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1 Introduction

Turmoil in the oil market, whether sparked by wars connected to oil interests, the post-

COVID-19 pandemic, or uncertainty regarding future oil demand related to trade wars, can

result in considerable fluctuations in oil prices. In turn, oil price increases, such as those

observed after the recovery from the COVID-19 pandemic and Russia’s invasion of Ukraine,

can exert upward pressure on inflation and inflation expectations. Moreover, recent remarks

about “the possibility that inflation could be more volatile going forward than during the

inter-crisis period of the 2010s” expressed by the Chairman of the Federal Reserve (Powell,

2025), in conjunction with a rise in inflation expectations and looming concerns about slower

economic growth, underscores the belief among policymakers and the press that the US

economy is facing higher inflation risk and, perhaps, the possibility of stagflation.

In this context, how changes in expectations about future oil prices affect US inflation and

inflation expectations continues to be an important topic of research. The possibility that a

period of stagflation may recur raises the following question: Has the effect of oil price shocks

on inflation changed over time? A priori, there are many reasons to think that this is the case.

The fracking revolution has led to changes in the US oil industry: shale oil producers are more

nimble than conventional oil producers and may respond faster to uncertainty about global

economic activity, positive spillover effects linked to increased shale oil production appear to

have altered the transmission of oil price shocks to labor markets (Bjørnland and Skretting

(2018)), and reliance on imported oil has declined, with the US becoming a net exporter of

petroleum in 2020. The US economy has also experienced profound structural changes in

recent decades, with the rise of services and the transformation of the manufacturing sector.

In addition, monetary policy and the tools employed by the Federal Reserve have changed

significantly since the late 1970s (especially since the Great Recession), and the degree of

anchoring of inflation expectations has changed over time (see Naggert et al. (2023)).

In this paper, we investigate whether the effect of oil news shocks on inflation and inflation

expectations has changed over time. To do so, we employ a time-varying parameter structural
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vector autoregressive model where we identify the structural shock of interest -an oil price

shock- via a proxy variable. To achieve identification, we follow Känzig (2021) in using OPEC

announcements to construct an external instrument for oil news shocks. We depart from his

setup in two ways. First, rather than imposing that the parameters in the Proxy-VAR are

constant over time or imposing an ad hoc structural break (see Blanchard and Galí (2010)

and Herrera and Pesavento (2009), and Ramey and Vine (2011)), we allow the parameters to

evolve continuously over time. Second, we estimate the model using a Bayesian framework,

which allows us to explore what parameters drive the time variation and inquire whether

the reliability of the proxy is sensitive to alternative priors. This approach enables us not

only to examine possible time variation in the responses of real oil prices, oil production,

world economic activity, inflation, and inflation expectations to oil news shocks, but also

in the contribution of these shocks to the forecast error variance of inflation and inflation

expectations.

Four key findings are derived from our study. First, we uncover a significant degree of

time variation in the response of the oil market variables to oil news shows. Specifically,

while the response of oil prices has become more persistent over the years, the effect of

the shock on global economic activity has declined. Second, the inflation impact response

increased from the beginning of the sample until the Great Recession, exhibited a declining

trend until the COVID-19 pandemic, and then increased in the last years of the sample.

Similarly, inflation expectations have responded more to oil news shocks since the COVID-

19 pandemic. Moreover, we find that the contribution of oil news shocks to the forecast error

variance decomposition of inflation expectations has increased markedly since the pandemic.

Finally, we trace back the sources of the changing effect of oil news shocks to fluctuations

in the stochastic volatility of all variables –especially oil prices and inflation– and to time

variation in the correlation between oil prices and inflation expectations.

This paper is related to two broad strands of literature. On the one hand, we contribute to

the literature that studies the effects of oil price shocks on the macroeconomy. In particular,
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we expand on the work by Känzig (2021) who, borrowing from the monetary policy literature

where an instrumental variable is constructed using unexpected changes in daily futures

around FOMC announcements, constructs an instrument for oil supply shocks using surprises

in daily oil price futures around OPEC announcements. He finds that news of future oil price

increases leads to higher inflation expectations and a significant increase in CPI inflation. He

estimates that news shocks that lead to a contemporaneous 10% increase in oil prices result

in an immediate increase in inflation expectations of about a tenth of a percentage point

and a contemporaneous increase in CPI inflation of about twice this magnitude. We depart

from his work in two aspects. Känzig (2021) estimates a constant parameter Proxy-VAR

and posits that the identified shocks represent oil supply disturbances. However, recent

work by Degasperi (2021) and Kilian (2023) calls into question the interpretation of the

shocks and suggests that such a model identifies a combination of storage and flow demand

shocks. Our estimates support that view; hence, we refer the shock as an oil news shock.

Because our purpose is not to separately identify supply- and demand-driven shocks, but

to investigate whether the parameters of a Känzig-style model are time invariant, we use a

Metropolis-within-Gibbs sampling algorithm (Mumtaz and Petrova, 2023) to approximate

the posterior distributions of the Proxy TVP-VAR. To the best of our knowledge, ours is

the first application of the estimation approach proposed by Mumtaz and Petrova (2023) in

the context of studying the effect of oil news shocks on oil price fluctuations and inflation.

On the other hand, our paper is related to a vast literature that examines the time-

varying effects of shocks on inflation using Bayesian TVP-VAR models. The TVP-VAR

framework has been employed to investigate topics of interest to policy makers, such as the

transmission of monetary policy (e.g., Cogley and Sargent (2005), Primiceri (2005), and

Koop et al. (2009)), the effects of fiscal shocks (e.g., Klein and Linnemann (2020), Mumtaz

and Petrova (2023)), and the changing impact of oil price shocks (e.g., Baumeister and

Peersman (2013b), Baumeister and Peersman (2013a), Chang et al. (2023)). Our study

contributes to this literature by inquiring whether the effect of oil news shocks on the oil
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market, inflation, and inflation expectation has varied over time and then investigating which

parameters account for the time variation.

The paper is organized as follows. Section 2 outlines the data and Section 3 discusses

the econometric framework, including the identification of oil news shocks, prior starting

values, and reliability of the instrumental variable. Estimation results for the impact of oil

news shocks on the oil market, inflation, and inflation expectations are reported in Section

4. Section 5 explores the sources of time variation. Section 6 presents several robustness

checks before we conclude in Section 7.

2 Data

Our study employs five monthly time series that span from January 1978 to December

2022, encompassing three global oil market variables, US inflation expectations, and the

inflation rate of the Consumer Price Index (CPI). Global oil production data, measured in

thousands of barrels per day, is sourced from the Monthly Energy Review published by the

Energy Information Administration (EIA). Global economic activity is quantified using the

OECD + 6 industrial production index developed by Baumeister and Hamilton (2019) and

employed by Känzig (2021) in the baseline model. The real price of oil is calculated by the

WTI spot crude oil price deflated by the US Consumer Price Index (all items) obtained from

the Federal Reserve Economic Data (FRED) database.

For empirical estimation purposes, global oil production, global real economic activity,

and real oil price are incorporated as logarithmic growth rates. U.S inflation is computed

as the annualized monthly rate of change in the US Consumer Price Index, retrieved from

FRED. To capture forward-looking inflation dynamics, inflation expectations are measured

as the median one-year-ahead inflation expectations obtained from the Michigan Survey of

Consumer Inflation Expectations, which is widely recognized among academics and policy

makers as a reliable measure of consumer sentiment regarding future prices.
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As mentioned above, we identify the oil news shock using an instrumental variable. The

construction of the instrument, zt, follows Känzig (2021). Specifically, we gathered OPEC

announcements from press releases spanning the period between 1983 and 2022. This results

in a total of 150 announcements. Since 2002, press releases have been available on the

official OPEC website.1 Prior to 2002, we collected the dates of the announcements from

official OPEC resolutions and press releases OPEC (1990), supplemented with information

from Bloomberg’s news service. To construct the oil news shock instrument, we calculate

the change in the log settlement price of the WTI futures contract h months ahead for

h = 1, ..., 12. Subsequently, the surprise series is computed as the first principal component

of these changes. As is common in the literature, we assign each surprise to the month in

which the corresponding OPEC meeting took place. If no meeting occurred in a month,

the value of the surprise is set to zero. Figure 1 illustrates the evolution of the proxy and

identifies notable historical episodes of oil market disruptions. Particularly relevant for our

study are the large changes in oil price expectations around the OPEC meetings during

the COVID-19 pandemic. Note how in March 2020, oil futures prices plunged to levels not

seen since 1991 after OPEC’s announced a cut in production as the COVID-19 outbreak led

OPEC to revise downward its forecast of global oil demand.

3 The Time-Varying Proxy SVAR

3.1 Econometric Model

We consider the joint behavior of global oil production, world industrial production, the

real price of oil, and inflation to be given by a Gaussian V AR(p) model with time-varying

parameters and stochastic volatility given as follows:

yt = ct + B1,tyt−1 + B2,tyt−2 + ... + Bp,tyt−p + ut = BtXt + ut (1)
1Collected from the OPEC press release archives.
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where yt =
[

∆prodt reat rpot πt

]′
, Xt =

[
yt−1 yt−2 ... yt−p

]′
is the 4 × 1 vector of

endogenous variables, ct is a 4 × 1 vector of time-varying intercepts.

The time-varying covariance matrix of the reduced form residuals ut is given by:

Σt = (Atq)(Atq)′. (2)

We define At as a lower triangular matrix with time-varying parameters and q as an

element of orthogonal matrices of size 4 such that q′q = I4. Note that the heteroskedastic

reduced-form residuals, ut, are a linear combination of the structural residuals, εt, given by

ut = Atqεt where εt ∼ N (0, I4) and ut has variance covariance matrix Σt. The 4×4 matrices

of time-varying autoregressive parameters are denoted by Bi,t .

In the above time-varying model, we implement a variable substitution by rotating the

fourth variable, i.e., πt (inflation), with πex
t (inflation expectations). In other words, we first

estimate the model with the three oil market variables and inflation and then reestimate

the model replacing inflation with inflation expectations.2 Estimation results reported in

the online Appendix show that the estimated impulse response functions for the oil market

variables are indistinguishable in these two model specifications.

As is common in the literature (Primiceri, 2005), we assume that the autoregressive pa-

rameters bt = vec(B′
t) follow a random walk process given by:

bt = bt−1 + Q
1/2
b ηb

t , ηb
t ∼ N (0, I4,4p+1) (3)

2This rotation is implemented primarily for computational efficiency. Time-varying parameter models are
computationally intensive and require significantly longer estimation times compared to constant coefficient
models due to the substantially larger number of parameters that must be estimated. Each time period
introduces a new set of coefficients, exponentially increasing the dimensionality of the estimation problem.
By substituting inflation expectations for inflation in this specific position of the variable ordering and
reestimating the model, we reduce both the computational burden and the number of parameters to be
estimated, while still maintaining the essential dynamics of the system.
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and consider the decomposition of At

At = ÃtH
1/2
t (4)

where Ãt is a lower triangular matrix with ones along the main diagonal and Ht is a diagonal

matrix. Let αt, be the vector stacking –by rows– the non-zero and non-one elements of Ãt

and ht be the 4 × 1 vector stacking the diagonal elements of Ht. Then, we assume that the

data generating processes for αt and ht are given by:

αt = αt−1 + Q1/2
α ηα

t , ηα
t ∼ N (0, I6) (5)

and

lnht = lnht−1 + Q
1/2
h ηh

t , ηh
t ∼ N (0, I4). (6)

Hence, as is common in the literature, we assume that the non-zero and non-one elements of

Ãt follow independent random walks, the diagonal elements of Ht evolve as geometric random

walks, and all the elements are independent of each other. This specification allows for time

variation in both the contemporaneous relationships among variables and the variance of

structural shocks, capturing potential changes in the transmission mechanism of oil news

shocks over time.

3.2 Identification of the Oil News Shocks

Recall that we are interested in identifying only the shock to oil prices. Let the structural

shocks of the TVP-VAR model, εt, be given by:

εt = A−1
0,t ut (7)

where A0,t = Atq = ÃtH
1/2
t q. To identify the effect of oil news shocks ε1t –without necessarily

distinguishing their specific source–, we employ a single external instrument that correlates
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with it. Let q1 denote the first column of q, collect the remaining structural shocks in a

(n − 1) × 1 vector εst = [ε2t, ε3t, ε4t], and let zt denote the instrumental variable (proxy). We

link the proxy to the structural shock of interest, ε1t, via the following equation

zt = βε1t + σvt (8)

where vt is assumed to be distributed independently and identically over time as N (0, 1) and

E(vtεt) = 0.

Then, identification requires that the oil surprises employed as an instrument satisfy two

key conditions:

• Relevance: E[ztε1t] = β ̸= 0

• Exogeneity: E[ztεqt] = 0

The above conditions imply that the proxy, zt, carries information about the oil news shock

ε1t, but is not driven by any other shock, εst.

To jointly model the interaction between the TVP-VAR and the proxy, we adopt the

methodology proposed by Caldara and Herbst (2019) and adapted to the time-varying setup

by Mumtaz and Petrova (2023). That is, the likelihood of the TVP-VAR is augmented with

a measurement equation that relates the proxy to the structural shock of interest, and the

model is estimated using Bayesian techniques that involve a Metropolis-with-Gibbs sampling

algorithm. The advantages of such a methodology are twofold. First, as noted by Caldara

and Herbst (2019) the estimation procedure incorporates all the sources of uncertainty, and

hence the proxy becomes informative about the reduced- and structural-form parameters of

the model. Second, by calculating the reliability statistic, we can empirically evaluate the

relevance of the prior. Specifically, we calculate the reliability statistic proposed by Mertens

and Ravn (2013), which is defined as follows:

ρ2 = β2

β2 + σ2 . (9)
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As equation (9) illustrates, the reliability of the proxy depends on the signal-to-noise ratio,

β/σ. The higher the correlation between the IV, zt, and the shock of interest, ε1t, the more

informative the proxy is for identifying the shock.

We conclude this section by noting that, as evident from equation (8), we model the

relationship between the proxy and the oil news shock via a constant coefficient model.

We opt for this modeling choice to focus our attention on the time-varying transmission

mechanism of the oil news shock, while imposing the prior that the relationship between

the IV and the shock does not change over time. While we realize such an assumption is

restrictive, it allows us to force the time variation to stem from the TVP-VAR parameters

while assuming that the relevance of the instruments remains unchanged. We leave the study

of changes in the relevance of the prior for future work.

3.3 Prior Distributions, Starting Values and Estimation Strategy

The selection of the priors follows the standard Bayesian TVP-VAR literature and, in par-

ticular, the work by Mumtaz and Petrova (2023) for the implementation of the identification

via an external instrument.3 While we provide a detailed description of all priors in Table

1, in this section we briefly discuss the prior distribution and starting values for some of the

parameters.

The priors for bt, αt, ht, and Qb follow Primiceri (2005), Cogley and Sargent (2005), and

Mumtaz and Petrova (2023). The priors for the initial states for the coefficients (bt), the

covariances (αt), and ln(ht) are assumed to be normally distributed and independent of

each other. The priors for bt and Qb are calibrated using the OLS estimates of the VAR

model on a training sample of T0 = 120 observations. Let the ordinary least squares(OLS)

estimate of the VAR autoregressive parameters be denoted by BOLS and the estimate of the

variance-covariance matrix denoted by VOLS. Then, the prior for Qb is an inverse Wishart
3We are grateful to Haroon Mumtaz and Katerina Petrova for making their MATLAB code for

the Proxy TVP-VAR estimation publicly available at https://sites.google.com/site/hmumtaz77/
research-papers.
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IW (T0 ×V0LS ×3.5×10−4, T0). The initial states for bt are modeled as b0|0 ∼ N (BOLS, VOLS).

As in Mumtaz and Petrova (2023) and Caldara and Herbst (2019), the prior for Σt is

uniform and is taken from the QR decomposition of a standard normal distribution. The

starting values for the parameters of Equation (8), are also calibrated using OLS on a

training sample T0. We employ the standard inverse-gamma distribution for σ2 (i.e. p(σ2)

is an inverse gamma density IG(a, b), reparametrized in terms of the mean σ0 and v0). We

evaluate the robustness of the results to different priors for the parameters of the IV equation

in Section 6.

For details regarding the estimation and specifics of the Metropolis-within-Gibss algorithm,

we refer the reader to Mumtaz and Petrova (2023) as well as to their technical appendix. We

note here that, as is common in the literature, independent prior distributions are assumed

so as to facilitate the selection of prior distributions for the different blocks of parameters.

Hence, the algorithm consists of six steps that iterate through five conditional posterior

distributions. The first step involves using a particle-Gibbs sampler to draw αt and ln ht

(the parameters that determine the contemporaneous response) conditional on the data and

the other parameters. The second step draws the conditional posterior distribution of b,

the covariance between the reduced-form error of interest and the instrument, using the

algorithm developed by Carter and Kohn (1994). An independent Metropolis step is used

to sample q1 as in Caldara and Herbst (2019) in the third step. The structural shock of

interest is then derived after drawing β and σ. The fourth step deals with estimating the

parameters in the instrumental regression in equation 8. We assume that the parameters

in the instrumental regression are time invariant to focus our attention on the transmission

mechanism of the oil shocks. However, future research work could relax these assumptions

and let both coefficients vary over time.

The fifth step deals with drawing from the conditional posterior distributions of the volatil-

ity parameters, i.e. Qb, Qα, and Qh. In this step, we estimate the variance parameters that

govern the time variation in the model transition equations, i.e., equations (3), (5), and (6).
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Steps 4 and 5 help us to estimate the structural parameters, i.e., β and σv, and the volatility

parameters, i.e., Qb, Qα, and Qh, that govern the dynamics of the state-space model. The

final step addresses missing observations in the instrument variable, i.e., zt, and it is exe-

cuted only if there are missing observations in the instrument or proxy variable. Following

Mumtaz and Petrova (2023), we run the MCMC algorithm for 100,000 iterations, discard

the first 50,000 as burn-in, and use the remaining draws for inference.

3.4 Lag Selection and Reliability of the Instrumental Variable

Following Primiceri (2005), it has become common in the TVP-VAR literature to se-

lect a lag length of two; higher lag lengths increase the degree of complexity and impose

computational constraints. However, we opt for a higher number of lags (p = 4) in order

to capture longer-lasting effects of oil prices underlined by the empirical literature using

constant-coefficient VARs (see e.g., Hamilton and Herrera (2004)). We believe that the

slightly longer lag length in conjunction with the rotation of inflation and inflation expecta-

tions in a four-variable Proxy TVP-VAR is a good compromise to capture longer dynamics

while reducing the dimensionality of the models to facilitate computation. However, a pos-

sible concern with estimating two different Proxy TVP-VAR models that differ only on the

last variable in the system (i.e., with inflation or inflation expectations as the fourth vari-

able) is that the reliability of the proxy hinges on the contemporaneous correlation with

the reduced-form residuals of the endogenous variables included in the system. Thus, the

correlation is affected by which variables are included or excluded. To address this concern,

we examine the reliability of the proxy in both models.

Hence, before we examine the response to the oil news shock, we provide empirical evidence

on the relevance of the instrument used to identify oil shocks. To do so, we compute the

posterior median of the reliability statistics, ρ. The median estimate ρ is 0.234 and the

credible region with 68% credibility is given by [0.187,0.305] when we rotate in the CPI

inflation. Given that the credible region does not contain zero, we conclude that the proxy
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is informative for identifying the oil news shock. In other words, the correlation coefficient

between the proxy and the structural shock is statistically different from zero.

As Figure 2 illustrates, the posterior distribution for the parameters that govern the reli-

ability of the instrument in the model that uses inflation expectations has a slightly lower

median correlation between the instrument and the shock of interest (0.241) than the model

with inflation (0.271). In contrast, the median of the posterior distribution for the variance

of the IV equation is higher in the model with inflation expectations (1.157 versus 1.138).

As a result, the reliability statistic for the model with inflation expectation is slightly lower

(0.203) than for the model with inflation (0.234), yet it is significant with 68% confidence

region of [0.154, 0.252]. Despite these small differences, the reliability statistic suggests that

the proxy is relevant for the identification of oil news shocks in both models.

4 The Changing Effect of Oil News Shocks

As outlined in the introduction, several factors could have led to changes in the trans-

mission of oil news shocks to inflation and inflation expectations: OPEC’s share of world

oil production has varied during the period under analysis, the U.S. went from being a net

importer to a net exporter of oil as shale oil production increased, the importance of supply

and demand driven shocks has varied over time, and inflation has become more persistent in

recent years. These changes raise the question of whether the effect of oil news shocks has

changed over time. To empirically examine this question, we obtain time-varying estimates

of the impulse responses and forecast error variance decomposition via the Bayesian Proxy

TVP-VAR described in the previous sections.

Given that the proxy is relevant in both TVP-VAR models and because the estimates for

the oil market variables are very similar and lead to the same conclusions, in what follows

the results reported for the oil variables and the realized inflation correspond to the inflation

model, whereas the results for inflation expectations correspond to the model where we
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include inflation expectations.4

4.1 The Response of the Oil Market Variables

Figures 3-7 plot the estimated time-varying responses to an oil news shock. The responses

have been normalized so that the oil news shock increases the price of crude oil by ten percent.

The top left panel in each figure shows the median response for horizons of h = 0, 1, 2, ..., 20

months. In the remaining panels of each figure, the solid blue line represents the median

response for selected horizons of interest (h = 0, 1, 2, 4, 6, 8), and the shaded area denotes the

68% credible sets. The dotted red line indicates the response estimated from the constant-

coefficient Proxy SVAR model.

Our analysis of Figure 3 reveals two key findings regarding oil price dynamics. First, oil

news shocks lead to a persistent increase in oil prices. Two years after the shock, the real oil

price is still above its pre-shock level. Specifically, in the late 1980’s, four quarters after the

shock, the cumulative impact on the oil price had declined from the 10% increase on impact

to about 5% eight quarters after the shock, suggesting a response half-life of around two

years. In contrast, in the 2000s the cumulative response after eight quarters hovered around

9%, indicating a substantially more persistent effect of news shocks on oil prices. At most

horizons, the constant-coefficient model suggests a slightly higher response. Yet, the fact

that the cumulative estimate after eight quarters is greater in the 2020s than in earlier years

provides evidence of increased persistence during the recent period of elevated inflation.

With respect to world oil production, Figure 4 shows a statistically insignificant response

on impact and for most horizons. The time-varying impact response fluctuates around the

value estimated for the constant-coefficient model. At most horizons, the 68% confidence

regions contain zero. This general lack of significance for the time-varying responses is

consistent with the estimates for a constant-coefficient Proxy-SVAR estimated over the full

sample. However, it contrasts with the findings of Känzig (2021) derived from a constant-
4See Figures A.1–A.4 in the online Appendix for the responses of oil market variables using the inflation

expectations proxy TVP-VAR model.
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coefficient Proxy-VAR estimated on a shorter sample. He estimates that an oil news shock

results in lower oil production: A shock that results in a 10% increase in oil prices leads to a

0.5% drop in world oil production 20 months after the shock. Estimation results reported in

section 6, indicate that the differences stem from extending the sample and are not driven

by the more parsimonious model specification. All in all, our estimation results are in

line with the view that surprises derived from changes in oil futures prices around OPEC

announcements do not necessarily reflect expectations of lower future oil production (see, e.g.,

Degasperi (2021), Kilian (2023)), but that the IV identifies precautionary or flow demand

shocks.

The top left panel of Figure 5 illustrates the changes in the median response of the world

industrial production index to time. In the earlier part of the sample, the decline in global

economic activity is statistically and economically significant. An oil news shock that leads

to a 10% increase in oil prices results in a persistent decline of about 1% in the world IP.

On impact, this estimated response exceeds the 0.2% decline estimated with the constant-

coefficient Proxy-SVAR estimated for the whole sample. However, starting in the 1990s,

the impact effect became smaller, fluctuating between -0.5% in the early 1990s and turning

insignificant in the late 2010s. This finding contrasts with the persistent decline in global

economic activity estimated by Känzig (2021). The differences between estimates can be

traced to two elements: the use of a sample that extends until 2022 and the use of a time-

varying parameter model. Note that while the time-varying estimates indicate that oil news

has a significant and persistent effect on oil prices throughout the sample, their impact on

global economic activity has become muted.5

To summarize, we find evidence that the response of the oil market variables to oil news

shocks has changed over time. Three insights are derived from the time-varying estimates.
5To allow for comparison, we also estimate a time-invariant Proxy VAR model using the same sample

(i.e., January 1978 to December 2022) and with lag length set to p = 4. Figure A.20 shows impulse responses
to the oil news shock, normalized to increase the real price of oil by 10%, with 68 and 95 percent confidence
bands. A negative oil news shock immediately increases oil prices. Oil production exhibits a sharp increase
after the shock, although it is statistically insignificant. Global industrial production shows a persistent and
statistically significant decline.
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First, the response of oil prices to oil news shocks has become more persistent over the years.

Second, although we find some variation in the response of world oil production over time,

the responses are estimated with a low degree of precision, suggesting the oil news shocks

capture OPEC responses to future oil demand. Third, the effect of oil news shocks on world

industrial production has become muted over time.

4.2 The Changing Impact of Oil News Shocks on Inflation and

Inflation Expectations

Persistent inflation, not only in the US but globally, has prompted policymakers and aca-

demics to question whether structural changes post-COVID have made the inflation process

more persistent (De Michelis et al., 2024) and volatile (Powell, 2025). Such concerns under-

score the importance of well-anchored inflation expectations and the need to understand the

dynamic effect of changes in expectations about future oil prices on inflation and inflation

expectations.

Figure 6 illustrates the time-varying response of inflation to oil news shocks. The top left

panel of the figure shows that CPI inflation increases in response to an oil news shock, yet

the effect is short-lived, lasting less than a year. The top right panel reveals substantial

time variation in the contemporaneous effect of oil news shocks on inflation: the posterior

median fluctuates from 0.6% in the late 1980s to 6.8% during the Great Recession, while a 2%

increase is estimated with the constant-coefficient Proxy-SVAR. Furthermore, responsiveness

tends to be higher during the expansionary period preceding the 2007-2008 financial crisis

and the recovery period following the Covid-19 pandemic. It is interesting to note that we

estimate a larger impact response than that obtained by Känzig (2021) with a constant-

coefficient Proxy-VAR model. However, our time-varying estimates point to a less persistent

effect on inflation.

Figure 7 shows that household inflation expectations increase in response to an oil news

shock. Not surprisingly, the impact response of inflation expectations is considerably lower
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than that of inflation. The maximum increase in expectations reaches about 0.7% during

the COVID-19 period versus 3% for realized inflation during the same period. Substantial

time variation in the response of household inflation expectations is evident in Figure 7.

It should be noted that while the constant coefficient estimate of the impact response lies

between the values estimated with the TVP-VAR, the time-varying estimates for the four-

and eight-quarter cumulative responses lie below the estimates from the constant coefficient

model for the pre-COVID sample 6

Finally, to further illustrate the time-varying effect of oil news shocks, we plot the responses

for three specific historical episodes associated with unexpected increases in crude oil futures:

(1) OPEC’s agreement to cut production in November 1988 after a year of failed attempts

to set quotas; (2) OPEC’s agreement to reduce production in November 2016 (the first since

2008), and (3) OPEC+ agreement to maintain the reduced production levels established

earlier in the year in April 2021.

Figure 8 depicts the impulse response functions for the Proxy TVP-VAR models where we

rotate in the inflation rate (solid line) and inflation expectations (dashed line). Four results

stand out. First, note that the impulse responses for the oil market variables are very similar

in both models. The only notable differences across specifications are the faster decline in

the real oil price in 2106M11 and 2011M04 and the positive response of oil production in

2021M4 when we rotate inflation expectations. Second, no statistically significant reduction

in oil production is observed for any of the shocks. As mentioned above, this finding is in

line with the view of Kilian (2024) and Degasperi (2021), who note that Känzig’s proxy

captures information about the economic outlook of OPEC and does not exclusively capture

oil supply news. Moreover, the fact that only the oil news shock in 1988M11 leads to a

decline in world industrial production reinforces this view. Third, we find a significant

increase in the pass-through of oil news shocks to inflation in 2016M11 and 2021M04 relative
6In the time-invariant framework, both expected and realized inflation exhibit robust and persistent

positive responses to the oil news shock, with the magnitude of the response of realized inflation exceeding
that of inflation expectations in the short run (See the solid blue line response for the baseline time-invariant
specification from the Online Appendix in Figure A.20).
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to 1988M11. Finally, although the rise in inflation expectations is considerably smaller than

that of inflation, we estimate a marked increase in the magnitude and persistence of the

response during the COVID-19 pandemic.

4.3 Forecast Error Variance Decomposition

How important are oil news shocks to explaining the variation in inflation and inflation

expectations over time? Has the contribution of oil news shocks to the forecast error variance

decomposition changed? To answer these questions, we leverage the fact that the estimation

method developed by Mumtaz and Petrova (2023) allows us to identify the shock scale and

hence to estimate the time-varying forecast error variance decomposition.

The top panel of Figure 9a reveals two interesting facts. On impact, the contribution of oil

news shocks to inflation volatility increased from around 10% at the beginning of the sample

to above 50% in the early 2000s. Since then, it has fluctuated between 40% and 50%. A

noticeable decline in the contribution of oil news shocks is evident since the beginning of the

shale boom around 2014. Second, in the medium run (4 and 8 months), the contribution of

oil news to CPI inflation exceeded the impact contribution at the beginning of the sample.

Thereafter, the FEVD fluctuated between 35% and 55%.

Regarding the contribution of oil news shocks to volatility in inflation expectations, the

bottom panel of Figure 9b shows a considerable degree of time variation. We estimate

that the contribution fluctuated between 8 and 67 percent during the sample period. Large

increases in the contribution of oil news shocks are observed during expansionary periods,

especially in the mid-1990s and the late 2000s. Interestingly, we find that the contribution

of oil news shocks to the variation in inflation expectations during the post-COVID period

of high and persistent inflation exceeded the values estimated at any other points in the

sample.

To conclude this section, we compare the time-varying FEVD with the estimates ob-

tained with the constant-coefficient model (dotted line). At the beginning of the sample, the
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constant coefficient estimate falls outside the credible set 68% for the time-varying model,

suggesting that the constant-coefficient model could lead to overstating the contribution of

the shock during the earlier period. Regarding the contribution of the shock to inflation

expectations, on impact, the constant-coefficient estimate often falls above the 68% cred-

ible set for the time-varying estimate; the only exception is the COVID-19 period, where

the contribution of the time-varying model exceeds the constant-coefficient model estimate.

At longer horizons, the constant-coefficient model can potentially lead to overstating the

contribution of the oil news shock.

5 Digging deeper into the sources of time variation

As discussed above, we assume that the parameters of the IV regression are constant over

time. Thus, we restrict the sources of the time variation to the evolution of the autoregressive

parameters Bj,t, the non-zero and non-unity elements of the lower triangular matrix A0,t,

and the elements of Ht. Figure 10 reports the median coefficient estimates for the model

where we rotate in the CPI inflation. The plots start in January 1988 as we use the earlier

part of the sample to initialize the prior. Each panel reports the time-varying coefficients for

the intercept ct and the Bj,t coefficients for each of the equations. The key takeaway is that

there is very little time variation in the intercepts and lag coefficients. Some time variation

is evident when we rotate in household inflation expectations (see Figure 11). In particular,

we observe slight increasing or decreasing trends in the third/fourth lag coefficients that tend

to be offset by an opposite trend in the shorter lags. However, the variation is limited; the

only exception is the fourth autoregressive lag for inflation expectations, which shows a clear

decline.

The six non-zero and non-unit elements of A0,t are plotted in Figure 12. The correlation

pattern in the estimated covariance matrix of the shocks is related to these α̂it. The panels

labeled Oil Price → Oil Production and Oil Price → World IP depict correlations that are
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very close to zero, albeit negative and positive, respectively, for most of the sample. Of note is

the positive correlation between the oil price and inflation (inflation expectations), as well as

the negative correlation between oil production and inflation (inflation expectations). These

observations are consistent with the notion that oil prices and inflation (inflation expecta-

tions) move in the same direction, while oil production and inflation (inflation expectations)

move in opposite directions. Also of interest are: (1) the variation in the correlation between

oil prices and inflation, which illustrates an increasing trend in the pass-through from oil

prices to inflation expectations until the time of the fracking revolution, and (2) the rise in

the correlation between oil prices and inflation expectations since the onset of the COVID-19

pandemic.

Figure 13 plots the coefficient estimates for the elements of Ht, which is a diagonal matrix.

Fluctuations in these coefficients point to the importance of the volatility of the estimated

errors in accounting for the time-variation in the impulse response functions. The overriding

impression is that there is a significant degree of time variation in the stochastic volatility

of all variables. The largest increases in stochastic volatility are estimated for oil prices, oil

production, and world IP; considerable rises occur during recessionary periods, especially

during the COVID-19 pandemic. For these three variables, the patterns observed for the

two models (rotating in inflation or inflation expectations) are almost identical. Regarding

inflation and inflation expectations, we note that the volatility of the former is an order of

magnitude larger than that of the latter, and it exhibits a larger increase during the Financial

Crisis than the COVID-19 pandemic. Overall, the most time variation is attributed to oil

prices, followed by the inflation rate.

These findings complement the work of Chang et al. (2023), who estimate a univariate

endogenous regime switching model for crude oil prices and then employ the extracted mean

and volatility factors to study the impact of oil price fluctuations on inflation expectations.

They find that shocks to the mean factor result in a rise in inflation expectations and

disagreement, whereas shocks to the volatility factor lead to lower inflation expectations.
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Our framework differs from theirs in three key aspects. First, Chang et al. (2023) employs

a univariate Markov switching model that embodies discrete changes in the latent process

driving oil price fluctuations. Then, in a second step, they estimate a VAR for the mean

and latent factors, inflation expectations, and disagreement about the inflation forecast. In

contrast, we jointly model the interaction between oil prices, oil production, global economic

activity, and inflation or inflation expectations. Second, we use a flexible framework with

random time variation that can account for different patterns of time variation (stemming

from the VAR parameters or stochastic volatility) instead of modeling discrete changes in the

mean and volatility of real oil prices and then assuming that the coefficients in the second-

step VAR are fixed. Third, we identify the structural shock of interest via a an external

instrument whereas Chang et al. (2023) assume that the system is recursive. Despite all

these differences, both analyzes underscore the importance of modeling time variation in

the volatility of oil prices to understand the transmission of oil price shocks to inflation

expectations.

6 Robustness Checks

We run a battery of robustness checks for the constant-coefficient and TVP models. For

the sake of brevity, we relegate the figures to the online appendix and describe the results

in this section.

Alternative priors on the relevance of the instrument in the Proxy TVP-SVAR models.

As mentioned above, the reliability statistic allows us to gauge the proxy’s relevance for

identifying the oil price shock. Recall that, given the evidence that oil surprises are relevant

for the identification of oil news shocks (Känzig, 2021), the priors for β and σ are set such that

ρ ≈ 0.2 in the baseline model. In both models (rotating inflation or inflation expectations),

the posterior median for ρ exceeds 0.2 and the credible sets 95% exclude 0, thus suggesting

that the proxy is reliable. Yet, the reader may consider that the reliability indicator is
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small, which could point to some degree of misspecification in the baseline models (see e.g.,

Caldara and Herbst (2019)). To illustrate the robustness of the results to the choice of the

prior, we perform a series of robustness checks for the inflation model. The various scenarios

are intended to force a higher (or lower) signal-to-noise ratio β/σ. Estimation results are

reported in Table 2. For reference, the first row reports the results for the baseline model.

The second and third row report the results when we impose a tighter or looser prior on

the variance of the measurement error, ν0, respectively. As expected, a tighter (looser) prior

results in a higher (lower) posterior median for the reliability statistic. However, the impulse

response functions for the tighter prior, reported in Figures A.5 - A.9 of the online appendix,

are almost identical to the baseline responses. The last three lines of Table 2, report the

posterior median and credible regions for ρ obtained when we impose a prior with a lower

mean for the measurement error. As the table illustrates, this prior induces a lower posterior

mean on ρ, yet the 95% credible sets exclude 0, which indicates the proxy continues to

be informative. Furthermore, the impulse responses reported in Figures A.11- A.14 of the

online appendix reveal responses that are indistinguishable from the baseline estimates. The

only noticeable difference is the tighter (looser) confidence sets when the priors are more

(less) informative. These results suggest that, for the variables included in the model, the

TVP Proxy-SVARs are well identified; changing the prior distribution of the parameters that

govern the signal-to-noise ratio does not alter the posterior7.

Alternative constant-coefficient proxy-SVAR specifications estimated on the full sample.

Results reported in Figure A.21 of the appendix show that our estimates are robust to

employing a four-variable model that includes oil prices, oil production, world IP and rotates

inflation (dotted line) or inflation expectations (dotted dashed line) as the fourth variable

using the sample running from January 1978 to December 2022. The median posterior

estimates fall within the 90% credible region for the baseline. Similarly, the results are

robust to the inclusion of inventories in the Proxy-SVAR model (dashed line). While the
7See also Figures A.15- A.19 of the online appendix.
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figure reveals some differences between the responses of real oil prices, world oil production,

and world IP in the baseline and Känzig (2021) specification, the responses of inflation and

inflation expectations (the main interest of this paper) are very similar. As noted above, in

Känzig (2021), the response of the real oil prices is less persistent, and world oil production

and industrial production exhibit a decline in response to the oil news shock.

Alternative constant-coefficient proxy-SVAR specifications estimated on the Känzig’s sam-

ple. We compare our results to the baseline specification used by Känzig (2021), which

includes the real price of oil, world oil production, world industrial production, world oil

inventories, US industrial production and the US CPI log level (instead of the CPI infla-

tion). As Figure A.22 in the online appendix illustrates, Känzig (2021) baseline specification

estimated on his sample spanning January 1974 to December 2017 implies a less persistent

response of oil prices, a decline in world oil production (consistent with the notion that oil

news corresponds to a decline in oil supply), and a decline in world industrial production.

Estimation results from the 5-variable specification that excludes oil inventories –consistent

with our Proxy TVP-SVAR specification– fall within the 68% credible region for the baseline

estimates.

7 Conclusions

In this paper, we examine the presence of time variation in the response of oil markets,

US inflation, and inflation expectations to oil news shocks. We find evidence that the effect

of oil news shocks that lead to a 10% contemporaneous increase in oil prices on the real

oil price has become more persistent. However, such shocks continue to have a long-lasting

and statistically significant effect on the real price of crude oil. Regarding other oil market

variables, we find no statistically significant response of world oil production over the sample,

and evidence that the responsiveness of world oil production has diminished over time.

Our results suggest that there has been a considerable degree of time variation in the
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response of US inflation and inflation expectations. Of relevance for the current debate

on the possibility of a more volatile and persistent inflation is our finding of a significant

increase in the sensitivity of inflation and, especially, inflation expectations to oil news shocks

in the post-COVID period. Moreover, our estimates of the forecast error decomposition

indicate that oil news shocks played a crucial role in explaining the volatility of inflation

and, especially, inflation expectations in recent years. Finally, we traced most of the roots

of the time variation to stochastic volatility.

The results presented in this paper demonstrate that, in the context of higher and more

volatile inflation, oil news shocks matter for inflation expectations. Given that inflation

expectations play a key role in determining the future course of inflation, policymakers

should continue to monitor developments in the oil market.
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Table 1: Prior Distributions and Starting Values for the Time-Varying Proxy VAR Model

Parameter Description Prior Distribution Prior Scale Matrix/Value Degrees of Freedom/Formula
bt VAR coefficients bt = bt−1 + Q

1/2
b

ηb
t β0 = vec(b0)′ Initial state based on OLS

ηb
t ∼ N (0, I4,4p+1) P0|0 = 10 × V0 using training sample T0 =

120
Qb Coefficient inno-

vations
IW (Q0, T0 + T ) Q0 = V0 × T0 × 3.5 × 10−4 T0 = 120

V0 = kron(Σ0, (X′
0X0)−1)

αt Non-zero, non-
one elements of
Ãt i.e.,NNx = 6

αt = αt−1 + Q
1/2
α ηα

t Initial value from C0 C0 = chol(Σ0)

(lower triangu-
lar)

ηα
t ∼ N (0, I6) C0 normalized and in-

verted
C0 = (C−1

0 )′

Qα αt innovations IW (D0, T D0 + T ) D0: diagonal with 10−4 el-
ements

T D0 = NNx + 10 = 16

ln ht Log volatilities ln ht = ln ht−1 + Q
1/2
h

ηh
t MU0 = ln(diag(Σ0)) Prior mean for the initial log-

volatilities MU0 and
ηh

t ∼ N (0, I4) variance SS0 = 10
Qh ln ht innovations IW (g0I, T G0 + T ) g0 = 10−4 T G0 = N + 10 = 14
q1 First column of q Uniform on the unit sphere Metropolis step
β Instrument rele-

vance
N (b0m, v0m) b0m from OLS regression of Estimated from regression of

VAR residuals on instru-
ment

residuals on oil surprises

v0m = 0.1
σ2 Instrument noise 1

σ2 ∼ G(a, b) σ0 = b0m(OLS esti-
mate=0.354)

a = ν1
2 , b = 2

s1

variance ν0 = 2(2 + σ2
0

v2
0

) ν1 = ν0 + T

s0 = 2σ0(1 + σ2
0

v2
0

) s1 = s0 + v̂
′
t v̂t

v2
0 = 0.02 where v̂t = mt − β̂ε1t

Notes: The 4-variable VAR model includes real oil price, oil production, world industrial production, and
inflation with p = 4 lags. Key model parameters: N = 4 (number of variables), T0 = 120 (training sample
size), T (remaining sample size), NNx = N(N − 1)/2 = 6 (number of free elements in the impact matrix).
Σ0 is the variance-covariance matrix of reduced-form residuals from the training sample,
V0 = kron(Σ0, (X ′

0X0)−1) is the Kronecker product used for coefficient priors, and β0 = vec(b0)′ is the
vectorized OLS coefficients. The external instrument is related to structural shocks through
mt = βε1t + συt. MCMC uses 100,000 replications with 50,000 burn-in and every 10th draw is retained.
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Table 2: Robustness of Reliability Measure (ρ) to Alternative Priors - Median Estimates
and Credible Regions

Prior mean σ0 Prior Variance v0 Median 68% CR 95% CR
0.354 0.020 0.234 [0.187, 0.279] [0.157, 0.305]
0.354 0.010 0.458 [0.407, 0.507] [0.371, 0.535]
0.354 0.100 0.102 [0.067, 0.135] [0.045, 0.158]
0.177 0.020 0.148 [0.109, 0.184] [0.083, 0.208]
0.177 0.015 0.173 [0.130, 0.213] [0.102, 0.239]
0.177 0.025 0.126 [0.090, 0.162] [0.063, 0.186]

Note: The estimates are obtained using Time Variant Proxy VAR for the Inflation Model. The priors for σ
are parameterised in terms of mean σ0 and the variance v0. Note that 1

σ2 ∼ G(a, b) where a = ν1
2 , b = 2

s1
.

The parameters of this Gamma density are given by ν1 = ν0 + T and s1 = s0 + v̂′
tv̂t v̂t = mt − β̂ε1t. s0 =

2σ0

(
1 + σ2

0
v2

0

)
while ν0 = 2

(
2 + σ2

0
v2

0

)
. 68% confidence intervals correspond to the 16th and 84th percentiles,

while 95% confidence intervals correspond to the 5th and 95th percentiles.
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Figure 1: Oil Surprises
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Figure 2: Proxy-VAR Posterior Parameter Distributions
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Notes: The figure shows the posterior distributions of three key parameters. Top panel: Distri-

bution of β (instrument relevance) with median = 0.241 and 0.274. Middle panel: Distribution of

σ2 (variance of instrument equation) with median = 1.138 and 1.157. Bottom panel: Distribution

of ρ (reliability statistic) with median = 0.203 and 0.234.

31



Figure 3: Posterior Median Response of the Oil Price to the Oil News Shock

Note: The oil supply news shock normalized to a 10 percent increase in the real price of crude oil. The

dotted red line is the response from a constant-coefficient Proxy SVAR model. The shaded area indicated the

68 percent posterior credible sets. The vertical bars represent the recession periods for the United States as

identified by the NBER.
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Figure 4: Posterior Median Response of World Oil Production to Oil News Shock

Note: The oil supply news shock normalized to a 10 percent increase in the real price of crude oil. The dotted red line is

the response from a constant-coefficient Proxy-VAR model The shaded area indicated the 68 percent posterior credible

sets. The vertical bars represent the recession periods for the United States as identified by the NBER.
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Figure 5: Posterior Median Response of World Industrial Production to Oil News Shock

Note: The oil supply news shock normalized to a 1 percent increase in the real price of crude oil. The dotted red line is

the response from a constant-coefficient Proxy-VAR model. The dashed lines indicated the 68 percent posterior credible

sets. The vertical bars represent recession periods for the United States as identified by the NBER.
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Figure 6: Posterior Median Response of Inflation to Oil News Shock

Note: The oil supply news shock normalized to a 1 percent increase in the real price of crude oil. The dotted red line is

the response from a constant-coefficient Proxy-VAR model. The dashed lines indicated the 68 percent posterior credible

sets. The vertical bars represent the recession periods for the United States as identified by the NBER.
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Figure 7: Posterior Median Response of Inflation Expectations to Oil News Shock

Note: The oil supply news shock normalized to a 1 percent increase in the real price of crude oil. The dotted red line is

the response from a constant-coefficient Proxy-VAR model. The dashed lines indicated the 68 percent posterior credible

sets. The vertical bars represent the recession periods for the United States as identified by the NBER.
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Figure 8: Impulse Response Functions at Three Points in Time

Note: This figure shows the impulse response functions of oil price, oil production, world industrial production, and

inflation/inflation expectations (last column) for three episodes: 1988M11 (top), 2016M11 (middle), and 2021M04

(bottom). Red solid lines represent the Inflation Model, and blue dashed lines represent the Inflation Expectations

Model. Shaded areas indicate 68% confidence bands.
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Figure 9: Contribution of the Oil News Shock to the Forecast Error Variance on Inflation
and Inflation Expectations in percent

(a) Inflation Rate

(b) Inflation Expectations

Note: The solid line indicates the median contribution in the TVP Proxy VAR model. The dotted line is
the median contribution from the time-invariant model. The shaded areas indicate the 68 percent posterior
credible sets. The vertical bars represent the recession periods for the United States as identified by the
NBER.
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Figure 10: Autoregressive Coefficient Median Estimates (1988-2022) for the Inflation
Model.
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Note: The four panels show the coefficients for the Oil Price, Oil Production, World IP, and Inflation Rate
equations.
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Figure 11: Autoregressive Coefficient Median Estimates (1988-2022) for the Inflation
Expectations Model.
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Note: The four panels show the coefficients for the Oil Price, Oil Production, World IP, and Inflation
Expectations equations.
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Figure 12: Time-Varying Contemporaneous Relationships (αt)

Note: This figure displays the evolution of contemporaneous relationships between oil market variables from
1988 to 2022. Red dashed lines mark major economic and geopolitical events. Gray shaded areas indicate
NBER recession periods.
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Figure 13: Time-Varying Stochastic Volatilities (Standard Deviations)

Notes: The figure shows the estimated stochastic volatilities for Oil Price (orange), Oil Production
(blue), World IP (yellow), and Inflation (purple) from 1988 to 2022. Volatility is measured as the
standard deviation of monthly percentage changes. The COVID-19 period exhibits unprecedented
volatility in oil prices, reaching approximately 30 percentage points.
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