Corporate Finance Data & The Role of Dynamic Panels

Mark Flannery, University of Florida Kristine W. Hankins, University of Kentucky

Panel Data

Fixed Effects Matter

Growing Focus on Methodology

 Peterson, RFS 2009
 Wintoki, Linck, & Netter, JFE 2012
 Gormley & Matsa, Working paper

Dynamic Panel Prevalence

Payout
Capital Structure
Cash Flow & Investments
Corporate Governance/Ownership
Banking & Financial Development

More complicated econometrics

Resources

This paper

- Flannery and Hankins, "Estimating Dynamic Panel Models in Corporate Finance"
 - Journal of Corporate Finance, forthcoming
 - Also on SSRN

Slides & Further References:

- <u>http://gatton.uky.edu/faculty/hankins/</u>
 - Google: Kristine Hankins, U of Kentucky

Dynamic Panel Issues

$$y_{it} = y_{it-1} + X_{it} + F_i + \mathcal{E}_{it}$$

$$Lag \qquad Fixed \\ Effect$$

$$y_{it} = fn(F_i) \longrightarrow y_{it-1} = fn(F_i)$$

Correlation between lag and FE creates a bias Ignoring FE creates omitted variable problem

Dynamic Panel Issues

Demean

$$y_{it} - \overline{y_i} = (y_{it-1} - \overline{y_{i-1}}) + (X_{it} - \overline{X_i}) + (\varepsilon_{it} - \overline{\varepsilon_i})$$

Short panel bias

$$\overline{\varepsilon_i} = \frac{1}{T} \sum \varepsilon_{it} \quad (including \ \varepsilon_{it-1})$$

First difference

$$y_{it} - y_{it-1} = (y_{it-1} - y_{it-2}) + (X_{it} - X_{it-1}) + (\varepsilon_{it} - \varepsilon_{it-1})$$

Correlation still exists

Creates downward bias in lag coef. estimate

Example of Short Panel Bias

Partial adjustment toward target leverage

 $MDR_{i,t+1} = (1 - \lambda)MDR_{i,t} + (\lambda\beta)X_{i,t} + \lambda F_i + \delta_{i,t+1}$

MDR ▲ market debt ratio
λ adjustment speed
X firm controls
F fixed effect

Degree of Bias?

How much does panel length matter?
Can't compare short and long panel firms
Same data estimated over different horizons

Same Data, Varied Panel Length

Adjustment Speed

	<u>OLS</u>	<u>FE</u>	<u>BB</u>
30 Year Panels	13%	25%	15%
10 Year Panels	13%	44%	18%
5 Year Panels	13%	66%	18%

Possible Solutions

- Ignore short panel bias
 FE
- Instrument
 - Traditional
 - GMM
 - Difference: Arellano and Bond '91
 - System: Blundell and Bond '98
 - Long difference: Hahn, Hausman, and Kuersteiner '07 Huang and Ritter '09

Instrument for Endogeneity

$$y_{i4} - y_{i3} = (y_{i3} - y_{i2}) + (\varepsilon_{i4} - \varepsilon_{i3})$$

Arellano Bond ("Differences" GMM):

- Lagged levels (y_{i2}, y_{i1}) are valid instruments for first differenced variables
- Blundell Bond ("System" GMM):
 - Lagged differences $(y_{i2} y_{i1})$ also valid for levels eq.

Long Difference:

 $- LD_{ALL}: (y_{it} - y_{i1}) = \delta (y_{it-1} - y_{i0}) + (v_{it} - v_{i1})$

 $-LD_4: (y_{it} - y_{it-4}) = \delta (y_{it-1} - y_{it-5}) + (v_{it} - v_{it-4})$

Possible Solutions

Ignore short panel bias

- FE Bias depends on T
- Instrument
 - Traditional Hard to find
 - GMM
 - Diff (Arellano Bond); System (Blundell Bond)

No 2nd Order Serial Corr.

- Long diff Untested in unbalanced panels
- Correct for bias
 - Bias-corrected LSDV (LSDVC) Assumes exogeneity
 - Kiviet '95, Bruno '05

Best in Corp Fin?

Existing research -OLS < FE < AB < BB < LSDVC or LD– Econometrics Lit: Simple models ■ IID errors, 0 or 1 RHS variable Corporate Finance: More complicated – Multiple independent variables Correlated with one another - Slow-changing – Endogenous

Methodology

Generate data Parameters + randomly generated errors Estimate - OLS, FE, GMM_{AB}, GMM_{BB}, LD₄, LD_{ALL}, LSDVC Save estimates, repeat 500 times Compare estimates and true values - RMSE

Simulate Data

Specify 'true' model and parameters $y_{it} = (\gamma y_{it-1} + \Sigma \beta x_{ijt} + \eta_i) + \varepsilon_{it}$ Lag Multiple Xs FE **Error** $\mathbf{x}_{ijt} = \rho \mathbf{x}_{ijt-1} + \alpha_1 \mathbf{y}_{it-1} + \alpha_2 \eta_i + \xi_{ijt}$ **Endogeneous** $\varepsilon_{it} = (\delta_1 \varepsilon_{it-1} + \delta_2 \varepsilon_{it-2}) + \omega_{it}$ **Serial Correlation**

Overview of Simulations

Corporate Panel Structure

- Panel length
- Persistence of lag
- Exogenous variable structure (Xs covary)
- Common Limitations
 - Unbalanced panels
 - Missing observations
 - Dependent variable censoring or clustering

Endogeneity, 2nd Order Serial Correlation

Compustat Innovations, T=6

What Changed??

Errors no longer IID for Xs

 $\mathbf{x}_{ijt} = \rho_j \mathbf{x}_{ijt-1} + \boldsymbol{\xi}_{ijt}$

Drawn from joint normal distribution
 Compustat var-cov matrix
 Size of error term varies
 Xs covary

Large Errors with Sluggish Variables

Compustat Innovations, T=12

Compustat Innovations, T=30

Common Characteristics of CRSP-Compustat Data

Unbalanced panels
 Missing observations

Dependent variable censoring
 BB better for
 Lag Dep Var

LSDVC assumes exogeneity
 BB is invalidated by 2nd order serial corr

Endogeneity

• Wintoki, Linck, & Netter JFE 2012 $x_{ijt} = \rho x_{ijt-1} + \alpha_1 y_{it-1} + \alpha_2 \eta_i + \xi_{ijt}$ Lag, Fixed Effect

- "Low" Endogeneity $\alpha_1 = \alpha_2 = 0.01$ - "High" Endogeneity $\alpha_1 = \alpha_2 = 0.05$

Wooldridge test for exogeneity

No Endo T=12, Compustat Innovations

Low Endo T=12, Compustat Innovations

High Endo T=12, Compustat Innovations

Endo + Corp Fin Issues

Unbalanced

- Endo vars coefficients difficult to estimate
 - No methodology is remotely accurate
- BB, LD, LSDVC best
 - But only reliable for low lag persistence (γ =0.2)

Endo + Corp Fin Issues

Missing – BB best, FE only with low persistence Censoring – BB best, FE only if research interest is Xs Clustering – FE outperforms BB But only tested on balanced panel

2nd Order Serial Corr

Although Blundell Bond (BB) dominates with endogeneity - IVs are invalid with 2nd order serial corr – How important? • Modify basic error term $(\delta_1 = 0.10, \delta_2 = 0.05)$ $\varepsilon_{it} = \delta_1 \varepsilon_{it-1} + \delta_2 \varepsilon_{it-2} + \omega_{it}$ Evaluate with varying endogeneity – No, Low, and High

2nd Order Serial Corr

Low endogeneity

2nd Order Serial Corr

LSDVC and FE best without endo
 BB slightly less accurate on lags

 Not a large shift

 BB > LD (designed for serial corr!)

 At least at T=12

Conclusions

Econometrics matter

- Caution!!
 - Short panel bias exists
 - Sluggish variables difficult to estimate
 - AB problematic with endogeneity
 - Wooldridge endogeneity test

Best Choices

- No endo: LSDVC, BB
- With endo: BB, FE