).

26The BAV database is regarded as the world’s most comprehensive database of consumers’ brand
perception (see, e.g., Gerzema and Lebar, 2008; Keller, 2008; Mizik and Jacobson, 2008; Aaker, 2012; Lovett,
Peres and Shachar, 2014; Tavassoli, Sorescu and Chandy, 2014; Dou et al., 2018). The BAV brand perception
survey consists of more than 870,000 respondents in total, and it is constructed to represent the US
population according to gender, ethnicity, age, income group, and geographic location.

27The correlation between innosimm and prodsimm is low. Pearson correlation coefficient, Spearman’s
rank correlation coefficient, and Kendall’s τA and τB coefficients between the two variables are 0.06, 0.02,
0.04, and 0.04, respectively.
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Table 1: Validation of the innosimm measure (yearly analysis).

(1) (2) (3) (4)
Industry-level percentage changes from year t to t + 2 (%)

Brand distinctivenessi,t Prodsimmi,t Within-industry dispersion of market sharesi,t (%)

Innosimmi,t −0.69∗∗∗ 0.10 −1.26∗∗∗ −1.61∗∗∗

[−3.06] [0.04] [−2.60] [−3.26]

Year FE Yes Yes No Yes
Observations 2466 5906 8967 8967
R-squared 0.298 0.002 0.008 0.033

Note: This table presents results from industry-year panel regressions. It shows the relation of the innosimm measure with
measures of brand distinctiveness, product similarity, and the dispersion of market shares at the four-digit SIC industry level. In
column (1), the dependent variable is the two-year percentage change in industry-level brand distinctiveness. We compute industry-
level brand distinctiveness as follows. First, from the BAV consumer survey we obtain brand-level brand distinctiveness, which is
the fraction of consumers who consider a brand to be distinctive from others in the same industry. Next, we aggregate the brand-
level distinctiveness measure to the firm level, and then further aggregate it to the four-digit SIC industry level. Prodsimm (i.e.,
product similarity measure) comes from Hoberg and Phillips (2016), and it is derived from textual analyses based on the business
description in 10-K filings. We download the firm-level prodsimm from the Hoberg and Phillips Data Library, and aggregate it to
the four-digit SIC industry level. The dispersion of market shares (in percent) is defined as the standard deviation of firms’ market
shares (measured by sales) within the four-digit SIC industry. The sample in column (1) spans the period from 1993 to 2017, and the
sample in column (2) spans the period from 1996 to 2015. The sample in columns (3) and (4) spans the period from 1988 to 2017. We
include t-statistics in brackets. Standard errors are clustered by the four-digit SIC industry and year. *, **, and *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively.

5.2 Sensitivity of Profit Margins to Long-run Growth Rates

We test our model’s predictions on profit margins in this subsection. First, consistent with
the prediction of our baseline model in Section 2, the average profit margin of industries
comoves positively with long-run growth. Second, consistent with the prediction of our
full model in Section 4, profit margins in industries with higher innosimm are higher and
more exposed to long-run growth shocks.

Time-series Variation of Profit Margins. Table 2 shows that the average profit margin
of industries comoves positively with the long-run growth rate. This pattern is robust to
the choice of profit margin measures and long-run growth rates. Our finding is consistent
with previous studies (see, e.g., Machin and Van Reenen, 1993; Hall, 2012; Anderson,
Rebelo and Wong, 2018) showing that profit margins are strongly pro-cyclical.

Cross-Sectional Variation of Profit Margins. Table 3 shows that the one-year-ahead
changes in industry-level profit margins are more positively correlated with long-run
growth in industries with higher innosimm (columns 1 and 5). One alternative explanation
for our findings is that innosimm may be correlated with other industry characteristics
such as the income elasticity of demand and the durability of a firm’s output. It is thus
possible that these industry characteristics, not the channel of innosimm in Section 4,
drive the heterogeneous sensitivity of profit margins to long-run growth. To mitigate this
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Table 2: Sensitivity of average profit margins to long-run growth rates (yearly analysis).
(1) (2) (3) (4)

ln
(

Average industry profit marginst
Average industry profit marginst−1

)
Long-run growth rates (θt) Filtered consumption growth rates Cumulative consumption growth rates
Data sources of profit margins Compustat NBER-CES Compustat NBER-CES

θt 0.53∗∗ 0.76∗ 0.35∗∗ 0.49∗

[2.43] [1.89] [2.38] [1.84]

Constant 0.00∗∗ 0.01∗∗∗ 0.00∗ 0.01∗∗

[2.64] [2.77] [1.92] [2.47]

Observations 51 47 53 47
R-squared 0.115 0.064 0.080 0.042

Note: This table presents results from time-series regressions. It shows the sensitivity of average profit margins to long-run growth
rates. The average profit margin in year t is the simple average of the profit margins across all industries in year t. We compute
industry-level profit margins based on Compustat and NBER-CES data as explained in Appendix A. Each dataset has its own
advantage. Compustat covers public firms from all industries, while the NBER-CES database covers both public firms and private
firms in the manufacturing sector. The sample of the Compustat data ends in 2017, while the sample of the NBER-CES data ends
in 2011. Long-run growth rates (θt) are measured by the annualized filtered consumption growth rates in the last quarter of year
t in columns (1)–(2), and by the cumulative consumption growth rates (demeaned and annualized) from year t to year t − 1 (8
quarter summation) in columns (3)–(4). The construction of the filtered consumption growth rates and cumulative consumption
growth rates are explained in Appendix A. The sample in column (1) spans the period from 1965 to 2015, and that in column (3)
the period from 1965 to 2017. In columns (2) and (4), the sample spans the period from 1965 to 2011. We include t-statistics in
brackets. Standard errors are computed using the Newey-West estimator allowing for serial correlation in returns. *, **, and ***
indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

concern, we control for these industry characteristics and their interaction with long-run
growth. We find that the coefficient of the interaction term between long-run growth and
innosimm remains positive and statistically significant (columns 2–4 and columns 6–8),
suggesting that our findings cannot be explained by other industry characteristics.28 In
addition, Appendix Table D.1 shows that industry-level profit margins are associated
positively with innosimm.

5.3 Sensitivity of Product Prices to Long-run Growth Rates

As shown in Section 4, the key mechanism of our model is that industries with higher
innosimm collude to set higher product prices during periods with higher long-run
growth rates, and their prices drop more deeply following negative long-run growth
shocks due to the price wars that arise endogenously. We directly test this mechanism

28Table 3 implies that the profit margins are less sensitive to long-run growth in luxury industries and
durable industries. The finding for luxury industries is consistent with the marketing literature (see, e.g.,
Keller, 2008), which suggests that luxury goods producers tend to charge stable and high product prices to
maintain their brand image and the perception of scarcity. The finding for durable industries is consistent
with the fact that the Consumer Price Index (CPI) of durable goods is less volatile than that of non-durable
goods (CPIs are available from St. Louis Fed’s website). Yogo (2006) shows that the consumption of durable
goods is more pro-cyclical than non-durable goods, and Ait-Sahalia, Parker and Yogo (2004) show that
luxury consumption is more pro-cyclical than basic consumption. Different from these two papers, we
focus on the variation of profit margins instead of consumption demand.
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in this subsection. Specifically, we study the changes in product prices by exploiting a
comprehensive product-level dataset, which allows us to track product prices over time
and examine pricing behaviors across industries with different innosimm. We find that
industries with higher innosimm are more exposed to price war risks.

5.3.1 The Nielsen Data for Product Prices

We use the Nielsen Retail Measurement Services scanner data to measure product price
changes.29 The Nielsen data are used widely in the macroeconomics literature (see, e.g.,
Aguiar and Hurst, 2007; Broda and Weinstein, 2010; Hottman, Redding and Weinstein,
2016; Argente, Lee and Moreira, 2018; Jaravel, 2018). The Nielsen data record prices and
quantities of every unique product that had any sales in the 42, 928 stores of more than
90 retail chains in the US market from January 2006 to December 2016. In total, the
Nielsen data cover more than 3.5 million unique products identified by Universal Product
Codes (UPCs); they represent 53%, 55%, 32%, 2%, and 1% of all sales in grocery stores,
drug stores, mass merchandisers, convenience stores, and liquor stores respectively (see,
e.g., Argente, Lee and Moreira, 2018). We use the product-firm links provided by GS1,
the official source of UPCs in the US, to match products in the Nielsen data to firms
in CRSP/Compustat and Capital IQ. In Online Appendix C.3, we detail the matching
procedure. Our merged data cover the product prices of 472 four-digit SIC industries.

5.3.2 Price War Risks across Industries with Different Innosimm

The Lehman crash is an event during which the US economy experienced a prominent
negative long-run growth shock (see Panel C of Figure 6). In this subsection, we perform
an event-type study to examine changes in product prices around the Lehman crash.
To begin, we investigate the changes in media coverage about price wars around the
Lehman crash. Because the Nielsen data mainly cover consumer goods sold by retailers
and wholesalers, we focus on media coverage of the consumer goods sector and the
retail/wholesale sector. Panel A of Figure 7 shows that, after the Lehman crash, the
number of articles covering price wars increased dramatically. This pattern remains

29The analyses are conducted by us based in part on data from The Nielsen Company (US), LLC and
marketing databases provided through the Nielsen Datasets at the Kilts Center for Marketing Data Center
at the University of Chicago Booth School of Business. The conclusions drawn from the Nielsen data are
our own and do not reflect the views of Nielsen. Nielsen is not responsible for, had no role in, and was not
involved in analyzing and preparing the results reported herein.
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Table 3: Profit margin sensitivity of industries with different innosimm (yearly analysis).
(1) (2) (3) (4) (5) (6) (7) (8)

ln
(

Industry-level profit marginsi,t+1
Industry-level profit marginsi,t

)
Long-run growth rates (θt) Filtered consumption growth rates Cumulative consumption growth rates

θt × innosimmi,t 0.28∗∗ 0.28∗ 0.31∗ 0.29∗∗ 0.23∗∗ 0.21∗ 0.23∗ 0.24∗∗

[2.22] [1.75] [1.89] [2.35] [2.32] [1.71] [1.87] [2.46]

θt × income elasticity of demandi,t −0.37∗∗∗ −0.31∗∗

[−2.81] [−2.61]

θt × luxury industriesi,t −0.77∗∗ −0.55∗

[−2.63] [−1.83]

θt × durable industriesi,t −0.89∗∗ −0.79∗∗

[−2.59] [−2.26]

Income elasticity of demandi,t −0.00 −0.00
[−1.01] [−0.76]

Luxury industriesi,t −0.00 0.00
[−0.23] [0.02]

Durable industriesi,t −0.01∗∗ −0.00
[−2.33] [−0.96]

θt 0.20 0.57 0.50 0.28 0.37 0.69 0.59 0.45
[0.47] [1.10] [0.89] [0.71] [1.07] [1.61] [1.29] [1.37]

Innosimmi,t 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[1.25] [1.36] [1.44] [1.36] [1.14] [1.22] [1.29] [1.22]

Observations 8848 6979 6979 8848 9163 7234 7234 9163
R-squared 0.001 0.002 0.002 0.001 0.002 0.003 0.002 0.002

Note: This table presents results from industry-year panel regressions. It shows the sensitivity of industry-level profit margins to
long-run growth rates. Profit margins are computed based on Compustat data as explained in Appendix A. The construction of
long-run growth rates (θt) is explained in Appendix A. We estimate the income elasticity of demand based on the representative
consumer’s income and expenditures (see Online Appendix C.4 for details). Luxury industries are the industries with an income
elasticity of demand larger than one. The durability of firms’ output comes from Gomes, Kogan and Yogo (2009). The sample in
columns (1)–(4) spans the period from 1988 to 2015, and that in columns (5)–(8) the period from 1988 to 2017. We include t-statistics
in brackets. Standard errors are clustered by the four-digit SIC industry and year. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% levels, respectively.

robust when we normalize the number of articles covering price wars using the total
number of news articles (see Panel B of Figure 7).

Next, we examine the changes in product prices. We sort all industries into tertiles
based on innosimm. Table 4 quantifies the changes in product prices of high-innosimm
industries (top tertile) relative to low-innosimm industries (bottom tertile) around the
Lehman crash. In particular, we restrict the sample to industries in the top and bottom
tertiles, and create a top tertile indicator variable that equals one for the observations
in the former group. We also create a post-Lehman indicator variable that equals one
for observations in October 2008 and thereafter. We then regress the percentage change
in product prices on the top tertile indicator variable, the post-Lehman-crash indicator
variable, and an interaction term between the two. The coefficient of the interaction term is
negative and statistically significant across different regression specifications, suggesting
that product prices in high-innosimm industries decreased significantly relative to those
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D. Price-innosimm sensitivity
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E. Percent price changes
(high prodsimm - low prodsimm)
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F. Price-prodsimm sensitivity

Note: Panel A plots the number of articles (quarterly) that contain the term “price war” or “price wars” published in The Wall Street
Journal, The New York Times, and Financial Times around the Lehman crash. We require that the articles cover the US region and
cover either the consumer goods sector or the retail/wholesale sector. The gray vertical bar represents the Lehman crash. The black
dashed and red solid lines represent the mean number of articles before and after the Lehman crash. Panel B plots the price war
media coverage (in percent), which is the number of articles in Panel A normalized by the total number of articles published in the
three journals. Panel C plots the difference in the annualized monthly percentage changes in product prices between high-innosimm
(i.e., top tertile) and low-innosimm (i.e., bottom tertile) industries around the Lehman crash. The black circles and red triangles
represent the differences in annualized monthly percentage price changes between high-innosimm and low-innosimm industries in
the 18 months before and after the Lehman crash. The black dashed and red solid lines represent the mean values of the differences
before and after the Lehman crash. Panel D shows the price-innosimm sensitivity around the Lehman crash. Panel E plots the
difference in the percentage change in product prices between high-prodsimm (i.e., top tertile) and low-prodsimm (i.e., bottom
tertile) industries. Panel F shows the price-prodsimm sensitivity. We estimate confidence intervals using the bootstrapping method.
Specifically, for each panel, we construct 1 million time series by randomly drawing (with replacement) from a sample pool that
contains observations both before and after the Lehman crash. We then estimate the 95% confidence interval (dotted lines) for the
difference between the mean values before and after the Lehman crash. The differences between the mean values before and after
the Lehman crash are statistically significant (insignificant) if the red solid lines are outside (within) the 95% confidence interval.

Figure 7: Price war media coverage and product prices around the Lehman crash.

in low-innosimm industries after the Lehman crash. The difference in product prices
is economically significant. According to the regression without industry fixed effects
(column 1 of Table 4), product prices decreased by 4.98% in high-innosimm industries
after the Lehman crash, compared to those of low-innosimm industries.

Panel C of Figure 7 visualizes the difference in the annualized monthly percentage
changes in product prices between low-innosimm and high-innosimm industries in the
36-month period centered at the Lehman crash. The plot clearly shows that product prices
in high-innosimm industries reduced more than those in low-innosimm industries after
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Table 4: Product prices around the Lehman crash (monthly analysis).
(1) (2) (3) (4)

Percentage change in industry-level product pricesi,t (monthly, annualized, %)

Similarity measure Innosimm Prodsimm

Top similarity tertilei,t−1 × post Lehman crasht −4.98∗∗∗ −5.12∗∗ −2.02 −1.48
[−2.85] [−2.64] [−1.33] [−0.78]

Top similarity tertilei,t−1 −2.32 −4.73 −2.25 −3.17
[−1.05] [−0.93] [−1.07] [−1.58]

Post Lehman crasht 0.40 1.03 −0.82 −0.74
[0.19] [0.50] [−0.59] [−0.44]

Industry FE No Yes No Yes
Observations 5106 5106 4809 4809
R-squared 0.003 0.053 0.001 0.041

Note: This table presents results from industry-month panel regressions. It shows the changes in product prices around the
Lehman crash. The dependent variable is the annualized monthly percentage change in product prices of four-digit SIC industries.
To compute the monthly percentage change in product prices for four-digit SIC industries, we first compute the transaction-value-
weighted price for each product across all stores in each month. We then calculate the monthly percentage change in prices for
each product. Finally, we compute the transaction-value-weighted percentage change in product prices for each four-digit SIC
industry across all products within the industry. In columns (1) and (2), the similarity measure is innosimm. In columns (3) and
(4), the similarity measure is prodsimm. We consider the 36-month period centered at the Lehman crash. In Online Appendix F.1,
we perform the analysis by considering the 24-month period centered at the Lehman crash and find similar results. We include
t-statistics in brackets. Standard errors are clustered by the four-digit SIC industry and month. *, **, and *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively.

the Lehman crash. Panel D of Figure 7 visualizes the monthly price-innosimm sensitivity
(i.e., the sensitivity between the percentage change in product prices and industry-level
innosimm estimated across all industries). We find that the price-innosimm sensitivity
reduced significantly after the Lehman crash. We also use a regression approach to
verify such a pattern in Appendix Table D.2. The above findings suggest that high-
innosimm industries were more affected by the Lehman crash and that their product
prices decreased to a greater extent than did product prices in low-innosimm industries,
indicating that the former industries are more likely to engage in price wars following
negative long-run growth shocks.

We also examine product prices around the Lehman crash for industries with different
prodsimm (see Hoberg and Phillips, 2016). We find that product prices do not move
differently for high-prodsimm and low-prodsimm industries (Panel E of Figure 7, columns
3 and 4 in Table 4). Moreover, we observe little change in price-prodsimm sensitivity
following the Lehman crash (Panel F of Figure 7, columns 3 and 4 in Appendix Table
D.2). These findings suggest that, unlike innosimm, prodsimm is not related to industries’
exposure to price war risks.

We now extend our analysis to the whole time period covered by the Nielsen data
from 2006 to 2016. Specifically, we regress the percentage change in product prices on
innosimm, long-run growth rates, and the interaction term between the two. Table 5

36



Table 5: Price war risks across industries with different innosimm (quarterly analysis).
(1) (2) (3) (4) (5) (6) (7) (8)
One-year ahead percentage change in industry-level product prices (∑4

j=1 price_gri,t+j)

Long-run growth rates (θt) Filtered consumption growth rates Cumulative consumption growth rates

θt × innosimmi,t 1.17∗∗ 1.13∗ 1.17∗∗ 1.16∗∗ 0.80∗∗ 0.75∗ 0.81∗∗ 0.79∗∗

[2.37] [2.24] [2.34] [2.35] [2.36] [2.15] [2.33] [2.28]

θt × income elasticity of demandi,t −0.36 −0.77∗∗∗

[−0.75] [−5.69]

θt × luxury industriesi,t −0.52 −0.91∗∗∗

[−1.56] [−3.92]

θt × durable industriesi,t −1.27∗ 0.52
[−2.14] [0.51]

Income elasticity of demandi,t 0.01 −0.00
[0.52] [−0.68]

Luxury industriesi,t −0.00 −0.01
[−0.22] [−0.94]

Durable industriesi,t −0.10∗∗∗ −0.05∗∗

[−5.29] [−2.71]

θt −0.20 0.26 0.07 −0.02 0.11 1.07∗∗ 0.58 0.07
[−0.13] [0.17] [0.05] [−0.02] [0.23] [3.07] [1.20] [0.15]

Innosimmi,t 0.00 0.00 0.00 0.00 −0.00 −0.00 −0.00 −0.00
[0.17] [0.18] [0.17] [0.17] [−0.24] [−0.21] [−0.13] [−0.25]

Observations 7338 7338 7338 7338 8208 8208 8208 8208
R-squared 0.002 0.003 0.002 0.006 0.004 0.006 0.005 0.010

Note: This table presents results from industry-quarter panel regressions. It shows the sensitivity of percentage changes in product
prices to long-run growth rates across four-digit SIC industries with different innosimm. The dependent variable is the one-year-
ahead percentage change in industry-level product prices. Long-run growth rates are measured by annualized filtered consumption
growth rates in quarter t in columns (1)–(4), and by the cumulative consumption growth rates from quarter t− 7 to t (annualized)
in columns (5)–(8). Income elasticity of demand, luxury industries, and durable industries are defined in Table 3. The sample spans
the period from 2006 to 2016. We include t-statistics in brackets. Standard errors are clustered by the four-digit SIC industry and
year. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

shows that the coefficient of the interaction term is positive and statistically significant.
The result remains robust if we control for various industry characteristics, or if we use
real product prices to adjust for inflation (see Online Appendix F.2). Our findings suggest
that industries with higher innosimm have product prices that are more sensitive to
long-run growth and hence are more exposed to price war risks.

5.4 Asset Pricing Tests

We now test the asset pricing implications of our model. Our model shows that long-run
growth shocks are priced because they affect firms’ cash flows. In the times-series data,
we find that the average real profits of industries comove positively with long-run growth
rates, indicating that long-run growth shocks affect a firm’s cash flows significantly. In
the cross section, we find that the stock returns and dividend growth of industries with
higher innosimm are more exposed to long-run growth shocks. Moreover, we find that
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Table 6: Sensitivity of average industry profits to long-run growth rates (yearly analysis).
(1) (2) (3) (4)

ln
(

Average real industry profitst
Average real industry profitst−1

)
Long-run growth rates (θt) Filtered consumption growth rates Cumulative consumption growth rates
Profits data Gross profits Net profits Gross profits Net profits

θt 2.62∗∗∗ 1.96∗∗∗ 2.34∗∗∗ 1.95∗∗∗

[5.72] [3.91] [5.85] [2.55]

Constant 0.04∗∗∗ 0.04∗∗∗ 0.03∗∗∗ 0.03∗∗∗

[5.76] [4.41] [5.51] [3.68]

Observations 51 51 53 53
R-squared 0.281 0.099 0.343 0.155

Note: This table presents results from time-series regressions. It shows the sensitivity of average real profits of industries to long-run
growth rates. The profit in year t is the simple average of the real profits across all industries in year t. We compute industry-level
gross and net profits based on Compustat data as explained in Appendix A. The construction of long-run growth rates (θt) is
explained in Appendix A. The sample in columns (1) and (2) spans the period from 1965 to 2015 , and that in columns (3) and
(4) spans the period from 1965 to 2017. We include t-statistics in brackets. Standard errors are computed using the Newey-West
estimator allowing for serial correlation in returns. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels,
respectively.

industries with higher innosimm have higher average excess returns and risk-adjusted
returns. The spreads between high-innosimm industries and low-innosimm industries
(called innosimm spreads) are persistent and robust after controlling for various related
measures. These findings are consistent with the prediction of our full model in Section
4. Finally, we find that the innosimm spreads become much weaker in the group of
industries that have experienced antitrust enforcement in recent years, suggesting that
the observed spreads are related to firms’ collusion incentive, as predicted by our model
(see Online Appendix E.3 for detailed discussion).

Comovement between Average Profits and Long-run Growth Rates. Table 6 shows
that both the growth rates of average real gross profits and net profits of industries comove
positively with long-run growth rates. This relationship is economically significant. For
1% increase in the filtered consumption growth rates, the growth rates of average gross
profits and net profits increase by 2.62% and 1.96%, respectively. Our findings suggest
that long-run growth shocks have a substantial impact on firms’ cash flows.

Exposure of Stock Returns and Dividend Growth to Long-run Growth Shocks. In the
cross section, we first examine the exposure of stock returns to long-run growth shocks
across industries with different innosimm. We sort all industries into quintile portfolios
based on innosimm and regress the cumulative returns of each portfolio on long-run
growth. Table 7 tabulates the betas to long-run growth shocks for each portfolio. The
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Table 7: Exposure of stock returns to long-run growth shocks (quarterly analysis).
Industry portfolios sorted on innosimm 1 (Low) 2 3 4 5 (High) 5 − 1

Filtered consumption growth rates

Betas to long-run growth shocks −0.05 4.45∗∗∗ −0.62 3.57∗∗ 4.69∗∗ 4.75∗∗

[−0.05] [3.16] [−0.52] [2.57] [2.41] [2.61]

Cumulative consumption growth rates

Betas to long-run growth shocks 1.78 6.55∗∗∗ 3.48∗∗∗ 5.51∗∗∗ 5.24∗∗∗ 3.46∗∗

[1.58] [5.09] [3.12] [3.73] [4.03] [2.09]

Note: This table shows the exposure to long-run growth shocks for industry portfolios sorted on innosimm. In June of year t, we
sort industries into five quintiles based on innosimm in year t− 1. Once the portfolios are formed, their monthly returns are tracked
from July of year t to June of year t + 1. We estimate the betas to long-run growth shocks by regressing the eight-quarter cumulative
portfolio returns on the eight-quarter cumulative filtered consumption growth rates: ∏7

j=0 Ri,τ−j = αi + βi ∑7
j=0 x̂τ−j + ei,τ , where x̂τ

is the filtered consumption growth rate as in Schorfheide, Song and Yaron (2018). Ri,τ is the gross real return of the industry portfolio
i in quarter τ. The sample spans the period from 1988 to 2015 because our data on the filtered consumption growth rates end in
2015. Following Dittmar and Lundblad (2017), we also estimate the betas to long-run growth shocks by regressing the eight-quarter
cumulative portfolio returns on the eight-quarter cumulative consumption growth rates: ∏7

j=0 Ri,τ−j = αi + βi ∑7
j=0 η̂τ−j + ei,τ , where

η̂τ is the demeaned quarterly consumption growth rate at quarter τ. Consumption and stock returns are deflated to real terms using
the personal consumption expenditure deflator from the US Bureau of Economic Analysis (BEA). The sample spans the period from
1988 to 2018. We exclude financial firms and utility firms from the analysis. We include t-statistics in brackets. Standard errors are
computed using the Newey-West estimator allowing for serial correlation in returns. *, **, and *** indicate statistical significance at
the 10%, 5%, and 1% levels, respectively.

difference in betas between Q1 and Q5 is positive and statistically significant, suggesting
that the stock returns of industries with higher innosimm are more exposed to long-run
growth shocks.

Next, we examine the exposure of real dividend growth to long-run growth shocks
for the long-short portfolio sorted on innosimm. We construct the real dividend growth
rate following previous studies (see, e.g., Campbell and Shiller, 1988; Bansal, Dittmar
and Lundblad, 2005; Hansen, Heaton and Li, 2005, 2008; Bansal, Kiku and Yaron, 2016).
Importantly, we account for stock entries and exits when computing a portfolio’s dividend
growth rate (see Online Appendix C.5 for details). Table 8 shows that the dividend growth
of industries with higher innosimm is also more exposed to long-run growth shocks.

Table 8: Exposure of dividend growth to long-run growth shocks (quarterly analysis).
Panel A: Dividend growth spreads Panel B: Exposure to long-run growth shocks

(Q5 − Q1, annualized, %) Filtered consumption growth rates Cumulative consumption growth rates

2.09 6.23∗∗∗ 7.68∗∗∗

[0.48] [4.72] [4.75]

Note: Panel A shows the annualized spreads of dividend growth for the long-short industry portfolio sorted on innosimm.
In Panel B, we regress the four-quarter cumulative dividend growth of the long-short industry portfolio sorted on innosimm
on the annualized quarterly filtered consumption growth rates (∑4

j=1(DQ5 ,t+j − DQ1 ,t+j) = α + βx̂t + et), and the annualized

eight-quarter lagged cumulative consumption growth rates (∑4
j=1(DQ5 ,t+j − DQ1 ,t+j) = α + β ∑7

j=0 η̂t−j/2 + et). We exclude
financial firms and utility firms from the analysis. We include t-statistics in brackets. Standard errors are computed using the
Newey-West estimator allowing for serial correlation in returns. *, **, and *** indicate statistical significance at the 10%, 5%,
and 1% levels, respectively.
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Innosimm Spreads across Industries. We now examine whether innosimm is priced in
the cross section. Panel A of Table 9 presents the value-weighted average excess returns
and alphas for the industry portfolios sorted on innosimm. The panel shows that the
portfolio consisting of high-innosimm industries (i.e., Q5) exhibits significantly higher
average excess returns and alphas. The annualized spread in average excess returns
between Q1 and Q5 is 3.41% and the annualized spreads in alphas are 5.22% and 4.75%
for the Fama-French three-factor model and the Carhart four-factor model, respectively.
We also perform the same analysis for prodsimm, and we find that prodsimm is not
priced in the cross section. The return difference between the high-prodsimm portfolio
and the low-prodsimm portfolio is statistically insignificant (see Panel B of Table 9).

Table 9: Average excess returns and alphas of portfolios sorted on innosimm and prod-
simm (monthly analysis).

1 (Low) 2 3 4 5 (High) 5 − 1

Panel A: Industry portfolios sorted on innosimm

Average excess returns
E[R]− r f (%) 6.13∗∗∗ 8.37∗∗∗ 7.35∗∗∗ 8.62∗∗∗ 9.54∗∗∗ 3.41∗∗∗

[2.74] [3.73] [3.01] [4.42] [3.17] [2.71]

Fama-French three-factor model (see Fama and French, 1993)
α (%) −2.51∗∗ 0.07 −1.34 1.08 2.71∗∗ 5.22∗∗∗

[−2.48] [0.10] [−0.69] [1.21] [2.49] [3.54]

Carhart four-factor model (see Carhart, 1997)
α (%) −2.47∗∗∗ 0.09 −1.25 1.43 2.28∗∗∗ 4.75∗∗∗

[−2.70] [0.18] [−0.78] [1.50] [2.63] [4.01]

Panel B: Industry portfolios sorted on prodsimm

Average excess returns
E[R]− r f (%) 4.94∗∗ 6.44∗∗ 8.07∗∗ 6.25∗ 6.19∗ 1.25

[2.29] [2.05] [2.59] [1.77] [1.91] [0.42]

Fama-French three-factor model (see Fama and French, 1993)
α (%) −0.89 0.03 2.21∗∗ 0.08 0.82 1.70

[−0.48] [0.01] [2.53] [0.06] [0.86] [0.64]

Carhart four-factor model (see Carhart, 1997)
α (%) −0.57 0.42 2.19∗∗ 0.69 0.70 1.26

[−0.36] [0.20] [2.43] [0.68] [0.75] [0.53]

Note: This table shows the value-weighted average excess returns and alphas for the four-digit SIC industry portfolios sorted on
innosimm. In June of year t, we sort the four-digit SIC industries into five quintiles based on their innosimm in year t− 1. Once the
portfolios are formed, their monthly returns are tracked from July of year t to June of year t + 1. The sample period is from July
1988 to June 2018. We exclude financial firms and utility firms from the analysis. We include t-statistics in brackets. Standard errors
are computed using the Newey-West estimator allowing for serial correlation in returns. We annualize average excess returns and
alphas by multiplying them by 12. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

We further examine the persistence of the return spreads and the betas to long-run
growth shocks around the portfolio sorting period. Panels A and B of Figure 8 show that
the positive relation between return spreads and innosimm exists three years before and
continues to exist three years after portfolio formation. This result reinforces the findings
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in Table 9 because it indicates that innosimm is a persistent firm characteristic priced in
the cross section.30 Panel C of Figure 8 shows that the positive relation between portfolio
betas and innosimm remains stable five years after portfolio formation. The above findings
of persistent innosimm spreads and betas support our theory of heterogeneous persistent
risk exposure due to persistent industry characteristics, rather than time-varying betas
(see Daniel and Moskowitz, 2016).

years relative to innosimm sortings
-3 -2 -1 0 1 2 3

E
x
ce
ss

re
tu
rn
s
(%

)

5

10

A. Excess returns

Innosimm Q1

Innosimm Q3

Innosimm Q5

years relative to innosimm sortings
-3 -2 -1 0 1 2 3

F
am

a-
F
re
n
ch

th
re
e-
fa
ct
or

al
p
h
as

(%
)

-5

0

5
B. Fama-French three-factor alphas

years relative to innosimm sortings
-1 0 1 2 3 4 5

B
et
as

0

2

4

6

8
C. Pre- and post-sorting betas

Note: Panels A and B plot the annualized excess returns and alphas, averaged across different portfolio-formation months, associated
with the portfolios sorted on innosimm three years before and three years after portfolio formation. Specifically, we conduct event
studies for different portfolio-formation months t, spanning the period from 1988 to 2018. In each portfolio formation month t, we
sort industries into quintiles based on innosimm to construct portfolios. Both industry allocations and weights in each portfolio are
fixed at their values in portfolio-formation month t. We then compute the value-weighted returns for each of the portfolios sorted
on innosimm across time. Next, for each month t′ ∈ [t − 36, t + 36], we estimate the parameters of the Fama-French three-factor
models based on portfolio returns during [t′ − 36, t′). Using the estimated parameters and the portfolio returns in month t′, we
estimate the Fama-French three-factor alphas in month t′. Finally, we compute the average alpha for each month across all portfolio
formation-months t, and obtain annualized alphas by multiplying the monthly alphas by 12. Panel C plots the pre- and post-sorting
betas to long-run growth shocks, which are estimated using the same approach as the one in Panel B of Table 7.

Figure 8: Before- and after-sorting return spreads and betas to long-run growth shocks.

Finally, we perform a series of double-sort analyses. As shown by Appendix Table
D.3, the innosimm spreads are robust after controlling for various related industry
characteristics including the measures of profit margins, prodsimm, innovation originality,
asset growth rates, income elasticity of demand, and durability of firms’ output.

The Impact of Antitrust Enforcement. To test whether the observed innosimm spreads
are related to firms’ collusion incentive, we exploit the variation in antitrust enforcement,
which punishes collusive behavior and thus dampens firms’ incentive to collude.

Specifically, we split all industries into two groups in each year based on whether they
have experienced any antitrust enforcement in the past 10 years.31 As shown in Table 10,

30The correlation in innosimm is 0.99 between years t and t− 1 and 0.86 between years t and t− 5.
31The antitrust enforcement cases are hand collected from the websites of the US Department of Justice
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Table 10: Antitrust enforcement and innosimm spreads (monthly analysis).
Excess returns (%) Fama-French three-factor alpha (%) Carhart four-factor alpha (%)

Panel A: Industries with antitrust enforcement in the past 10 years

−0.81 0.59 −0.44
[−0.33] [0.24] [−0.21]

Panel B: Industries without antitrust enforcement in the past 10 years

3.27∗∗ 5.44∗∗ 5.54∗∗∗

[2.01] [2.91] [3.00]

Note: This table presents the average excess returns and alphas (both in percent) of the value-weighted long-short four-digit SIC
industry portfolio sorted on innosimm in the industries with (Panel A) and without (Panel B) antitrust enforcement in the past
10 years. We exclude financial firms and utility firms from the analysis. We include t-statistics in brackets. Standard errors are
computed using the Newey-West estimator allowing for serial correlation in returns. We annualize the average excess returns and
the alphas by multiplying them by 12. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

the innosimm spreads are much smaller in the industries that have recently experienced
antitrust enforcement, suggesting that innosimm spreads are driven by heterogeneous
collusion incentives across industries with different innosimm as illustrated by our model.

6 Quantitative Analyses

In this section, we conduct quantitative analyses. We solve the model numerically (see
Online Appendix H). The model’s parameters are calibrated based on both existing
estimates and micro data without referring to asset pricing information. Then we examine
whether the calibrated model can quantitatively explain the observed asset pricing
patterns in both the time series and the cross section.

6.1 Calibration

We calibrate the model monthly. Some parameters are determined using external informa-
tion without simulating the model (see Panel A of Table 11). The remaining parameters
are calibrated internally from moment matching (see Panel B of Table 11).

Externally Determined Parameters. Following standard practice, we set the risk aver-
sion parameter at γ = 9 and the elasticity of intertemporal substitution at ψ = 1.5. We set
ϕθ = 0.044 following Bansal and Yaron (2004). We set the within-industry elasticity of

(DOJ) and the Federal Trade Commission (FTC). DOJ provides four-digit SIC codes for the firms in some
cases. For the remaining DOJ cases and all FTC cases, we match the firms involved in antitrust enforcement
to CRSP/Compustat and Capital IQ, from which we collect the four-digit SIC codes of these firms.
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Table 11: Calibration and parameter choice.

Parameter Symbol Value Parameter Symbol Value

Panel A: Externally Determined Parameters

Risk aversion γ 9 Elasticity of intertemporal substitution ψ 1.5

Predictable variation in consumption growth ϕθ 0.044 Customer base depreciation δ 0.002

Between-industry elasticity of substitution ε 2 Within-industry elasticity of substitution η 15

Transition rate from νL to νH qνL ,νH 0.008 Transition rate from νH to νL qνH ,νL 0.33

Customer base accumulation z 0.004

Panel B: Internally Calibrated Parameters

Persistence of expected growth rate κ 0.01 Average long-run growth rate θ 0.0015

Volatility of consumption growth σc 0.0078 Subjective discount factor β 0.0018

Marginal cost of production ω 0.16 Punishment rate ξ 0.015

Price monitoring effort νH 0.037 Lowest innovation similarity λ 0.75

Innovation success rate µ 0.047 Customer base stealing (non-radical) τn 0.015

Persistence of innovation similarity χ 0.0002 Customer base stealing (radical) τr 0.90

substitution at η = 15 and the between-industry elasticity of substitution at ε = 2, which
are broadly consistent with the values of Atkeson and Burstein (2008). We choose a low
customer base depreciation rate (δ = 0.002) and accumulation rate (z = 0.004) to capture
a sticky customer base (see, e.g., Gourio and Rudanko, 2014; Gilchrist et al., 2017). We set
the transition intensity between states of high and low monitoring efforts at qνL,νH = 0.008
and qνH ,νL = 0.33. Thus, on average, the state of high monitoring effort lasts for one
quarter and the state of low monitoring effort lasts for 10 years.

Internally Calibrated Parameters. The other parameters are determined by matching
moments in Table 12. We calibrate the persistence of expected growth rate κ to match
the auto-correlation of annual consumption growth rates. We set θ and σc to match the
average annual consumption growth rate and its standard deviation. We set the subjective
discount factor β to match the risk-free rate.

The marginal cost of production ω is determined to match the asset-to-sales ratio.32

The punishment rate ξ determines collusion incentive and profit margins, and the price
monitoring effort νH determines the threshold of regime switching or the full-blown price
war. We calibrate the values of ξ and νH by matching the average net profit margin and

32In our model, we can think of firms using rental capital Kij,t to produce goods, and the parameter
ω captures the rental price per unit of Kij,t. Thus, asset to salesij,t = Kij,t/(Pij,tYij,t) = 1/Pij,t. The
net profit margin is calculated as follows: net profit marginij,t = (1− corporate tax rate)× (gross profit
marginij,t−asset to salesij,t/financial leverage×corporate bond yield), where gross profit marginij,t =
(Pij,t−ω)/Pij,t. We use a corporate tax rate of 30% and a corporate bond yield of 5%. The financial leverage,
or asset to debt ratio, is set at 5/3 (see Papanikolaou, 2011).
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Table 12: Targeted moments in the data and model.

Data Model Data Model

Average consumption growth rate (%) 1.79 1.85 Volatility of consumption growth (%) 2.65 3.22

[1.33, 2.25] [−0.83, 4.42] [2.05, 3.16] [2.40, 4.26]

AR(1) of consumption growth 0.49 0.55 Median net profit margins (%) 8.48 8.43

[0.25, 0.52] [0.30, 0.77] [7.95, 9.01] [7.94, 8.94]

Average dispersion of market shares (%) 18.9 20.7 Average net profit margins (%) 8.95 8.71

[17.9, 19.9] [18.4, 22.5] [8.38, 9.52] [8.23, 9.25]

Frac. of industries with patent issuance (%) 67.6 67.3 Patent value/market cap. (%) 2.74 3.36

[64.7, 70.3] [66.8, 67.8] [2.56, 2.93] [1.62, 5.45]

Volatility of net profits’ growth rates (%) 4.95 6.54 Autocorrelation in innosimm 0.991 0.992

[4.05, 5.57] [2.71, 8.98] [0.989, 0.992][0.953, 1.000]

Real risk-free interest rate (%) 1.39 1.36 Asset-to-sales ratio (%) 4.40 4.44

[0.55, 2.19] [−0.23, 2.92] [4.31, 4.48] [4.38, 4.52]

Note: Following Bansal and Yaron (2004), the real consumption data are constructed based on BEA data and cover the period
from 1929 to 2018. Industry-level profit margins are computed based on Compustat data as explained in Appendix A. Within-
industry dispersion of market shares is computed based on Compustat data as explained in Table 1. Volatility of net profits’
growth rates is the volatility of the growth rates of the real average industry net profits. Asset-to-sales ratio is computed based
on Compustat at the firm level. We construct the above Compustat-based moments using the data from 1988 to 2017, which is
the sample period of our innosimm measure. Fraction of industries with patent issuance is computed based on PatentsView data.
Patent value/market cap. is the total value of patents granted to a firm in a given year normalized by the firm’s lagged market
cap. The patent value is measured in dollars based on stock market reaction to the patent issuance (see Kogan et al., 2017). Real
risk-free interest rate is the average of the difference between the annual returns of one-month treasury bills (from CRSP) and
the rate of change in CPI from 1988 to 2018. We bootstrap the data moments with 1000 replications and report the 5th and 95th
percentiles of the bootstrapped distribution (in brackets). When constructing the model moments, we simulate a sample of 500
industries for 70 years with a 20-year burn-in period. We then compute the model-implied moments similar to the data. For
each moment, the table reports the average value of 1,000 simulations and the 5th and 95th estimated percentiles of the simulated
distribution (in brackets).

the volatility of the growth rates of net profits.
The innovation success rate µ is calibrated to match the fraction of industries with

patent issuance in a year. Parameters τn and τr determine the fraction of customer base
snatched by innovation. We set their value to match the dispersion of market shares at the
industry level, and the value of the patents (obtained from Kogan et al. (2017)) granted
to a firm in a year as a percentage of the firm’s market capitalization. We assume that
the industry-level innovation similarity λi,t is bounded between λ and λ. We discretize
[λ, λ] into N = 11 grids with equal spacing, so that λ1 = λ and λN = λ. The parameter
χ determines the persistence of innovation similarity λi,t. We calibrate its value so that
the yearly autocorrelation of λi,t in our model is 0.99, which is consistent with the yearly
correlation of our innosimm measure. The parameter λ is normalized to one so that the
most extreme industry is the one with no capacity for radical innovation. The parameter
λ is determined by matching the median net profit margin.

44



6.2 Quantitative Results

We first investigate the model-implied sensitivity of average net profits to long-run growth
rates. The model-implied regression coefficient is 1.05 with R2 = 0.218, comparable to
the data (see Table 6 and Panel A of Table 13). This implies that the low R2 in the data
is caused by estimating regressions at the yearly frequency, not by the poor explanatory
power of long-run growth shocks.

Table 13: Sensitivity of net profits and asset pricing implications in the data and model.

Panel A: Sensitivity of average net profits to long-run growth rates

θt Constant R-squared Observations
Data 1.96 0.04 0.099 51

[0.86, 3.04] [0.02, 0.05] [0.017, 0.227]
Model 1.05 0.04 0.218 51

[0.57, 1.56] [−0.17, 0.27] [0.041, 0.428]

Panel B: Asset pricing implications

Data Full model Model-based counterfactuals
Non-collusive ε = η > 0, z = 0

Mean of real risk-free rates (%) 1.39 1.38 1.38 1.38
[0.55, 2.19] [−0.25, 2.99] [−0.25, 2.99] [−0.25, 2.99]

Volatility of real risk-free rates (%) 2.79 1.51 1.51 1.51
[2.30, 3.09] [0.97, 2.27] [0.97, 2.27] [0.97, 2.27]

Volatility of market excess returns (%) 13.09 11.32 10.67 10.39
[11.60, 14.76] [9.45, 13.25] [8.94, 12.45] [8.77, 12.14]

Mean of market excess returns (%) 7.54 9.04 8.15 8.02
[2.44, 12.32] [6.27, 11.73] [5.73, 10.42] [5.66, 10.35]

Innosimm Q1 (average excess return, %) 6.13 8.21 7.93 8.04
[4.96, 7.42] [4.79, 11.59] [5.51, 10.33] [5.59, 10.41]

Innosimm Q5 (average excess return, %) 9.54 11.45 8.19 8.07
[8.34, 10.74] [8.17, 14.69] [5.80, 10.42] [5.63, 10.30]

Innosimm Q5 – Q1 (average spread, %) 3.41 3.24 0.26 0.03
[1.59, 5.10] [1.12, 5.35] [−1.84, 2.31] [−2.09, 2.06]

Note: In Panel A, the data moments come from column (2) of Table 6. We bootstrap the regression with 1000 replications and
report the 5th and 95th percentiles of the bootstrapped distribution (in brackets). In the model, we simulate a sample of 500
industries for 70 years. The first 20 years are dropped as burn-in. We calculate the average net profits across all industries in
each year. We then estimate the sensitivity by regressing the year-t growth rate of average net profits on θt. The 5th and 95th
estimated percentiles of the simulated distribution of regression coefficients are reported in brackets. In Panel B, real average
risk-free interest rate is the average of the difference between the annual returns of one-month treasury bills (from CRSP) and
the rate of change in CPI from 1988 to 2018. In each year we compute the annualized volatility based on the 12 monthly market
excess returns. We then average the annualized volatility from 1988 to 2018 to obtain the volatility of market excess returns. Mean
of market excess returns is the average of the value-weighted market excess returns from 1988 to 2018. We bootstrap the data
moments with 1000 replications and report the 5th and 95th percentiles of the bootstrapped distribution (in brackets). The last
three rows compare the value-weighted average excess returns of portfolios sorted on innosimm between model and data (returns
in the data column are from Panel A of Table 9). In the model, in each year t, we sort the simulated firms into five quintiles based
on their λi,t at the beginning of the year. We then compute the value-weighted average excess returns of each quintile. Stock
returns are adjusted for financial leverage.

Next, we check whether our model can quantitatively replicate the main asset pricing
findings in Panel B of Table 13. The model-implied average risk-free rate, volatility of real
risk-free rates, volatility of market excess returns, and average market excess returns are
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roughly in line with the data (columns 1 and 2). The last three rows of Table 13 show that
the model-implied spread in annualized average excess returns between Q1 and Q5 is
about 3.24% (last row of column 2), which is also roughly consistent with the data.

To understand the importance of price war risks in generating the cross-sectional
implications, we use the model to conduct two counterfactual analyses. In the first
counterfactual (column 3), we shut down the price war risks by not allowing any firms to
collude with each other. That is, the two firms in the same industry adopt non-collusive
pricing, and both set prices taking the other’s price as given. The equilibrium in each
industry is the non-collusive Nash equilibrium. We find that the average market excess
return decreases from 9.04% (full model) to 8.15% by about 10%; the change in the
average excess market return of Q5 is especially large (about 30%). The volatility of
market excess returns decreases from 11.32% (full model) to 10.67% by about 5.7%. The
model-implied Q5-Q1 spread in average excess returns is largely reduced from 3.24%
(full model) to 0.26%. The spread is still a positive number because even in non-collusive
equilibrium, profit margins can vary with customer base shares (see the red dotted line
in Panel B of Figure 3) because of the difference between within- and between-industry
competition, captured by elasticities η and ε. Industries with a higher capacity for radical
innovation are less exposed to long-run growth shocks and have lower expected stock
returns, because their endogenously more concentrated market structure dampens the
within-industry competition.

In the second counterfactual (column 4), we set ε = η > 0 and z = 0.33 As we discuss
in Online Appendix E.1, given the same elasticity and no customer base accumulation
(z = 0), the two firms will always set the same prices regardless of their current customer
base shares. The collusive equilibrium is exactly the same as the non-collusive equilibrium
because within-industry competition is identical to between-industry competition. In fact,
the economy is isomorphic to the one with a continuum of firms having monopolistic
competition. Thus, we can analytically derive the model’s asset pricing implications. In
this counterfactual, the cross-industry difference in innovation activities has no effect
on industries’ exposure to price war risks.34 Thus, the Q5-Q1 spread is about zero. The
mean and volatility of market excess returns are slightly smaller than those in the first
counterfactual.

33Although the levels of profit margins and firm values depend on the levels of ε and η, the asset pricing
implications are exactly the same when ε = η.

34The firm-level returns are different depending on the firm’s customer base share and the industry’s
capacity for radical innovation. We show in Online Appendix Figure OA.10 that the firm’s conditional
expected stock returns decrease with its customer base share due to the lower expected growth rate.
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Overall, by comparing the implications of our full model with those from the two
counterfactuals, we have shown that price war risks significantly contribute to the equity
premium and stock return volatility; price war risks are also the key to explaining our
cross-sectional asset pricing patterns in the data.

7 Conclusion

In this paper, we investigate the origin of systematic price war risks and explore their
implications. We develop a general-equilibrium asset pricing model incorporating dy-
namic games of price competition among firms. In our model, price wars can arise
endogenously from declines in long-run growth, because firms become effectively more
impatient for cash flows and their incentives to undercut prices become stronger. The
exposure to price war risks reflects predictable and persistent heterogeneous industry
characteristics. Firms in industries with a higher capacity for radical innovation are more
immune to price war risks because of the higher likelihood of market disruption in the
future. Exploring detailed patent, brand, profit margin, product price, and media and
analyst coverage textual data, we find evidence for the existence of price war risks, as
well as the evidence that price war risks are priced in the cross section of industries’
capacity for radical innovation. Our theoretical and empirical studies shed new light
on the relationship between competition and stock returns – we emphasize that what
matters for understanding asset prices is forward-looking competition for future market
dominance, rather than current concentration or product similarity.
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Appendix

A Construction of Variables in Figure 1.
Long-run Growth Rates. Long-run growth rates of consumption in year t are measured by: (1)
the consumption growth rates filtered by a Bayesian mixed-frequency approach as in Schorfheide, Song
and Yaron (2018), and (2) the cumulative demeaned consumption growth rates from year t to year t− 1
(eight-quarter summation), as in Bansal, Dittmar and Lundblad (2005) and Dittmar and Lundblad (2017).
Filtered consumption growth rates come from Schorfheide, Song and Yaron (2018) and the data end in
2015.35 Following Bansal, Dittmar and Lundblad (2005) and Dittmar and Lundblad (2017), we measure
the demeaned consumption growth rate at quarter t as the difference in log consumption growth rate at
quarter t and the unconditional mean of log consumption growth rate over the post-war period (from 1947
to 2018). Consumption is measured as per-capita real personal consumption expenditures on non-durable
goods and services, and is deflated to real terms using the personal consumption expenditure deflator. The
two measures of long-run growth rates are highly correlated (see Panel B of Figure 6).

Profit Margins. We construct two measures of gross profit margins based on the NBER-CES Man-
ufacturing Industry Database and Compustat, and two measures of net profit margins based on the

35We are grateful to Amir Yaron for sharing data on the filtered consumption growth rates.
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BEA data and Compustat. Following Domowitz, Hubbard and Petersen (1986) and Allayannis and Ihrig
(2001), we construct the NBER-CES-based profit margin for industry i at year t as (Value of shipmentsi,t +

∆Inventoryi,t − Payrolli,t − Cost of materiali,t)/(Value of shipmentsi,t + ∆Inventoryi,t). Following Ander-
son, Rebelo and Wong (2018), we construct the Compustat-based profit margin for industry i at year t as
(Salesi,t − COGSi,t)/Salesi,t. We measure the BEA-based aggregate net profit margin as the profits after
tax for the nonfinancial corporate business scaled by the GDP in the nonfinancial sector. We construct the
Compustat-based net profit margin for industry i at year t as (Salesi,t −COGSi,t − SG&Ai,t − Interesti,t −
Taxi,t)/Salesi,t. We remove R&D expenditures from SG&A following Peters and Taylor (2017).

Media and Analyst Coverage of Price Wars. We use textual analysis to measure the media and
analyst coverage of price wars. Following Baker, Bloom and Davis (2016), we quantify the prevalence of
price wars using the targeted-phrases search approach, which is “one of the simplest but at the same time
the most powerful approaches" in textual analysis (see Loughran and McDonald, 2016). The price war
media coverage is the number of articles that contain the term “price war” or “price wars” normalized by
the number of articles published in The Wall Street Journal, The New York Times, and Financial Times.
We consider articles covering the US region obtained from the Dow Jones Factiva. The price war analyst
coverage is the number of analyst reports that contain the term “price war” or “price wars” normalized by
the number of analyst reports. We consider analyst reports covering the US region obtained from Thomson
ONE Investext. Following Huang, Zang and Zheng (2014), we plot the price war analyst coverage after
1996, because the data coverage for the full text of analyst reports is limited before 1996.

B Highest Deviation Value with Full-blown Price Wars
In equation (3.1), firm j’s deviation value VD

ij,t ≡ VD
ij (yi,t) is given by the following HJB equations:

0 =


max
Pij,t

ΛtΠij(Pij,t, PC
ij̄,t)Mij,tdt + Et

[
d
(

ΛtVD
ij,t

)∣∣∣Pij,t, PC
ij̄,t

]
︸ ︷︷ ︸

if not punished

+Λt

(
VN

ij,t −VD
ij,t

)
ξdt︸ ︷︷ ︸

if punished

, if Γij,t ≥ νi,t for all j, (I I I)

max
Pij,t

ΛtΠij(Pij,t, PN
ij̄,t)Mij,tdt + Et

[
d
(

ΛtVD
ij,t

)∣∣∣Pij,t, PN
ij̄,t

]
, if Γij,t ≥ νi,t for some j, (IV)

where PN
ij,t ≡ PN

ij (yi,t) with j = 1, 2 are the non-collusive prices that solve the maximization problems in
(IV), and VN

ij,t ≡ VN
ij (yi,t) with j = 1, 2 are firm values in the non-collusive equilibrium.

C Innovation Similarity Measure
We define the cosine similarity between two patents, a and b, as:

similarity (a, b) =
A · B
‖A‖ ‖B‖ , (C.1)
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where A and B are the technology vectors of patent a and patent b.36 If the two patents share exactly the
same technology classifications, the cosine similarity attains the maximum value 1. If the two patents are
mutually exclusive in their technology classifications, the cosine similarity reaches the minimum value 0.
Because patent technology classifications are assigned according to the technical features of patents, the
cosine similarity measure captures how similar the patents are in terms of their technological positions.
Based on the pairwise cosine similarity of patents, we take the following steps to construct innosimm.

First, we construct the patent-level similarity measure to capture the extent to which a patent is
differentiated from other patents recently developed by peer firms. In particular, for a patent granted to
firm i in year t, the patent-level similarity measure is the average of the pairwise cosine similarity (defined
by equation C.1) between this patent and the other patents granted to firm i’s peer firms in the same
four-digit SIC industry from year t− 5 to year t− 1.

Next, we aggregate patent-level similarity measures to obtain industry-level similarity measures. For
example, a four-digit SIC industry’s similarity measure in year t is the average of patent-level similarity
measures associated with all the patents granted to firms in the industry in year t. Because not all industries
are granted patents every year, we further average the industry-level similarity measures over time to filter
out noise and better capture firms’ ability to generate differentiated innovation. In particular, our innosimm
measure in industry i and year t (i.e., innosimmit) is constructed as the time-series average of industry i’s
similarity measures from year t− 9 to year t.

In the regression analyses of our paper, we standardize innosimm using its unconditional mean and
the standard deviation of all industries’ innosimm across the entire period from 1976 to 2017 to ease the
interpretation of the regression coefficients.

D Supplementary Empirical Results
Profit Margins Across Industries with Different Innosimm. In Table D.1, we show that
industry-level profit margins are positively associated with innosimm. This relationship is robust to the
measures of profit margins constructed from both the Compustat and NBER-CES data. The coefficient of
innosimm is economically significant. According to the regressions with year fixed effects (columns 2, 4,
and 6), a one-standard-deviation increase in innosimm is associated with a 2.34-percentage-point increase
in the Compustat-based gross profit margins, a 3.19-percentage-point increase in the NBER-CES-based
gross profit margins, and a 1.44-percentage-point increase in the Compustat-based net profit margins.

Price-similarity Sensitivity around the Lehman Crash. Columns (1) and (2) of Table D.2 show
that the price-innosimm sensitivity reduced significantly following the Lehman crash, indicating that
industries with higher innosimm were more affected by the Lehman crash and that their product prices

36PatentsView provides both the Cooperative Patent Classification (CPC) and the US Patent Classification
(USPC), the two major classification systems for US patents. As in Kelly et al. (2018), we use CPC for our
analyses because USPC is no longer available after 2015. Our results are robust to the classification based
on USPC for data prior to 2015. There are 653 unique CPC classes (four-digit level) in PatentsView. The
technology classification vector for a patent consists of 653 indicator variables that represent the patent’s
CPC classes.
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Table D.1: Profit margins across industries with different innosimm (yearly analysis).

(1) (2) (3) (4) (5) (6)
Industry-level profit margins (%)

Gross profit margins, Compustat Gross profit margins, NBER-CES Net profit margins, Compustat

Innosimmt 2.45∗∗∗ 2.34∗∗∗ 3.29∗∗∗ 3.19∗∗∗ 1.58∗∗∗ 1.44∗∗∗

[4.13] [3.87] [3.65] [3.51] [4.19] [3.76]

Year FE No Yes No Yes No Yes
Observations 9179 9179 2787 2787 9179 9179
R-squared 0.002 0.006 0.063 0.072 0.018 0.028

Note: This table shows the relation between innosimm and industry-level profit margins. Profit margins are computed as in
Appendix A. The sample in columns (1)–(2) and columns (5)–(6) spans the period from 1988 to 2017, and that in columns (3)–(4) the
period from 1988 to 2011. We include t-statistics in brackets. Standard errors are clustered by the four-digit SIC industry and year. *,
**, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

decreased to a greater extent. We do not observe any significant change in the price-prodsimm sensitivity
(columns 3 and 4).

Table D.2: Price-similarity sensitivity around the Lehman crash (monthly analysis).
(1) (2) (3) (4)

Percentage change in industry-level product prices (monthly, annualized, %)

Similarity measure Innosimm Prodsimm

Similarityt−1 × post Lehman crasht −3.04∗∗∗ −2.84∗∗∗ −0.07 −0.35
[−3.19] [−2.79] [−0.20] [−1.15]

Similarityt−1 −1.00 −2.05 −0.01 −5.90∗∗∗

[−1.32] [−1.45] [−0.01] [−3.95]

Post Lehman crasht −1.61 −1.64 −2.25∗ −2.35∗

[−1.44] [−1.47] [−1.80] [−1.87]

Industry FE No Yes No Yes
Observations 7641 7641 7192 7192
R-squared 0.004 0.040 0.001 0.039

Note: This table shows the changes in price-similarity sensitivity around the Lehman crash. The dependent variable is the annu-
alized monthly percentage change in product prices of four-digit SIC industries. We consider the 36-month period centered at the
Lehman crash. In Online Appendix F.1, we perform the analysis by considering the 24-month period centered at the Lehman crash
and find similar results. We include t-statistics in brackets. Standard errors are clustered by the four-digit SIC industry and month.
*, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Double-sort Analyses. We have shown that the profit margins of industries with higher innosimm
are more exposed to long-run growth shocks. According to our model, innosimm is priced in the cross
section because it captures the sensitivity of profit margins to long-run growth shocks. One alternative
explanation is that innosimm may be priced via its positive correlation with the level of profit margins
instead of its relation with the sensitivity of profit margins to long-run growth shocks. This is a valid
concern because previous studies have shown that profitability is strongly related to asset returns (see, e.g.,
Novy-Marx, 2013; Fama and French, 2015; Hou, Xue and Zhang, 2015). We present two sets of evidence
against this alternative explanation. First, the innosimm spreads documented in Table 9 are robust when
we control for the profitability factor using the Fama-French five-factor model (Fama and French, 2015)
and the Hou-Xue-Zhang q factor model (Hou, Xue and Zhang, 2015). The annualized spreads in alphas
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between the high-innosimm industries (Q5) and the low-innosimm industries (Q1) are 9.24% and 8.88%,
while the t-statistics are 4.11 and 6.38, in these two models. Second, the innosimm spreads remain robust
after we double sort on the profit margins (see Table D.3). These findings suggest that innosimm and
profitability are likely priced through different underlying economic mechanisms, which is perhaps not
surprising given that the level of profitability is affected by many other factors besides its sensitivity to
long-run growth shocks.

Besides the level of profitability, we also conduct a number of double-sort analyses for other related
variables. We find that innosimm spreads are robust after controlling for various related variables including
prodsimm, innovation originality, asset growth rate, income elasticity of demand, and the durability of
firms’ outputs (see Table D.3).

Table D.3: Double-sort analyses (monthly analysis).
Double-sort variable Excess returns (%) Fama-French three-

factor alpha (%)
Carhart four-factor alpha (%)

Profit margins 2.53∗∗∗ 4.43∗∗ 4.14∗∗∗

[2.80] [5.00] [4.42]

Prodsimm 2.15∗ 3.81∗∗∗ 3.72∗∗∗

[1.92] [4.27] [4.81]

Innovation originality 2.83∗∗∗ 4.31∗∗∗ 3.70∗∗∗

[3.36] [3.27] [3.59]

Asset growth rate 3.37∗∗∗ 4.91∗∗ 4.54∗∗∗

[2.60] [3.75] [4.12]

Income elasticity of demand 3.76∗∗∗ 5.45∗∗∗ 4.78∗∗∗

[2.98] [3.20] [3.29]

Durability of firms’ outputs 3.66∗∗ 3.96∗∗ 3.69∗∗

[2.27] [2.07] [2.48]

Note: This table shows the average excess returns and alphas from double-sort analyses. In the double-sort analyses, we first
sort the four-digit SIC industries into three groups based on profit margins, prodsimm, innovation originality, asset growth rate, or
income elasticity of demand in June of year t. We then sort firms within each group into five quintiles based on innosimm in year
t− 1. Once the portfolios are formed, their monthly returns are tracked from July of year t to June of year t + 1. Industry-level profit
margins are computed based on Compustat data as explained in Figure 1. Prodsimm is the product similarity measure as in Hoberg
and Phillips (2016), which is derived from textual analysis based on the business description in 10-K filings. Innovation originality is
constructed following Hirshleifer, Hsu and Li (2017) to capture the patents’ originality. In particular, we count the number of unique
technology classes contained in a patent’s citation list. We then obtain the industry-level innovation originality measure by averaging
the number of unique technology classes across all patents in a four-digit SIC industry every year. Asset growth rate is the growth
rate of the total asset. We obtain the industry-level asset growth rate by averaging the firm-level asset growth rate in a four-digit
SIC industry every year. We estimate the industry-level income elasticity of demand based on the representative consumer’s income
and expenditures on different products (see Section C.4 for details). We also perform the double-sort analysis in which we first
sort industries into categories based on the durability of firms’ output. The durability of firms’ output comes from Gomes, Kogan
and Yogo (2009), who classify each SIC industry into six categories (durables, non-durables, services, private domestic investment,
government, and net exports) based on its contributions to final demand. We exclude financial firms and utility firms from our
analyses. We include t-statistics in brackets. Standard errors are computed using the Newey-West estimator allowing for serial
correlation in returns. We annualize average excess returns and alphas by multiplying them by 12. *, **, and *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively.
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