
Estimating dynamic panel models in corporate finance

Mark J. Flannery a, Kristine Watson Hankins b,⁎
a University of Florida, Warrington School of Business, P.O. Box 117168, Gainesville, FL 32611-7168, United States
b University of Kentucky, 445K Gatton College, Lexington, KY 40506, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 February 2012
Received in revised form 12 September 2012
Accepted 17 September 2012
Available online 24 September 2012

Dynamic panel models play a natural role in several important areas of corporate finance, but the
combination of fixed effects and lagged dependent variables introduces serious econometric bias.
Several methods of counteracting these biases are available and these methodologies have been
tested on small datasetswith independent, normally-distributed explanatory variables. However, no
one has evaluated the methods' performance with corporate finance data, in which the dependent
variablemay be clustered or censored and independent variablesmay bemissing, correlatedwith
one another, or endogenous.We find that the data's properties substantially affect the estimators'
performances. We provide evidence about the impact of various data set characteristics on the
estimators, so that researchers can determine the best approach for their datasets.
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1. Introduction

Dynamic panel models play an increasingly prominent role in corporate finance research. Empirically understanding payout
policy, capital structure, or investment decisions arguably requires the use of firm fixed effects to control for unobserved,
time-invariant differences across firms.1 Yet uncorrected coefficient estimates for a dynamic panel model can be severely biased.
Following on the observations of Nerlove (1967), Nickell (1981) established that OLS estimates of the lagged dependent variable's
coefficient in a dynamic panel model are biased due to the correlation between the fixed effects and the lagged dependent
variable (see also Baltagi, 2008). The bias is inversely related to panel length (“T”), but potentially severe biases remain even with
T=30 (Judson and Owen (1999)). Compustat firms have a mean (median) of 15 (11) years of annual data, well short of the
number of observations required to make the bias negligible. Even when the researcher's primary concern lies elsewhere, a biased
coefficient on the lagged dependent variable renders the other coefficient estimates suspect. As such, the short panel bias is a
significant concern, and questions requiring dynamic panel models constitute some of the most contentious and unresolved areas
of financial research.

The potential importance of choosing an appropriate estimation method for a dynamic panel model can be illustrated by
recent efforts to estimate dynamic panel models of corporate leverage. Welch (2004) concludes that firms do not adjust toward
target leverage; Fama and French (2002) estimate that firms adjust between 7 and 18% each year; Lemmon et al., (2008) estimate
about 25% annually; Huang and Ritter (2009) estimate 17–23%; Flannery and Rangan (2006) estimate an adjustment speed above
30%. The econometric uncertainties associated with dynamic panel data have made it difficult to achieve consensus on the
importance of adjustment behavior and of the factors affecting target leverage ratios. Similar problems exist in other areas of
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corporate finance research such as corporate governance (Wintoki et al., (2012)), cash management (Dittmar and Duchin
(2010)), and investment financing (Bond et al., 2003), as well as growth and banking research.

Of course, econometric techniques have evolved to correct these biases, including instrumental variables (IV), generalizedmethod
of moments (GMM) estimators, long differencing (LD), and bias correction formulae. These methods have been tested on small
datasets, most of which have at most one, normally distributed independent variable. Yet corporate finance studies include multiple
independent variables, of which many exhibit endogeneity and serial correlation. Therefore, an estimator's performance in simple
Monte Carlo simulationsmay not apply tomore complex empirical analysis.We examine the statistical properties of seven alternative
methods for estimating dynamic panel models: OLS, standard fixed effects (FE) estimation, Arellano and Bond's (1991) difference
GMM, Blundell and Bond (1998) system GMM, two variations of long differencing (Hahn et al., 2007, Huang and Ritter, 2009), and
corrected least-squares (Kiviet, 1995, Bruno, 2005). By simulating data that resembles “real” corporate finance data, we evaluate the
performance of these estimators under conditions that are likely to apply to corporate finance research topics. Our goal is to provide
sufficient analysis that corporate empiricists can identify the estimation technique most appropriate to their data.

The paper is organized as follows. Section 2 illustrates the importance of dynamic panel estimation biases in the context of
firms' capital structure choices. Section 3 explains the econometric issues and describes existing methods for addressing them.
Like Petersen (2009), we utilize Monte Carlo simulations to assess the performance of various estimators in different situations.
Section 4 describes howwe simulate datasets. In addition to a straightforward set of independent and identically distributed (iid)
simulated datasets, we also simulate datasets using a variance–covariance structure generated from actual Compustat variables.
Section 5 presents some initial results. First, we confirm that most of the proposed estimation methods yield reasonably accurate
coefficient estimates when data and regression residuals are generated from iid error distributions. When the simulated explanatory
variables mimic Compustat data, the estimated coefficient on the lagged dependent variable remains reliable, but estimation errors
for some of the other explanatory variables' coefficients increase dramatically. In Section 6, we evaluate each estimator in the
presence of common corporate data features, such as missing observations, unbalanced panel lengths, and dependent variable
censoring. One estimation method (Kiviet's (1995) corrected least squares dependent variable, or LSDVC) emerges as the most
accurate methodology across all these dataset conditions and Blundell and Bond's (1998) system GMM estimator is often the second
best choice.

Unfortunately, both have limitations. Not only does LSDVC's computer memory requirement make it difficult to apply in large
datasets, it assumes exogenous regressors. Blundell Bond GMM (like Arellano Bond GMM) assumes an absence of second order
serial correlation. In Section 7, we explore how violating these assumptions affects the performance of all seven estimators. Both
endogenous regressors and second-order serial correlation seriously compromise many of the estimation methodologies,
consistent with the theoretical literature. Perhaps surprisingly, these complications can be large enough that there are occasions
when the much maligned fixed effects estimator performs best. Section 8 concludes by offering guidance about the best way to
approach dynamic panel estimation in a corporate finance context.

2. An example of short panel bias

This section uses a partial adjustment model of capital structure to demonstrate the severity of the short panel bias and to
illustrate the need for appropriate econometric procedures. Fischer et al. (1989) argue that adjustment costs prevent firms from
adjusting completely to their optimal leverage each period. An appropriate regression specification therefore must include a lagged
dependent variable to control for the prior period's capital structure. At the same time, the available data do not necessarily capture all
relevant firm characteristics, perhaps includingmanagerial risk aversion, the firm's governance structure, or cash-flow characteristics.
MacKay and Phillips (2005) and Lemmon et al., (2008) conclude that fixed effects must be used to control for unobservable,
time-invariant features of the firm. Yet the combination of a lagged dependent variable and firm fixed effects introduces a bias which
can be substantial with short panels.

To illustrate this “short panel bias,” assume that a firm's capital structure adjusts according to

MDRi;tþ1−MDRi;t ¼ λ MDRi;tþ1
�−MDRi;t

� �
þ δi;tþ1 ð1Þ

where MDR is the ith firm's market debt ratio: the ratio of interest bearing debt to the sum of interest bearing debt plus the
market value of equity,

MDR* is the firm's target debt ratio,
λ is the adjustment speed toward the target, and
δ is the error term.

If target leverage depends linearly on a set of observed and unobserved firm characteristics, we can write

MDRi
� ¼ βXi þ Fi

where Xi is a vector of observable firm-specific determinants of the target MDR, β is a vector of coefficients, and Fi is a firm fixed
effect. Substituting this expression for MDR* into Eq. (1) yields

MDRi;tþ1 ¼ λβð ÞXi;t þ λFi þ 1−λð ÞMDRi;t þ δi;tþ1: ð2Þ
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Following Flannery and Rangan (2006), X consists of earnings before interest and taxes scaled by total assets, market to book,
depreciation scaled by total assets, the natural log of total assets (deflated to 1983 dollars), fixed assets (net PPE) scaled by total
assets, an indicator for positive research and development (R&D) expenses, R&D expense scaled by total assets, and the industry
median debt ratio for the firm's Fama and French (1997) industry.

Although we do not know the “true” coefficient values in Eq. (2), we can assess the sensitivity of estimated values to variations
in the length of panels. The sample consists of firms with at least 30 years of continuous data from the annual CRSP/Compustat
database during the period 1998–2004.2 Following standard practice, we exclude financial firms (SIC codes 6000–6999),
regulated utilities (SIC codes 4900–4999), firms with undefined Compustat formats (format codes 4, 6), and foreign firms (format
code 5). We omit firm-years with a negative book value of equity or missing data for long-term debt, debt in current liabilities, or
any of the leverage determinants, X. Size, measured as the log of total assets, is the one variable that is not a ratio and it is deflated
to 1983 dollars with the consumer price index from the Bureau of Labor Statistics. To minimize the potential impact of outliers,
the dependent variables and regressors are all winsorized at the 1st and 99th percentiles. The final sample includes 19,140 firm
years from 638 firms, each with 30 years of data. We retain the first 30 observations for each firm.

We estimate regression Eq. (2) using three alternative methodologies: OLS (which ignores fixed effects entirely), a standard
fixed effects model (which ignores the short panel bias), and Blundell and Bond's (1998) system GMM method (BB). Panel A of
Table 1 presents estimation results for the 638 firms with 30 years of data. In Panels B and C, each firm's data are subdivided into
multiple “imaginary” firms. For each Compustat firm in Panel A, we create three artificial “firms” in Panel B using the real firm's
data from years 1–10, 11–20, and 21–30 respectively. Panel C carries this process further, creating six “firms” (years 1–5, 6–10, etc.)
fromeach long-lived Compustat firm. Except for a “firm ID” variable that determines panel length, the data are identical across the three
panels in Table 1. We thus can assess how panel length affects the various estimations when the underlying explanatory variables are
otherwise identical.

Panel A shows that the estimated adjustment speed varies quite a lot across the different econometric techniques, from a low
of 13% (≈1–.871) for OLS to a high of 25% (≈1–.752) for FE. With Panel B's shorter panel length (T=10) the OLS estimate is
unchanged (as expected, since OLS ignores the unobserved firm heterogeneity that introduces a short panel bias in dynamic
data). With the inclusion of firm fixed effects (FE), the estimate rises from 25% (≈1–.752 in Panel A) to 44% (≈1–.559).
Meanwhile, the BB estimate rises only slightly. Panel C shortens the panel length still further, to T=5. The OLS estimates remain
unchanged and the BB estimated adjustment speed remains at 18%, but the FE estimate again rises sharply. With 5-year panels,
the alternative estimates imply adjustment speeds in the range of 13%–66% per year. While the OLS estimates are unaffected by
the short panel issue, they suffer an omitted variable bias from ignoring the firm-level unobserved heterogeneity. Only the BB
estimates both control for unobserved firm effects and are robust to panel length, varying between 15.4% and 18%.

Biased adjustment speed estimates also may affect the coefficients measuring the impact of various firm characteristics on
desired leverage. For example, the estimated coefficient on earnings (EBIT_TA) is negative in all columns of Table 1, but its
statistical significance fades for the BB method as T becomes shorter. Likewise, when Tb30, the firm's market-to-book ratio for
assets (MB) is significant only for the (biased) OLS estimator. In addition, the coefficient on LnTA is statistically significant only
with the FE estimator, and the R&D_TA coefficient is significant only in the OLS estimation.

In sum, at least for this leverage model, estimation methodology significantly affects the inferences drawn from dynamic panel
analysis. The BB method yields a consistent adjustment speed estimate, but the significance of independent variable coefficients
varies with panel length. Is this result the best available, or might other statistical techniques yield more reliable estimates for
dynamic corporate finance panels? We begin by expositing the econometric problem.

3. The econometrics of dynamic panel models

We can generalize Eq. (2) to write a dynamic panel model as

Yit ¼ γYit−1 þ βXit þ Fi þ εit : ð3Þ

Estimating Eq. (3) via OLS yields biased and inconsistent results because OLS omits the fixed effect, Fi. The least squares
dummy variable (or “fixed effect”, FE) estimate controls for the unobserved (time-invariant) heterogeneity, but it also yields
biased coefficient estimates. Since Yit is a function of the fixed effect, the lagged dependent variable is correlated with the error
term (Baltagi (2008)). The within transformation removes the time-invariant unobserved heterogeneity from the model:

Yit−Yi ¼ γ Yit−1−Yi;−1

� �
þ β Xit−Xi

� �þ Fi−Fi
� �þ εit−εið Þ ð4Þ

but introduces a correlation between the transformed lag Yit−1−Yi;−1
� �

and the transformed error εit−εið Þ because the average

error (εi ¼
XT
i¼1

εit) includes εit−1. The estimated γ therefore remains biased. (Some of the GMM estimation methods for dynamic

panels first-difference Eq. (3) to eliminate the fixed effects, but the (differenced) lagged dependent variable remains correlated

2 Firms that survive three decades clearly do not constitute a random sample of all firms, but we ignore the economic aspects of this selection bias in order to
illustrate the sensitivity of estimated coefficients to alternative estimation methods. We thank Kit Baum of Boston College for this suggestion. Huang and Ritter's
(2009) Fig. 5 similarly demonstrates the potential biases associated with alternative methods for estimating dynamic panel models of firm leverage.
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with the differenced residual (ε)). The bias declines with panel length because εit−1 becomes a smaller component of the average
error term as T increases. In other words, with higher T the correlation between the lagged dependent variable and the regression
errors becomes smaller.

Econometric techniques have been derived to correct this short panel bias. A traditional instrumental variables (IV) approach
offers one good option, provided one can identify reliable instruments. Arellano and Bond (1991) use a generalized method of
moments framework to develop valid instruments. They first-difference the panel data to remove the time-invariant fixed effect
and show that the lagged dependent variables' values (levels) constitute legitimate instruments for the first-differenced variable,
provided that the residuals are free from second-order serial correlation. Arellano and Bond's (relatively limited) Monte Carlo
simulations show that their AB (or “difference GMM”) method outperforms OLS and fixed effects (FE) estimators when the regression
residuals are uncorrelated. However, the lagged levelsmay provide little information about the first-differenced variable particularly if
they are serially correlated (Arellano and Bover (1995), Blundell and Bond (1998)),3 Blundell and Bond (1998) suggest an alternative
GMM “system” estimator: in addition to the first-differencing used by Arellano Bond, Blundell and Bond utilize the lagged first
differences as instruments in a non-transformed (levels) equation. Both Arellano Bond and Blundell Bond can handle endogenous
regressors, using the lagged levels or first differences of those variables as instruments.

In part because the AB and BB instruments are invalidated by second-order autocorrelation (Baltagi (2008)), Hahn et al. (2007)
derived a “long difference” instrumental variable estimation technique. Assuming balanced panels, Hahn et al. show that combining
multi-period differencingwith longer lagged instrument choices can produce less biased estimates than theAB or BB approaches. This
derivation assumes balanced panels: each sample firm has the samenumber of observations. Because long differencing is new theory,
no existing empirical or theoretical work evaluates the performance of long differencing in unbalanced panels. In applying the long
difference estimator to unbalanced Compustat panels, Huang and Ritter (2009) use the same differencing interval for all firms,
regardless of their panel lengths. They present results for lags of 4, 8, 18, and 28 years. We implement two variants of the Hahn et al.
concept, as explained in Appendix A. First, we utilize Huang and Ritter's 4-year differencing (LD4), whose relatively short differencing

3 Recall that using weak instruments can result in worse estimates than those derived from un-adjusted variables (Nelson and Startz (1990), Bound et al.
(1995)).

Table 1
Panel length sensitivity. The panel length bias of various econometric specifications is compared for firms surviving at least 30 years. Panel A includes the first
30 years of data for each firm. Panel B (C) divides each firm's data into ten (five) year subgroups. OLS presents the ordinary least squares regression estimates
adjusted for clustering of errors at the firm level, FE presents the fixed effects estimates (sometimes called “least squares dependent variable” or LSDV), and BB
presents the Blundell Bond estimates. Year dummies are included in each specification. MDR is the market debt ratio. EBIT_TA is income before extraordinary
items plus interest expense plus total income taxes, scaled by total assets.MB is the ratio of market to book value. DEP_TA is depreciation and amortization, scaled
by total assets. LnTA is the natural log of total assets, deflated by the consumer price index to 1983 dollars. FA_TA is net PPE, scaled by total assets. R&D_Dum is an
indicator equaling one if research and development expense is positive, else zero. R&D_TA is research and development expense, scaled by total assets. Ind_Median is
the median debt ratio for the firm's Fama and French (1997) industry. P-values are listed in parentheses.

(2)MDRi;tþ1 ¼ λβð ÞXi;t þ λFi þ 1−λð ÞMDRi;t þ δi;tþ1:

Panel A: Full 30 years Panel B: Ten year subgroups Panel C: Five year subgroups

OLS FE BB OLS FE BB OLS FE BB

MDR 0.871 0.752 0.846 0.871 0.559 0.825 0.871 0.337 0.820
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

EBIT_TA −0.033 −0.042 −0.113 −0.033 −0.071 −0.090 −0.033 −0.079 −0.089
(0.004) (0.000) (0.003) (0.004) (0.000) (0.047) (0.004) (0.000) (0.173)

MB −0.005 −0.002 −0.004 −0.005 −0.001 0.000 −0.005 −0.001 0.003
(0.000) (0.036) (0.078) (0.000) (0.555) (0.929) (0.000) (0.718) (0.722)

DEP_TA −0.308 −0.501 −2.243 −0.308 −0.497 −2.248 −0.308 −0.499 −1.818
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.082)

Ln(TA) 0.001 0.017 −0.001 0.001 0.046 0.001 0.001 0.068 0.026
(0.128) (0.000) (0.761) (0.128) (0.000) (0.854) (0.128) (0.000) (0.174)

FA_TA 0.038 0.059 0.173 0.038 0.094 0.416 0.038 0.129 −0.073
(0.000) (0.000) (0.134) (0.000) (0.000) (0.035) (0.000) (0.000) (0.839)

R&D_Dummy 0.001 −0.001 0.033 0.001 −0.002 0.139 0.001 −0.004 0.282
(0.417) (0.797) (0.511) (0.417) (0.612) (0.085) (0.417) (0.340) (0.034)

R&D_TA −0.049 0.004 0.084 −0.049 0.016 −0.360 −0.049 0.089 −0.641
(0.094) (0.932) (0.808) (0.094) (0.775) (0.581) (0.094) (0.266) (0.590)

Ind_Median 0.008 −0.004 −0.385 0.008 0.010 −0.157 0.008 −0.035 0.437
(0.326) (0.737) (0.057) (0.326) (0.514) (0.684) (0.326) (0.076) (0.489)

Constant 0.016 −0.272 0.139 0.016 −0.804 −0.135 0.016 −1.180 −0.682
(0.098) (0.000) (0.302) (0.098) (0.000) (0.490) (0.098) (0.000) (0.168)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
# Obs 19,140 19,140 19,140 19,140 19,140 19,140 19,140 19,140 19,140
# Groups 638 638 1914 1914 3828 3828
Adj speed (1−λ) 13% 25% 15% 13% 44% 18% 13% 66% 18%
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interval maximizes the number of included data points. Second, we use each sample firm's longest available differencing interval
(LD). Because other ways to implement LDwith unbalanced panelsmay be superior to the ones evaluated here, we view these results
as preliminary. While long difference estimators could be adapted to handle endogenous estimators in a manner similar to Arellano
Bond and Blundell Bond, Hahn et al. do not include independent regressors in their simulations and our extensions of their method
assume exogenous regressors.

The techniques discussed so far have concentrated on computing valid instruments with which to remove the correlation
between the transformed lagged dependent variable and the transformed error term. Kiviet (1995) takes a different approach by
computing an explicit, data-dependent correction for the fixed effects bias in short panels. This bias-corrected least squares
dummy variable estimator (LSDVC) removes an approximated small sample bias from the FE estimator. Judson and Owen (1999)
documents that LSDVC dominates AB and BB for balanced panels of all lengths. Bruno (2005) computes the bias correction for
unbalanced dynamic panels, making it possible to include firms that enter and leave the dataset during the study period. LSDVC's
potential disadvantages include its assumption that the regressors are strictly exogenous. Our Monte Carlo simulations provide
the first information (to our knowledge) about how LSDVC performs with multiple independent variables, missing or censored
data, endogeneity, and serially correlated errors.

We evaluate and compare seven econometric methods for estimating dynamic panel models on datasets with a variety of
known characteristics. Table 2 summarizes the underlying assumptions of each estimation methodology.

OLS Ordinary Least Squares ignores the data's panel structure and generally produces an upward-biased coefficient estimate
for the lagged dependent variable in the presence of unobserved heterogeneity (Bond (2002)). We use the Stata
procedure “reg” to generate these coefficient estimates.

FE Fixed Effects incorporates the data's panel structure but ignores the correlation between the lagged dependent variable and
the regression error. FE yields a downward-biased coefficient estimate for the lagged dependent variable (Nickell (1981)).
We use the Stata procedure “xtreg, fe” to generate these estimates.

The following five “advanced” estimators use alternative techniques to avoid the biases associated with FE.

AB Arellano and Bond's (1991) difference GMM first-differences the linear regression model and uses lagged dependent
variable levels to instrument for the first difference of the lag. We employ the Stata procedure ‘xtabond’, which defaults
to using one lag of the exogenous variables as the instrument set.

BB Blundell and Bond's (1998) system GMM estimates a two-equation system of the regression in levels and in first
differences. We use the Stata procedure “xtdpdsys” and limit the maximum number of lags to two.4 We specify the
explanatory variables as predetermined,5 not fully exogenous.

LD4 Four Period Long Differencing replicates the Huang and Ritter (2009) implementation of Hahn et al.'s (2007) estimator.
They consider several differencingwindows, butwe implement their 4-period variation in our simulations because it excludes
the fewest firms (see Appendix A). Our estimates are computed with Stata code kindly provided by Rongbing Huang.

LD Longest Differencing is an alternative adaptation of Hahn et al.'s (2007) balanced panel estimator, in this case allowing for
unbalanced panels. No literature describes how to implement an LD estimator with unbalanced panels; our procedure is
described in Appendix A.

LSDVC Least Squares DummyVariable Correction corrects the biased FE-estimated coefficients, using an estimate of the short-panel
bias computed from each firm's data. It assumes that the independent variables are exogenous. Our estimates are computed
with the user-written Stata procedure, ‘xtlsdvc’ (Bruno (2005)), which requires a vector of coefficient starting values. We
experimentedwith using either theAB or the BB initial estimates, but found that the LSDVC estimates are robust to the initial
matrix selection. We therefore report results derived from AB estimates of the initial coefficient matrix.

The econometrics literature contains Monte Carlo tests of each of these seven methods' efficacy and accuracy, but most of
those studies focus on datasets with at most one exogenous variable and limited variation in the panels' size. For example, Kiviet
(1995) evaluates LSDVC using a balanced panel of one hundred units with T=3 or 6. Corporate finance data sets generally feature
a larger matrix, unbalanced panels, and explanatory variables that might be endogenous or serially correlated. Moreover, the
GMM methods' instruments are theoretically invalid if the regression incorporates second-order serial correlation, but we know
little about the severity of the resulting biases.

This paper exposes seven estimation methods to a variety of dataset features. We compare estimators on the basis of their root
mean squared errors (RMSEs): the square root of the average squared coefficient estimation error. RMSE provides a common
benchmark for comparing dynamic panel estimators (Kiviet (1995), Blundell and Bond (1998), Wooldridge (2009)). We pay
attention to the lagged dependent variable's RMSE, and to the average RMSE on the other estimated coefficients (Section 5.2
discusses some results for individual explanatory variables). In unreported results, our conclusions are unchangedwhenwe evaluate
the estimators' mean absolute errors (MAE).

4 We also tested a one-step Blundell Bond GMM estimator, which yielded larger biases than the reported two-step BB results. Those results remain untabulated.
5 When endogenous variables are introduced in Section 5, we run the Stata xtdpdsys procedure both with all variables specified as predetermined as well as

with the three endogenous variables specified as endogenous. Since the RMSE errors are similar, if not larger, with the second specification, we continue to report
all Blundell Bond results using the predetermined option.
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4. Constructing simulated data

The true model underlying our generated data takes the general form:

yit ¼ γyit−1 þ
XJ

j¼1

βjxjit þ ηi þ εit ð5Þ

where γ and βj are the primary coefficients to be estimated, xjit are explanatory variables, ηi is a firm fixed effect, and εit is the
residual. Unlikemost prior Monte Carlo studies, we includemultiple (j>1) explanatory variables and one of ourmain concerns is the
impact of the explanatory variables' characteristics on estimators for Eq. (5). The explanatory variables evolve according to

xijt ¼ ρjxijt−1 þ α1yit−1 þ α2ηi þ ξijt ; ð6Þ

in which ρj, α1, and α2 are parameters that vary across generated data sets and ξijt is normally distributed. This general specification
permits us to control the explanatory variables' serial correlations (ρj). We can also make some or all of the explanatory variables
endogenous – that is, correlatedwith the lagged dependent variable (yt−1) and the firm fixed effect (ηi) – by setting α1 or α2≠0.We
treat the endogeneity issue in Section 7.1 and meanwhile generate purely exogenous independent variables according to

xijt ¼ ρjxijt−1 þ ξijt : ð6aÞ

Finally, we can examine the effect of serially correlated residuals on the various estimators by varying δ1 and δ2 in

εit ¼ δ1εi;t−1 þ δ2εi;t−2 þωit : ð7Þ

We use various parameterizations of Eqs. (5), (6a), and (7) to generate simulated data as in Arellano and Bond (1991) and
Judson and Owen (1999): start with xji0=0 and yji0=0, generate a panel of length T+10 for each firm and then drop the first 10
observations. We generate 500 datasets under each set of parameter assumptions.6 For each generated dataset, we estimate the
model (5) using each of the seven estimation methodologies and store the estimated γ̂ and β̂ J along with their standard errors.
We then evaluate the performance of the methodologies by comparing these estimates with the true coefficient values used
to generate the simulated dataset. Appendix B provides a summary of the data set parameterizations for which we compare
estimators.

4.1. General principles

We subsequently refer to two broad groups of simulated datasets, which differ in how we treat the explanatory variables. The
“iid” datasets generate each value of xijt independently of the other variables' values. The “Compustat” datasets uses a joint normal
distributionwhose variance–covariancematrix is derived from actual Compustat data to generate the panel of independent regressors.
The iid and the Compustat simulated datasets are constructed using the same basic procedure. Each simulated data set includes a
sample of N=500 firms. Since the panel length (T) is a primary interest, we generate panels of three lengths: T=6, 12, or 30.

• T=6 represents an estimator's performance in shorter panels.
• T=12 corresponds to the median panel length among Compustat firms observed annually.
• T=30 represents a longer Compustat panel, corresponding to Judson and Owen (1999) and to Huang and Ritter's (2009) 28-year
differencing interval.

6 Many readers will be accustomed to seeing Monte Carlo simulations with thousands of dataset “draws”, or more. We limit our analysis to 500 datasets
(replications) for each parameter and model variation since the user-written Stata command for LSDVC (xtlsdvc) is quite computationally intensive and time
consuming. Previous Monte Carlo evaluations of dynamic panel estimators also regularly have used 500 or fewer replications.

Table 2
Methodologies' assumptions. Each of the methodologies we examine is designed to cope with specific dataset features, such as “Unobserved heterogeneity”,
“Dynamic panel data”, etc. The columns in this table indicate whether each methodology is designed to produce appropriate estimates under the indicated
condition.

Unobserved heterogeneity Dynamic panel data Second order serial correlation Unbalanced panel data Endogenous variables

1. OLS No No Yes Yes No
2. Fixed effects Yes No Yes Yes No
3. Arellano Bond Yes Yes No Yes Yes
4. Blundell Bond Yes Yes No Yes Yes
5. Longest diff Yes Yes Yes Assumed, but Untested Assumed, but Untested
6. 4 Period diff Yes Yes Yes Assumed, but Untested Assumed, but Untested
7. LSDVC Yes Yes Yes Yes No
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These choices for N and T imply datasets with between 3000 and 15,000 observations.
We use a random number generator in Stata to generate firm-level fixed effects (η) that are uniformly distributed over the

interval [−1, 1].7 The panel innovations (ε) in Eq. (5) are generated using a N(0,1) distribution. We alternate γ (in Eq. (5))
between values of 0.2 and 0.8 to assess the effect of the dependent variable's serial correlation. In Eq. (5), βj=0.2 for all j, as in Kiviet
(1995). Initially, we set δ1=δ2=0 in Eq. (7) but we vary the values in later analysis to consider the impact of serial correlation in the
residuals. Both the iid and Compustat datasets contain seven independent variables.8

4.2. Simulated “iid” datasets

The Monte Carlo simulations previously used in the econometrics literature to evaluate dynamic panel methodologies often
have included only one, serially-uncorrelated explanatory variable in the simulated model. Because corporate finance is rarely
that simple, we generate iid datasets containing multiple explanatory variables for our baseline analysis. We generate a dynamic
panel based on the stochastic properties of the seven exogenous independent variables in Eq. (1). To capture within-firm persistence,
we amend Eq. (6a) to include firm fixed effects (Ωi) to control for unobserved heterogeneity but assume exogenous regressors:

xijt ¼ ρjxijt−1 þΩij þ ξijt ; ð6bÞ

where Ωij is a firm-specific effect on the value of the jth independent variable at the ith firm. Serial correlation in the explanatory
variables is introduced by estimating Eq. (6b) for each of the seven explanatory variables in Eq. (2) (the sample includes all CRSP/
Compustat firms except utilities and financial firms from 1962 through 2006). Using ρ̂ j estimated fromEq. 6b, we generate exogenous
variables via Eq. (6a) assuming ξijt~N(0, 1). These ρ̂ j are reported in Panel A of Table 3. Our “iid” variables thus have stationarity
derived from Compustat data, but their innovations are independent of one another and all have the same innovation variance.

4.3. Simulated “Compustat” datasets

Corporate data may differ substantially from the assumptions of the iid simulated datasets, which have uncorrelated
explanatory variables with identical volatilities. Yet actual firms' characteristics are likely to be correlated with one another
(e.g. older firms tend to be larger and to have less growth potential (lower M/B)) and the explanatory variables' volatilities
may differ. To capture a more realistic structure in the explanatory variables, we calculate a variance–covariancematrix for the seven
sets of residuals from the estimation of Eq. (6b) and use the Stata command “drawnorm” to generate residuals ξijt, j=1, 7 in Eq. (6a).
In other words, the seven explanatory variables are distributed multivariate normal with the computed variance–covariance matrix
shown in Panel B of Table 3.

Table 3 Panel A indicates that the explanatory variables are quite highly serially correlated within firms. Furthermore, Panel B
indicates the independent variables differ substantially in the variances of their innovations; Depreciation/TA, R&D/TA and
Industry Median have particularly small variances (by comparison, the iid explanatory variables' residual variances are 1.0).

One could imagine other ways to simulate “realistic” corporate data, but this one seems reasonable and allows us to examine
the impact of a non-iid error structure in the measured variables. Although the specific variables relate to the capital structure
literature, they are common control variables in a number of corporate finance contexts and we believe that the estimation results
are applicable to a broader set of corporate finance questions, such as investment, payout policy, or corporate governance.

5. Initial results

This section compares the seven estimation methods across the iid and Compustat-based simulated datasets.

5.1. Estimation results for iid simulated datasets

Westart by comparing the seven estimators using iid datasets constructedwith serially uncorrelated residuals (that is, δ1=δ2=0 in
Eq. (7)). Each estimator is applied to six sets of 500 simulated datasets: three (balanced) panels of length 6, 12, or 30 years, each
with high or low persistence (γ=0.2 or 0.8) for the dependent variable. The criteria for estimator performance are the RMSE of
the lagged dependent variable's coefficient and the average RMSE of the seven independent variable coefficients. These results are
reported in Table 4 and summarized in the left column of Fig. 1. A “better” estimator has a smaller RMSE.

We focus our discussion on the T=12 results, presented in the middle columns of Table 4 and the middle panel of the left
column of Fig. 1 (the other panel lengths yield qualitatively similar results). Consider first the estimated coefficient on the lagged
dependent variable. When γ=0.2, all five advanced methods yield equally accurate estimates of the lagged dependent variable's
coefficient (RMSE≈0.02). When γ=0.8, however, LD4's RMSE quintuples, while the RMSEs of the other GMMmethods and LSDVC
remain approximately unchanged. This sensitivity of the LD4 estimates to the lagged dependent variable's value is noteworthy. LD
also is less accurate for γ=0.8 when T=6 but the other advanced estimators' RMSEs are not very sensitive to the true value of γ.

7 In unreported robustness analysis, we vary the magnitude of the fixed effect and find that this assumption materially affects only the OLS estimates.
8 The seven independent variables are chosen to mimic Flannery and Rangan (2006). However, in unreported robustness analysis, we vary the number of

independent variables and find that this simulation choice does not affect the interpretation.
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Unsurprisingly, FE and OLS estimators perform poorly. Turning to the independent variables' coefficients, all the advanced estimators
have relatively low RMSE (b0.025), but LSDVC is lowest (RMSE≈0.013).9 Note that FE's independent variable coefficients are as
accurate as those of the advanced estimators, despite FE's poor estimates for the lagged variable's coefficient. The impact of longer
panels (moving from top to bottom in Fig. 1) conforms to theory: estimation errors decline for all the panel estimators, including FE.
Differences among the advanced estimators diminish as T rises.

To summarize, the iid results in Fig. 1 and Table 4 indicate that the advanced estimators AB, BB, and LSDVC do their job quite
well when the independent variable's residuals are normally distributed. Although the RMSEs differ slightly across estimation
methods, they are all quite small. FE and LDbecomemore accuratewith longer panels. Both longdifference approaches are affected by
stronger lag persistence. Overall, LSDVC appears to be the best choice.

5.2. Estimation results for Compustat-based simulated datasets

Estimation results from the Compustat-based simulated datasets are reported in Table 5 and plotted in the right half of Fig. 1.
This data differs from the iid data in that the panel innovations (or errors) are drawn randomly using the variance–covariance
matrix of real Compustat variables. Note that all Fig. 1 vertical axes have the same scale for ease of comparison. It is readily seen
that the accuracy of lagged coefficient estimates does not change substantially when we replace iid independent variables with
Compustat-like variables. Thus, the advanced estimators estimate the lagged dependent variable coefficient quite well in practice.10

However, themean RMSE for independent variables' coefficients increases dramatically. Instead of a RMSEb0.05, the estimates' RMSEs
with “Compustat” data sometimes exceed 0.20. Higher T reduces estimation errors with Compustat-style data, but the mean
explanatory variable's coefficient has a large RMSE (≈0.08) even with T=30, compared to 0.01 with iid-based data with the same
panel length. The long differencing methodologies perform relatively poorly, while FE and OLS again do fairly well on the explanatory
variables' coefficients. LSDVC dominates the other estimators for Compustat-based data given its combined performance in estimating
both the lag and independent variables.

Table 6 decomposes the independent variables' average RMSEs, reporting the RMSE for each of the seven individual explanatory
variables separately. Recall that the Compustat variables are not included directly in the simulations. Rather, we use the variance
covariance matrix of these variables to simulate our panel dataset. Some explanatory variables (e.g. those simulated from M/B and
ln(TA)) exhibit RMSEs close to, or below, those attained with the iid datasets. Other variables' coefficients (e.g. those simulated from
Depreciation/TA, R&D/TA, Industry Median) have extremely high estimation errors, which appear to be inversely related to the
variables' within-firm variance.11 The rightmost column in Table 6 reports a strong negative correlation between the explanatory
variables' variances and their coefficients' average RMSEs for all panel lengths (T=6, 12, or 30). This highlights a known limitation of
FE and first differencing approaches, such as AB and BB.WhileWooldridge (2009) notes the difficulty of accurately estimatingmostly
time invariant (or sluggish) variables, this issue is often overlooked in finance. To the extent that researchers are concerned with the
economic significance of the independent variables, those with low within-firm variation may not be reliably estimated.

9 Blundell and Bond (1998) document the poor performance of GMM-style instruments with highly persistent lags for the lagged dependent variable with
smaller panels (small N). However, in our simulations of 500 firms, we find relatively small differences between γ=0.2 or 0.8 for LSDVC, AB, BB, and LD when
T=12 or T=30.
10 Several recent papers challenge the power of partial adjustment models to reject other processes that might be generating corporate data (Chang and
Dasgupta (2009), Iliev andWelch (2010), Elsas and Florysiak (2011)). Our results here indicate that if the data are generated by a dynamic panel model, then the
advanced estimators can estimate at least the autoregressive parameter quite accurately (we address the censored dependent variable issue in Section 6.3).
11 Gormley and Matsa (2012) show that the inclusion of the industry median, a common practice in capital structure research, introduces measurement error
bias. However, we simply use the moment properties of the industry median and thus do not face the omitted variable concern.

Table 3
Compustat variables' properties. This table summarizes the seven Compustat variables used as independent variables. Panel A presents the variables' within firm
serial correlation and Panel B presents the variance–covariance matrix for the residuals. The data is from Faulkender et al. (2012) and spans from 1965 to 2006.

EBIT/TA M/B Depreciation/TA Ln(TA) Fixed assets/TA R&D/TA Industry median

Panel A: Serial correlation properties
Serial correlation 0.455 0.259 0.085 0.844 0.254 0.197 0.690
Std error 0.003 0.003 0.003 0.003 0.003 0.002 0.002

Panel B: Variance–covariance matrix
EBIT/TA 0.223
M/B −0.468 4.470
Depreciation/TA −0.003 0.000 0.002
Ln(TA) 0.010 −0.154 −0.001 3.937
Fixed assets/TA 0.001 0.008 0.000 −0.085 0.029
R&D/TA −0.005 0.012 0.000 −0.003 0.001 0.004
Industry median 0.000 −0.005 0.000 −0.007 0.000 0.000 0.003
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5.3. Implications

The baseline simulations highlight a fewmajor points. The lagged dependent variable is estimated equally well for iid or Compustat
explanatory variables. LSDVC generally is most accurate with respect to the independent variable coefficient estimates while BB is the
next best choice. Further, Table 6 shows that the estimated coefficients are less accurate for explanatory variableswith lowwithin-firm
variation. The mean RMSE for the explanatory variables' coefficients are an order of magnitude larger with Compustat-based
regressors than with the iid (and innovations' variances=1) datasets. The problem derives not from stationarity per se (since the iid
variables share the same stationarity parameters), but with relatively small innovations in an independent variable. This is a serious
concern as many Compustat variables commonly used in corporate finance analysis share this attribute. While FE often exhibits a low
RMSE for the exogenous variables, LSDVC is the overall best option for a balanced dynamic panel on any length with exogenous
Compustat regressors.

A further implication relates to the choice between annual andquarterly data. Theory predicts that longer panels are estimatedwith
greater accuracy. But at the same time, quarterly data almost surely include smaller innovations between periods. So the potential
switch tomore frequent observations may increase the time-invariance of some variables and thus increase the difficulty of estimating
accurate coefficients.12

We now compare alternative estimation methods in the presence of known data challenges.

6. Further investigations of corporate finance dataset properties

Corporate finance datasets commonly include at least some of the following features:

• Unbalanced panels
• Missing observations
• Censored or clustered data

Evaluating the effects of these data features on alternative estimators should help researchers determine which estimators to
use, givenwhat they know about their dataset properties. Given the larger RMSEs associatedwith Compustat-consistent data, we pay
no further attention to iid datasets. We also limit these tests to panels of moderate length (T=12), whichmost closely resembles the
average annual Compustat panel length.

12 Wintoki et al. (2012) also notes the estimation concerns surrounding highly persistence regressors.

Table 4
Balanced panels with iid innovations. For each of the six base parameter variations (T=6, 12, or 30, γ=0.2 or 0.8), 500 dynamic panels are generated. This table
summarizes how each estimation method performs when used to estimate the model with each type of simulated data set. The “Lag RMSE” rows report the
average RMSE of the estimated coefficients on the lagged dependent variable across the 500 simulations. The “Xs RMSE” rows report the average of the seven
explanatory variables' estimated regressions, averaged across the 500 simulations For each method the percentage of the 500 simulations with estimated
coefficients that are larger than the true coefficient are reported in % Lag (Xs) over. Numbers in bold (italics) are the smallest (second-smallest) RMSE for the lag or
Xs, within each column.

T=6 T=12 T=30

Lag value (γ): 0.2 0.8 0.2 0.8 0.2 0.8

OLS Lag RMSE 0.217 0.127 0.217 0.125 0.217 0.123
Xs RMSE 0.029 0.030 0.025 0.026 0.022 0.023
% Lag over, % Xs over 100/20 100/23 100/17 100/21 100/10 100/14

Fixed effects Lag RMSE 0.162 0.242 0.079 0.108 0.032 0.037
Xs RMSE 0.022 0.024 0.014 0.015 0.008 0.009
% Lag over, % Xs over 0/56 0/35 0/65 0/56 0/65 0/67

Arellano Bond Lag RMSE 0.032 0.094 0.017 0.030 0.009 0.010
Xs RMSE 0.029 0.030 0.018 0.018 0.011 0.011
% Lag over, % Xs over 48/52 38/47 45/52 33/51 40/52 23/52

Blundell Bond Lag RMSE 0.026 0.041 0.016 0.026 0.009 0.010
Xs RMSE 0.032 0.032 0.021 0.021 0.011 0.012
% Lag over, % Xs over 58/51 95/58 58/50 93/57 55/53 86/56

Longest difference Lag RMSE 0.043 0.127 0.027 0.035 0.024 0.017
Xs RMSE 0.042 0.042 0.025 0.025 0.021 0.021
% Lag over, % Xs over 36/50 0/52 46/51 17/53 50/50 40/51

4 Period diff. Lag RMSE 0.043 0.127 0.025 0.125 0.019 0.124
Xs RMSE 0.042 0.042 0.017 0.019 0.010 0.012
% Lag Over, % Xs Over 36/50 0/52 16/56 0/54 4/57 0/55

LSDVC Lag RMSE 0.025 0.064 0.013 0.016 0.007 0.005
Xs RMSE 0.024 0.024 0.013 0.014 0.008 0.008
% Lag over, % Xs over 33/50 4/44 45/52 20/51 48/52 45/52
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6.1. Unbalanced panels

Thus far, our simulations have evaluated only balancedpanels, and the same is true formost of the existingMonte Carlo evaluations of
dynamic panel estimators. TheGMMtechniques for estimating dynamic panel coefficients utilize lagged values and lagged differences of
varying degrees (from t−2 all the way back to t=1). Since panel length differences within a dataset affect the availability of lags, they
may also affect the performance of such estimators. To generate unbalanced panels, wemaintain a constant average T=12, but vary the

Fig. 1. Balanced panels. Source: Tables 4 and 5. The left column summarizes the balanced panel simulations with iid innovations and the right column summarizes
the Compustat based simulations. For both high and low persistence (γ=0.2 or 0.8), we present the lag dependent variable RMSE (Lag) as well as the average
RMSE for the seven independent variables (Exo X).
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Table 5
Balanced panels with Compustat innovations. For each of the six base parameter variations (T=6, 12, or 30, γ=0.2 or 0.8), 500 dynamic panels are generated.
This table summarizes how each estimation method performs when used to estimate the model with each simulation. The “Lag RMSE” rows report the average
RMSE of the estimated coefficients on the lagged dependent variable across the 500 simulations. The “Xs RMSE” rows report the average of the seven explanatory
variables' estimated regressions, averaged across the 500 simulations. For each method the percentage of the 500 simulations with estimated coefficients that are
larger than the true coefficient are reported in % Lag (Xs) over. Numbers in bold (italics) are the smallest (second-smallest) RMSE for the lag or Xs, within each
column.

T=6 T=12 T=30

Lag value (γ): 0.2 0.8 0.2 0.8 0.2 0.8

OLS Lag RMSE 0.212 0.112 0.212 0.110 0.212 0.107
Xs RMSE 0.206 0.207 0.157 0.162 0.109 0.118
% Lag over, % Xs over 100/34 100/33 100/33 100/33 100/31 100/32

Fixed effects Lag RMSE 0.158 0.209 0.077 0.089 0.031 0.028
Xs RMSE 0.213 0.213 0.139 0.142 0.081 0.083
% Lag over, % Xs over 0/58 0/51 0/61 0/59 0/61 0/62

Arellano Bond Lag RMSE 0.033 0.108 0.018 0.030 0.010 0.010
Xs RMSE 0.284 0.280 0.188 0.187 0.111 0.111
% Lag over, % Xs over 47/51 32/48 46/52 29/52 39/54 24/55

Blundell Bond Lag RMSE 0.026 0.032 0.017 0.020 0.009 0.007
Xs RMSE 0.318 0.315 0.205 0.205 0.138 0.140
% Lag over, % Xs over 61/50 92/54 63/51 89/55 55/53 79/53

Longest difference Lag RMSE 0.051 0.132 0.027 0.036 0.022 0.018
Xs RMSE 0.434 0.436 0.256 0.258 0.228 0.229
% Lag over, % Xs over 25/51 0/55 46/50 15/53 50/51 42/52

4 Period diff. Lag RMSE 0.051 0.132 0.032 0.126 0.028 0.122
Xs RMSE 0.434 0.436 0.185 0.193 0.102 0.115
% Lag over, % Xs over 25/51 0/55 7/54 0/56 0/58 0/56

LSDVC Lag RMSE 0.024 0.056 0.013 0.013 0.007 0.004
Xs RMSE 0.238 0.235 0.144 0.144 0.081 0.081
% Lag over, % Xs over 35/51 6/49 45/52 25/53 51/52 47/53

Table 6
Magnitude of Compustat innovation and estimation error. We report the average RMSE for each independent variable, averaged across the lag variations of 0.2
and 0.8. Recall that these variables all carry true coefficients of 0.20. Average RMSE row is calculated across all seven independent variables within each
methodology and this average is presented in the remaining tables and figures as the X's RMSE. The Mean RMSE column calculates the average across the seven
methodologies for each independent variable. The correlation is calculated from the independent variables' Mean RMSE and their variance.

OLS FE AB BB LD LD4 LSDVC Mean RMSE Xi's Variance Correlation

Panel A. T=6
EBIT/TAt−1 0.044 0.053 0.071 0.078 0.102 0.102 0.057 0.073 0.223 −0.671
M/Bt−1 0.014 0.014 0.016 0.017 0.023 0.023 0.013 0.017 4.470
Depreciation/TAt−1 0.497 0.510 0.665 0.728 1.161 1.161 0.583 0.758 0.002
Ln(TA)t−1 0.049 0.016 0.016 0.017 0.021 0.021 0.012 0.022 3.937
Fixed assets/TAt−1 0.192 0.153 0.160 0.186 0.280 0.280 0.142 0.199 0.029
R&D/TAt−1 0.342 0.342 0.447 0.508 0.751 0.751 0.385 0.504 0.004
Industry mediant−1 0.305 0.403 0.599 0.683 0.707 0.707 0.461 0.552 0.003
Average RMSE 0.206 0.213 0.282 0.317 0.435 0.435 0.236

Panel B. T=12
EBIT/TAt−1 0.032 0.033 0.047 0.054 0.063 0.046 0.034 0.044 0.223 −0.677
M/Bt−1 0.013 0.007 0.010 0.011 0.015 0.010 0.007 0.010 4.470
Depreciation/TAt−1 0.365 0.342 0.437 0.494 0.650 0.489 0.365 0.449 0.002
Ln(TA)t−1 0.049 0.014 0.010 0.010 0.012 0.013 0.006 0.016 3.937
Fixed assets/TAt−1 0.168 0.103 0.105 0.118 0.171 0.134 0.084 0.126 0.029
R&D/TAt−1 0.263 0.232 0.304 0.331 0.445 0.313 0.246 0.305 0.004
Industry mediant−1 0.227 0.252 0.402 0.417 0.439 0.318 0.266 0.331 0.003
Average RMSE 0.160 0.140 0.188 0.205 0.256 0.189 0.144

Panel C. T=30
EBIT/TAt−1 0.022 0.021 0.031 0.035 0.056 0.027 0.021 0.030 0.223 −0.690
M/Bt−1 0.011 0.005 0.006 0.007 0.013 0.006 0.005 0.008 4.470
Depreciation/TAt−1 0.225 0.204 0.251 0.327 0.589 0.254 0.207 0.294 0.002
Ln(TA)t−1 0.050 0.008 0.006 0.005 0.009 0.011 0.003 0.013 3.937
Fixed assets/TAt−1 0.156 0.060 0.066 0.080 0.139 0.100 0.052 0.093 0.029
R&D/TAt−1 0.178 0.145 0.182 0.236 0.413 0.186 0.147 0.212 0.004
Industry mediant−1 0.153 0.133 0.237 0.283 0.378 0.176 0.133 0.213 0.003
Average RMSE 0.114 0.082 0.111 0.139 0.228 0.109 0.081
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panel lengths so that half of the firms have T=6 and half have T=18. We run 500 replications and present the results in Table 7.
Reassuringly, the degree of imbalance has little impact on estimation accuracy for most methods. LSDVC continues to be the most
accurate estimator while OLS is the least.

6.2. Missing observations

Actual Compustat datasets generally have missing data that require some observations for a given firm to be omitted from the
analysis. We know of only one paper (Frank and Goyal (2009)) that examines the effect of such omissions, and their treatment is
brief. We therefore investigate the issue here. For each of the 500 baseline balanced panels simulated with T=12, we randomly
delete 10% of the firm-year observations.13 We then estimate the coefficients with each of the seven methodologies across the
modified data. Table 7 reports these results. Although the RMSEs are slightly increased for the advancedmethodologies, randomly
missing observations have little impact on most of the estimators.14 LSDVC continues to be the best choice.

6.3. Dependent variable censoring or clustering

We next consider two possibilities that would generate clustered observations for the dependent variable. First, we evaluate
the effects of a censored dependent variable, which is a particularly serious concern given the number of corporate finance
fractional response variables such as leverage or payout ratios (Loudermilk (2007)). Iliev and Welch (2010) emphasize the
importance of bounded dependent variables and Hovakimian and Li (2011) also raise the possibility of hard-wired mean
reversion with censored data. To address this issue, we winsorize the top and bottom 4% of dependent variables for each of the
500 simulated datasets.15 Results are reported in Table 7. Even with this level of censoring, LSDVC and BB remain the most
accurate estimators. This conclusion is consistent with Papke and Wooldridge (2008),which shows linear models can provide
reasonable estimates of average effects for fractional response dependent variables. This is an important finding for any empirical
researchers using censored data — not just those specifically interested in capital structure adjustment models. While censoring
somewhat exacerbates RMSE differences between γ=0.2 and 0.8 for some estimation methods, BB is unaffected and thus may be
the best choice when the level of persistence is unknown.

Next, we construct data sets in which some firms' independent variables are not generated exclusively by the baseline model
(5). We generate 500 datasets according to the baseline model (5), randomly select 10% of the firms and set the dependent
variable to zero for all of those firms' observations. Such zero observations might reflect missing data, some type of selection issue,
or an omitted variable.16 The results are presented in the rightmost two columns of Table 7. This type of random clustering does
not greatly affect the estimation methods' accuracies. AB, BB, and LSDVC perform reasonably well. LD4 is the most accurate when
γ=0.2 but becomes unreliable with stronger persistence and thus should be avoided when γ could be large.

In summary, LSDVC and BB are the best choices across a range of data limitations. LSDVC is preferredwithmissing observations or
unbalanced panels while BB has smaller RMSE when the dependent variable is censored or clustered at zero. Generally, both AB and
LD are reasonable estimators, but LD4 is accurate only for dynamic panels with lower lag persistence.

7. Correlation in the errors

Based on the simulations thus far, LSDVC and Blundell Bond appear to be themost reliable estimators. However, eachmethodology
has a known shortcoming. LSDVC assumes the regressors are exogenous (and independent of the error term) and BB instrumental
variables are invalidated by the presence of second order serial correlation. We next introduce both issues into our simulations and
compare the performance of all seven estimators.

7.1. Endogeneity

Endogeneity is a central issue for corporate empiricists (Roberts and Whited (2011)), and one of our best-performing
estimation methods (LSDVC) assumes strictly exogenous regressors. To extend our analysis to include endogenous independent
variables, we follow Wintoki et al., (2012) by generating three endogenous variables (out of the seven independent variables) as
depending on prior within-firm realizations of the variable as well as both the lagged dependent variable (yt−1) and the firm
fixed effect (η). 17

xijt ¼ ρjxijt−1 þ α1yit−1 þ α2ηi þ ξijt ; for j ¼ 1−3: ð6Þ

13 Systematic missing data due to selection issues is beyond the scope of this analysis.
14 Frank and Goyal (2009, page 23) similarly conclude that “it is remarkable how little change is observed”when they impute values for missing Compustat data.
15 The choice of 4% (or 8% total) mimics the magnitude of censoring found in capital structure partial adjustment models where the dependent variable is
limited to the (0, 1) range.
16 For example, firms may elect zero payout or leverage for reasons other than those modeled and a two-stage model might be more appropriate.
17 We thank an anonymous referee for encouraging us to investigate this issue.
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The other four variables continue to be exogenous:

xijt ¼ ρjxijt−1 þ ξijt ; for j ¼ 4−7: ð6aÞ

The importance of the lag and the fixed effect in Eq. (6) are set to eitherα1=α2=0.01 (low endogeneity) orα1=α2=0.05 (high
endogeneity).

To verify that this modification induces the desired endogeneity, we follow Wintoki et al. (2012) and use the Wooldridge
(2009) test of exogeneity. The Wooldridge test adds future values (t+1) of independent variables to the baseline regression Eq.
(5) and checks whether those values are statistically significant. Future values should not have any predictive power if the
variables are exogenous. Indeed, in our high endogeneity data simulations, all three endogenous variables fail theWooldridge test
in each of the 500 simulations. In the low endogeneity data, at least one of the three endogenous variables fails the Wooldridge
test in more than 80% of the simulated datasets. We also confirm that our baseline simulations (where the variables are not
constructed to have endogeneity) only fail ~5% of the time, in line with the expected rejection of a true null.

Table 8 and the left column of Fig. 2 summarize the results with either high or low levels of endogeneity.18 We report the
average RMSE separately for the exogenous and endogenous variables. Table 8 shows that the endogenous variables' coefficients
are generally estimated with greater error. While endogeneity has little effect on FE and BB, AB exhibits huge difficulties in
estimating coefficients in the presence of even low endogeneity. Surprisingly, LSDVC still appears to be the best choice when there
is low endogeneity and low persistence, despite the fact that it is not designed to work with endogenous regressors. FE is accurate
in estimating both the exogenous and endogenous Xs, but not the lagged dependent variable. Unfortunately, Table 9 shows that
FE estimate accuracy deteriorates when the panels are unbalanced. BB remains the best option for higher levels of endogeneity if
the lagged dependent variable is of interest.

Next we extend our analysis of endogenous regressors by reintroducing the common corporate finance data limitations
described in Section 6. We simulate panels with high endogeneity (α1=α2=0.05) in three of the independent variables and then
evaluate the impact of panel imbalance, missing data, censored data, and dependent variable clustering at zero. Table 9 presents
these results.

The first two columns of Table 9 show how the coefficient estimates are affected when panel length is unbalanced. As in
Section 6.1, we induce a high degree of imbalance. The average panel length remains 12, but half of the observations are T=6 and
half are T=18. Comparing these results to the last two columns of Table 8 (the high endogeneity results), we quickly see that FE is
no longer the dominant means to estimate either exogenous or endogenous X coefficients. Instead we see that BB and LD appear
to be the most robust methodologies for unbalanced panels with endogenous variables. LSDVC continues to be a reasonable
choice as well. However, the endogenous variables' mean RMSE is so large that it would be difficult to make reliable inferences
from these estimates. Looking closer, two things are clear. The RMSE are almost uniformly higher (and often much higher) for an
unbalanced panel. This implies that there isn't a monotonic relationship between panel length and estimate accuracy. The shorter
panels are very difficult to estimate, regardless of methodology. Further, a highly persistence lag structure (γ=0.8) is deleterious
to almost every approach and makes it virtually impossible to get accurate estimates for endogenous variables. These columns
indicate that estimating a highly unbalanced panel with endogeneity should be undertaken with extreme caution.

18 Note that the y-axis scaling of Fig. 2 differs from Fig. 1 to accommodate the higher observed RMSE.

Table 7
Panels with data limitations. For each of the base parameter variations (T=12, γ=0.2 or 0.8), 500 dynamic panels are generated using Compustat innovations.
This table summarizes how each estimation method performs when used to estimate the model with each simulation. The “Lag RMSE” rows report the average
RMSE of the estimated coefficients on the lagged dependent variable across the 500 simulations. The “Xs RMSE” rows report the average of the seven explanatory
variables' estimated regressions, averaged across the 500 simulations. Numbers in bold (italics) are the smallest (second-smallest) RMSE for the lag or Xs, within
each column.

Panel imbalance Missing data Censored data Cluster at zero

Lag value (γ): 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8

OLS Lag RMSE 0.212 0.109 0.212 0.110 0.200 0.098 0.171 0.026
Xs RMSE 0.149 0.152 0.162 0.164 0.150 0.158 0.166 0.269

Fixed effects Lag RMSE 0.073 0.070 0.077 0.089 0.089 0.112 0.089 0.161
Xs RMSE 0.132 0.136 0.147 0.150 0.130 0.135 0.139 0.164

Arellano Bond Lag RMSE 0.017 0.028 0.025 0.072 0.022 0.036 0.022 0.027
Xs RMSE 0.181 0.180 0.217 0.212 0.178 0.180 0.186 0.185

Blundell Bond Lag RMSE 0.015 0.016 0.022 0.025 0.018 0.015 0.029 0.035
Xs RMSE 0.202 0.202 0.239 0.240 0.195 0.199 0.201 0.200

Longest diff Lag RMSE 0.034 0.036 0.036 0.051 0.030 0.045 0.028 0.037
Xs RMSE 0.315 0.318 0.325 0.336 0.245 0.257 0.270 0.272

4 Period diff Lag RMSE 0.032 0.124 0.036 0.127 0.040 0.140 0.019 0.114
Xs RMSE 0.184 0.194 0.253 0.259 0.175 0.181 0.183 0.186

LSDVC Lag RMSE 0.013 0.009 0.017 0.020 0.019 0.030 0.053 0.051
Xs RMSE 0.137 0.137 0.164 0.163 0.138 0.141 0.146 0.148
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The next two columns in Table 9 focus on randomly missing data in a panel with some endogenous regressors. BB is the best
choice regardless of the persistence. Having returned to a balanced panel, we again see that FE is a reasonable estimator for the
independent coefficients when there is low persistence (γ=0.2). However, it is far less accurate when persistence is high and some
observations are missing. LSDVC is accurate for the exogenous regressors but less accurate for the lagged dependent variable in the
presence of endogeneity.

The last four columns in Table 9 illustrate how dependent variable limitations affect the methodologies in the presence of
endogenous variables. For a censored dependent variable, BB is the most accurate estimator overall, with FE again being a good
choice if the coefficients of interest are the independent variables and not the lag. However, FE outperforms BB with fixed panel
lengths when the dependent variable is clustered. These results imply a tradeoff between the two methodologies for empiricists
interested in capital structure, payout, or other areas with clustering at zero and a dynamic panel. Clustering and panel length
distributions should both be considered in choosing between FE and BB estimators.

7.2. Serially correlated regression residuals

Discussions of the AB and BB GMM-style estimators emphasize that second order serial correlation in the residuals renders
their instruments invalid.19 In order to determine the empirical magnitude of this potential problem, we modify the error term in
Eq. (7) and generate data with δ1=0.10 and δ2=0.05 (these values are in line with the level of persistence found in capital
structure data). Comparing the results in Table 10 and the right column of Fig. 2 illustrates the detrimental effect of second order
serial correlation on the GMM estimators. Consistent with theoretical predictions, the GMM estimators perform worse when the
regression residuals are serially correlated (comparing the left columns of Table 10 to the middle columns of Table 5).
Interestingly, LD – designed to sidestep the second order serial correlation concern of AB and BB – also performs worse at least in
balanced panels with T=12. It is worthwhile to note that this form of correlation in the errors has little impact on the estimation
of the exogenous regressors' coefficients. Lastly, there is a sharp difference between the RMSEs associated with a true γ=0.8 and
those associated with γ=0.2: a smaller γ (lower persistence in the dependent variable) generates higher estimation errors. This
is reassuring for the capital structure literature, for which adjustment speeds (1−γ) appear to lie in the neighborhood of 15–25%
range (Lemmon et al. (2008), Huang and Ritter (2009)). GMM estimators thus seem well-suited to estimating capital structure
models, even in the presence of second-order serial correlation.

All else equal, FE and LSDVC are the most accurate estimators in the presence of second order serial correlation if no
endogeneity exists. However as endogeneity increases, FE dominates the alternative choices given our simulation parameters. The

19 Wooldridge (2009) presents a test for serial correlation in the errors.

Table 8
Panels with endogenous explanatory variables. For both low and higher levels of endogeneity and with both adjustment processes (γ=0.2 or 0.8), 500 dynamic
panels are generated using Compustat innovations for a T=12 balanced panel. This table summarizes how each estimation method performs when used to
estimate the model with each simulation. The “Lag RMSE” rows report the average RMSE of the estimated coefficients on the lagged dependent variable across the
500 simulations. The “Exo Xs RMSE” rows report the average of the four exogenous explanatory variables' estimated regressions, averaged across the 500
simulations. The “Endo Xs RMSE” rows report the average of the three endogenous explanatory variables' estimated regressions, averaged across the 500
simulations. Numbers in bold (italics) are the smallest (second-smallest) RMSE for the lag, exogenous Xs, or endogenous Xs, within each column.

Lower endogeneity Higher endogeneity

Lag value (γ): 0.2 0.8 0.2 0.8

OLS Lag RMSE 0.190 0.093 0.156 0.145
Exo Xs RMSE 0.177 0.182 0.184 0.180
Endo Xs RMSE 0.620 0.399 1.901 1.317

Fixed effects Lag RMSE 0.077 0.087 0.069 0.083
Exo Xs RMSE 0.148 0.154 0.149 0.153
Endo Xs RMSE 0.127 0.127 0.149 0.129

Arellano Bond Lag RMSE 0.036 0.038 0.758 0.649
Exo Xs RMSE 0.222 0.219 0.400 0.360
Endo Xs RMSE 1.166 1.145 5.292 4.666

Blundell Bond Lag RMSE 0.016 0.021 0.031 0.029
Exo Xs RMSE 0.226 0.226 0.226 0.227
Endo Xs RMSE 0.183 0.186 0.211 0.224

Longest diff Lag RMSE 0.030 0.043 0.066 0.220
Exo Xs RMSE 0.279 0.282 0.280 0.289
Endo Xs RMSE 0.252 0.392 0.341 1.303

4 Period diff Lag RMSE 0.035 0.138 0.091 0.335
Exo Xs RMSE 0.185 0.198 0.187 0.207
Endo Xs RMSE 0.191 0.371 0.407 1.339

LSDVC Lag RMSE 0.014 0.014 0.097 0.077
Exo Xs RMSE 0.147 0.150 0.156 0.164
Endo Xs RMSE 0.169 0.459 0.662 0.365
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performance of FE warrants some discussion. The five advanced estimators were created to address the known downward bias of FE
estimates in dynamic panels. However, the negative bias depends on the correlation of the transformed lag and the transformed error
(Nickell, 1981). As modeled in our simulations, the second order serial correlation changes this relationship between the two
transformed variables andmitigates the bias. Unfortunately, we cannot conclude that FE as always the best estimator in the presence
of second order serial correlation, because our simulations have not explored the impact of alternative levels of persistence in the
regression residuals. Moreover, serial correlation can lead to incorrect standard errors in FE (Wooldridge (2009)).

7.3. Implications

We conclude that endogeneity and serial correlation pose more than just theoretical challenges. AB and LSDVC are particularly
affected by endogeneity while all of the GMM-style estimators are affected to some extent by second order serial correlation. FE

Fig. 2. Balancedpanelswith endogenous variables and second order serial correlation. Source: Tables 5, 8, and 10. All data uses T=12with Compustat innovations. For high
and low persistence (γ=0.2 or 0.8), we present the lag dependent variable RMSE (Lag), the average RMSE for the four exogenous variables (Exo X), and the average RMSE
for the three endogenous variables (EndoX). The left column summarizes the simulations across varying levels of endogeneitywith the first graph taken fromFig. 1 (T=12,
Compustat). The right column presents the impact of second order serial correlation as the level of endogeneity varies. The y axis is censored for the purpose of readability.
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often provides reliable independent variable estimates and is superior overall for dependent variable clustering, but is highly
sensitive to panel length and imbalance. BB appears to be the best choice in the presence of endogeneity and even (surprisingly)
second order serial correlation if the dataset includes shorter panels.

8. Conclusion: empirical implications for researchers

This paper examines the performance of seven econometric methodologies for estimating dynamic panel models in “realistic”
corporate finance datasets. We consider two methods whose results are thought to be generally biased (OLS and fixed effects
(FE)), plus five “advanced” estimation methods (Arellano Bond (AB), Blundell Bond (BB), longest differencing (LD), four period
differencing (LD4), and least squares dummy variable correction (LSDVC)). Although each of the advanced methodologies has
been tested using simple Monte Carlo studies, this is the first paper to examine their accuracy under the sort of statistical
conditions contained in large corporate finance databases such as unbalanced panels and endogenous regressors. We emphasize
that the long difference estimators have been formally derived only for balanced panels, and that our implementations here (LD, LD4)
should be considered preliminary.

We find that the advanced estimators generally work as advertised in estimating the coefficient on a dynamic panel's lagged
dependent variable when the independent variables are exogenous. Most of the estimators provide small root-mean squared
errors (RMSEs) when estimating a dependent variable's persistence, regardless of the true value (high or low). As expected, OLS
and FE do poorly, on average, in these estimations and FE is affected particularly by shorter panels. More noteworthy is the poor
performance of LD4 when the dependent variable is highly persistent (γ=0.8). LSDVC, AB, and BB have the lowest RMSE in
estimating the lagged dependent variable and are reasonably accurate for the independent variables. FE often is the most accurate
with respect to the exogenous variables, but exhibits much higher errors for the lag.

While the preliminary analysis shows that LSDVC is the most accurate estimator across a range of data limitations, theory
predicts that endogenous explanatory variables will reduce the quality of the LSDVC estimates. We find this to be true, but the
damage is limited to the estimated coefficients on the endogenous variables: LSDVC remains accurate for the lagged dependent
variable and exogenous regressors. FE exhibits low RMSE for the endogenous variables, but is not very accurate for the lagged
dependent variable. BB is reliable regardless of the level of endogeneity or dependent variable persistence and should be the default
choice under these conditions, particularly if the lag coefficient is of interest.

We confirm theoretical predictions that AB and BB perform worse when the true model's residuals exhibit second-order serial
correlation but the change is not dramatic. The increased estimation error is most apparent for the lagged dependent variable's
coefficient; the explanatory variables' RMSEs are largely unaffected. Somewhat surprisingly, FE provides the most accurate estimates
in the presence of second-order serial correlation, with BB a close second. The BB estimates sometimes outperform FE (estimating a

Table 9
Panels with endogenous variables and data limitations. For each of the base parameter variations (T=12, γ=0.2 or 0.8), 500 dynamic panels are generated using
Compustat innovations and high endogeneity (or α1=α2=0.05). This table summarizes how each estimation method performs when used to estimate the
model with each simulation. . The “Lag RMSE” rows report the average RMSE of the estimated coefficients on the lagged dependent variable across the 500
simulations. The “Exo Xs RMSE” rows report the average of the four exogenous explanatory variables' estimated regressions, averaged across the 500 simulations.
The “Endo Xs RMSE” rows report the average of the three endogenous explanatory variables' estimated regressions, averaged across the 500 simulations.
Numbers in bold (italics) are the smallest (second-smallest) RMSE for the lag, exogenous Xs, or endogenous Xs, within each column.

Panel imbalance Missing data Censored data Cluster at zero

Lag value (γ): 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8

OLS Lag RMSE 0.167 0.644 0.154 0.285 0.134 0.021 0.084 0.129
Exo Xs RMSE 0.204 0.261 0.192 0.201 0.182 0.182 0.186 0.186
Endo Xs RMSE 1.948 3.989 1.898 2.070 1.658 0.439 0.876 0.180

Fixed effects Lag RMSE 0.203 0.688 0.142 0.276 0.076 0.084 0.036 0.061
Exo Xs RMSE 0.182 0.266 0.166 0.188 0.137 0.142 0.149 0.152
Endo Xs RMSE 1.140 3.971 0.276 1.005 0.130 0.127 0.299 0.229

Arellano Bond Lag RMSE 0.200 0.706 0.694 0.396 0.679 0.439 0.639 0.622
Exo Xs RMSE 0.333 0.331 0.409 0.331 0.346 0.293 0.344 0.334
Endo Xs RMSE 1.651 3.788 5.094 3.732 4.515 3.457 4.346 4.199

Blundell Bond Lag RMSE 0.114 0.705 0.041 0.037 0.032 0.045 0.050 0.092
Exo Xs RMSE 0.241 0.334 0.267 0.268 0.215 0.218 0.220 0.222
Endo Xs RMSE 0.988 4.168 0.259 0.272 0.201 0.168 0.206 0.343

Longest diff Lag RMSE 0.129 0.509 0.082 0.264 0.062 0.135 0.070 0.257
Exo Xs RMSE 0.412 0.457 0.356 0.373 0.266 0.285 0.294 0.305
Endo Xs RMSE 1.094 3.131 0.415 1.519 0.301 0.867 0.360 1.505

4 Period diff Lag RMSE 0.248 0.886 0.101 0.345 0.078 0.167 0.039 0.157
Exo Xs RMSE 0.234 0.348 0.251 0.265 0.176 0.180 0.185 0.188
Endo Xs RMSE 1.486 4.878 0.461 1.415 0.319 0.387 0.223 0.406

LSDVC Lag RMSE 0.125 0.655 0.094 0.054 0.082 0.049 0.126 0.046
Exo Xs RMSE 0.185 0.263 0.174 0.179 0.145 0.152 0.154 0.157
Endo Xs RMSE 1.041 3.839 0.661 0.670 0.475 0.613 0.625 0.492
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highly persistent lag coefficient), are unaffected by panel imbalance, and are consistent across a range of endogeneity in the presence
of serial correlation.

While LSDVC is the most accurate estimator in the absence of endogenous independent variables and second order serial
correlation, BB and FE are the most accurate estimators when those complications exist. BB is more affected by dependent variable
clustering at zero and second order serial correlation and FE performs poorly in short (or unbalanced) panels and is sensitive to highly
persistent data.

Across the “Compustat” type explanatory variables, estimation errors are inversely related to the variances of the variables'
innovations, which vary substantially. The estimated coefficients on explanatory variables with the largest innovation variances
have RMSEs similar to those on independent, normally-distributed independent variables. However, the RMSEs for lower-variance
Compustat variables can be an order of magnitude larger. Although these RMSEs decline as panel length increases, the estimation
errors remain larger even for panels that are 30-years long. This finding suggests that researchers should examine an explanatory
variables' within-firm variance before assessing its economic effect on the dependent variable in a dynamic panel model.

Clearly, we have not evaluated dynamic panel model estimation techniques under all conceivable conditions. However, the
simulation results reported here should assist corporate finance researchers in estimating suchmodels.Many of the problematic dataset
properties can be identified through tests (endogeneity, serial correlation) or by inspection (variable value clustering, short panels).
Combined with a dataset's known characteristics, the results of this paper can guide empiricists working with dynamic panels.

Appendix A. Implementation of long differencing in unbalanced panels

Hahn, et al. (2007) introduces a new instrumental variable estimator for dynamic panels based on long differencing work by
Griliches and Hausman (1986). Their estimation method can be summarized as follows. Just as first differencing can yield valid
instruments for the lagged dependent variable (Arellano and Bond (1991)), so too can longer differencing windows. The goal of the
Hahn, et al. paper was to circumvent limits that the second order serial correlation imposes on AB and BB. Consider a panel with “t”
observations on the same firm. Instead of first-differencing, take the longest difference available:

yit−yi2 ¼ λ yit−1−yi1ð Þ þ α xit−xi2ð Þ þ εit−εi2ð Þ: ð9Þ

Hahn, et al. observes that yi1 is correlated with the lagged difference of the dependent variable and, thus, a valid instrument for
the differenced lag. Further, they appeal to the work of Hausman and Taylor (1983) and Ahn and Schmidt (1995) to state that
residuals from this model also would serve as valid instruments. The long difference estimator they propose, therefore, is
iterative. Initially, only yi1 is used as instrument for the model estimation. Then the residuals are estimated and the model is

Table 10
Panels with second order serial correlation. For varying levels of endogeneity andwith both adjustment processes (γ=0.2 or 0.8), 500 dynamic panels are generated
using Compustat innovations and second order serial correlation for a T=12 balanced panel. Endogeneity is included for the first three of the seven independent
variables. This table summarizes how each estimation method performs when used to estimate the model with each simulation. The “Lag RMSE” rows report the
average RMSE of the estimated coefficients on the lagged dependent variable across the 500 simulations. The “Exo Xs RMSE” rows report the average of the four
exogenous explanatory variables' estimated regressions, averaged across the 500 simulations. The “Endo Xs RMSE” rows report the average of the three endogenous
explanatory variables' estimated regressions, averaged across the 500 simulations. Numbers in bold (italics) are the smallest (second-smallest) RMSE for the lag,
exogenous Xs, or endogenous Xs, within each column.

All exogenous X Lower endogeneity Higher endogeneity

Lag value (γ): 0.2 0.8 0.2 0.8 0.2 0.8

OLS Lag RMSE 0.265 0.115 0.244 0.100 0.071 0.112
Exo Xs RMSE 0.161 0.162 0.183 0.187 0.190 0.187
Endo Xs RMSE 0.565 0.361 1.711 1.159

Fixed effects Lag RMSE 0.013 0.058 0.014 0.058 0.021 0.047
Exo Xs RMSE 0.137 0.141 0.146 0.153 0.146 0.153
Endo Xs RMSE 0.127 0.129 0.146 0.170

Arellano Bond Lag RMSE 0.069 0.028 0.102 0.049 0.820 0.777
Exo Xs RMSE 0.189 0.186 0.218 0.216 0.392 0.374
Endo Xs RMSE 1.135 1.113 5.194 5.023

Blundell Bond Lag RMSE 0.066 0.048 0.065 0.048 0.056 0.051
Exo Xs RMSE 0.207 0.213 0.227 0.234 0.228 0.235
Endo Xs RMSE 0.185 0.187 0.215 0.188

Longest diff Lag RMSE 0.089 0.046 0.090 0.066 0.131 0.524
Exo Xs RMSE 0.270 0.273 0.285 0.290 0.285 0.328
Endo Xs RMSE 0.258 0.701 0.391 3.008

4 Period diff Lag RMSE 0.054 0.092 0.051 0.104 0.046 0.226
Exo Xs RMSE 0.182 0.189 0.189 0.199 0.190 0.205
Endo Xs RMSE 0.184 0.327 0.316 0.948

LSDVC Lag RMSE 0.070 0.022 0.074 0.036 0.158 0.050
Exo Xs RMSE 0.144 0.144 0.152 0.155 0.158 0.162
Endo Xs RMSE 0.174 0.493 0.723 0.292
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re-estimated, this time using both yi1 and the estimated residuals are instruments. Now, the residuals can be calculated again and
the model is estimated for a third time using yi1 and the new residuals. The coefficients of the third iteration are reported.

Since Hahn et al. treat only balanced panels, there is no tested application for unbalanced data. To implement a LD estimator with
unbalanced panels, we utilize the longest available difference for each firm (this means that the differencing interval varies across
firms). When Huang and Ritter (2009) confronted the problem of unbalanced panels, they chose to impose an equal differencing
interval on all firms.

yit−yit−k ¼ λ yit−1−yit−k−1ð Þ þ α xit−xit−kð Þ þ εit−εit−kð Þ: ð10Þ

While their paper includes 4, 8, and higher level differences, we only include the four period differencing as that excludes the
least data from the estimation. Our LD implementation for unbalanced panels includes all firms by defining each “long difference” as
the length of the firm's panel. LD4 drops firms that have fewer than five observations. FollowingHahn, Hausman, and Kuersteiner, we
use yi0 as an instrument for the lagged difference for LD. For LD4, we use yit−5 as the initial instrument.

Appendix B. Overview of simulation parameter choices

Our method for generating simulated datasets permits the introduction of various features to the data for which we seek to
estimate themain specification Eq. (5). Specifically, appropriate parameter values in Eqs. (6) and (7) can introduce serially correlated
regression residuals, correlated explanatory variables, and endogeneity in some of the explanatory variables.

The general model for data generation is:

yit ¼ γyit−1 þ
X7
j¼1

∑βjxjit þ ηi þ εit ð5Þ

xijt ¼ ρjxijt−1 þ α1yit−1 þ α2ηi þ ξijt ; j ¼ 1;7 ð6Þ

εit ¼ δ1εi;t−1 þ δ2εi;t−2 þωit : ð7Þ

The main parameters of interest in estimating dynamic panel models are γ and the βj. We set γ=0.2 or 0.8 and all seven βi=0.2
(Arellano and Bond (1991), Kiviet (1995), and Judson and Owen (1999) select similar values). Firm fixed effects (ηi) are uniformly
distributed over the [−1, 1], which avoids fixed effects clustered near zero. Until Section 7, we assume exogenous regressors
(α1=α2=0 in Eq. (6)) and serially independent residuals (δ1=δ2=0 in Eq. (7)).

B.1. iid Innovations

Each of the seven independent variables is constructed with a persistence (ρj) corresponding to the within-firm persistence of
a corporate variable, estimated for the CRSP/Compustat universe (excluding financials and utilities) over the period 1962–2004.
These variables are the ones used in our specification for a dynamic leverage model: EBIT/TA, M/B, Depreciation/TA, Ln(TA), Fixed
Assets/TA, R&D/TA, or Industry Median MDR. The resulting persistence values are reported in Table 3A.

ρ1 ¼ :455;ρ2 ¼ :259;ρ3 ¼ :085;ρ4 ¼ :844;ρ5 ¼ :254;ρ6 ¼ :197;ρ7 ¼ :690:

The iid data sets are created with independent, normally distributed residual terms.

εiteN 0;1ð Þ ξiteN 0;1ð Þ ωiteN 0;1ð Þ

B.2. Compustat-style innovations

The independent variable innovations (ξit) are drawn from a multivariate normal distribution using a covariance matrix of
seven corporate variables computed from the set of CRSP-Compustat firms during 1962–2004 (excluding financial and utility firms).
The matrix is reported in Table 3B. Unlike the iid case, Compustat-style explanatory variables are correlated with one another and
differ in their innovation variances (ξit).

B.3. Endogeneity

Using the Compustat-style process for generating innovations, we specify some endogeneity for three of the independent
variables while leaving the others as exogenous:

xijt ¼ ρjxijt−1 þ α1yit−1 þ α2ηi þ ξijt ; for j ¼ 1;2;3 ð6Þ

xijt ¼ ρjxijt−1 þ ξijt ; for j ¼ 4;5;6;7: ð6aÞ
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Datasets are constructed with three alternative levels of endogeneity: “Low” (α1=α2=0.01), “High” (α1=α2=0.05), and
“None” (α1=α2=0.00).

Appendix 3. Second order serial correlation

Second order serial correlation is introduced to the error term of the Eq. (5) by setting

δ1 ¼ 0:10; δ2 ¼ 0:05

in Eq. (7). The rest of the data is based on the Compustat-style, both with and without the presence of endogenous variables.
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