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Abstract: We present a model of risky choice in which the decision maker (DM) perceives a lottery payoff 
with noise due to the brain’s limited capacity to represent information. We model perception using the 
principle of efficient coding, which states that stimuli that occur more frequently are perceived more 
accurately. We show that it is efficient for risk taking to be more sensitive to those payoffs that the DM 
encounters more frequently. Our model also predicts that the DM’s value function is malleable and its 
curvature fluctuates with the recently encountered distribution of payoffs. To test the model, we conduct a 
laboratory experiment in which we manipulate the distribution of payoffs across 480 choice sets. Consistent 
with the efficient coding of monetary payoffs, we find that risk taking is more sensitive to those payoffs 
that are presented more frequently. Moreover, sensitivity to extreme payoffs is initially low, but grows over 
time after repeated exposure. In a second experiment, we conduct an additional test of the efficient coding 
mechanism by incentivizing subjects to classify which of two symbolic numbers is larger. We find that 
accuracy is higher for those numbers that the subject has more frequently observed, providing further 
evidence that perception of a given numerical quantity varies with the recent environment. Overall, our 
experimental results suggest that risk taking depends systematically on the payoff distribution to which the 
DM’s perceptual system has recently adapted.  
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I.        Introduction 

When choosing between two lotteries, the decision maker (called “DM” hereafter) first 

perceives the set of payoffs from each lottery and then executes a decision. Because there are 

constraints on the degree to which the brain can process information, the perception of numerical 

quantities is inherently noisy (Dehaene, 2011). Understanding precisely how these constraints 

affect perception of payoffs has the potential to generate new insights about risk taking, and in 

particular, its instability over time. For example, decades of experiments have shown that one 

source of instability is the sequence of outcomes that the subject has experienced: past gains and 

losses have a systematic effect on subsequent risk taking (Thaler and Johnson, 1990; Weber and 

Camerer, 1998; Imas, 2016). A different potential source of instability is the DM’s perception of 

a payoff, which can vary systematically with the payoffs that she has recently observed.  

Why would the DM’s perception of a given risky payoff vary across different 

environments? If the mechanism used for perceiving payoffs is similar to the one used for 

perceiving sensory stimuli such as light or sound, then it may in fact be optimal to hold different 

perceptions of the same payoff in different environments. Specifically, a core principle in 

neuroscience called efficient coding, states that the brain should allocate resources so that 

perception is more sensitive to those stimuli that are expected to occur more frequently (Barlow, 

1961; Laughlin, 1981). This principle explains why we are temporarily “blinded” when moving 

from a dark room to a brightly lit one, because resources have not yet been adjusted for 

perceiving objects in the new bright environment. If the principle of efficient coding extends to 

the domain of risky choice, this can provide a normative foundation for the variation in risk 

taking across environments. 

In this paper, we present a model of choice under risk in which the perception of payoffs 

is governed by efficient coding; we then test the model experimentally to assess whether risk 

taking varies with the recently encountered payoff distribution. Our model builds on the recent 

theoretical work of Woodford (2012) and Khaw, Li, and Woodford (2019) (hereafter “KLW”), 

who assume that the perception of risky payoffs is imperfect and is estimated through Bayesian 

inference. Our model departs from KLW by allowing the DM’s likelihood function to adapt to 
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any continuous distribution of payoffs, while efficiently using all perceptual resources. 

Specifically, we derive the likelihood function that is efficient in the sense of maximizing mutual 

information between the noisy signal generated by the DM’s perceptual system and the true 

payoff (Wei and Stocker, 2015). These efficient likelihood functions, when combined with the 

DM’s prior expectations, generate a subjective value function that exhibits several features from 

prospect theory, including reference dependence and diminishing sensitivity (Kahneman and 

Tversky, 1979).  

Importantly, our model generates novel predictions about how these features of the value 

function vary with the payoff distribution to which the DM has adapted. For example, the degree 

of diminishing sensitivity over a given range of payoffs is tied directly to how frequently these 

payoffs occur in the environment. To see this, consider an environment where the upside of a 

risky lottery is often in the range between $10 and $20, in which case, efficient coding implies 

that perceptual resources are allocated towards discriminating between payoffs in this range. In 

this same environment, if the upside is occasionally increased from $30 to $40, then risk taking 

will not increase much because the DM’s perceptual system cannot easily distinguish between 

these two infrequent amounts. However, if the overall distribution of payoffs changes, so that the 

upside frequently falls between $30 and $40, then the DM can easily perceive this difference, 

and risk taking will increase substantially when the upside is increased from $30 to $40. Thus, 

diminishing sensitivity arises from efficient coding, and crucially, the curvature of the value 

function fluctuates with the payoff distribution to which the DM has adapted. 

While efficient coding generates a value function that is relatively flat over payoffs that 

occur infrequently, the value function exhibits its steepest slope around the most frequently 

occurring payoff. In particular, if we take the “reference point” in prospect theory to be the value 

for which the DM has highest marginal utility, then efficient coding delivers the most frequently 

occurring payoff as the reference point. More generally, efficient coding implies that marginal 

utility is high for those payoffs that occur frequently, because these are the payoffs that the DM 

can precisely discriminate between. This generates a strong testable prediction, namely, that risk 
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taking should become more sensitive to a given payoff when shifting to an environment where 

that payoff occurs more frequently.  

To test this prediction, we conduct a laboratory experiment in which subjects make a 

series of 480 decisions between a risky lottery and a certain option. While such a large number of 

trials is not typical in economic experiments on risky choice, this design feature enables us to 

carefully vary the payoff distribution within subjects, over time. We manipulate the distribution 

of risky payoffs across two conditions: one in which payoffs in the choice set are drawn from a 

distribution with high volatility, and the other in which the distribution has low volatility. All 

payoff values in a given block (i.e., a consecutive set of trials) are drawn from either the high 

volatility or low volatility distribution. Consistent with our model, we find that risk taking is 

more sensitive to payoffs in the low volatility blocks, compared to the high volatility blocks.  

In addition to comparing risk taking across the high volatility and low volatility blocks, 

we also analyze behavior within a block. This allows us to explore the dynamic process by which 

subjects adapt to a new distribution. We find that over the course of sixty trials in a high 

volatility block, subjects exhibit a net increase in their sensitivity to extreme values. This occurs 

because perceptual resources that were previously devoted to intermediate values in the low 

volatility block, are reallocated towards extreme payoffs that are now more likely to appear in 

the high volatility block. Our data indicate that this shift in sensitivity occurs relatively quickly, 

on the order of ten experimental trials, which is consistent with recent work on adaptation in the 

perceptual domain (Payzan LeNestour and Woodford, 2018).1  

While we formally present the full model later in the paper, we briefly explain the two 

basic assumptions and mechanisms here. First, as in KLW, we assume the decision maker 

encodes each risky payoff with noise. Specifically, when the DM is presented with a choice set in 

which a risky lottery pays X dollars in some state, we assume that the DM perceives this payoff 
                                                           
1 This shift in sensitivity is consistent with a simple model of adaptation that we propose, in which the DM uses the 
last N trials to construct a prior distribution over the payoffs on the current trial. Critically, these last N trials also pin 
down the DM’s likelihood functions through efficient coding. We then use the prior and the implied likelihood 
functions to generate predictions about how risk taking changes over time; we find that the model provides a good 
match to the experimental data when assuming that the DM uses the last N = 10 trials to construct her prior 
distribution. 
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as a noisy signal, Rx, which is governed by a probability density function p(Rx | X). This 

assumption captures a fundamental feature of numerical cognition, that our perception of 

numerical quantities is noisy, even when these quantities are presented as Arabic numerals 

(Dehaene, 2011). Our second assumption is that the DM uses Bayesian inference to compute the 

optimal estimate of the numerical payoff under consideration.2 Importantly, both ingredients of 

Bayesian inferencethe prior and the likelihood functionare pinned down by the recent 

payoff distribution, which provides an extra layer of discipline in the Bayesian framework (Wei 

and Stocker, 2015). After the DM performs Bayesian inference, she chooses the lottery with the 

maximum estimated expected value. 

 In our model, we assume that only payoffs are subject to noisy encoding, but that 

probabilities are perceived without noise. This assumption is for simplicity, and in reality, state 

probabilities are also likely to be encoded with noise. To further test whether our experimental 

results are generated by the noisy encoding of payoffs, we run an additional experiment in which 

the subject still needs to perceive numerical quantities, but there is no need to perceive 

probabilities or integrate them with payoffs. We run a riskless choice experiment where we 

incentivize subjects to classify whether a number displayed on each trial is above or below a 

reference number. We find that even in this simpler environment, accuracy depends on the 

distribution of numbers to which the subject has adapted. For a given number, subjects exhibit 

greater classification accuracy if the number has occurred more frequently in the recent past. 

This provides support for our basic model assumption that the perception of symbolic numbers is 

noisy and changes across environments.  

 Our model is meant to capture intuitive judgments about choice under risk, such as the 

judgments between simple gambles that Kahneman and Tversky (1979) sought to explain with 

prospect theory. Our model does not apply to all decisions under risk, and in particular, it should 

not be applied to decisions that are based on explicit symbolic calculations. These decisions are 

instead likely to be governed by a distinct decision-making system (Deheane, 1992). At the same 
                                                           
2 This assumption is motivated by the literature on sensory perception which finds a tight link between quantitative 
predictions from a Bayesian framework and data from controlled experiments (Stocker and Simoncelli, 2006; 
Girshick, Landy, and Simoncelli, 2011; Wei and Stocker, 2015; 2017).   
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time, our model is not necessarily confined to low stakes decisions, and we believe that it is 

reasonable to apply in situations similar to those where prospect theory has found success (see 

Barberis 2013 for a review).     

Our paper contributes to a recent literature that examines the effect of imperfect 

perception and Bayesian inference on economic choice. Gabaix and Laibson (2017) show 

theoretically that a DM with a discount rate of one will appear impatient if payoffs delivered 

farther in the future are perceived with more noise. Woodford (2012) and KLW provide a 

framework in which a DM with linear utility can appear risk averse if payoffs are encoded with 

noise. Steiner and Stewart (2016) show that Bayesian inference can generate an overweighting of 

small probability events, as in prospect theory.3 Both of our experiments provide evidence that 

supports the type of perceptual processes proposed in these Bayesian models of economic 

choice.  

More generally, our paper adds to a growing literature that builds cognitive and 

perceptual foundations for the psychological assumptions in behavioral economics. For example, 

several behavioral models of financial markets have shown that prospect theory is an important 

ingredient in explaining puzzling facts such as the high equity premium (see Barberis 2018 for a 

review). Here, we show that efficient coding can be viewed as one perceptual foundation for 

prospect theory, which in turn can help explain these facts.4 Importantly, our theory generates 

new predictions about the malleability of preferences, which motivates further empirical tests 

both in the lab and in the field.  

 Finally, our results also contribute to a literature that uses basic neural computations to 

constrain patterns of risky choice (Tymula and Glimcher, 2017; Landry and Webb, 2018). A 

particularly relevant neural computation is that of normalization, in which the brain normalizes 

stimulus values according to the distribution of values in the environment. Several experiments 

                                                           
3 In related work, Bhui and Gershman (2018) show how efficient coding can provide a normative foundation for a 
model of multi-attribute decision making called decision by sampling (Stewart, Chater, and Brown, 2006). 
4 Bordalo, Gennaioli, and Shleifer (2012) propose a different perceptual mechanism, called salience theory, that can 
also generate several features from prospect theory. Later in the paper, we discuss how efficient coding relates to the 
assumptions in salience theory.  
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have found evidence consistent with normalization in the brain (Tobler, Fiorillo, and Schultz, 

2005; Padoa-Schioppa 2009; Carandini and Heeger, 2012; Rangel and Clithero, 2012; Louie and 

Glimcher, 2012), but there is less evidence that this process has an associated effect on behavior. 

Khaw, Glimcher, and Louie (2017) show that the valuation of consumer goods negatively 

correlates with the average value of recently encountered items, and Polania, Woodford, and 

Ruff (2019) provide evidence that valuation depends on the entire distribution. Here, we 

demonstrate that these adaptation effects extend into the domain of risky choice.5 

The paper proceeds as follows. In Section II, we lay out the basic elements of the model 

and analyze the model’s implications. Section III describes the main experiment of the paper, a 

risky choice experiment, and discusses its results. Section IV follows with a riskless choice 

experiment. Section V provides additional discussions. Section VI concludes and suggests 

directions for future research.  

 II.        The Model 

In this section, we develop a static model of risky choice based on efficient coding, 

following the recent work of KLW and Wei and Stocker (2015, 2017). We derive the DM’s 

value function that characterizes the perception of a payoff, and we show how this perception 

depends crucially on expectations of the payoff distribution. We then extend the model to 

incorporate a simple process of adaptation, which generates predictions about the dynamics of 

choice. 

II.1. Choice environment 

 The DM faces a choice set that contains two options: a certain option and a risky lottery. 

The certain option, denoted as (C, 1), pays C dollars with certainty. The risky lottery, denoted as 

                                                           
5 See also Payzan-LeNestour, Balleine, Berrada, and Pearson (2016) for experimental evidence on adaptation to 
variance, and Zimmermann, Glimcher, and Louie (2018) for evidence on adaptive behavior in monkeys in the realm 
of risky choice. 
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(X, p; 0, 1 − p), pays X dollars with a probability p and zero dollars with the remaining 

probability 1 − p. The DM’s task is to choose between these two options. 

Under expected utility theory, a DM with utility U(⋅) chooses the risky lottery over the 

certain option if and only if   

 ( ) (1 ) (0) ( ).p U X p U U C⋅ + − ⋅ ≥   (1) 

Conditional on X, C, and p, the DM’s choice is non-stochastic.  

 Motivated by the literature on sensory perception, we depart from the expected utility 

framework by assuming that the DM imperfectly perceives the payoffs X and C (Deheane, 2011; 

Girshick et al., 2011; Wei and Stocker, 2015).6 We model this imperfect perception in a 

Bayesian framework, such that, before observing the choice set, the DM has a prior distribution 

over X and C.7 Upon observing the choice set, the presentations of X and C generate a noisy 

signal Rx for X, and a noisy signal Rc for C, and each of these noisy signals is randomly drawn 

from a distinct likelihood function. The DM then forms optimal estimates [ | ]xX R   and 

[ | ],cC R  where X and C are random variables that are associated with the posterior beliefs about 

X and C, respectively. These estimates are optimal in the sense that they miminize the mean 

squared error between the estimates and the true values of X and C. As in KLW, we assume that 

the DM has linear utility, and thus chooses the risky lottery if and only if | ].[ ]| [x cX R Rp C>⋅     

 It is worth noting that the encoding process described above is conditional on the values 

of X and C, which we assume are perfectly observable to the econometrician but not to the DM. 

That is, even after the DM is presented with the choice set and uses the noisy signals to form 

posterior beliefs, she still faces uncertainty about the payoff values in the current choice set. The 

inference process therefore takes place at the level of a single choice set, and characterizes how 

                                                           
6 Further evidence for this assumption comes from recent experimental work which demonstrates that humans have 
single neurons that selectively and stochastically respond to “preferred” numbers (Kutter, Bostroem, Elger, 
Mormann, and Nieder, 2018). Such “number neurons” are likely to generate the noisy perception of symbolic 
numbers.    
7 We assume in this model that the probability p is perceived without noise. In our experimental design (see Section 
III), we set p to a constant across trials so that, through learning, it is plausible that the DM perceives the precise 
value of p.  
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the DM’s prior beliefs shift after observing a noisy signal of the true payoff.  The noisy encoding 

of payoffs drives our main model predictions. In the next section, we derive this noisy encoding 

process under efficient coding.  

II.2. The likelihood function 

 We begin our discussion of the likelihood function with a general stimulus value, θ, and 

its associated noisy signal, m. We further denote the conditional probability density function of 

the noisy signal for a given stimulus value as p(m|θ). The likelihood function is then defined as8  

 ( | ) ( | ).L m p mθ = θ   (2) 

This function governs the likelihood of each stimulus value θ conditional on the noisy signal m. 

We apply the efficient coding criterion proposed in Wei and Stocker (2015) to constrain the 

likelihood function. This criterion requires   

 (( ) ),pJ θ ∝ θ   (3) 

where Fisher information J(θ) is given by  

 
2n ( | )) )( ( | ,p m p dmJ m∂ θ θ = θ ∂θ ∫

   (4) 

and p(θ) is the true probability density function of the stimulus value θ.  

 Intuitively, Fisher information J(θ) measures the amount of coding resources allocated 

towards perception of a given stimulus value θ. As a result, the efficient coding condition (3) 

implies that encoding accuracy is greater for stimulus values that occur more frequently. We note 

that condition (3) is one of several potential definitions of efficient coding in the domain of risky 

choice, and we use this particular one because of its accuracy in modeling data from perceptual 

experiments (Wei and Stocker, 2015), and more recently, an economic experiment (Polania, 

Woodford, and Ruff, 2019). Later in the paper, we discuss alternative coding schemes that could 

be applied to risky payoffs. 

                                                           
8 See Chapter 6 of Casella and Berger (2002) for more discussion about the likelihood function. 
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 Proposition 1 characterizes a set of likelihood functions, one for each realization of the 

noisy signal, that satisfies the efficient coding condition (3).  

Proposition 1. Assume the stimulus value has a probability density distribution p(θ), where θ 

takes the range of (−∞, ∞). The cumulative density function is therefore ) ( )( .p dF
θ

−∞
θ = ξ ξ∫  The 

following likelihood function  

 
2

2

1 ( (
22
) )( | ) exp ,F mL m

 θ −
θ =  σπ ⋅σ  

−   (5) 

satisfies the efficient coding condition of (3), where m also takes the range of (−∞, ∞). 

Proof of Proposition 1. See Appendix A.                                                                                    

This likelihood function contains one free parameter, σ, which represents the noise in the 

likelihood function. It also has a more fundamental interpretation in our framework of efficient 

coding: σ is decreasing in the amount of coding resources that are available to the DM. If the DM 

is endowed with a small amount of coding resources, then σ is large, and thus the likelihood 

function will be noisy. Conversely, as the amount of coding resources tends to infinity, σ 

converges to zero; in this case, the DM encodes all payoffs without noise and our model reduces 

to expected utility theory.  

In order to illustrate the implications of Proposition 1 for risky choice, we now specify 

the stimulus value θ to be X or C, and specify the associated noisy signal m to be Rx or Rc. We 

further assume that the probability density functions of X and C are lognormal 

   

2

2

2

2

( n )1, )
2

(

( ; exp ,
2

( ; ex nC )1, )
2

p .
2

x

c
c c

x x
x

cc

x

p X

p

X
X

C
C

 µ
µ σ  σπ ⋅σ  

 µ
µ

−
=

σ  σπ ⋅σ 

−

−
= −







  (6) 

This will also be the type of stimulus distribution that we use in the laboratory experiment later 

in the paper. Under this assumption of lognormality, the likelihood functions are given by: 
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=

σ −
=  σπ ⋅σ 
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= −







 (7) 

The expressions in (7) characterize the likelihood functions of X and C, and we emphasize that 

they depend directly on parameters of the stimulus distributions, µx, σx, µc, and σc. This 

dependence on the stimulus distribution is the key source of variation in perception of payoffs. 

To illustrate this point, in Figure 1 we plot the lognormal stimulus distribution of X with 

two different sets of parameter values, as well as the implied likelihood function )( | xL X R for 

several values of Rx. For the low volatility distribution, we set σx = 0.19. For the high volatility 

distribution, we set σx = 0.55 (we also use these volatility levels in our experimental test in 

Section III). To get a sense of the range of values of Rx, we compute the unconditional 

distribution of Rx as 

 
0

| ) ( )( ) ( .x x X p X dp p R XR
∞

= ∫  (8) 

We find that large values of Xvalues from the right tail of the lognormal distribution p(X; µx, 

σx)tend to generate values of Rx that are close to one. Conversely, small values of X tend to 

generate values of Rx that are close to zero.9  

[Place Figure 1 about here] 

 Figure 1 highlights some important features of the likelihood function .( | )xL X R  For a 

given stimulus distribution, the shape of the likelihood function depends significantly on the 

value of Rx. In line with the core principle of efficient coding, those values of X that occur more 

frequently tend to generate values of Rx that give rise to likelihood functions with lower 

dispersion. Moreover, for each value of Rx, changing the stimulus distributionin particular, 

                                                           
9 It is easy to check that, with the stimulus distribution in (6) and the likelihood function in (7), p(Rx) does not 
depend on µx or σx. More generally, the shape of p(Rx) does not depend on the shape of the underlying stimulus 
distribution: all continuous stimulus distributions lead to the same p(Rx). Moreover, as σ goes to zerothat is, as the 
amount of coding resources tends to infinityp(Rx) converges to a uniform distribution between zero and one. In 
Appendix A, we plot p(Rx) and provide a more detailed discussion of its properties. 
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changing σxalters the shape of the likelihood function. For example, a lower standard 

deviation of the stimulus distribution results in lower dispersion of the likelihood function. 

Intuitively, when the stimulus distribution has a lower standard deviation, the DM allocates her 

finite coding resources to a narrower range of stimulus values, resulting in higher 

discriminability between these stimulus values as measured by the lower dispersion of the 

likelihood function. 

II.3. Bayesian inference  

The DM uses the likelihood function derived in the previous section, in conjunction with 

her prior belief about the stimulus distribution, to form a posterior belief about each payoff in the 

choice set. We assume that the DM uses the mean of the posterior distribution as her estimate of 

each payoff. These posterior means for X and C, conditional on Rx and Rc, are given by 

 0

0

0

0

( ) ( )
[ |

( ) (

|
]

| )

x
x

x

p p X XdX
X R

p p X

R X

R X dX

∞

∞= ∫
∫

    (9) 

and 

 
0

0 0

0

|( ) ( )
[ | ,

( ) ( )
]

|

c
c

c

p R p C CdC
C R

p R p C

C

C C d

∞

∞= ∫
∫

    (10) 

where 0 ( )p X and 0 ( )p C are the DM’s prior beliefs about X and C, respectively. For now, we 

assume these priors coincide with the true stimulus distributions described in (6)10 

 0 0( ) ( ; , ), ( ) ( ; , ).c cx xp pX p X C p Cµ = µ σ= σ    (11) 

After the DM forms posterior beliefs for each payoff, she chooses the risky lottery if and only if

[ | ].]| [x cX R Rp C>⋅    The left hand side of this inequality provides the DM’s subjective 

expected value of the risky lottery, while the right hand side provides her subjective expected 

                                                           
10 This assumption can be justified if the DM has fully adapted to the stimulus distribution, and thus is meant to 
capture beliefs in a “steady state.” 
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value of the certain option. Later in Section II.6, we present a simple model of adaptation and 

study the dynamics of choice by relaxing the assumptions in (11).  

II.4 Value function  

The noisy encoding process described above implies that, the same payoff X will generate 

different noisy signals when it is presented on different occasions. Because each realized value 

of the noisy signal Rx maps to a different posterior mean as shown in (9), the DM faces a 

distribution of subjective valuations for each value of X. Importantly, the average subjective 

valuation of X will, in general, be different from X itself. 

To see this, we compute the subjective valuation of X, averaged over the conditional 

probability density of Rx, ( | ).xp R X We denote this average subjective valuation by v(X), which is 

given by: 

  |( ) [ | ] ( ) .x x xv X X R Xp R dR
−

∞

∞
= ∫    (12) 

Given the randomness in the noisy signal Rx, we can also compute the standard deviation of the 

subjective valuation as 

   2
/

2
1 2

0
( ) [ | ] ( )( ) | ( ) .x x xX v XX X R p R dR

∞ σ =   
−∫     (13) 

Figure 2A plots, for both σx = 0.19 (low volatility) and σx = 0.55 (high volatility), the 

average subjective valuation v(X), as well as its one-standard-deviation bounds v(X) ± σ(X). 

[Place Figures 2A and 2B about here] 

Figure 2A leads to several observations. First, consistent with prospect theory 

(Kahneman and Tversky, 1979), the lack of discriminability among outliers generates 

diminishing sensitivity: the marginal utility v′(X) decreases as X becomes very large. At the same 

time, because very small positive values are also outliers under a lognormal distribution, v′(X) 

decreases as X gets very small. Second, diminishing sensitivity is more pronounced when 

stimulus volatility is lower. This is driven by the fact that when subjects are exposed to a 
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narrower range of stimulus values, they perceive a wider range of stimuli to be outliers, which 

makes the lack of discriminability more severe. Third, both the shape of the value function and 

the stochasticity in perceived value arise from noisy encoding: for very large values of X, low 

discriminability leads to both lower marginal utility v′(X) and higher randomness in utility, σ(X). 

Finally, the value of X for which v(X) attains its greatest slope, which typically corresponds to 

the “reference point” in prospect theory, arises endogenously in our framework. Here, it 

corresponds to the most frequently occurring stimulus value, and thus has the highest degree of 

local discriminability. 

As mentioned in the previous paragraph, the lack of discriminability among outliers in 

both tails of the lognormal distribution generates diminishing sensitivity for both very small and 

very large payoffs. The hump shape of the lognormal stimulus distribution therefore generates an 

S-shaped value function, which is distinct from the globally concave value function for positive 

payoffs that is often assumed in prospect theory. Interestingly, efficient coding can also generate 

this more familiar value function when the DM can discriminate very well between small 

payoffs, but has difficulty discriminating between large payoffs. What type of stimulus 

distribution would lead to this particular pattern of discriminability? 

A monotonically decreasing stimulus distribution would produce exactly this. 

Specifically, when the DM faces a distribution in which small payoffs are more probable than 

large payoffs, then it is optimal for the DM to discriminate more precisely between these small 

numbers at the expense of discriminating precisely between large numbers.11 In Figure 2B, we 

plot an example of a monotonically decreasing stimulus distributiona gamma 

distributionand the implied value function. This value function is indeed concave, and hence 

                                                           
11 The likelihood functions that are generated by efficient coding with a monotonically decreasing prior will exhibit 
a property similar to “scalar variability,” where the likelihood function becomes more dispersed as the stimulus 
magnitude increases. Evidence for this property is commonly found in experiments on numerical cognition 
(Deheane, 2011). Moreover, the likelihood functions that are endogenously generated by our model of efficient 
coding with a monotonically decreasing prior also resemble the logarithmic encoding function that is assumed in 
KLW. Interestingly, there is evidence that a monotonically decreasing prior is a good approximation for the 
distribution of naturally occurring numbers (Dehaene and Mehler, 1992). Therefore, our model of efficient coding, 
when combined with the distribution of naturally occurring numbers, can be seen as providing a plausible 
microfoundation for the  logarithmic encoding function that is assumed in KLW. 
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provides another example of how the shape of the value function is malleable yet is tied closely 

to the underlying stimulus distribution.  

 We note that the implied value function in (12) is general in the sense that it can take any 

stimulus distribution as an input. Later in the paper when we present our lab experiment, we will 

vary the stimulus distribution and test its impact on choice. Because our experiment focuses on 

manipulating the volatility of the stimulus distribution, we retain the lognormality assumption for 

the rest of the model section.12 

II.5. Probability of risk taking 

 The average subjective valuation in (12) can be used to make predictions about risk 

taking. In particular, given values of X and C, one can compute whether the average subjective 

value of the risky lottery (that is, averaged over all realized values of the noisy signal Rx) is 

larger than the average subjective value of the certain option. However, by first computing the 

average subjective value for each payoff, this strips the model of its rich predictions about 

stochastic choice.   

We can recover these richer predictions by directly computing the probability of choosing 

the risky option. To do so, first recall that, conditional on X and C, the noisy signals Rx and Rc are 

drawn from the probability density functions ( | )xp R X and ( | ).cp R C  For a given realized value 

of (Rx, Rc), the DM then chooses between the risky lottery and the certain option based on 

equations (9), (10), and (11). As a result, when holding X, C, and the stimulus distributions fixed, 

we can compute the probability of risk takingthat is, the probability of choosing the risky 

lotteryover many realizations of Rx and Rc, 

 [ | ] [{ ]}|rob(  | , ) ( ) ( .| )|
x c x x cX R C R cprisk ta X C dRking X C p R p R dR

∞ ∞

⋅ >−∞ −∞
= ∫ ∫ 1  



  (14) 

                                                           
12 One could also examine a stimulus distribution that is monotonically decreasing, and then vary the volatility of 
this distribution. However, such a manipulation would also strongly affect the mean and skewness of the 
distribution, which can lead to confounds in testing the effect of efficient coding on choice behavior.  
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 To understand the determinants of the probability of risk taking, Figure 3 plots this 

probability against the natural logarithm of X over C, n(X/C), for different volatility levels of the 

stimulus distributions: σx = σc = 0.4, 0.8, and 1.5. Specifically, for each volatility level, we set C 

to 1
2

2exp( )c c+µ σ while varying the value of X. 

 [Place Figure 3 about here] 

 Naturally, a higher ratio of X over C increases the attractiveness of the risky lottery and 

hence increases the probability of risk taking. Notice that, under expected utility theory and with 

no background wealth, the probability of risk taking should be a step function of n(X/C) with a 

single step at n(X/C) = n[U−1((U(C) − (1 − p)U(0))/p)/C]. However, in our model, the 

probability of risk taking has an S-shaped relationship with n(X/C). Furthermore, the overall 

slope of this function is negatively related to volatility of the lognormal stimulus distribution. 

That is, risk taking is more sensitive to payoff values in the low volatility condition, compared to 

the high volatility condition. Intuitively, lower stimulus volatility reduces the range of the 

stimulus values that subjects are adapted to, and hence increases the encoding accuracy and the 

discriminability among the stimulus values within this narrower range.13 This is the main 

prediction that we test in our experiments.  

II.6. Dynamic extension 

The model described above is static and thus makes no explicit predictions about how the 

speed with which the DM adapts to new environments affects risk taking. In order to better 

understand the dynamics of adaptation, we conclude this section by considering a simple 

                                                           
13 More generally, (14) implies that the probability of risk taking is a two-dimensional function of X and C. In the 
Appendix, Figure B1 plots this probability for two different volatility levels of the stimulus distribution: σx = σc = 
0.19 (low volatility) and σx = σc = 0.55 (high volatility). Figure B1 makes it obvious that n(X/C) is not a sufficient 
statistic of the risk taking probability. Instead, X and C jointly affect this probability. For instance, with σx = σc = 
0.55, µx = 3.05, and µc = 2.35, setting X to = 24.6 and setting C to = 12.2 gives X/C = 2.01 and a risk-taking 
probability of 77.7%. On the other hand, setting X to = 38.7 and setting C to = 19.2 gives the same ratio of X/C = 
2.01 but a lower risk-taking probability of 74.3%. Thus, our model does not predict that risk taking is scale-
invariant, but rather, it depends on levels of both X and C. We return to this point in both the discussion section 
(Section V) and Appendix B, after presenting our main results. 
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extension of the model that yields explicit predictions about adaptation, perception, and risk 

taking.  

Suppose that, at time t, the DM uses the past N outcomes of X, 1{ } ,N
t i iX − = to form a sample 

distribution of X, and similarly, uses the past N outcomes of C, 1{ } ,N
t i iC − = to form a sample 

distribution of C. We call parameter N the length of the lookback window, which allows for 

sample variation of the X and C distributions. Before observing Xt and Ct at time t, the subject is 

assumed to hold the following probability density functions as prior beliefs:  
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where δ(⋅) is a standard Dirac delta function. The corresponding cumulative density functions are 

 ( ) ( )1 1
, .1 1( ; ) ( ; )

t i t iX C C
N N

Xi i
F X N F C N

N N− −= =≥ ≥= =∑ ∑1 1   (16) 

Equation (5) from Proposition 1 now implies that the likelihood functions become14 
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 The prior beliefs in (15) and the likelihood functions in (17) jointly imply that, estimates 

of X and C conditional on Rx and Rc are now given by  
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     (18) 

and 

                                                           
14 Suppose that Xi and Xj (Xi < Xj) are two realized outcomes of X in the past N trials, and that there are no other 
realized value of X between Xi and Xj. Then, all values of X in the range [Xi, Xj) map into an identical conditional 
probability density function of Rx. That is, p(Rx|Xa) ≡ p(Rx|Xb) for any Xa and Xb in [Xi, Xj). In other words, the DM 
cannot discriminate between Xa and Xb.   
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As before, the DM chooses the risky lottery over the certain option if and only if | ][ xXp R⋅  is 

greater than [ | ].cC R    

It is worth noting that, when the length of the lookback window, parametrized by N, tends 

to infinity, the sample distribution in (15) will converge to the true stimulus distribution. It 

follows that in an environment with a stable stimulus distribution and when the DM has a long 

look back window, we can approximate the DM’s sample distribution with the true distribution. 

In our experimental design, we therefore vary the stimulus distribution at a relatively low 

frequency in order to induce stability of prior beliefs. 

We discuss the predictions of this dynamic model in Section III.3, in order to compare 

them directly with our experimental data. 

III.        An Experimental Test 

 In this section, we provide an experimental test of our model. Our experiment is designed 

specifically to test whether risk taking varies with the payoff distribution that subjects encounter. 

III.1. Design 

On each trial in the experiment, subjects choose between a risky lottery and a certain 

option. The risky lottery delivers a positive payoff X with probability p, and zero otherwise. The 

certain option delivers a positive payoff C with certainty. The experiment consists of eight 

blocks, with sixty trials in each block. Each subject therefore completes a total of four hundred 

eighty trials, which we index by t = 1, 2, …, 480. At the end of the experiment, subjects are paid 

according to their decision on one randomly selected trial.  

We experimentally manipulated the distribution from which payoffs in the choice set are 

drawn. On each trial, the values of X and C were jointly drawn from a lognormal distribution 
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We set the mean values to µx = 3.05 and µc = 2.35, so that on average, the risky lottery offers a 

higher expected value than the certain option. Our treatment variable is the standard deviation, 

which we varied across two conditions: high volatility and low volatility. In the high volatility 

condition, we set σ = 0.55, and in the low volatility condition, we set σ = 0.19. The first block of 

the experiment was a high volatility block, and the blocks alternated deterministically, so that the 

experimented ended with a low volatility block (Figure 4). We set the correlation between n(X) 

and n(C) at ρ = 0.5. Although this positive correlation is not part of the model we developed in 

the previous section, it helped to reduce the number of trivial choice sets where X < C (and as a 

result, the certain option stochastically dominates the risky lottery). The values of X and C were 

drawn from their associated distribution (high volatility or low volatility) at the subject-trial 

level, and thus each subject faced a unique path of payoffs during the experiment.  

[Place Figure 4 about here] 

For all trials, we set the probability that the risky lottery paid X to p = 0.59. Following 

KLW, we chose this design feature for two reasons. First, we used a “non-round” number so that 

subjects could not easily compute the expected value of the risky lotterywhich was more likely 

to happen if we used, for example, p = 0.5 or p = 0.6. Second, even though our model assumes 

that the subject does not encode the probability p with noise, in reality, this variable is also likely 

to be encoded with noise. By presenting the same value of 0.59 on each trial, this increased the 

plausibility of our simplifying assumption that subjects precisely encoded this particular 

probability value. Later in the paper, we conduct an additional experiment to directly test the 

noisy encoding of payoffs, without appealing to any assumptions about probability encoding.  

Before the experiment began, subjects were told that they would be asked to choose 

between two lotteries on each of four hundred eighty trials and these trials would be separated 

into eight parts. However, subjects were not given any information about the distribution of X or 

C, nor were they told that these distributions changed across blocks. We chose not to provide 

subjects with this information because it allowed us to study the adaptation process more 
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generally, without imposing any specific structure on the subject’s prior beliefs at the beginning 

of the experiment. The exact instructions that were given to subjects before the experiment are 

provided in the Appendix. 

III.2. Experimental procedures 

We recruited N = 34 subjects for this experiment, which was conducted across three 

sessions at Caltech and USC. Before starting the experiment, subjects went through a set of ten 

practice trials to become familiar with the task and the software. Figure 4 provides an example 

trial from the experiment, in which the risky lottery is presented on the left as a colored bar chart, 

and the value X is displayed at the bottom next to its associated probability of 0.59. The certain 

option is presented on the right side of the screen. On each trial, subjects were instructed to select 

the left or right option by pressing one of two keys. The location of the risky lottery was 

randomized across subjects and trials, and subjects had unlimited time to make their decision on 

each trial. At the end of each block of sixty trials, a progress screen appeared, which reported 

how many of the eight blocks the subject had completed.  

At the end of the eighth block, the computer randomly selected one of the four hundred 

eighty trials from the experiment. If the subject chose the risky lottery on this trial, a random 

number generator determined whether the subject received the payoff of $X or the payoff of $0, 

according to the probabilities associated with these payoffs. If the subject chose the certain 

option, she received the amount of $C. In addition to the earnings from this randomly selected 

trial, each subject received a $7 show-up fee. The average earning, including the show-up fee, 

was $25.89.  

III.3. Experimental results 

III.3.A. Treatment effects 

Subjects chose the risky lottery on 40.5% of trials in the low volatility condition and on 

42.7% of trials in the high volatility condition. One subject did not exhibit any variation in risk 
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taking in the low volatility condition (choosing the certain option on each trial), and we exclude 

this subject from all subsequent analyses.  

[Place Figure 5 about here] 

Figure 5 plots the proportion of trials on which subjects chose the risky lottery, as a 

function of the natural logarithm of X over C, n(X/C). Recall that the probability p stays 

constant across all trials, and thus n(X/C) provides a goodthough insufficientstatistic that 

summarizes the attractiveness of the risky lottery relative to the certain option. The figure shows 

that risk taking increases in n(X/C) in both conditions, which provides a basic consistency check 

on the data. One can also see that the slope of the curve in the low volatility condition appears to 

be steeper than that in the high volatility condition. This is consistent with a basic prediction of 

our model: when the stimulus distribution becomes more concentrated, choice sensitivity 

increases.  

To conduct formal empirical tests, we run regressions where the dependent variable takes 

the value of one (zero) if the subject chose the risky lottery (certain option) on trial t. We pool all 

15,840 trials across subjects and conditions, and run a logistic regression. The results in Column 

(1) of Table 1A show that the regression coefficient on n(X/C), which provides a measure of the 

sensitivity of risk taking in the low volatility condition, is positive and strongly significant. high 

is a dummy variable that takes the value of one if the trial is in the high volatility condition, and 

zero otherwise. The coefficient of interest is on the interaction term n(X/C)×high, which is 

significantly negative, indicating that risk taking becomes less sensitive to n(X/C) in the high 

volatility condition. This provides formal support for a difference in choice sensitivity between 

the high and low volatility conditions. 

[Place Table 1 about here] 

Our model predicts that this difference in choice sensitivity stems from different 

perceptions of X and C across conditions. However, the distributions of X and C themselves vary 

across conditions, and thus the difference we detect may simply be driven by a different response 
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to extreme values of n(X/C). In particular, the range of n(X/C) in the low volatility condition is 

(0.02, 1.36), but in the high volatility condition, there are many trials for which n(X/C) falls 

outside this range.  

To help address this concern, we restrict our regression to trials with similar levels of 

n(X/C) across the two volatility conditions. We re-estimate the regression in Column (1) using 

only trials for which 0.02 < n(X/C) < 1.36; this represents the set of values of n(X/C) which 

appear in both conditions of our experiment. Column (2) shows that our results are quite similar 

on this subset of data. Given this, it is unlikely that differences in the current choice set drive the 

full effect; however, we note that this is not a perfect control because the distribution of n(X/C) 

still differs within this restricted domain. Columns (3) and (4) show that our main result holds 

within each half of a block. Column (3) is estimated using data from the first half of each block 

(the first thirty trials), while column (4) uses data from the second half (the last thirty trials), and 

the main result holds in both of these subsets of the data.  

Column (5) shows our results hold even within the first ten trials of each block. In fact, if 

we restrict to the first trial of each block (Column (6)), we find that the coefficient on the 

interaction term remains significantly negative (p-value of 0.046). This result is potentially 

concerning, because it is consistent with a theory in which the subject adapts to the new 

distribution instantly. However, another more plausible explanation is based on the perception of 

outliers. On the first trial of each block of the high volatility condition, the subject has just faced 

sixty choice sets from the low volatility condition, and presumably has adapted to a narrow range 

of n(X/C). On the first trial of the high volatility block, there is a good chance that n(X/C) falls 

outside this range (or near the extremes of this range), and thus this value will be perceived as an 

outlier.15 Because the subject’s coding resources do not adjust immediately following the low 

volatility block, the perception of the outlier will be noisy.16  

                                                           
15 In our experiment, there is a 21% chance that n(X/C) falls outside the range (0.02, 1.36) on the first trial of a high 
volatility block. 
16 We note that in each specification in Table 1A, the coefficient on the high dummy variable is significantly 
positive. This is likely because n(X/C) is not a sufficient statistic for risk taking and may contribute to model 
misspecification. Table 1B presents regression results where we separately enter the X and C regressors, as well as 
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III.3.B. Adaptation and dynamics  

The above logic can be extended more generally to all trials in the high volatility block. 

Consider a value of n(X/C) that is extreme within the context of the low volatility block, but not 

within the high volatility block. If the subject encounters this value early in a high volatility 

block, it will be perceived as an outlier, but the presentation of this value should lead to a 

subsequent adjustment of coding resources through adaptation. When a value of n(X/C) that was 

perceived as extreme early in a high volatility block is presented a few times, then later in the 

high volatility block, it will no longer be perceived as an outlier because coding resources have 

been allocated to a wider range of payoffs. Therefore, risk taking should become more sensitive 

to extreme values over the course of the high volatility block. Critically, because the total 

amount of coding resources is conserved, this reallocation of resources must come at the expense 

of resources used for perception of intermediate values. It follows that risk taking should become 

less sensitive to intermediate values over the course of the high volatility block. Taken together, 

this implies that the net reallocation of resources from intermediate to outlier payoffs is positive.  

To test this prediction, we examine how risk taking varies over time among outliers and 

intermediate values in the high volatility block. We define an outlier as a value of n(X/C) that is 

more than three standard deviations from the mean. The standard deviation and mean are 

computed at the subject-block level, using the sixty trials from the immediately preceding low 

volatility block (we restrict analysis to blocks 3, 5 and 7, so that each of these high volatility 

block can be matched to an immediately preceding low volatility block). Under this definition, 

30.4% of trials in the high volatility block are considered outliers. 

 We define a dummy called outlier that takes the value of one if the value of n(X/C) is an 

outlier, and zero otherwise. We also define a dummy called second which takes the value of one 

if the trial takes place in the second half of the block (i.e., in the last thirty trials). We then 

estimate the following logistic regression, using only data from the high volatility blocks: 

                                                           
their associated interaction terms. We see that the coefficient on the high dummy variable is no longer significant in 
these regressions; moreover, consistent with the result in Table 1A, we also find that risk taking becomes less 
sensitive to both X and C in the high volatility condition. 
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  (21) 

In Column (1) of Table 2, the regression coefficient β1 on n(X/C) provides the sensitivity of risk 

taking among intermediate value (non-outlier) trials in the first half of the high volatility block. 

As expected, this coefficient is significantly positive. Furthermore, the coefficient β2 on the 

interaction n(X/C)×outlier is significantly negative. This indicates that in the first half of the 

block, shortly after experiencing sixty low volatility trials, subjects are less sensitive to outliers 

than to intermediate values.  

[Place Table 2 about here] 

The next two rows allow these coefficients to differ in the second half of the block. The 

coefficient of interest is β4, which measures the change over time in choice sensitivity to outlier 

payoffs, relative to intermediate values. As described above, we expect this coefficient to be 

positive because increased exposure to outliers during the first half of the high volatility block 

should trigger adjustment of coding resources away from intermediate values and towards these 

extreme values in the second half of the block. In Column (1) we find that the estimated 

coefficient is indeed positive, although it is not significantly different from zero. One potential 

reason for this insignificance is that adaptation takes place relatively quickly, and thus subjects 

hold similar priors in the first and last thirty trials of the block; this, in turn, would make it 

difficult to detect a difference in behavior between the two halves of the block.   

To further investigate this, Columns (2) – (4) use more restricted subsets of the data, in 

which we use only the first and last M trials of the high volatility block, for M = 20, 10, and 5, 

respectively. We see that the results become stronger after restricting to more extreme subsets of 

the data. In particular, after restricting to the first and last five trials of each block in Column (4), 

we find that β4 is significantly positive (p = 0.03), indicating that there is a net reallocation of 

resources towards outlier payoffs. This result also holds at the 10% significance level when 
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restricting to the first and last 10 trials of each block (Column (3)). However, it becomes 

insignificant as we relax the sample restriction to the first and last 20 trials of each block 

(Column (2)). This pattern provides a clue about the speed of adaptation: it is likely to be shorter 

than 20 trials, but longer than 10 trials.  

To provide a more direct test of the speed of adaptation, we appeal to the dynamic model 

presented in Section II.6. Recall that in this model extension, the DM uses the past N realized 

values of X and C, and each of these values receives the same weight, 1/N, in constructing the 

prior distribution.17 To generate predictions for our experimental design, we set the lookback 

window parameter N to 10. We then use the model to generate choice data for a sample of one 

thousand “pseudo subjects,” each characterized by σ = 0.1, and each facing the same design that 

our experimental subjects faced.  

[Place Figure 6 about here] 

Using the model generated choice data, we repeat the logistic regression estimation in 

(21), and again restrict to the first and last 5 trials of each block. The top panel of Figure 6 

summarizes the regression results by plotting the average sensitivity to each of the four types of 

trials: 1st half outliers, 2nd half outliers, 1st half intermediate values, and 2nd half intermediate 

values. These model generated point estimates confirm the qualitative model predictions 

developed at the beginning of this section, whereby the sensitivity to outliers increases over time 

while the sensitivity to intermediate values decreases over time. To provide a direct comparison 

between model and experimental data, we plot the same chart in the bottom panel of Figure 6 

using experimental data.  

Our simple model of adaptation offers a good, though imperfect, match with the 

experimental data when N = 10. One difference is that the model predicts a higher choice 

sensitivity to n(X/C) in all four categories compared to the experimental data. There are at least 

                                                           
17 We note that our model of adaptation assumes that the DM has access to the true values of X and C when forming 
prior beliefs, yet she can only imperfectly observe the values X and C when making her decision on each trial. 
Interestingly, Robson and Whitehead (2018) show that with a sufficiently long time horizon, the DM can adapt to 
the true distribution without perfectly observing the stimulus on each trial. 
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two possible explanations for this difference. First, we assume a particular value of σ (= 0.1) 

when generating the model-implied choice data. Given that σ reflects the amount of noise in the 

likelihood functions, a larger value of σ gives rise to noisier estimates of perception, and thus 

lower sensitivities to payoffs. Second, in addition to assuming a particular value of σ in the 

model generated choice data, we also assume that each pseudo subject is characterized by the 

same value of σ. However, in our sample of experimental subjects, there is likely to be 

heterogeneity in σ across subjects. Together, these two factors may contribute to the lower 

choice sensitivity to payoffs observed in the experimental data (compared to the model 

predictions). In the next section, we investigate the extent of heterogeneity across the 

experimental subjects in our sample.  

III.3.C. Heterogeneity across subjects 

[Place Figure 7 about here] 

The data presented in Figure 5 are pooled across subjects, and therefore mask any 

heterogeneity in the change in risk taking across volatility conditions. To investigate the extent 

of this heterogeneity, for each subject and condition, we run the following logistic regression:   

 risky n .t
t t

t

X
C

 
α + β⋅ + ε 


=


  (22) 

We record the estimates β̂  for each subject in the high and low conditions, and plot these against 

each other in Figure 7. We see there is substantial heterogeneity across subjects in the sensitivity 

to n(X/C). Moreover, subjects who are more sensitive in the high condition are also more 

sensitive in the low condition, indicating that σ is relatively stable across conditions, within 

subjects. Most importantly, we see that, for a majority of subjects, the data lie above the blue 

forty-five degree line. This confirms that the greater choice sensitivity in the low volatility 

condition is present within most of our subjects.  
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III.3.D. Assumptions about noiseless encoding process 

All of the results in our theoretical model are driven by the noisy encoding of X and C. In 

particular, we make two simplifying assumptions: i) there is no noise in encoding the probability 

p; and ii) there is no noise in computing the product of p and [ | ]xX R  (which is used as the 

DM’s estimate of the expected value of the risky lottery). In reality, there is likely to be noise in 

both of these processes, which could potentially be responsible for some of the above 

experimental results. However, because the noisy encoding of payoffs is sufficient to generate 

our main theoretical predictions, we should still find evidence that the perception of X depends 

on the recent stimulus distribution, even when there is no need to perceive p. To provide a 

sharper test of the effect of noisy encoding of payoffs, we run a follow-up experiment in which 

the subject still needs to perceive X, but does not need to perceive p or integrate probabilities 

with payoffs.  

IV.        Riskless Choice Experiment 

IV.1. Experimental design 

The design of our second experiment is informed by decades of work from the literature 

on perception of numerical quantities (Moyer and Landauer, 1967). Our experimental design 

builds on that of Dehaene, Dupoux, and Mehler (1990), who on each trial of their experiment, 

present subjects with an Arabic numeral between 31 and 99. The subject’s task is simply to 

classify whether the Arabic numeral presented on the screen is larger or smaller than the 

reference level of 65. Their main result is that as the stimulus numeral gets closer to the reference 

level, response times increase and classification accuracy decreases. These results are consistent 

with the noisy encoding of Arabic numerals, which lies at the foundation of our model of risk 

taking.  

One notable feature of the Dehaene, Dupoux, and Mehler (1990) experiment is that the 

stimulus distribution is held constant throughout the experiment. Here, we exogenously vary the 

stimulus distribution, in much the same way that we varied the distribution of monetary amounts 
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in our previous experiment. We have a high volatility distribution (uniform over integers in the 

range [31, 99]) and a low volatility distribution (uniform over integers in the range [51, 79]). 

Subjects are incentivized to correctly classify whether each Arabic numeral, which we denote by 

X, is larger or smaller than 65, over sixteen blocks of trials. The blocks alternate between the 

high volatility condition and the low volatility condition. Each block consists of eighty trials, for 

a total of 1,280 trials per subject (Figure 8). 

[Place Figure 8 about here] 

We pay subjects as a function of both their accuracy and their speed. In addition to a $7 

participation fee, subjects earn a payoff of $(20×accuracy – 10×avgseconds), where accuracy is 

the percentage of correctly classified trials, and avgseconds is the average response time (in 

seconds) across all trials in the experiment. In this design, the subject still needs to perceive the 

value X, but there are no probabilities to encode, nor any need to integrate probabilities with 

payoffs. Therefore, this design provides a clean setting in which we can test whether the 

perception of an Arabic numeral, X, depends on the recently observed stimulus distribution. 

IV.2. Experimental procedures 

 We recruited an additional N = 13 subjects from Caltech for this experiment. Before the 

first block, subjects went through a set of ten practice trials to become familiar with the task. On 

each trial, the stimulus numeral was displayed in white font against a black background, on the 

center of the screen (Figure 8). Subjects were instructed to press one of two keys to indicate 

whether the stimulus was smaller or greater than 65. After responding on each trial, a white 

fixation cross appeared for 500 milliseconds, followed by the stimulus from the next trial. At the 

end of each block of eighty trials, a progress screen appeared, which reported how many of the 

sixteen blocks remained. The progress screen was self-paced, and subjects were given the 

opportunity to take a break during this screen. The average earning, including the show-up fee, 

was $20.58.  
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IV.3. Experimental results  

Subjects accurately classified the stimuli on 90.4% of trials with an average response 

time of 0.45 seconds. Figure 9 shows the proportion of trials that subjects classified the stimulus 

as greater than 65, for each value of X. If subjects had accurately classified all stimuli, the figure 

would generate a step function, with a single step at X = 65. Instead, the figure replicates results 

from several previous experiments in the literature, which show that errors decrease in the 

distance between the two numbers under comparison (Moyer and Landauer, 1967; Dehaene, 

Dupoux, and Mehler, 1990). To be clear, while it is unsurprising that subjects make errors in 

general, the more important result is that the error rate is correlated with the distance between the 

stimulus number and the reference level of 65. It is also worth noting that the average subject 

from Caltech has very high mathematical aptitude, and thus the error rates reported here are 

likely to be close to a lower bound for the error rates among other samples.18  

[Place Figure 9 about here] 

Turning to a comparison of our two experimental conditions, we find that subjects 

correctly classify stimuli on 91.4% of trials in the high volatility condition, and on 89.4% of 

trials in the low volatility condition. A more informative statistic is the difference in accuracy 

between conditions, when restricting to stimuli that are common to both conditions: 51 ≤ X ≤ 79. 

This controls for the fact that, on average, trials in the high volatility condition are “easier,” in 

the sense that the average distance to the reference level is greater than in the low volatility 

condition. We find that accuracy among these trials in the high volatility condition is 86.5%, 

which is significantly lower than the 89.4% accuracy in the low volatility condition (p-value  = 

0.004). This is consistent with the efficient coding hypothesis: in the low volatility condition, 

subjects adapt and devote more coding resources to the concentrated range 51 ≤ X ≤ 79. In the 

high volatility condition, subjects need to “spread” these coding resources over a wider range, 

                                                           
18 There is evidence that accurate perception of non-symbolic representations of numbers (e.g., a visual array of dots) 
is positively correlated with mathematical aptitude (Halberda, Mazzocco, and Feigenson, 2008), though it is unclear 
whether this correlation extends to tasks like ours that use symbolic numerical representations. 
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which leads to increased noise when encoding stimuli in the concentrated range (relative to the 

low volatility condition).  

A sharper test of the efficient coding hypotheses is to compare the slopes in Figure 9. As 

in our previous experiment, we expect a steeper slope in the low volatility condition. The figure 

provides suggestive visual evidence for a difference in slopes, and to formally test this, we run a 

series of logistic regressions. The dependent variable in our logistic regression takes on the value 

of one if the subject classified X as above 65, and zero otherwise. Column (1) of Table 3 shows 

that the coefficient on n(X/65) is significantly positive, which indicates that subjects’ propensity 

to classify X as greater than 65 is increasing in n(X/65). More importantly, we find that the 

coefficient on the interaction term, n(X/65)×high, is significantly negative, indicating that 

choices are noisier on trials in the high volatility condition.  

 [Place Table 3 about here] 

 To control for the difference in distributions of X, we re-estimate the regression using 

data only in the range 51 ≤ X ≤ 79. When restricting to this range, the distribution of X on the 

current trial is the same across conditions, and the only difference is the distribution of 

previously encountered stimuli. Column (2) provides these estimation results, and we find the 

slope remains steeper in the low volatility condition (though the difference in slopes is smaller 

compared to the estimates using the full sample in Column (1)).  

One assumption we make in interpreting the results in these first two columns, is that 

there is no “external stimulus” noise: the stimulus number is displayed clearly on the screen and 

the font is easy to read (as opposed to, e.g., fuzzy text). We assume that the noise that corrupts 

the mental representation of the stimulus is based on the internal noise in the subject’s nervous 

system. Nonetheless, it is plausible that comparing 59 with 65 may be easier than comparing 60 

with 65, not because of the distance, but because the first digits are visually distinct. To address 

this, we re-estimated the regression in Column (1) using only trials for which the first digit 

differs from the first digit of the reference level: {X < 60, X ≥ 70}. Column (3) shows that the 
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slope in the low volatility condition remains steeper, indicating that such a “first-digit” effect 

cannot explain the full extent of the shift in slope. 

 To summarize this experiment, we find that the accuracy of classifying an Arabic 

numeral is affected by i) the distance to a reference level, and ii) the distribution of previously 

encountered stimuli. The latter result provides useful evidence supporting a basic assumption of 

our model of risky choice. Specifically, in an experimental task where there is no need to encode 

probabilities or integrate with payoffs, we find that choice sensitivity depends on the distribution 

of previously encountered stimuli.   

V.        Discussion 

V.1. Definition of efficiency and the encoding function 

In our model, we assume that the encoding process is efficient in the sense that mutual 

information between the stimulus value and its noisy representation is maximized. This 

definition of efficiency is taken from recent work in theoretical neuroscience (Wei and Stocker, 

2015), and we choose to maintain this assumption in our model because it generates predictions 

that closely match choice data in both perceptual and economic experiments (Polania, Woodford, 

and Ruff, 2019). This assumption can also be justified on normative grounds if the DM’s 

objective is to minimize the mean squared error of her estimate of the true stimulus value.  

However, our assumed definition of efficiency is not necessarily the only plausible one. 

For example, an alternative definition is that the DM encodes payoffs in the choice set to 

maximize the expected financial gain on each trial. This type of objective is closer in spirit to 

models of rational inattention (Sims, 2011; Woodford, 2012), in which the DM chooses a signal 

structure that maximizes expected utility. Interestingly, KLW show that, within a specific class 

of logarithmic encoding functions, maximizing financial gain implies a very similar prediction to 
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the one we obtain in our model, namely, that the sensitivity of risk taking to payoffs will 

decrease in the variance of the prior distribution.19 

 We emphasize that one difference between our model and KLW is that the shape of the 

encoding function in our model depends heavily on the shape of the prior distribution. As 

described in Section II, for a monotonically decreasing prior, both our model and KLW predict 

that the DM encodes smaller stimulus values more accurately. However, for priors in which there 

is a greater chance of observing a large stimulus value compared to a small one, KLW continue 

to predict that smaller stimulus values are encoded more accurately, while our model now 

predicts that larger stimulus values are encoded more accurately. This pattern stands in stark 

contrast to Weber’s lawwhich states that larger values are discriminated less accurately than 

smaller values. Yet, recent experimental work from Polania, Woodford, and Ruff (2019) 

provides evidence that there is indeed less variability in the subjective ratings of high value food 

items, compared to low value food items. The authors interpret this empirical pattern as arising 

from efficient coding and a particular prior distribution in which the expected value of the prior 

is shifted towards higher value items. They also make the important observation that such an 

empirical pattern does not invalidate Weber’s law, but rather, it suggests that the strength of 

Weber’s law depends on the prior distribution to which the DM has adapted.20 

V.2. Insensitivity to outliers: A comparison with salience theory 

 The results from our risky choice experiment suggest that risk taking is less sensitive to 

outlier payoffs compared to those payoffs that subjects encounter more frequently. This result is 

consistent with a basic prediction of efficient coding, namely that the ability to discriminate 

between outlier payoffs is weaker than the ability to discriminate between frequently occurring 

payoffs. This result may seem at odds with alternative theories of decision making in which 
                                                           
19 When the DM holds a prior distribution that is monotonically decreasing, our model will generate a set of 
encoding functions that resemble the logarithmic encoding functions assumed in KLW. This offers an alternative 
interpretation for some of the experimental results in KLW. In their experimental design, KLW sample values of X 
and C from a distribution that induce an approximately monotonically decreasing prior distribution for both X and C 
(since the distance between successively larger payoffs is increasing in their design). In such an experiment, our 
model would thus predict that the encoding function should be similar to the one assumed in KLW.  
20 In the Appendix, we provide further analysis of our model’s implications for Weber’s law and the “scale 
invariance” of risk taking. 
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extreme payoffs capture attention, and are then overweighed at the expense of typical payoffs, as 

in Bordalo, Gennaioli, and Shleifer (2012) and Koszegi and Szeidl (2013). A closer look at these 

theories, however, suggests that their core mechanism is complementary to the one studied here, 

rather than contradictory. 

  To see this, note that in our model of efficient coding, there are two layers of uncertainty. 

In the first layer, the DM is uncertain about the payoff values of X and C that characterize each 

lotteryshe only draws noisy signals Rx and Rc of X and Ceven after the choice set is 

presented to her. In the second layer, conditional on her optimal estimates of the payoff values, 

][ | xX R and ,[ | ]cC R  she then faces the more standard source of uncertainty about whether 

the risky lottery will deliver its upside of X (with probability p), or its downside of 0 (with 

probability 1 − p). We can apply salience theory to both layers of uncertainty, one at a time. We 

give a detailed treatment of this in Appendix C, but briefly report the intuition here. 

 When applying salience theory to the first layer uncertainty, we can imagine there are a 

continuum of states, and each state is characterized by a different pair of draws from the joint 

lognormal distribution of X and C specified in equation (20) for our experimental setup. Note 

that in this specification of the state space, the DM is choosing between the priors that generate 

the draws of X and C (which then characterize the choice set that subjects actually face in our 

experiment.) In this case, we show in Appendix C that salience theory predicts that large values 

of X are overweighted, and hence distort choices. Yet this intuition does not apply in our 

experiment because subjects are not choosing between these two lognormal priors. 

If instead we apply salience theory to the choice set that subjects actually face, we find 

that the theory does a good job explaining our data on most dimensions (Figure C2). The one 

dimension on which salience cannot explain our experimental data is the dependence of risk 

taking on past choice sets. Of course, a natural way to incorporate this dependence is to allow the 

salience function to depend on past payoffs. This is in the spirit of more recent versions of 
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salience theory, in which memory of past experiences shapes perception of the current choice set 

(Bordalo, Gennaioli, and Shleifer, 2017).21  

V.3. Implications for eliciting risk attitudes 

At a methodological level, our results have important implications for future 

experimental work on measuring risk preferences. Most of the current methods for eliciting risk 

preferences in economics are grounded in the assumption that there is a single and stable utility 

function that governs choices over the entire experiment (Charness, Gneezy, and Imas, 2013). 

Efficient coding implies that the subject’s utility function is malleable even over the course of a 

single experimental session, and therefore provides some guidance for improving measurement.  

For example, our experimental results indicate that the order in which choice sets are 

presented has a systematic effect on choice behavior. Controlling for such order effects may 

therefore improve the precision of preference parameter estimates. Recently, a set of clever 

experimental procedures has been proposed to efficiently measure risk preferences, in the sense 

of minimizing the number of questions the experimenter must ask in order to obtain a given level 

of estimation precision (Imai and Camerer, 2018; Chapman et al., 2018). In these “dynamically 

optimized sequential experimentation” algorithms, the choice set on the current trial depends on 

the subject’s history of choices, so as to maximize information gain for the experimenter. 

Because efficient coding implies that the order in which choice sets are presented has a 

systematic effect on behavior, our data suggest that it may be possible to achieve even more 

precise parameter estimation by conditioning on the specific path of questions presented to 

subjects. 

VI.        Conclusion 

In this paper, we derive the implications for risk taking when the perception of payoffs is 

noisy and governed by efficient coding. We show that the DM’s value function is malleable, and 

                                                           
21 The model of Bordalo, Gennaioli, and Shleifer (2017) focuses mainly on applications to riskless choice. However, 
our paper focuses on risky choices.  
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its shape fluctuates with the distribution of recent payoffs. In particular, because the DM has 

difficulty discriminating between those payoffs that do not occur frequently, efficient coding 

generates diminishing sensitivity, which itself can change across environments. Earlier work by 

Woodford (2012) provides a model of efficient coding that shares some of our predictions, but in 

that model, imperfect perception is applied to the net gain of a payoff. The model of KLW that 

we build on here instead assumes that the DM encodes the absolute value of a symbolic number. 

This is a more realistic assumption, as the perceptual system responsible for noisy encoding of 

numerosity is unlikely to support negative numbers (Feigenson, Dehaene, and Spelke, 2004).22   

 To test our model, we conduct two laboratory experiments in which we find evidence 

consistent with efficient coding of risky payoffs. Specifically, risk taking becomes more sensitive 

to those payoffs that appear more frequently in the choice set. Such adaptation takes place 

relatively quickly, on the order of approximately ten to twenty experimental trials. In our second 

experiment, where subjects need only classify whether a symbolic number is larger than a 

reference level, we find that classification accuracy systematically changes with the distribution 

of recently experienced numbers. This provides evidence supporting our basic model 

assumption, that payoffs which are encountered more frequently are perceived more precisely.  

 Finally, to demonstrate how the sensitivity of risk taking evolves over time, we proposed 

a simple model of adaption. In this model, the DM forms a prior distribution by equally 

weighting the payoff values from the past N choice sets. In reality, however, the adaption process 

is likely to be much more complex. For example, the amount of past data that subjects use to 

form prior beliefs is itself likely to vary with the rate of environmental change (Behrens et al., 

2007) and across different timescales (Zimmermann et al., 2018). Therefore, an important next 

step is to combine the model of efficient coding that we present here with a more realistic model 

of the adaption process. This will generate richer predictions about learning and choice 

dynamics, which can then be tested in future experiments. 

 

                                                           
22 As in KLW, negative numbers can be accommodated in our model by first encoding their absolute value, and then 
multiplying the encoded value by minus one.  
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Figure 1. The stimulus distribution and the implied likelihood functions under efficient 
coding. Each of the two upper graphs plots a different lognormal stimulus distribution of X (left: 
low volatility; right: high volatility). The two lower graphs plot the implied likelihood functions 
(left: low volatility; right: high volatility), for five different values of the noisy signal, Rx = 0.15, 
0.2, 0.5, 0.8, and 0.85. (Large values of X tend to generate Rx close to one, while small values of 
X tend to generate Rx that is close to zero; see Appendix A for more details about the distribution 
of Rx.) The lower graphs demonstrate that the likelihood functions depend on the volatility of the 
stimulus distribution. The parameter values for the two stimulus distributions are σx = 0.19 (left) 
and σx = 0.55 (right); for both stimulus distributions we set µx = 3.05 and σ = 0.1. 
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Figure 2. The subjective value function depends on the shape of the stimulus distribution. 
Panel A: the upper graph plots two lognormal stimulus distributions for X (low volatility 
distribution in red is given by σx = 0.19; high volatility distribution in blue is given by σx = 0.55). 
The bottom graph plots the implied subjective value functions, v(X), and their one-standard-
deviation bounds v(X) ± σ(X). The other parameter values are µx = 3.05 and σ = 0.1. Panel B: the 
upper graph plots two monotonically decreasing stimulus distributions for X, which are 
characterized by a gamma distribution, 
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where Γ(⋅) is the gamma function (low volatility distribution in red is given by θ = 5 and k = 1; 
high volatility distribution in blue is given by θ = 20 and k = 0.25). The bottom graph plots the 
implied subjective value functions, v(X), and their one-standard-deviation bounds v(X) ± σ(X). 
The other parameter value is σ = 0.1. In both bottom panels, the green dashed line is the forty-
five degree line.  
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Figure 3. The relationship between the probability of risk taking and n(X/C). The figure 
plots, for each volatility level of the stimulus distribution, σx = σc = 0.4, 0.8, and 1.5, the 
probability of risk taking computed in (14) against the natural logarithm of X over C, n(X/C). 
For each volatility level, we set C to 1

2
2exp( )c c+µ σ while we vary the value of X. The other 

parameter values are: µx = 3.05, µc = 2.35, p = 0.59, and σ = 0.1. 
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Figure 4. Experimental design for risky choice task. The task consists of eight blocks, which 
alternated between a high volatility condition and a low volatility condition. In the example trial 
screenshot above, the risky lottery is shown on the left, and the certain option is shown on the 
right. In each trial, the subject has unlimited time to decide which of the two options she prefers. 
At the end of each block, the subject is allowed to take a self-paced break, after which the next 
block begins. 
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Figure 5. Average levels of risk taking across conditions. The figure plots the proportion of 
trials on which subjects choose the risky lottery as a function of n(X/C), for both the high 
volatility condition and the low volatility condition. Data are pooled across trials and subjects. 
For each of the two experimental conditions, we bin the n(X/C) variable into two-hundred bins 
such that each bin has an equal number of trials.  
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Figure 6. Adaptation dynamics. The top panel shows model predictions, and the bottom panel 
shows experimental data. Data are taken from blocks 3, 5, and 7, and only include the first and 
last 5 trials of each block. Outliers are defined as values of n(X/C) that fall outside of three 
standard deviations of the mean value of the preceding low volatility block.  For the model 
generated choice data, we set σ to 0.1, and set the lookback window N to 10. 
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Figure 7. Individual subject estimated treatment effects. For each subject, and each condition, 
we run a logistic regression of the form: riskyt = α + β⋅n(Xt/Ct)+εt. The x-axis measures the 
estimated β in the high volatility condition, while the y-axis measures the estimated β in the low 
volatility condition. Each point represents a single subject, and the length of each black bar 
denotes two standard errors of the mean. The blue line is the forty-five degree line.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-5 0 5 10 15 20
-5

0

5

10

15

20

25

30



47 
 

 
 
Figure 8. Experimental design for riskless choice task. The task consists of sixteen blocks, 
which alternated between a high volatility condition and a low volatility condition. On each trial, 
the subject is incentivized to classify as quickly and accurately as possible, whether the stimulus 
integer is larger or smaller than the number 65. In the high volatility condition, the integers are 
drawn uniformly from [31, 99], while in the low volatility condition, the integers are drawn 
uniformly from [51, 79]. 
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Figure 9. Classification of numbers in riskless choice task. The x-axis denotes the integer X 
that is presented on each trial. The y-axis denotes the proportion of trials for which the subject 
classified the integer X as greater than 65. Data are disaggregated by high and low volatility 
condition. In the high volatility condition, the integers are drawn uniformly from [31, 99], while 
in the low volatility condition, the integers are drawn uniformly from [51, 79]. 
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Panel A 

 
 
Panel B 

 
 

Table 1. Logistic regressions of probability of risk taking. In both panels A and B, the 
dependent variable takes the value of one if the subject chose the risky lottery, and zero if the 
subject chose the certain option. The dummy variable high takes the value of one if the trial 
belongs to the high volatility condition, and zero if it belongs to the low volatility condition. 
Standard errors are clustered at the subject level, and ***, **, * denote statistical significance at 
the 1%, 5%, and 10% levels, respectively. 
 
 
 
 

(1) (2) (3) (4) (5) (6)

Dependent variable: "Choose 
risky lottery"

All data 0.02 < n(X /C ) < 1.36 First half of block Second half of block First 10 trials of each block First trial of each block

high 0.99*** 0.68*** 0.84*** 1.15*** 1.10*** 2.05**
(0.28) (0.26) (0.30) (0.32) (0.29) (1.04)

n(X /C )
4.21*** 4.21*** 4.05*** 4.37*** 3.94*** 5.05***
(0.62) (0.62) (0.62) (0.65) (0.70) (1.27)

n(X /C )×high −1.35*** −0.92*** −1.11*** −1.59*** −1.14*** −2.43**

(0.38) (0.32) (0.40) (0.42) (0.41) (1.22)

Constant −3.38*** −3.38*** −3.26*** −3.51*** −3.26*** −4.15**

(0.47) (0.47) (0.47) (0.50) (0.50) (0.96)

Pseudo R -squared 0.17 0.13 0.18 0.17 0.17 0.19
Observations 15,840 14,101 7,920 7,920 2,640 264

(1) (2) (3) (4) (5)

Dependent variable: "Choose 
risky lottery"

All data First half of block Second half of block First 10 trials of each block First trial of each block

high −0.10 −0.20 −0.01 0.03 −0.42
(0.29) (0.30) (0.33) (0.49) (1.18)

X 0.18*** 0.19*** 0.17*** 0.18*** 0.21***
(0.03) (0.03) (0.03) (0.03) (0.07)

C −0.41*** −0.42*** −0.41*** −0.39*** −0.54***
(0.06) (0.07) (0.06) (0.07) (0.14)

X ×high −0.08*** −0.09*** −0.08*** −0.07*** −0.13**
(0.02) (0.02) (0.02) (0.03) (0.06)

C ×high 0.18*** 0.19*** 0.16*** 0.17*** 0.34**
(0.04) (0.04) (0.04) (0.04) (0.14)

Constant 0.03 −0.05 0.12 −0.19 0.59
(0.42) (0.43) (0.45) (0.53) (1.19)

Pseudo R -squared 0.15 0.15 0.15 0.15 0.16
Observations 15,840 7,920 7,920 2,640 264
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Table 2. Adaptation and sensitivity to outliers. Logistic regression results using only data 
from the high volatility blocks (except for the first block, which does not have an immediately 
preceding low volatility block). The dependent variable outlier takes the value of one if the value 
of n(X/C) is more than three standard deviations from the mean, where these statistics are 
calculated using the sample moments from the sixty trials in the immediately preceding low 
volatility block. The dummy variable second takes the value of one if the trial belongs to the 
second half of the block (trials 31-60), and zero if it belongs to the first half of the block (trials 1-
30). Standard errors are clustered at the subject level, and ***, **, * denote statistical 
significance at the 1%, 5%, and 10% levels, respectively. 
 
 
 
 
 
 
 
 
 
 

(1) (2) (3) (4)

Dependent variable: "Choose risky 
lottery"

All data First and last 20 trials First and last 10 trials First and last 5 trials

n(X /C ) 3.07*** 3.10*** 3.41*** 3.40***

(0.46) (0.46) (0.49) (0.50)
n(X /C )×outlier −0.39** −0.38** −0.61*** −0.70*

(0.18) (0.17) (0.23) (0.41)
n(X /C )×second −0.08 −0.08 −0.53** −0.63**

(0.09) (0.13) (0.21) (0.27)
n(X /C )×second ×outlier 0.15 0.02 0.57* 1.14**

(0.18) (0.20) (0.31) (0.53)

Constant −2.51*** −2.47*** −2.53*** −2.43***

(0.37) (0.36) (0.35) (0.38)

Pseudo R -squared 0.25 0.25 0.27 0.27
Observations 5,940 3,960 1,980 990
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Table 3. Classification in riskless choice task. Logistic regression where the dependent 
variable takes the value of one if the subject classified the stimulus, X, as larger than 65, and zero 
otherwise. The dummy variable high takes the value of one if the trial belongs to the high 
volatility condition, and zero if it belongs to the low volatility condition. In the high volatility 
condition, the integer X is drawn uniformly from [31, 99], while in the low volatility condition, 
the integer is drawn uniformly from [51, 79]. Standard errors are clustered at the subject level, 
and ***, **, * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

(1) (2) (3)

Dependent variable: "Classifiy as greater than 65" All data 51  ≤ X  ≤ 79 X  < 60 or X   ≥ 70
high 0.00 0.04 −0.07

(0.02) (0.05) (0.04)

n(X /65) 19.53*** 19.53*** 17.45***

(2.09) (2.09) (1.58)
n(X /65)×high −9.71*** −3.56*** −7.98***

(1.11) (0.95) (0.69)

Constant 0.20*** 0.20*** 0.30***
(0.07) (0.07) (0.08)

Pseudo R -squared 0.53 0.48 0.63
Observations 16,640 11,892 12,807
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 Appendix A: Theoretical Derivations 
 

A.1. Proof of Proposition 1 
 
 To find a set of likelihood functions for a given stimulus distribution p(θ) that satisfies the 
efficient coding condition in (3), we follow Wei and Stocker (2015) and transform the stimulus space into 
a “sensory space” through a change of variable ( ),Fθ = θ where ) ( )( .p dF

θ

−∞
θ = ξ ξ∫ is the cumulative 

density function of θ.  
We first show that the efficient coding condition is satisfied in the sensory space if the 

transformed likelihood function location-independent:  
 
 ( | ) ( | ) ( ),L m p m g mθ = θ = θ −     (A1) 

where g(⋅) is some smooth density function that integrates to one. For this proof, note that equation (A1) 
allows us to write the Fisher information )(J θ as   
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where C > 0 is a constant, and .mα ≡ θ −  In this sensory space, θ is uniformly distributed between zero 
and one. As a result,     
     
  )( ( ) 1C pJ θ = ∝ θ =   (A3) 

for any [0,1].θ ∈ That is, the efficient coding condition is satisfied in the sensory space. 
 Next, we show that (A1) implies that the efficient coding condition is also satisfied in the original 
stimulus space. By (A1), the likelihood function in the stimulus space is 
 
  ( | ) ( | ) ( ( ) ).L m p m g F mθ = θ = θ −  (A4) 

The Fisher information J(θ) is  
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Therefore 

  ) ( (( ) )C pJ pθ = ⋅ θ ∝ θ  (A6) 

for any θ ∈ (−∞, ∞). That is, the efficient coding condition is satisfied in the stimulus space. 
 In Proposition 1, we present the likelihood function L(θ | m) with a specific function for the g(⋅) 
function: we assume g is a normal density function with mean 0 and variance σ2. The likelihood function 
then becomes 
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for any given m ∈ (−∞, ∞), same as Equation (5) in the main text. 
 
A.2. Properties of p(Rx) 
  

Given p(X; µx, σx) in (6) and p(Rx | X) in (7), the distribution of Rx can be derived as 
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Notice that this expression does not depend on distribution parameter µx and σx. Furthermore, this 
“invariance” result is a general statement that is independent of the specific assumption of lognormal 
distribution for p(X): all continuous stimulus distributions lead to the same p(Rx). To see this, we write in 
general  
 

 | ) ( ( ) ),(
X

x xX g p yp dy RR
−∞

= −∫  (A9) 

where, in the case of (7), g(⋅) is a normal density function with mean zero and standard deviation σ. 
Equations (A8) and (A9) then imply  
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This equation makes it clear that not only is the case that p(Rx) does not depend on µx and σx, it does not 
depend on the entire shape of the stimulus distribution p(X). A sufficient condition for this “invariance” 
result is that i) the likelihood function is location-independent in the sensory space (as we assume in 
equation (A1)), and ii) the transformation function from stimulus space to the sensory space is the 
cumulative density function of the stimulus value.   
 

[Place Figure A1 about here] 
   

Next, we look at the asymptotic behavior of p(Rx) as σ goes to zero. From (A10) we know that  
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where δ(⋅) represents the Dirac delta function. That is, in the limiting “noiseless” case, p(Rx) converges to 
a uniform distribution between zero and one. To illustrate this point, Figure A1 plots p(Rx) for σ = 0.15, 
0.1, and 0.05; as σ decreases, p(Rx) indeed converges toward a uniform distribution.  
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Figure A1. The unconditional probability density function of the noisy signal Rx. This figure 
plots the unconditional distribution of the noisy signal p(Rx) according to (8), for σ = 0.05, 0.1, 
and 0.15.  
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Appendix B: Additional Analyses on Scale Invariance 
 
 In the discussion section of the main text, we noted that Weber’s law does not hold universally in 
our model, but it can arise under a particular type of prior distributionone in which there is greater mass 
on higher value stimuli, compared to lower value stimuli. In our choice environment, Weber’s law would 
predict a type of “scale invariance,” in which risk taking depends only on the ratio, X/C, but not the 
separate levels of X and C. In fact, this is a key prediction of the KLW model, which stems, in part, from 
the logarithmic compression in the encoding function that is assumed for both X and C. In our model, 
when the prior distribution is lognormal, efficient coding does not imply logarithmic compression in the 
encoding functions.  

To see how this breaks the prediction of scale invariance in our model, consider a choice set in 
which X and C are drawn from their respective lognormal distributions. Suppose further that, in this 
choice set, C takes the mean value of its distribution, but X is drawn from the left tail of its lognormal 
distribution. In this case, efficient coding implies that the DM will be able to finely discriminate between 
C and nearby values, but she will not be able to discriminate well between X and its nearby values. As a 
consequence, if we present the DM with a new choice set by multiplying the original values of X and C by 
a common constant that is greater than one, then this multiplication will cause a substantial increase in the 
DM’s perceived valuation of C, but not of X. Therefore, the perceived ratio (X/C) decreases on average, 
causing a reduction in risk taking, and hence, a violation of scale invariance.  
 A key ingredient of this argument, however, is that X must be drawn from one of the tails of its 
distribution, so that the multiplier generates a smaller increase in the perceived value of X, compared to 
that of C. If instead, the values of X and C are close to their respective mean values under a lognormal 
prior, then multiplying both values by a common constant should lead to a similar increase in the 
perception of each value, and therefore, only a small change in risk taking. Our model therefore predicts 
that large violations of scale invariance are not expected to occur often, since these large violations occur 
only when one of the payoffs is drawn from the tails of its distribution.  

To assess this prediction quantitatively, in the upper panel of Figure B2, we plot the model 
predicted probability of accepting the risky lottery as a function of n(X/C), for three different regions of 
X: 1) low values of X (bottom 30% of its distribution); 2) intermediate values of X (between 30th and 70th 
percentile of its distribution); and 3) high values of X (top 30% of its distribution). Each point in the 
figure represents a single choice set and its model predicted probability of choosing the risky lottery. The 
values of X and C are generated over equally spaced grid points of [Xmin, Xmax] × [Cmin, Cmax] = [4, 50] × 
[2.5, 25]. 
 The figure clearly shows violations of scale invariance: for a given value of n(X/C), the model 
predicted probability depends on whether X is drawn from the left tail (in blue), intermediate region (in 
orange), or right tail (in grey). As expected, these violations are most severe for choice sets in which X is 
drawn from the left tail, and specifically, when n(X/C) is relatively large. In order for X to be drawn from 
the left tail and for n(X/C) to be relatively large, C must also be drawn from its left tail, which makes the 
occurrence of these particular choice sets very rare. Thus, the largest violations of scale invariance occur 
for those choice sets that the DM is rarely presented. In contrast, the points in orange, which represent the 
most likely values of X, fall roughly on the same curve, which is consistent with the model predicting an 
approximate scale invariance among these likely values of n(X/C).  

To assess whether our experimental data are consistent with scale invariance, we plot our risky 
choice data by also cutting the data into the three subsamples of X described above. In the bottom panel of 
Figure B2 we plot the data using 20 bins, where each bin contains an equal number of trials, for each of 
the three different subsamples of X; this binning procedure is important because it controls for the 
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frequency that each value of n(X/C) is presented in our experiment. The data are noisy since we cut the 
data into three subsamples and analyze only the high volatility condition, but the important feature to note 
is that for each value of n(X/C) in the figurewhich is weighted by its frequency of being presented in 
the experimentthe probability of risk taking varies only slightly with the level of X.  

In summary, our model predicts that risk taking will depend on the level of X and C, but this 
dependence is concentrated mainly among outlier values, for which the DM has difficulty discriminating 
between nearby values. Among payoffs that the DM is most likely to observe in a choice set, our model 
predicts that risk taking should be approximately scale invariant, which is broadly consistent with our 
data.   
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Figure B1. Probability of risk taking as a function of X and C. The figure plots the 
probability of risk taking computed in equation (14) in the main text, for two different volatility 
levels of the stimulus distribution, σx = σc = 0.19 (low volatility) and σx = σc = 0.55 (high 
volatility), the probability of risk taking computed in (14) as a function of both X and C. The 
parameter values are: µx = 3.05, µc = 2.35, p = 0.59, and σ = 0.1. 
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Figure B2. Probability of risk taking for different levels of X. The upper panel plots the 
model predicted probability of risk taking in the high volatility condition (σx = σc = 0.55), for the 
three different intervals of X: 1) Blue: low values of X (bottom 30% of distribution); 2) Orange: 
intermediate values of X (between 30th and 70th percentile of distribution); and 3) Grey:  high 
values of X (top 30% of distribution). Each point in the figure represents a single choice set and 
its model predicted probability of choosing the risky lottery. The bottom panel plots the 
experimental data from the (same) high volatility condition. For each of the three different 
intervals of X, we place the values of n(X/C) into 20 equally sized bins, and compute the 
average value of n(X/C) within this bin and the associated average levels of risk taking. For the 
upper panel, we set σ = 0.1. 
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Appendix C: Comparing Efficient Coding with Salience Theory 
(Bordalo, Gennaioli, and Shleifer, 2012) 

 
 Here we provide a comparison of our model with salience theory of choice under risk (Bordalo, 
Gennaioli, and Shleifer, 2012) (henceforth BGS). Under salience theory, attention is drawn towards 
salient payoffs, which are then overweighted relative to their objective probabilities. According to BGS, 
“a lottery payoff is salient if it is very different in percentage terms from the payoffs of other available 
lotteries” (pg. 1244). This definition captures two important psychological properties: (i) perception is 
based on the difference between stimuli; and (ii) it becomes more difficult to detect a given difference 
between two stimuli as the level of each stimulus increases.  
 While both efficient coding and salience theory provide models of distorted perception in risky 
choice, the mechanisms that generate this distortion are distinct. In our experiment, there are two potential 
sources of uncertainty: (i) the DM has imperfect perception and is therefore uncertain about the payoff 
values that characterize each lottery (X and C in our experiment), even after the choice set is presented; 
and (ii) the DM is exposed to the more standard source of uncertainty whereby, if she chooses the risky 
lottery, she is uncertain about whether she will receive X (with probability p) or 0 (with probability 1 − p). 
In our model of efficient coding, only the first source of uncertainty triggers the mechanism that distorts 
perception. Conditional on the distorted perception of the payoff values, the DM then handles the second 
source of risk in the standard way by selecting the lottery with the highest expected value.  
 In contrast, salience theory assumes that only the second source of uncertaintyregarding the 
outcome of the risky lottery (X, p; 0, 1 − p)is relevant. There is no uncertainty about the payoff values 
that characterize each lottery; the DM observes X and C perfectly. Instead, these payoffs differentially 
attract the DM’s attention, which distorts the decision weight attached to each payoff.  

It is worth noting that, even though salience theory assumes that payoffs are perceived without 
noise, the theory can easily be applied to the case in which the DM’s only source of uncertainty is about 
the payoff values that are presented in the choice set. In this case, we can think of there being a 
continuous set of states, and each state delivers a pair (X, C). In this framework, the DM’s choice would 
then be between the two priors that generate X and C. Notice that this decision is not the one that subjects 
in our experiments face, but nonetheless, salience theory makes sharp predictions about which payoffs are 
overweighted. In particular, we show below that the DM overweights outlier values of X , which distorts 
the perceived value of each prior. 

After analyzing the effect of salience when the DM’s only source of uncertainty is about the 
payoff values in the choice set, we examine the second source of uncertainty. When examining this 
second source, we assume that the DM has perfect information about the payoff values in the choice set, 
but now faces uncertainty about which outcome the risky lottery will deliver. This second application of 
salience theory is more closely aligned with our experimental setup, and we find that the theory does a 
good job explaining most dimensions of our data.   
 

C.1 Salience Model  

 Salience theory operates by distorting the weight on each state payoff for a given lottery. Here we 
consider the case in which the choice set contains only two lotteries, L1 and L2. We define a state space S, 
where each s ∈ S occurs with probability ps, and lottery iL delivers payoff i

sx in state s. As in our model of 
efficient coding, we assume the DM uses a linear value function v(z) = z. Without any salience distortions, 
the value of lottery iL is given by:  
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The salience model departs from this valuation equation by assuming that the DM does not use the set of 
objective probabilities {ps}, but instead uses a set of decision weights for lottery iL denoted by { },i

sπ where 
i i
s s sp ω=π for each state s. The distortion factor, ,i

sω distorts the objective probability, and is defined as:  
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In the above equation, δ ∈ (0, 1] captures the degree to which salience distorts objective probabilities.
, )( i i

s sxx −σ is the salience function which maps state payoffs delivered by iL and iL− into a salience measure. 
This function formalizes features of human perception; the two most important properties of the salience 
function (for our experimental setup) are ordering and diminishing sensitivity. Ordering implies that states 
in which there is a larger difference between payoffs (across lotteries) are more salient. This captures the 
intuition that attention is drawn towards attributes with larger differences. Diminishing sensitivity implies 
that adding a constant to all payoffs in a state will decrease the salience of that state.23 This property is 
closely linked to the diminishing sensitivity in efficient coding, which also predicts that perception is less 
sensitive among outlier values.  

 We will use a particular functional form of the salience function that satisfies these two 
properties, given by:  
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where θ > 0 controls the degree of diminishing sensitivity. Conditional on this salience function, the 
valuation of lottery iL under salience theory is given by:  

 ) ( ).( i i
sSs

i
sV v xL

∈
π= ∑  (C4) 

It follows that a payoff is overweighted, relative to its objective probability, ps, if and only if 1.i
sω > The 

DM then chooses lottery L1 if and only if V(L1) > V(L2).   

C.2 Case 1: Applying Salience Theory When DM is Only Uncertain about Payoff Values 

 Recall that there are two potential sources of uncertainty that the DM faces in our experiment. 
First, the DM can be uncertain about which payoffs (X, C) characterize the risky lottery and the certain 
option in the choice set. Second, conditional on knowing these values of X and C, the DM is uncertain 
about which outcome will obtain from the risky lottery: X (with probability p) or 0 (with probability 1 − 
p). In this section, we apply salience theory to the first source of uncertainty, in which the DM is uncertain 
only about the values of X and C. We can then think of L1 as delivering a random payoff X and L2 as 
delivering a random payoff C. As in our experiment, we assume that the values of X and C are jointly 
drawn from a lognormal distribution: 

                                                           
23 As BGS put it, “the intensity with which payoffs in a state are perceived increases as the state’s payoffs approach 
the status quo of zero…” (BGS 2012, pg. 1254). 
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As a result, in state s in which L1 delivers Xs, L2 will on average deliver24  
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The salience measure for L1 in state s is then given by: 
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For each Xs, we can then compute its distortion factor for L1 as 
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 is a lognormal probability density function. 

 Below we plot ω1(X) as a function of X, for the parameter values we used in our experimental 
design: µx = 3.05, µc = 2.35, σx = σc = 0.55, ρ = 0.5. For salience-based parameters, we set δ = 0.7 and θ = 
0.1, consistent with the point estimates in BGS.  

[Place Figure C1 about here] 

We see that very large values of X draw the DM’s attention, and these payoffs are overweighted 
(their distortion factors are greater than 1). To be clear, large values of X are not salient because they 
themselves are large. Rather, large values of X are salient, because when they are compared to the average 
payoff of L2, [ | ],C X  the difference is large. By the same logic, very small values of X are also salient, 
and thus overweighted.25 
 Without any salience distortions, it is clear that the DM would always prefer L1 over L2 because 
the lotteries are the same except L1 has a strictly higher mean. Indeed, for δ = 1, V(L1) − V(L2) > 12.37. 
However, for δ = 0.5 and θ = 0.1, we find that V(L1) − V(L2) = 14.03 > 12.37. That is, lottery L1 becomes 

                                                           
24 There are two ways to justify comparing X and the average realization of C when computing the salience function 
for X. First, one can think that for each value of X, there is a continuum of states each for a realization of C. 
Alternatively, one can think that for each value of X, there is a continuum of other assets with different realizations 
of C.  
25 With the parameter values used in Figure C1, as X and |[ ]C X get larger, the ordering feature of the salience 
function σ(⋅, ⋅) dominates diminishing sensitivity. However, if we set µc = 3.55 > µx = 3.05, and set ρ = 0.9, then 
diminishing sensitivity dominates in this case. That is, ω1 would decrease in X as X becomes very large.     
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relatively more attractive because its extreme payoffs are overweighted. This prediction is thus consistent 
with the intuition that outlier payoffs are overweighted and this drives choice in favor of the lottery L1.  
 We emphasize that with our experimental data, we cannot test the above prediction. The reason is 
that subjects are not given the choice between the two “prior” lotteries. Rather, they are given the choice 
between two lotteries that are characterized by draws from these two priors. In the next section, we 
examine the predictions of salience theory, conditional on these realized draws.  

C.3 Case 2: Applying Salience Theory When DM is Certain about Payoff Values 

Now consider the more standard case in which the DM has no uncertainty about the payoff values 
in the choice set. The only source of uncertainty in this case is about the outcome of the risky lottery, (X, 
p; 0, 1 − p). There are only two possible states of the world, s ∈ {up, down}. In the up state (with 
probability p), the risky lottery delivers payoff X; and in the down state (with probability 1 − p), the risky 
lottery delivers a payoff of 0. On the other hand, the certain option delivers a payoff of C in both states of 
the world.  

To examine the basic explanatory power of the salience model, we set δ = 0.7 and θ = 0.1  and 
plot the probability of choosing the risky lottery against V(risky lottery) − V(certain option).26 Figure C2 
clearly shows that the probability of choosing the risky lottery increases in the difference between the two 
subjective lottery values.27 This is, however, not a particularly strong test of salience theory, because for θ 
= 0.1, the down state is salient for all choice sets in our experiment.28 Thus, the observed variation in 
behavior across trials is driven in large part by variation in payoffs, without much variation in their 
salience. However, the more noteworthy feature of the figure is that the slope of the probability of risk 
taking curve is greater for the low volatility condition compared to the high volatility condition, which 
resembles Figure 5 in the main text.  

[Place Figure C2 about here] 

 In the basic version of the salience model we outlined above, risk taking is independent of 
whether the choice set is presented in the low volatility or high volatility condition. This invariance result 
from the basic version of the salience theory is driven by the assumption that only payoffs in the current 
choice set affect perception. Efficient coding, on the other hand, predicts that perception depends 
systematically on the payoff distribution to which the subject has recently adapted. In particular, efficient 
coding allows the degree of diminishing sensitivity to fluctuate based on past payoffs, which helps to 
generate the different slopes observed in Figure C2. In order for salience theory to account for this pattern 
of behavior, one could generalize the salience function to allow past payoffs to affect the salience of 
current payoffs, which would explicitly introduce context dependence in the time series, in addition to the 
one in the cross-section. Some guidance for this approach of using past experiences to form a perception 

                                                           
26 The basic predictions are robust to the value of δ ∈(0, 1]. 
27 The salience model does not predict stochastic choice, and thus the model predicts only choice probabilities of 1 
or 0. To generate intermediate probabilities, one could add noise to each payoff, thus generating a “salience + logit” 
or “salience + probit” model. Alternatively, because we pool all data across subjects, heterogeneity in δ can help 
generate a choice curve with intermediate probabilities of risk taking. 
28 This is because of the salient zero payoff delivered by the risky option in each trial. Things do not change 
significantly as we vary θ. For example, if we reduce the degree of diminishing sensitivity by setting θ = 10, then 
the down state remains salient in 93% of trials. Moreover, while we model distortions as a smooth function of the 
difference in salience between the two states, there is still a relatively small amount of variation in the difference in 
salience measures, across trials. 
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of the current choice set is given in Bordalo, Gennaioli, and Shleifer (2017), though applications in that 
model focus mainly on riskless choice.  

C.4 Summary  

A key intuiton from salience theory is that outlier values are salient, and these values attract the 
DM’s attention and distort the weights attached to these values upwards. Indeed, when analyzing the first 
source of uncertainty about the payoff values of X and C that characterize the choice set, we showed (in 
Section C.2) that extreme values of X (both very small and very large values) are overweighted. However, 
these implications apply to an environment in which the DM is choosing between the two lognormal 
priors. These are not the lotteries presented to subjects in our experiment.  

Instead, our experiment presents subjects with lotteries {(X, p; 0, 1 − p), (C,1)}, in which X and C 
are the realized values from the two lognormal priors. This implies there are only two states. When 
applying salience theory to this choice problem, the theory does a good job explaining the data, except for 
the difference in slopes across our two experimental conditions (Figure C2).  
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Figure C1. Distortion factor ω1 for lottery L1 as a function of payoff X. We plot the distortion 
factor ω1(X) from equation (C8) as a function of X. The parameter values are: µx = 3.05, µc = 
2.35, σx = σc = 0.55, ρ = 0.5, δ = 0.7, and θ = 0.1. 
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Figure C2. Probability of risk taking as a function of salience implied lottery valuations. 
We first compute the valuations of the risky lottery and certain option, V(risky lottery) and 
V(certain option), both under salience theory. We use the salience function in (C3) and the 
distortion factor in (C2), with δ = 0.7, θ = 0.1, and s ∈ {up, down}. We then plot the proportion 
of trials on which subjects choose the risky lottery as a function of V(risky lottery) − V(certain 
option), for both the high volatility condition (σx = σc = 0.55) and the low volatility condition (σx 
= σc = 0.19). Data are pooled across trials and subjects. For each of the two experimental 
conditions, we bin the V(risky lottery) − V(certain option) variable into two-hundred bins such 
that each bin has an equal number of trials. The figure is analogous to Figure 5 in the main text. 
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Appendix D: Experimental Instructions 
 

D.1. Instructions for Risky Choice Task 
 

Experiment Instructions 

 Thank you for participating in this experiment. Before we begin, please turn off all cell phones 
and put all belongings away. For your participation, you have already earned $7, and you will have the 
opportunity to earn more money depending on your answers during the experiment.  
 
In the experiment, you will be asked to make a series of decisions about choosing a “risky gamble” or a 
“sure thing”. The risky gamble will pay a positive amount with 59% chance, and $0 with 41% chance. 
The amount shown for the sure thing will be paid with 100% chance, if chosen. Below is an example 
screen from the experiment: 

 
       $0 

    
 
                                         

  
     $10.42 

 
 
 
 

      $22.51 
 
 
In this example, the risky gamble pays $22.51 with 59% chance, and $0 with 41% chance. The sure thing 
pays $10.42 with 100% chance. You will be asked to select one of the two options for each question in 
the experiment. The experiment is broken down into eight parts, and each part contains sixty questions.  
 
At the end of the experiment, one trial will be randomly selected, and you’ll be paid according to your 
decision on that trial. For example, if the above trial was chosen, and you selected the sure thing you 
would be paid a total of $10.42 + $7 = $17.42. If instead you chose the risky gamble, you’d be paid either 
$7 or ($22.51 + $7) = $29.51, depending on which outcome the computer randomly selects. Before we 
begin, you will see 10 practice trials to familiarize yourself with the software. These 10 practice trials will 
not count towards the real experiment.  
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D.2. Instructions for Riskless Choice Task 
 
 

Experiment Instructions 

 Thank you for participating in this experiment. Before we begin, please turn off all cell phones 
and put away all belongings until the end of the experiment. For your participation, you have already 
earned $7, and you will have the opportunity to earn more money depending on your answers during the 
experiment.  

 

In the experiment, you will see a series of numbers and will be asked to classify whether the number is 
larger or smaller than the number “65”. If the number is larger than 65, press the “?” key, and if it is 
smaller than 65, press the “z” key. At the end of the experiment, you will be paid depending on the speed 
and accuracy of your classifications. Specifically, you will be paid: 

 

Payout = $(20×accuracy – 10×avgseconds), 

 

where “accuracy” is the percentage of trials where you correctly classified the number as larger or smaller 
than 65. “avgseconds” is the average amount of time it takes you to classify a number throughout the 
experiment, in seconds. For example, if you correctly classified all trials and it took you 0.3 seconds to 
respond to each question, you would earn $(20×100% − 10×0.3) = $17.00 (plus the $7 show-up fee). If 
instead you only answer 75% of the questions accurately and took 1 second to respond to each question, 
you would be paid $(20×75% − 10×1) = $5.00 (plus the $7 show-up fee). Therefore, you will make the 
most money by answering as quickly and as accurately as possible. 

 

The experiment will be separated into sixteen parts, and each part will contain 80 trials. In between each 
part, you can take a short (~1 minute) break, and then continue at your own pace. When you finish all 
sixteen parts, please raise your hand and do not disturb other subjects. 

 

Before you begin the experiment, you will go through 10 practice trials to familiarize yourself with the 
software. These 10 practice trials will not be counted when computing your final payout.    
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