Corporate Finance Data
&
The Role of Dynamic Panels

Mark Flannery, University of Florida
Kristine W. Hankins, University of Kentucky
Panel Data

- Fixed Effects Matter

- Growing Focus on Methodology
 - Peterson, RFS 2009
 - Wintoki, Linck, & Netter, JFE 2012
 - Gormley & Matsa, Working paper
Dynamic Panel Prevalence

- Payout
- Capital Structure
- Cash Flow & Investments
- Corporate Governance/Ownership
- Banking & Financial Development
 - More complicated econometrics
Resources

- **This paper**
 - *Journal of Corporate Finance*, forthcoming
 - Also on SSRN

- **Slides & Further References:**
 - http://gatton.uky.edu/faculty/hankins/
 - Google: Kristine Hankins, U of Kentucky
Dynamic Panel Issues

\[y_{it} = y_{it-1} + X_{it} + F_i + \varepsilon_{it} \]

Lag \hspace{2cm} Fixed Effect

\[y_{it} = fn(F_i) \hspace{2cm} y_{it-1} = fn(F_i) \]

Correlation between lag and FE creates a bias

Ignoring FE creates omitted variable problem
Dynamic Panel Issues

Demean

\[y_{it} - y_i = (y_{it-1} - y_{i-1}) + (X_{it} - X_i) + (\varepsilon_{it} - \bar{\varepsilon}_i) \]

- Short panel bias

\[\bar{\varepsilon}_i = \frac{1}{T} \sum \varepsilon_{it} \quad (including \ \varepsilon_{it-1}) \]

First difference

\[y_{it} - y_{it-1} = (y_{it-1} - y_{it-2}) + (X_{it} - X_{it-1}) + (\varepsilon_{it} - \varepsilon_{it-1}) \]

Correlation still exists

Creates downward bias in lag coef. estimate
Example of Short Panel Bias

- Partial adjustment toward target leverage

\[
MDR_{i,t+1} = (1 - \lambda) MDR_{i,t} + (\lambda \beta) X_{i,t} + \lambda F_i + \delta_{i,t+1}
\]

- \(MDR \): market debt ratio
- \(\lambda \): adjustment speed
- \(X \): firm controls
- \(F \): fixed effect
Degree of Bias?

- How much does panel length matter?
- Can’t compare short and long panel firms
- Same data estimated over different horizons

30 years of data

10 year panels

5 year panels
<table>
<thead>
<tr>
<th>Panel Length</th>
<th>OLS</th>
<th>FE</th>
<th>BB</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Year Panels</td>
<td>13%</td>
<td>25%</td>
<td>15%</td>
</tr>
<tr>
<td>10 Year Panels</td>
<td>13%</td>
<td>44%</td>
<td>18%</td>
</tr>
<tr>
<td>5 Year Panels</td>
<td>13%</td>
<td>66%</td>
<td>18%</td>
</tr>
</tbody>
</table>

Same Data, Varied Panel Length

Adjustment Speed
Possible Solutions

■ Ignore short panel bias
 – FE

■ Instrument
 – Traditional
 – GMM
 ■ Difference: Arellano and Bond ’91
 ■ System: Blundell and Bond ’98
 ■ Long difference: Hahn, Hausman, and Kuersteiner ’07
 Huang and Ritter ‘09
Instrument for Endogeneity

- Arellano Bond ("Differences" GMM):
 - Lagged levels \((y_{i2}, y_{i1}) \) are valid instruments for first differenced variables

- Blundell Bond ("System" GMM):
 - Lagged differences \((y_{i2} - y_{i1}) \) also valid for levels eq.

- Long Difference:
 - \(LD_{ALL} : (y_{it} - y_{i1}) = \delta (y_{it-1} - y_{i0}) + (v_{it} - v_{i1}) \)
 - \(LD_4 : (y_{it} - y_{it-4}) = \delta (y_{it-1} - y_{it-5}) + (v_{it} - v_{it-4}) \)
Possible Solutions

- Ignore short panel bias
 - FE *Bias depends on T*

- Instrument
 - Traditional *Hard to find*
 - GMM
 - Diff (Arellano Bond); System (Blundell Bond)
 - Long diff *Untested in unbalanced panels*

- Correct for bias
 - Bias-corrected LSDV (LSDVC) *Assumes exogeneity*
 - Kiviet ’95, Bruno ’05

- No 2nd Order Serial Corr.
Best in Corp Fin?

- **Existing research**
 - OLS < FE < AB < BB < LSDVC or LD
 - Econometrics Lit: Simple models
 - IID errors, 0 or 1 RHS variable

- **Corporate Finance: More complicated**
 - Multiple independent variables
 - Correlated with one another
 - Slow-changing
 - Endogenous
Methodology

- Generate data
 - Parameters + randomly generated errors

- Estimate
 - OLS, FE, GMM_{AB}, GMM_{BB}, LD_4, LD_{ALL}, LSDVC

- Save estimates, repeat 500 times

- Compare estimates and true values
 - RMSE
Simulate Data

- Specify ‘true’ model and parameters

\[y_{it} = \gamma y_{it-1} + \sum \beta_j x_{ijt} + \eta_i + \varepsilon_{it} \]

Lag Multiple Xs FE Error

\[x_{ijt} = \rho x_{ijt-1} + \alpha_1 y_{it-1} + \alpha_2 \eta_i + \xi_{ijt} \]

Endogeneous

\[\varepsilon_{it} = \delta_1 \varepsilon_{it-1} + \delta_2 \varepsilon_{it-2} + \omega_{it} \]

Serial Correlation
Overview of Simulations

- Corporate Panel Structure
 - Panel length
 - Persistence of lag
 - Exogenous variable structure (Xs covary)

- Common Limitations
 - Unbalanced panels
 - Missing observations
 - Dependent variable censoring or clustering

- Endogeneity, 2nd Order Serial Correlation
IID, T=6
IID, T=12
IID, $T=30$
IID, T=6

The diagram shows the RMSE (Root Mean Square Error) for different methods: OLS, FE, AB, BB, LD, LD4, and LSDVC. The methods are compared for their performance with two types of models: Lag and Exo X.
Compustat Innovations, $T=6$
What Changed??

- Errors no longer IID for Xs
 \[x_{ijt} = \rho_j x_{ijt-1} + \xi_{ijt} \]

- Drawn from joint normal distribution
 - Compustat var-cov matrix
 - Size of error term varies
 - Xs covary
Large Errors with Sluggish Variables
Compustat Innovations, $T=12$
Compustat Innovations, T=30
Common Characteristics of CRSP-Compustat Data

- Unbalanced panels
- Missing observations
- Dependent variable censoring
- Dependent variable clustering
- LSDVC assumes exogeneity
- BB is invalidated by 2nd order serial corr
Endogeneity

- Wintoki, Linck, & Netter JFE 2012

\[
x_{ijt} = \rho x_{ijt-1} + \alpha_1 y_{it-1} + \alpha_2 \eta_i + \xi_{ijt}
\]

Lag, Fixed Effect

- “Low” Endogeneity \(\alpha_1 = \alpha_2 = 0.01 \)
- “High” Endogeneity \(\alpha_1 = \alpha_2 = 0.05 \)

- Wooldridge test for exogeneity
No Endo

T=12, Compustat Innovations

RMSE

OLS FE AB BB LD LD4 LSDVC

Lag
Exo X
Low Endo
T=12, Compustat Innovations

![Graph showing RMSE for different models: OLS, FE, AB, BB, LD, LD4, LSDVC. The graph compares the performance of these models with 'Lag', 'Exo X', and 'Endo X'. Some models are circled for emphasis.]
Endo + Corp Fin Issues

- Unbalanced
 - Endo vars coefficients difficult to estimate
 - No methodology is remotely accurate
 - BB, LD, LSDVC best
 - But only reliable for low lag persistence ($\gamma=0.2$)
Endo + Corp Fin Issues

- **Missing**
 - BB best, FE only with low persistence

- **Censoring**
 - BB best, FE only if research interest is Xs

- **Clustering**
 - FE outperforms BB
 - But only tested on balanced panel
Although Blundell Bond (BB) dominates with endogeneity
- IVs are invalid with 2nd order serial corr
- How important?

Modify basic error term \((\delta_1 = 0.10, \delta_2 = 0.05)\)
\[
\varepsilon_{it} = \delta_1 \varepsilon_{it-1} + \delta_2 \varepsilon_{it-2} + \omega_{it}
\]

Evaluate with varying endogeneity
- No, Low, and High
2nd Order Serial Corr
Low endogeneity
2nd Order Serial Corr

- LSDVC and FE best without endo
- BB slightly less accurate on lags
 - Not a large shift
- BB > LD (designed for serial corr!)
 - At least at T=12
Conclusions

- Econometrics matter
- Caution!!
 - Short panel bias exists
 - Sluggish variables difficult to estimate
 - AB problematic with endogeneity
 - Wooldridge endogeneity test
- Best Choices
 - No endo: LSDVC, BB
 - With endo: BB, FE