

Machine Learning,
Animated

This book teaches readers to create their own neural networks with dense and convolutional
layers, and use them to make binary and multi-category classifications. Readers will learn how
to build deep learning game strategies and combine this with reinforcement learning, witnessing
AI achieve super-human performance in Atari games such as Breakout, Space Invaders, Sea-
quest and Beam Rider.

Written in a clear and concise style, illustrated with animations and images, this book is particu-
larly appealing to readers with no background in computer science, mathematics or statistics.

Dr. Mark Liu is a tenured finance professor and founding director of the Master of Science in
Finance program at the University of Kentucky, where he teaches Python Predictive Analytics
to graduate students. He has more than 20 years of coding experience and is the author of Make
Python Talk (No Starch Press, 2021).

The release of ChatGPT has kicked off an arms race in Machine Learning (ML), however, ML
has also been described as a black box and very hard to understand. Machine Learning, Ani-
mated eases you into basic ML concepts and summarizes the learning process in three words:
initialize, adjust and repeat. This is illustrated step by step with animation to show how ma-
chines learn: from initial parameter values to adjusting each step, to the final converged param-
eters and predictions.

Chapman & Hall/CRC Machine Learning & Pattern Recognition

A First Course in Machine Learning
Simon Rogers, Mark Girolami

Statistical Reinforcement Learning: Modern Machine Learning Approaches
Masashi Sugiyama

Sparse Modeling: Theory, Algorithms, and Applications
Irina Rish, Genady Grabarnik

Computational Trust Models and Machine Learning
Xin Liu, Anwitaman Datta, Ee-Peng Lim

Regularization, Optimization, Kernels, and Support Vector Machines
Johan A.K. Suykens, Marco Signoretto, Andreas Argyriou

Machine Learning: An Algorithmic Perspective, Second Edition
Stephen Marsland

Bayesian Programming
Pierre Bessiere, Emmanuel Mazer, Juan Manuel Ahuactzin, Kamel Mekhnacha

Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data
Haiping Lu, Konstantinos N. Plataniotis, Anastasios Venetsanopoulos

Data Science and Machine Learning: Mathematical and Statistical Methods
Dirk P. Kroese, Zdravko Botev, Thomas Taimre, Radislav Vaisman

Deep Learning and Linguistic Representation
Shalom Lappin

Artificial Intelligence and Causal Inference
Momiao Xiong

Introduction to Machine Learning with Applications in Information Security, Second Edition
Mark Stamp

Entropy Randomization in Machine Learning
Yuri S. Popkov, Alexey Yu. Popkov, Yuri A. Dubno

Transformers for Machine Learning
Uday Kamath, Kenneth Graham, Wael Emara

The Pragmatic Programmer for Machine Learning
Marco Scutari, Mauro Malvestio

Machine Learning, Animated
Mark Liu

For more information on this series please visit: https://www.routledge.com/Chapman--HallCRC-Ma-
chine-Learning--Pattern-Recognition/book-series/CRCMACLEAPAT

https://www.routledge.com/Chapman--HallCRC-Machine-Learning--Pattern-Recognition/book-series/CRCMACLEAPAT
https://www.routledge.com/Chapman--HallCRC-Machine-Learning--Pattern-Recognition/book-series/CRCMACLEAPAT

Machine Learning,
Animated

Mark Liu

First edition published 2024
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Mark Liu

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot as-
sume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have
attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders
if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please
write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho-
tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not
available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for iden-
tification and explanation without intent to infringe.

ISBN: 978-1-032-46214-1 (hbk)
ISBN: 978-1-032-46213-4 (pbk)
ISBN: 978-1-003-44128-1 (ebk)
ISBN: 978-1-003-38058-0 (eBook+)

DOI: 10.1201/b23383

Typeset in Latin Modern font
by KnowledgeWorks Global Ltd.

Publisher’s note: This book has been prepared from camera-ready copy provided by the authors.

Access the Support Material: https://www.routledge.com/Machine-Learning-Animated/Liu/p/book/9781032462141
and https://github.com/markhliu/MLA

Library of Congress Cataloging-in-Publication Data

Names: Liu, Mark (Mark H.), author.
Title: Machine learning, animated / Mark Liu.
Description: First edition. | Boca Raton, FL : CRC Press, 2024. | Includes
 bibliographical references and index.
Identifiers: LCCN 2023016272 (print) | LCCN 2023016273 (ebook) | ISBN
 9781032462141 (hbk) | ISBN 9781032462134 (pbk) | ISBN 9781003441281
 (ebk) | ISBN 9781003380580 (eBook+)
Subjects: LCSH: Neural networks (Computer science)--Problems, exercises,
 etc. | Computer animation--Problems, exercises, etc. | Machine
 learning--Problems, exercises, etc. | Video
 games--Programming--Problems, exercises, etc.
Classification: LCC QA76.87 .L576 2024 (print) | LCC QA76.87 (ebook) |
 DDC 006.3/107--dc23/eng/20230905
LC record available at https://lccn.loc.gov/2023016272
LC ebook record available at https://lccn.loc.gov/2023016273

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://www.routledge.com/Machine-Learning-Animated/Liu/p/book/9781032462141
https://github.com/markhliu/MLA
https://doi.org/10.1201/b23383
https://lccn.loc.gov/2023016272
https://lccn.loc.gov/2023016273

To Ivey and Andrew.

Taylor & Francis
Taylor & Francis Group
http://taylorandfrancis.com

https://taylorandfrancis.com

Contents

Preface xxi

Acknowledgments xxvii

Section I Installing Python and Learning Animations

Chapter 1 � Installing Anaconda and Jupyter Notebook 3

1.1 WHY PYTHON FOR MACHINE LEARNING? 4

1.1.1 The Rise of Python 4
1.1.2 Python for Machine Learning 5

1.2 INSTALLING ANACONDA 6

1.2.1 Installing Anaconda in Windows 6
1.2.2 Installing Anaconda in macOS 6
1.2.3 Installing Anaconda in Linux 7
1.2.4 Difference between Conda-install and Pip-install 8

1.3 VIRTUAL ENVIRONMENT FOR THIS BOOK 8

1.3.1 Create the Virtual Environment MLA 8
1.3.2 Activate the Virtual Environment 9
1.3.3 De-activate the Virtual Environment 9

1.4 SET UP JUPYTER NOTEBOOK IN THE VIRTUAL ENVIRONMENT 10

1.4.1 Write Python in Jupyter Notebook 10
1.4.2 Issue Commands in Jupyter Notebook 12

1.5 FILE SYSTEM FOR THE BOOK 12

1.6 GLOSSARY 13

1.7 EXERCISES 14

vii

viii � Contents

Chapter 2 � Creating Animations 15

2.1 CREATE PLOTS WITH MATPLOTLIB 16

2.1.1 A Single Line Plot 17
2.1.2 Multiple Lines in the Same Plot 18

2.2 CREATE SUBPLOTS 18

2.2.1 Create Individual Plots 19
2.2.2 Create Subplots 20

2.3 CREATE ANIMATED PLOTS 21

2.3.1 Generate Annual Line Plots 22
2.3.2 Animate the Plots 23

2.4 CREATE ANIMATED BAR CHARTS 23

2.4.1 Create a Horizontal Bar Chart 24
2.4.2 Generate Annual Bar Charts 24
2.4.3 Animate the Bar Charts 26

2.5 PUT BAR CHARTS AND PLOTS SIDE BY SIDE 26

2.5.1 Combine a Bar Chart and a Plot 26
2.5.2 Create an Animation of the Combined Pictures 27

2.6 ANIMATED PIE CHARTS 28

2.6.1 Create a Pie Chart 28
2.6.2 Generate Annual Pie Charts 29
2.6.3 Animate the Combined Pie Charts and Plots 29

2.7 APPENDIX: DOWNLOAD AND CLEAN UP THE GDP DATA 30

2.8 GLOSSARY 31

2.9 EXERCISES 31

Section II Machine Learning Basics

Chapter 3 � Machine Learning: An Overview 35

3.1 ML: A NEW PARADIGM FOR AI 36

3.1.1 What is AI? 36
3.1.2 Rule-Based AI 37
3.1.3 What is ML? Why ML Matters? 37
3.1.4 Why is ML so Popular? 38

3.2 DIFFERENT TYPES OF ML 39

3.2.1 Supervised Learning 39

Contents � ix

3.2.2 Unsupervised Learning 40
3.2.3 Reinforcement Learning 41

3.3 DEEP REINFORCEMENT LEARNING 42

3.3.1 Deep Learning 42
3.3.2 Combine Deep Learning and Reinforcement Learning 42

3.4 APPLY ML IN THE REAL WORLD 43

3.4.1 The Delivery Route Problem 43
3.4.2 Try the Problem before You Know the Answer 43

3.5 GLOSSARY 44

3.6 EXERCISES 45

Chapter 4 � Gradient Descent – Where Magic Happens 47

4.1 OPTIMIZATION THROUGH GRID SEARCH 48

4.1.1 How Grid Search Achieves Optimization 48
4.1.2 Curse of Dimensionality and Directional Grid Search 51

4.2 GRADIENT DESCENT 55

4.3 USE TENSORFLOW TO CALCULATE GRADIENTS 57

4.3.1 Install TensorFlow 58
4.3.2 Calculate Gradients Using TensorFlow 58
4.3.3 Gradient Descent Optimization with TensorFlow 59
4.3.4 Animate the Optimization Process 61

4.4 CHOOSE THE RIGHT LEARNING RATE 63

4.4.1 When the Learning Rate is Too Large 63
4.4.2 When the Learning Rate is Too Small 64

4.5 COMPARE LEARNING RATES 64

4.5.1 Combine Animations 64
4.5.2 Subplots of Different Stages 66

4.6 GLOSSARY 66

4.7 EXERCISES 68

Chapter 5 � Introduction to Neural Networks 69

5.1 ANATOMY OF A NEURAL NETWORK 71

5.1.1 Elements of a Neural Network 71
5.1.2 How Does a Neural Network Learn? 73
5.1.3 Make Predictions 77

x � Contents

5.2 ANIMATE THE LEARNING PROCESS 78

5.2.1 Generate Graphs 78
5.2.2 Create Animation Based on Graphs 80
5.2.3 Subplots of Different Stages 81

5.3 CREATE A NEURAL NETWORK WITH KERAS 83

5.3.1 Construct the Model 83
5.3.2 Compile and Train the Model 84
5.3.3 Make Predictions 85

5.4 CUSTOMIZE TRAINING WITH GRADIENTTAPE 86

5.4.1 Construct the Model 86
5.4.2 Train the Model 86
5.4.3 Make Predictions 87

5.5 GLOSSARY 88

5.6 EXERCISES 88

Chapter 6 � Activation Functions 89

6.1 WHY DO WE NEED ACTIVATION FUNCTIONS? 91

6.1.1 Construct a Neural Network 91
6.1.2 Learn a Nonlinear Relation without Activation 93

6.2 THE RELU ACTIVATION FUNCTION 97

6.2.1 What is ReLU? 97
6.2.2 Animate the ReLU Function 98
6.2.3 Use ReLU to Model Nonlinearity 99

6.3 THE SIGMOID ACTIVATION FUNCTION 101

6.3.1 Plot the Sigmoid Function 101
6.3.2 Animate the Sigmoid Function 102
6.3.3 Combine Animations 103
6.3.4 A Picture with Subplots of Different Stages 104

6.4 THE SOFTMAX ACTIVATION FUNCTION 104

6.4.1 What is the Softmax Function? 104
6.4.2 A Diagram of the Softmax Function 107

6.5 GLOSSARY 108

6.6 EXERCISES 109

Contents � xi

Section III Binary and Multi-Category Classifications

Chapter 7 � Binary Classifications 113

7.1 WHAT IS A BINARY CLASSIFICATION PROBLEM 114

7.1.1 Sigmoid Activation in Binary Classifications 115
7.1.2 The Binary Cross-Entropy Loss Function 116

7.2 PROCESS IMAGE DATA 117

7.2.1 Download Data 117
7.2.2 Convert NumPy Arrays to Pictures and Back 118
7.2.3 Match Pictures with Labels 120

7.3 BINARY CLASSIFICATION WITH A LOGIT REGRESSION 121

7.3.1 Prepare the Data 121
7.3.2 Train the Logit Model 123
7.3.3 Predict Using the Logit Model 125

7.4 BINARY CLASSIFICATION WITH A SIMPLE NEURAL NETWORK 126

7.4.1 Train and Test Using a Neural Network 127
7.4.2 Focus on Two Examples 128
7.4.3 Diagrams of the Network and Predictions 128
7.4.4 Animate the Training Process 130
7.4.5 Animate the Predictions for the Deer 131

7.5 COMBINE THE ANIMATIONS 132

7.5.1 Animate the Two Predictions 132
7.5.2 Subplots 132

7.6 BINARY CLASSIFICATION WITH A DEEP NEURAL NETWORK 133

7.7 APPENDIX: LOAD CIFAR10 FROM TENSORFLOW DIRECTLY 136

7.8 GLOSSARY 136

7.9 EXERCISES 137

Chapter 8 � Convolutional Neural Networks 139

8.1 WHAT ARE CONVOLUTIONAL NEURAL NETWORKS (CNNS)? 140

8.1.1 Our Running Example 140
8.1.2 A Horizontal Filter 141

8.2 CONVOLUTION OPERATIONS 145

8.2.1 Calculations in a Convolution Operation 145

xii � Contents

8.2.2 Animate the Convolution Operations 147
8.2.3 Subplots 150

8.3 STRIDE AND PADDING 152

8.3.1 A Filter without Padding and a Stride of 2 152
8.3.2 Animate the Diagonal Filter 152
8.3.3 Animate the Diagonal Filter Convolution Operation 154
8.3.4 Subplots for Strides 155

8.4 COMBINE THE TWO ANIMATIONS 155

8.4.1 Combine the Animations 155
8.5 MAX POOLING 157

8.6 BINARY CLASSIFICATIONS WITH CONVOLUTIONAL LAYERS 158

8.7 GLOSSARY 160

8.8 EXERCISES 161

Chapter 9 � Multi-Category Image Classifications 163

9.1 IMAGE AUGMENTATIONS 164

9.1.1 The Keras Image Generator 165
9.1.2 Visualize Image Augmentations 165

9.2 WHAT IS MULTI-CATEGORY CLASSIFICATION? 167

9.2.1 One-Hot Encoder for Labels 167
9.2.2 The Activation and Loss Functions 168

9.3 TRAIN THE MULTI-CATEGORY CLASSIFICATION MODEL 169

9.3.1 Load the Full Data Set 169
9.3.2 Convert Labels to One-Hot Variables 170
9.3.3 Train the Model 171
9.3.4 Evaluate the Model 172

9.4 ANIMATE THE LEARNING PROCESS 173

9.4.1 Select Example Pictures 173
9.4.2 Animate Prediction Changes 174
9.4.3 Subplots of the Predictions on the Truck Image 175
9.4.4 Animate Predictions on the Frog Image 177
9.4.5 Subplots of the Predictions on the Frog Image 177
9.4.6 Combine the Animations 178

9.5 GLOSSARY 180

9.6 EXERCISES 180

Contents � xiii

Section IV Developing Deep Learning Game Strategies

Chapter 10 � Deep Learning Game Strategies 183

10.1 GET STARTED WITH THE OPENAI GYM ENVIRONMENT 184

10.1.1 Basic Elements of a Game Environment 185
10.1.2 The Frozen Lake Game 186
10.1.3 Play the Frozen Lake Game Manually 188

10.2 DEEP LEARNING GAME STRATEGIES: GENERATING DATA 189

10.2.1 Summary of the Game Strategy 189
10.2.2 Simulate One Game 189
10.2.3 Simulate Many Games 191

10.3 TRAIN THE DEEP NEURAL NETWORK 192

10.3.1 Preprocess the Data 192
10.3.2 Train Deep Learning Game Strategies 194

10.4 PLAY GAMES WITH THE TRAINED MODEL 195

10.4.1 Test One Game 195
10.4.2 Test the Efficacy of the Game Strategy 197

10.5 ANIMATE THE DECISION-MAKING PROCESS 198

10.5.1 Generate Figures 198
10.5.2 Create the Animation 198
10.5.3 Create a Figure with Subplots 200

10.6 GLOSSARY 200

10.7 EXERCISES 201

Chapter 11 � Deep Learning in the Cart Pole Game 203

11.1 PLAY THE CART POLE GAME IN OPENAI GYM 204

11.1.1 Features of the Cart Pole Game 204
11.1.2 Play a Full Game 206

11.2 GENERATE DATA TO TRAIN THE MODEL 206

11.2.1 How to Define Winning and Losing? 207
11.2.2 Prepare Data for the Neural Network 207

11.3 TRAIN THE DEEP NEURAL NETWORK 210

11.3.1 Preprocess the Data 210
11.3.2 Train the Deep Neural Network with Data 211

xiv � Contents

11.4 PLAY THE GAME WITH THE TRAINED MODEL 212

11.4.1 A best_move() Function 212
11.4.2 Play One Cart Pole Game with the Trained Model 213

11.5 COMPARE TWO GAMES 214

11.5.1 Record a Game with Random Moves 214
11.5.2 Combine Frames 214
11.5.3 Subplots of the Cart Pole Game Stages 215

11.6 GLOSSARY 219

11.7 EXERCISES 219

Chapter 12 � Deep Learning in Multi-Player Games 221

12.1 CREATE THE TIC TAC TOE GAME ENVIRONMENT 222

12.1.1 Use a Python Class to Represent the Environment 223
12.1.2 Create a Local Module for the Tic Tac Toe Game 223
12.1.3 Verify the Custom-Made Game Environment 224
12.1.4 Play a Game in the Tic Tac Toe Environment 226

12.2 TRAIN A DEEP LEARNING GAME STRATEGY 227

12.2.1 A Blueprint of the Deep Learning Game Strategy 227
12.2.2 Simulate Tic Tac Toe Games 228
12.2.3 Train Your Tic Tac Toe Game Strategy 230

12.3 USE THE TRAINED MODEL TO PLAY GAMES 231

12.3.1 Best Moves Based on the Trained Model 231
12.3.2 Test a Game Using the Trained Model 233
12.3.3 Test the Efficacy of the Trained Model 235

12.4 ANIMATE THE DEEP LEARNING PROCESS 236

12.4.1 Probabilities of Winning for Each Hypothetical Move 236
12.4.2 Animate the Whole Game 238
12.4.3 Animate the Decision Making 238
12.4.4 Animate Board Positions and the Decision Making 239
12.4.5 Subplots of the Decision-Making Process 240

12.5 GLOSSARY 240

12.6 EXERCISES 242

Contents � xv

Chapter 13 � Deep Learning in Connect Four 243

13.1 CREATE A CONNECT FOUR GAME ENVIRONMENT 244

13.1.1 A Connect Four Game Environment 244
13.1.2 Verify the Connect Four Game Environment 245
13.1.3 Play a Connect Four Game 246

13.2 TRAIN A DEEP NEURAL NETWORK 247

13.2.1 The Game Plan 248
13.2.2 Simulate Connect Four Games 248
13.2.3 Train the Connect Four Game Strategy 250

13.3 USE THE TRAINED MODEL TO PLAY CONNECT FOUR 251

13.3.1 Best Moves 251
13.3.2 Test Connect Four Deep Learning Game Strategies 253

13.4 ANIMATE DEEP LEARNING IN CONNECT FOUR 254

13.4.1 Print Out Probabilities of Winning for Each Next Move 255
13.4.2 Animate a Complete Connect Four Game 257
13.4.3 Animate the Decision-Making Process 257
13.4.4 Combine Board Positions and Decision Making 258
13.4.5 Create Subplots of Deep Learning 258

13.5 GLOSSARY 259

13.6 EXERCISES 261

Section V Reinforcement Learning

Chapter 14 � Introduction to Reinforcement Learning 265

14.1 BASICS OF REINFORCEMENT LEARNING 266

14.1.1 Basic Concepts 266
14.1.2 The Bellman Equation and Q-Learning 267

14.2 USE Q-VALUES TO PLAY THE FROZEN LAKE GAME 268

14.2.1 The Logic Behind Q-Learning 268
14.2.2 A Q-Table to Win the Frozen Lake Game 269

14.3 TRAIN THE Q-VALUES 270

14.3.1 What is Q-Learning? 270
14.3.2 Let the Learning Begin 271

xvi � Contents

14.4 Q-LEARNING IN A SELF-MADE GAME ENVIRONMENT 274

14.4.1 A Self-Made Frozen Lake Game Environment 274
14.4.2 Use the Q-Table in the Self-Made Game Environment 275

14.5 ANIMATE THE Q-LEARNING PROCESS 276

14.5.1 Highlight Values and Actions in the Q-Table 276
14.5.2 Animate the Use of the Q-Table 278
14.5.3 Game Board Positions and Best Actions 279
14.5.4 Subplots of the Q-Learning Process 279

14.6 GLOSSARY 283

14.7 EXERCISES 283

Chapter 15 � Q-Learning with Continuous States 285

15.1 THE MOUNTAIN CAR GAME ENVIRONMENT 286

15.1.1 The Mountain Car Game 286
15.1.2 Convert a Continuous State into Discrete Values 288
15.1.3 The Reward Structure of the Game 289

15.2 Q-LEARNING IN THE MOUNTAIN CAR GAME 290

15.2.1 How to Train the Q-Table 290
15.2.2 Update the Q-Table 291
15.2.3 Train the Q-Table via Trial and Error 291

15.3 TEST THE TRAINED Q-TABLE 293

15.3.1 Define the Test_Q() Function 293
15.3.2 The Effectiveness of the Trained Q-Table 293

15.4 ANIMATE THE GAME BEFORE AND AFTER Q-LEARNING 294

15.4.1 The Mountain Car Game without Q-Learning 294
15.4.2 The Mountain Car Game with Q-Learning 295
15.4.3 The Mountain Car Game with and without Q-Learning 296

15.5 GLOSSARY 300

15.6 EXERCISES 300

Chapter 16 � Solving Real-World Problems with Machine Learning 301

16.1 CREATE A DELIVERY ROUTE GAME ENVIRONMENT 302

16.1.1 Draw Delivery Routes 303
16.1.2 Create a Game Environment 303
16.1.3 Use the Delivery Route Game Environment 304

Contents � xvii

16.2 TRAIN A Q-TABLE BETWEEN ANY TWO POSITIONS 306

16.2.1 Create and Train A Q-table 306
16.2.2 Test the Trained Tabular Q-Values 308

16.3 TRAIN THE Q-TABLE FOR ALL POSSIBLE ROUTES 309

16.3.1 Train the Large Q-Table 310
16.3.2 Test the Large Q-Table 311

16.4 THE SHORTEST DELIVERY ROUTE TO EIGHT HOUSEHOLDS 312

16.4.1 Find All Possible Permutations in Python 312
16.4.2 The Total Distance to Deliver to Eight Households 313
16.4.3 The Shortest Route 315

16.5 ANIMATE THE DELIVERY ROUTE 316

16.5.1 Create a Graph at Each Stop 316
16.5.2 Animate the Shortest Route 317
16.5.3 Subplots of the Eight Deliveries 317

16.6 GLOSSARY 318

16.7 EXERCISES 318

Section VI Deep Reinforcement Learning

Chapter 17 � Deep Q-Learning 323

17.1 DEEP Q-LEARNING FOR THE CART POLE GAME 324

17.1.1 Create a Deep Q-Network 325
17.1.2 Train the Deep Q-Network 326

17.2 TEST THE TRAINED DEEP Q-NETWORK 330

17.2.1 Test and Record One Game 330
17.2.2 Test the Efficacy of the Deep Q-Network 331

17.3 ANIMATE DEEP Q-LEARNING 332

17.3.1 Draw the Current Game State and Q-Values 332
17.3.2 Create A Graph for Each Time Step 334

17.4 AN ANIMATION AND A PICTURE WITH SUBPLOTS 334

17.5 GLOSSARY 335

17.6 EXERCISES 337

xviii � Contents

Chapter 18 � Policy-Based Deep Reinforcement Learning 339

18.1 POLICY-BASED REINFORCEMENT LEARNING 340

18.1.1 What is a Policy? 341
18.1.2 What is the Policy Gradient Method? 341

18.2 GET STARTED WITH ATARI GAMES 342

18.2.1 The Pong Game 343
18.2.2 Preprocess the Game Pictures 344
18.2.3 Use the Difference of Game Windows 345

18.3 TRAIN THE POLICY GRADIENT AGENT 347

18.3.1 Create a Policy Network 347
18.3.2 Train the Model 348

18.4 TEST THE POLICY GRADIENT AGENT 350

18.5 ANIMATE THE PONG GAMES 351

18.5.1 Record Games with Random Moves 351
18.5.2 Combine the Animations 352
18.5.3 Subplots of the Policy Gradient Agent 352

18.6 GLOSSARY 354

18.7 EXERCISES 354

Chapter 19 � The Policy Gradient Method in Breakout 355

19.1 GET STARTED WITH THE BREAKOUT GAME 356

19.1.1 The Breakout Game 356
19.1.2 Preprocess the Game Frames 357
19.1.3 Obtain the Difference of Two Game Windows 358

19.2 TRAIN THE POLICY GRADIENT MODEL IN BREAKOUT 360

19.2.1 Changes Needed 360
19.2.2 Create a Policy Network 361
19.2.3 Train the Policy Gradient Agent in Breakout 363

19.3 TEST THE POLICY GRADIENT AGENT IN BREAKOUT 364

19.3.1 Test the Trained Policy Gradient Agent 364
19.3.2 Search for Successful Episodes 365

19.4 ZERO IN ON INTERESTING TIME STEPS 366

19.4.1 Animate Interesting Time Steps 366
19.4.2 Subplots of the Interesting Time Steps 367

19.5 EXERCISES 367

Contents � xix

Chapter 20 � Double Deep Q-Learning 369

20.1 GET STARTED WITH OPENAI BASELINES 371

20.1.1 The Breakout Game with OpenAI Baselines 371
20.1.2 Preprocessed Frames from Baselines 372
20.1.3 Subplots of Preprocessed Frames 373

20.2 TRAIN THE DOUBLE DEEP Q AGENT 373

20.2.1 Create a Double Deep Q-Network 374
20.2.2 Train the Deep Q Network 375

20.3 TEST THE TRAINED BREAKOUT AGENT 379

20.3.1 Testing One Original Episode 379
20.3.2 Play Multiple Games and Test the Average Score 380

20.4 ANIMATE INTERESTING TIME STEPS 381

20.4.1 Collect a Successful Episode 381
20.4.2 A Picture with Subplots 382

20.5 GLOSSARY 384

20.6 EXERCISES 384

Chapter 21 � Space Invaders with Double Deep Q-Learning 385

21.1 GETTING STARTED WITH SPACE INVADERS 386

21.1.1 Space Invaders in OpenAI Gym 386
21.1.2 Space Invaders with the Baselines Game Wrapper 389
21.1.3 Preprocessed Space Invaders Game Windows 390

21.2 TRAIN THE DOUBLE DEEP Q-NETWORK 391

21.2.1 The Same Double Deep Q-Network 392
21.2.2 The Same Training Process 393

21.3 TEST THE TRAINED AGENT IN SPACE INVADERS 396

21.3.1 Testing One Full Original Episode 396
21.3.2 Average Performance of the Trained Model 397

21.4 ANIMATE SPACE INVADERS 397

21.4.1 Collect Space Invaders Episodes 397
21.4.2 Zero in on the Interesting Time Steps 399
21.4.3 Subplots of Space Invaders 399

21.5 EXERCISES 401

xx � Contents

Chapter 22 � Scaling Up Double Deep Q-Learning 403

22.1 GET STARTED WITH THE SEAQUEST GAME 404

22.1.1 The Seaquest Game in OpenAI Gym 404
22.1.2 Seaquest with the Baselines Game Wrapper 406
22.1.3 Preprocessed Seaquest Game Windows 407
22.1.4 Subplots of Seaquest Game Windows 408

22.2 GET STARTED WITH BEAM RIDER 408

22.2.1 Beam Rider without the Game Wrapper 409
22.2.2 Beam Rider with the Baselines Game Wrapper 411
22.2.3 Preprocessed Beam Rider Game Windows 412
22.2.4 Subplots of Beam Rider Game Windows 412

22.3 SCALING UP THE DOUBLE DEEP Q-NETWORK 413

22.3.1 Differences among Atari Games 413
22.3.2 A Generic Double Deep Q-Network 414
22.3.3 The Training Process for any Atari Game 415

22.4 TRY IT ON SEAQUEST 418

22.4.1 Train the Model in Seaquest 418
22.4.2 Test the Average Score in Seaquest 420
22.4.3 Animate a Successful Episode 421

22.5 TRY IT ON BEAM RIDER 424

22.5.1 Train the Model in Beam Rider 424
22.5.2 The Average Score in Beam Rider 425
22.5.3 A Successful Episode in Beam Rider 425

22.6 EXERCISES 428

Bibliography 429

Index 431

Preface

Artificial Intelligence, deep learning, machine learning — whatever you’re doing if
you don’t understand it — learn it. Because otherwise you’re going to be a dinosaur

within 3 years.
–Mark Cuban, 2021

Machine learning (ML) is redefining the way we live nowadays: it’s integrated into an
increasing number of products and services in the economy, from recommender sys-
tems to language translations, from voice assistants, medical imaging, to self-driving
cars... ML, especially deep learning, has made great strides in the last couple of
decades, largely due to the advancements in computing power (such as graphics pro-
cessing unit (GPU) training and distributed computing) and the exploding amount
of data available to train deep neural networks.
The recent release of ChatGPT by OpenAI has upped the ante in the game, forcing
Google and other competitors to release large language models of their own [5].
Different organizations and institutions have realized that an arms race in the field
of ML and artificial intelligence (AI) is on. Everyone in every profession must adapt
or face the risk of becoming a dinosaur and getting left behind. A case in point is a
recent announcement by the Chartered Financial Analyst (CFA) Institute on March
17, 2023, to add ML and AI in CFA exams to prepare candidates in these fields
[26]. The change comes after the CFA Institute “speaking with employers who were
bemoaning that while what’s in the program was very practical, when they hire new
charterholders, they’re not quite job ready.” [11]
The need to incorporate ML into the college curriculum was clear long before the
release of ChatGPT. In the Master of Science in Finance (MSF) program at the
University of Kentucky, we have kept a close eye on the market demand for skill sets
in these fields so as to keep our graduates competitive on the job market. I created
and taught a Python Predictive Analytics course for our finance master students,
involving state-of-the-art ML models such as deep neural networks, random forests,
gradient boosting machines, and so on. While students are generally amazed by what
ML can accomplish, they complain that the learning process in ML is like a black
box and hard to understand. To help explain the inner workings of ML algorithms, I
have simplified the learning process into three words: initialize, adjust, and repeat.

xxi

xxii � Preface

• Step 1: A machine learning model assigns values to the model parameters (ini-
tialize).
• Step 2: It makes predictions based on the current parameters and compares

predictions with the actual values; it changes the parameters so that the pre-
dictions in the next iteration will move closer to the actual values (adjust).
• Step 3: It repeats step 2 until the parameters converge (repeat).

The teaching experience has sowed the seed for this book. In the early part of the
book, I’ll discuss the building blocks of ML such as loss functions, activation func-
tions, the gradient descent optimization algorithm, the learning rate... Better yet, the
book will use animations to show step by step how machines learn: the initial pa-
rameter values, the adjustment in each step, and the final converged parameters and
predictions. I attempt to fill the void in the market for an ML book for college stu-
dents and young professionals with no background in computer science, mathematics,
or statistics. As such, the book takes a practical rather than technical approach to
ML. The book provides an intuitive explanation of concepts such as deep learning,
Q-learning, or the policy-gradient algorithm. You’ll learn how to implement these
algorithms by following the examples and how to apply them to your own field, be
that business, biology, medicine, or something else entirely. While most models are
built by using the TensorFlow Keras API, you also learn to create ML models from
scratch on your own, without resorting to any API. Along the way, you’ll know how
ML models are constructed, how the parameter values are initialized and then grad-
ually adjusted during the training process, how parameters converge, and how the
trained models make accurate predictions.
This book is divided into six parts. Part I discusses how to install Python and how
to create animations with Python libraries. Part II introduces you to ML basics
such as the gradient descent optimization algorithm, the learning rate, loss functions,
and activation functions. Part III covers binary and multi-category classifications
and introduces you to neural networks. In Part IV, we build deep learning game
strategies in OpenAI Gym games as well as in multi-player games such as Tic Tac
Toe and Connect Four. Part V introduces you to the basics of reinforcement learning.
In Part VI, we combine deep learning with reinforcement learning to create deep
reinforcement learning game strategies, so you can create a double deep Q-network
to train all Atari games (Breakout, Space Invaders, Seaquest, and so on).
Here’s an overview of the book:
Part I: Installing Python and Learning Animations

Chapter 1: Installing Anaconda and Jupyter Notebook

This chapter guides you through installing the Python software based on your oper-
ating system, whether that’s Windows, Mac, or Linux. You’ll create a virtual envi-
ronment just for projects in this book and install Jupyter Notebook as the integrated
development environment (IDE). You’ll set up a directory to manage files in this
book.

Preface � xxiii

Chapter 2: Creating Animations

You learn to create graphics and animations in Python. This prepares you to create
graphic representations and animations of the intermediate stages of the ML process
later in this book.
Part II: Machine Learning Basics

Chapter 3: Machine Learning: An Overview

You’ll learn what ML is and how it’s different from the traditional algorithms in
artificial intelligence (AI). We’ll discuss three types of ML: supervised learning, un-
supervised learning, and reinforcement learning. The three types also differ in terms
of data, methodologies, and applications.
Chapter 4: Gradient Descent – Where Magic Happens

You’ll use animations to show step by step how the parameter values in ML models
change based on the gradient descent algorithm so that the ML models make predic-
tions with the lowest forecasting error possible. The forecasting errors are measured
by a loss function. Training an ML model is finding parameter values that minimize
the loss function. The optimization process is achieved through gradient descent or
some variant of it. You’ll also know what the learning rate is and how it affects the
training process.
Chapter 5: Introduction to Neural Networks

This chapter discusses how neural networks learn from the data and make predictions.
You learn to construct a simple neural network from scratch to learn the relation
between ten pairs of input and output variables. You use the three steps that we have
outlined in ML: initialize, adjust, and repeat. You’ll animate the learning process by
extracting the parameter values and predictions in each step of the training process
in this simple neural network.
Chapter 6: Activation Functions

You’ll use the rectified linear unit (ReLU) activation function in a neural network
to approximate a nonlinear relationship. The Sigmoid activation function squashes a
number to the range between 0 and 1 so that it can be interpreted as the probability
of an outcome. The Softmax activation function squeezes a group of numbers into
the range [0, 1] so they can be interpreted as the probability distribution of multiple
outcomes.
Part III: Binary and Multi-Category Classifications

Chapter 7: Binary Classifications

Binary classification is an ML algorithm to classify samples into one of two categories.
In this chapter, you learn binary classifications by classifying images into horses and
deer using a neural network. You create an animation to demonstrate how the model
weights and the predicted probabilities change in different stages of training.

xxiv � Preface

Chapter 8: Convolutional Neural Networks

A convolutional layer treats an image as a two-dimensional object and finds patterns
on the image. It then associates these patterns with the image labels. This signif-
icantly improves the predictive power of the model. In this chapter, you learn the
basic concepts related to a convolutional layer such as the number of filters, kernel
size, zero-padding, strides. . . Better yet, you learn to create animations to show step
by step how to apply a filter on an image and how the convolution operations are
conducted.
Chapter 9: Multi-Category Image Classifications

When the target label is a multi-category variable with more than two possible values,
we call the machine learning algorithm a multi-category classification problem. In this
chapter, you learn to classify images in CIFAR-10 into one of the ten labels using a
deep neural network with augmentations and convolutional layers.
Part IV: Developing Deep Learning Game Strategies

Chapter 10: Deep Learning Game Strategies

You learn to use deep learning to train intelligent game strategies in the Frozen Lake
game in OpenAI Gym. You first generate game data for training purposes. You then
create a deep neural network to train game strategies. The agent picks the action
with the highest probability of winning based on the trained model.
Chapter 11: Apply Deep Learning to the Cart Pole Game

You learn to train deep learning game strategies to play the Cart Pole game in OpenAI
Gym. You learn to creatively redefine what’s considered “winning” in a game so that
there are roughly evenly distributed numbers of winning and losing games in the
simulated data. You feed the re-labelled data into a deep neural network to train the
model. The trained model wins the Cart Pole game 100% of the time.
Chapter 12: Deep Learning in Multi-Player Games

You learn to create a game environment for Tic Tac Toe. You then apply deep
learning to Tic Tac Toe with the aim of developing intelligent game strategies. We’ll
also animate the decision-making process of the agent so we can look under the hood
at how deep learning game strategies work.
Chapter 13: Deep Learning in Connect Four

You create a game environment for Connect Four and use simulated games to train
a deep neural network. At each step of the game, the deep learning agent iterates
through all possible next moves and selects the move with the highest probability
of winning. You animate the decision-making process by showing all possible next
moves and the associated probabilities of winning in each step of the game.

Preface � xxv

Part V: Reinforcement Learning

Chapter 14: Introduction to Reinforcement Learning

In reinforcement learning, an agent interacts with an environment through trial and
error. The agent learns to achieve the optimal outcome by receiving feedback from
the environment in the form of rewards and punishments. In this chapter, you’ll
train the Q-table in the Frozen Lake game. You create an animation to demonstrate
how tabular Q-learning works. In each state, you put the game board on the left
and the Q-table on the right. You highlight the row corresponding to the state and
compare the Q-values under the four actions. The best action is highlighted in red.
The animation repeats this process until the game ends.
Chapter 15: Q-Learning with Continuous States

Tabular Q-learning can solve problems in which both the number of actions and
the number of states are finite. In the Mountain Car game, the state variable is
continuous so the number of states is infinite. You use a finite number of discrete
values to represent the state space and train the Q-table for the game effectively.
Chapter 16: Solving Real-World Problems with Machine Learning

You learn to solve an Amazon Delivery Route problem by using tabular Q-learning.
You first find the shortest route between any two households in town by training a
Q-table. You need to deliver eight packages a day. You consider all permutations and
calculate the total distance traveled with each permutation. You select the one with
the shortest total distance.
Part VI: Deep Reinforcement Learning

Chapter 17: Deep Q-Learning

You learn to use a neural network to approximate a Q-table. A deep Q-learning
agent chooses an action in a given state by feeding the current game state into a
deep Q-network. The network returns Q-values associated with different actions. The
agent selects the action with the highest Q-value. You learn to successfully apply
deep Q-learning to the Cart Pole game.
Chapter 18: Policy-Based Deep Reinforcement Learning

You learn policy-based reinforcement learning in this chapter: instead of estimating
the value functions associated with different actions, you directly train a policy that
tells the agent which action to take in a given state. You use the policy gradient
method to play the Atari Pong game, earning a perfect score of 21 to 0.
Chapter 19: The Policy Gradient Method in Breakout

You generalize the policy gradient method you learned in Chapter 18 to another Atari
game: Breakout. You animate how the agent learns to dig a tunnel on the side of the
wall to send the ball to the back of the wall to score more efficiently.

xxvi � Preface

Chapter 20: Double Deep Q-Learning

Q-learning has a well-known problem of overestimating Q-values. To overcome this
problem, you learn to use the double Q-learning method in which one deep Q-network
is used for training (the training network) and another for prediction (the target
network). You animate how the trained agent in Breakout sends the ball to the back
of the wall multiple times.
Chapter 21: Space Invaders with Double Deep Q-Learning

You tweak the Q-network you used in Chapter 20 and apply it to another Atari game,
Space Invaders. Even though the agent does not know the rules of the Space Invaders
game, it can eliminate all invaders on the screen, just by learning from the rewards
via repeated interactions with the game environment.
Chapter 22: Scaling Up Double Deep Q-Learning

You scale up the double deep Q-network to play any Atari game. A model with the
same network architecture, same hyperparameters, and same training procedure is
created that can be applied to any Atari game. You apply the model on two new
Atari games: Seaquest and Beam Rider. With these skills, you are ready to train and
test any Atari game by using the same model.
All Python programs, along with answers to some end-of-the-chapter questions, are
provided in the GitHub repository https://github.com/markhliu/MLA.

https://github.com/markhliu/MLA

Acknowledgments

I have many people to thank for along the journey of making this book a reality. A
portion of this book was developed while I was teaching Python Predictive Analytics
to Master of Science in Finance students at the University of Kentucky in the past few
years. I’d like to thank all MS Finance students for keeping me motivated to find novel
ways to explain how Machine Learning works. I’d also like to thank Randi Slack and
Solomon Pace-McCarrick at CRC Press for guiding me through the editorial process.
Thanks to the production team of Michele Dimont and Riya Bhattacharya for helping
me cross the finish line. Finally, I’d like to thank my wife Ivey Zhang and my son
Andrew Liu for being so supportive in this journey.

xxvii

Taylor & Francis
Taylor & Francis Group
http://taylorandfrancis.com

https://taylorandfrancis.com

I
Installing Python and Learning Animations

1

Taylor & Francis
Taylor & Francis Group
http://taylorandfrancis.com

https://taylorandfrancis.com

C H A P T E R 1

Installing Anaconda and
Jupyter Notebook

The mechanic, who wishes to do his work well, must first sharpen his tools.
–Ancient Chinese Proverb

INTHIS CHAPTER, you’ll first learn why Python is a great tool for machine
learning (ML). After that, I’ll guide you through installing the Python soft-

ware you need to start running Python programs for this book. There are different
ways of installing Python and managing packages on your computer. We’ll be using
Anaconda as our Python distribution and development environment for this book. I’ll
guide you through the installation process based on your operating system, whether
that’s Windows, Mac, or Linux. I’ll also discuss the advantages of choosing Anaconda
over other ways of installing Python.
You’ll learn to create a virtual environment just for projects in this book. After that,
you’ll install Jupyter Notebook as your integrated development environment (IDE)
and start coding in it. At the end of the chapter, you’ll set up a directory to manage
files in this book.

New Skills in This Chapter

• Setting up Python on your computer by installing Anaconda
• Creating a virtual environment for projects in this book
• Starting coding in Python by using Jupyter Notebook
• Setting up a file system for this book

DOI: 10.1201/b23383-1 3

https://doi.org/10.1201/b23383-1

4 � Machine Learning, Animated

1.1 WHY PYTHON FOR MACHINE LEARNING?

In this section, I’ll briefly discuss why Python is popular as a programming language
in general and why it’s the preferred language for ML nowadays in particular.

1.1.1 The Rise of Python

Python has been the world’s most popular programming language since late 2018, ac-
cording to The Economist [25]. Once you start to code in Python, it’s easy to see why.
Python is a user-friendly, open-source, and cross-platform programming language.
Python code is relatively close to plain English, so with only a little experience, you
can often guess what a block of code is trying to accomplish.
Python is open source, meaning not only that the software is free to use for everyone
but also that other users can create and alter libraries. In fact, Python has a vast
ecosystem from which you can get resources and help from members in the com-
munity. Python programmers can share their code with one another, so instead of
building everything from scratch, you can import modules designed by others, as well
as share your modules with others in the Python community.
Python is a cross-platform programming language, meaning you can code in Python
whether you use Windows, Mac, or Linux. However, the installation of software and
libraries can be slightly different depending on your operating system. I’ll show you
how to install various libraries in your operating system. Once these are properly
installed, Python code works the same in different operating systems.
Python is a high-level interpreted language. It allows users to abstract away from
details of the computer such as data type, memory management, and pointers. As
a result, the execution of Python code is slower than lower-level compiled languages
such as C, C++, or Java. However, nowadays, with the advancements in computer
hardware, you’ll hardly notice the difference.

Ways to Learn Python Basics

This book assumes you have some basic understanding of the Python programming
language. If not, a great place to start is the free online Python tutorial provided by
W3Schools. Go to https://www.w3schools.com/python/ and follow the examples
and exercises in the tutorial. They also provide a “Try it Yourself” editor and
online compiler for you to run the Python code without installing Python on your
computer. Alternatively, you can pick up a Python basics book and go over it. The
Michigan State University’s Professor Charles Severance has a book called Python
for Everyone [22], and there is a printed version as well as a free online version
https://www.py4e.com/.

https://www.w3schools.com
https://www.py4e.com

Installing Anaconda and Jupyter Notebook � 5

1.1.2 Python for Machine Learning

All the ML algorithms in this book are in Python. We choose Python for several
reasons.
First, as we mentioned above, Python is an expressive high-level language for general
application development. Python’s syntax structure is easy to follow. It is easy for
ML enthusiasts to understand and process what the code is trying to accomplish. As
a result, Python users can focus on solving ML problems without spending too much
time and effort on the coding part. The simplicity of Python also allows programmers
to collaborate with each other easily because understanding each other’s code is not
as difficult.
Second, you can easily get support from the Python ML community. There is a large
online community with various groups and forums where programmers post their
errors or other types of problems and help each other out. You can get resources and
help from members in the Python ML community. If you encounter issues for the
ML libraries in this book, you can search the forums for the Python packages you
are using, or go to sites such as Stack Overflow to look for answers. In the rare case
that you couldn’t find an answer, feel free to reach out to me for help.
Third, Python is one of the most popular languages for ML. This is mainly because
the Python ML ecosystem provides a wide collection of libraries that enable users
to create ML models easily. In particular, you’ll use extensively the following three
libraries in this book: NumPy, TensorFlow, and Keras. Below, I’ll briefly discuss what
these libraries can accomplish. In a later chapter, we’ll go into more details when we
use these libraries to create various ML models.
NumPy stands for numerical Python. The NumPy library provides efficient data
structures to represent numerical vectors and matrices, which allows Python to han-
dle high-dimensional array objects and perform efficient mathematical operations. It
is the bedrock of many of Python’s numerical computing libraries such as pandas,
matplotlib, and TensorFlow. For example, as you’ll see later in this book, pictures
are represented as three-dimensional NumPy arrays in Python: the first dimension
is the width of the picture, the second the height, and the third the color channels.
Even though NumPy is a Python library, most of the code in it is written in C or
C++, and this allows for faster execution of the code.
Keras is a deep learning application programming interface (API) developed by
Google. It makes the implementations of deep neural networks easy. Specifically,
it provides the building blocks for developing state-of-the-art deep neural networks.
It provides a convenient way for you to specify neural networks. You can easily add
or remove a layer of neurons from the network as you tune your model. When you
add a new layer of neurons, you can specify how many neurons to include in the
layer, what activation function to use, and so on. You can also choose different types
of layers of neurons such as dense layers or convolutional layers. Later chapters cover
more details.

6 � Machine Learning, Animated

TensorFlow is an ML library developed by Google. It uses data flow and differentiable
programming to perform different tasks. It allows users to pre-process data. The
library takes input data as high-dimensional arrays known as tensors. The TensorFlow
library allows you to perform mathematical operations such as matrix multiplications,
convolutional operations, and so on. For example, we’ll use TensorFlow to calculate
the gradients of a function at the current parameter values so that we know how
much to adjust the parameters based on the rule of gradient descent. We’ll discuss
how to implement all these (along with the terminologies I mentioned here) in later
chapters.

1.2 INSTALLING ANACONDA

There are different ways of running Python programs and managing packages on
your computer. This book uses Anaconda. Anaconda is an open-source Python dis-
tribution, package, and environment manager. It is user-friendly and provides for the
easy installation of many useful Python libraries and packages that otherwise can be
quite a pain (or downright impossible) to compile and install yourself. Specifically,
Anaconda allows users to conda install packages in addition to pip installing pack-
ages (if you don’t know the difference between the two, don’t panic; I’ll explain later
in this chapter). As a matter of fact, many packages and libraries used in this book
will be conda installed. Some of them cannot be pip installed. Therefore, if you don’t
install Anaconda on your computer, many projects in this book won’t work. I urge
you to follow the instructions in this chapter and install Anaconda so that you can
enjoy all projects in this book.
Below, I’ll guide you through the process of installing Anaconda on your computer
based on your operating system.

1.2.1 Installing Anaconda in Windows

To install Anaconda in Windows, go to https://www.anaconda.com/products/
individual/. Scroll down to the section Anaconda Installers. Download the latest
version of Python 3 graphical installer for Windows. Make sure you download the
appropriate 32- or 64-bit package for your machine. Run the installer and follow the
instructions all the way through.
To check if Anaconda is properly installed on your computer, search for the Anaconda
Navigator app on your computer. If you can open the app, Anaconda is successfully
installed on your computer. The Anaconda Navigator app looks like what you see in
Figure 1.1.

1.2.2 Installing Anaconda in macOS

To install Anaconda in macOS, go to https://www.anaconda.com/products/
individual/. Scroll down to the section Anaconda Installers. Download the latest

https://www.anaconda.com
https://www.anaconda.com
https://www.anaconda.com
https://www.anaconda.com

Installing Anaconda and Jupyter Notebook � 7

Figure 1.1 The Anaconda Navigator app

version of Python 3 graphical installer for Mac. There is a command line installer
option as well. I recommend using the graphical installer instead of the command
line installer, especially for beginners, to avoid mistakes. Run the installer and follow
the instructions all the way through.
To check if Anaconda is properly installed on your computer, search for the Anaconda
Navigator app on your computer. If you can open the app, Anaconda is successfully
installed on your computer. The Anaconda Navigator app looks like what you see in
Figure 1.1.

1.2.3 Installing Anaconda in Linux

The installation of Anaconda in Linux involves more steps than for other
operating systems: there is no graphical installer for Linux. First, go to
https://www.anaconda.com/products/individual/, scroll down, and find the latest
Linux version. Choose the appropriate x86 or Power8 and Power9 package. Click
and download the latest installer bash script. For example, the installer bash script
during my installation was https://repo.anaconda.com/archive/Anaconda3-2022.05-
Linux-x86_64.sh. This link will change over time, but we’ll use this version as our
example.
Open a terminal on your computer. By default, the installer bash script is down-
loaded and saved to the Downloads folder on your computer. You should then install
Anaconda by issuing the following command in the terminal (use the path for your
bash script if it is different):
bash ~/Downloads/Anaconda3-2022.05-Linux-x86_64.sh

https://www.anaconda.com
https://repo.anaconda.com
https://repo.anaconda.com

8 � Machine Learning, Animated

After pressing the ENTER key on your keyboard, you’ll be prompted to review and
approve the license agreement. The last question in the installation process is this:
installation finished. Do you wish the installer to prepend the
Anaconda3 install location to PATH in your /home/mark/.bashrc ?
[yes|no] [no] >>>

You should type yes and press ENTER in order to use the conda command to open
Anaconda in a terminal.
Now you need to activate the installation by executing this command:
source ~/.bashrc

To open Anaconda navigator, enter the following command in the terminal:
anaconda-navigator

You should see the Anaconda navigator on your machine, similar to Figure 1.1.

1.2.4 Difference between Conda-install and Pip-install

Many people think pip install and conda install are the same, but they’re not. Pip
is the Python packaging authority’s recommended tool for installing packages from
the Python packaging index. Pip can be used to install only Python software. In
contrast, Conda is a cross-platform package and environment manager that installs
not only Python software but also packages in C or C++ libraries, R packages, or
other software. One case in point is that the portaudio package is a C package,
which cannot be installed using Pip, but can be installed using Conda. In order to
make Python connect to your computer microphone, you need the portaudio package.
Installing Anaconda is the only way to make speech recognition work in Python. See
my book Make Python Talk for details if you are interested [14].

1.3 VIRTUAL ENVIRONMENT FOR THIS BOOK

As you build more and more projects in Python, you’ll install many libraries. Some
libraries may interfere with other libraries, and different projects may use different
versions of the same library. To avoid problems of clashing libraries, I recommend
you build a virtual environment for each project. A virtual environment is a way to
isolate projects from each other.

1.3.1 Create the Virtual Environment MLA

We’ll create a virtual environment to contain all projects in this book. Let’s name
the virtual environment MLA, as in Machine Learning, Animated.

Installing Anaconda and Jupyter Notebook � 9

How to Open the Anaconda Prompt in Windows

Don’t confuse the Anaconda prompt in the Windows operating system with the
command prompt. To open Anaconda prompt in Windows, search for the Ana-
conda prompt app and click on the app to open it.

To create a virtual environment, open the Anaconda prompt (in Windows) or a
terminal (in Mac or Linux). Enter the following command:
conda create -n MLA python==3.9.12

After pressing ENTER, follow the instructions onscreen and press y when the prompt
asks you y/n. Once you have created the virtual environment on your machine, you
need to activate it.

1.3.2 Activate the Virtual Environment

To activate the virtual environment MLA, open the Anaconda prompt (in Windows)
or a terminal (in Mac or Linux). Execute the following command:
conda activate MLA

In Windows, you’ll see the following on your Anaconda prompt:
(MLA) C:\>

You can see the (MLA) prompt, which indicates that the command line is now in the
virtual environment MLA that you’ve just created.
On a Mac, you should see something similar to the following in the terminal (the
username will be different):
(MLA) Macs-MacBook-Pro:~ macuser$

In Linux, you should see something similar to this on your terminal (the username
will be different):
(MLA) mark@mark-OptiPlex-9020:~$

1.3.3 De-activate the Virtual Environment

When the command line is in the virtual environment MLA, there are two ways you
can deactivate it.
The first way is to issue the following command:
conda deactivate

10 � Machine Learning, Animated

Note that you don’t need to put the environment name MLA in the command. Conda
automatically goes to the base environment after deactivation. In Windows, you’ll
see the following on your Anaconda prompt:
(base) C:\>

You can see the (base) prompt, which indicates that the command line is in the
default Python environment.
On a Mac, you should see something similar to the following in the terminal:
(base) Macs-MacBook-Pro:~ macuser$

In Linux, you should see something similar to this in your terminal:
(base) mark@mark-OptiPlex-9020:~$

The second way is to issue the following command:
conda activate base

The above command activates the base environment, which is the default Python
environment. This effectively deactivates the virtual environment MLA the command
line was in before.

1.4 SET UP JUPYTER NOTEBOOK IN THE VIRTUAL ENVIRONMENT

Now we need to set up Jupyter Notebook in the newly created virtual environment on
your computer. First, activate the virtual environment MLA by running the following
line of code in the Anaconda prompt (in Windows) or a terminal (in Mac or Linux):
conda activate MLA

To install Jupyter Notebook in the virtual environment, run the command:
conda install notebook==6.4.8

To launch Jupyter Notebook, execute the following command in the same terminal
with the virtual environment activated:
jupyter notebook

Jupyter Notebook should open in your default browser. If not, open a browser and put
http://localhost:8888 in the address bar, and you should open the Jupyter Notebook.
The Jupyter Notebook app is shown in Figure 1.2.

1.4.1 Write Python in Jupyter Notebook

To get you up and running, I’ll show you how to run Python programs in Jupyter
Notebook.

Installing Anaconda and Jupyter Notebook � 11

Figure 1.2 The Jupyter Notebook app

How to Download an .ipynb or .py file from GitHub

To download an individual file from GitHub with .ipynb or .py extension, first go to
the file’s url using your browser. Click on the Raw button and you’ll be redirected
to a new url that shows the raw code of file. Press CTRL and S simultaneously on
your keyboard and a dialog box pops up. Select All Files (*.*) from the Save as
type drop-down menu and save the file on your computer.

Download the template file tmp.ipynb from the book’s GitHub repository
https://github.com/markhliu/MLA/blob/main/files/tmp.ipynb. Save it in the folder
/mla in your computer’s /Desktop folder. Go back to the Jupyter Notebook in your
browser, click on Desktop, then the mla folder, then the file tmp.ipynb. You should
see a cell with the following lines of code in it:

[2]: print("I love Python!")

I love Python!

Put your mouse cursor inside the cell and click on the Run button at the top menu
(the icon with a black triangle and the word Run in it). You should see a message
below the cell as the output. The message says, “I love Python!”

Two Ways to Run the Code in a Cell in Jupyter Notebook

There are two ways you can run the code in a cell in Jupyter Notebook: press the
Run button, or press the ENTER and SHIFT keys simultaneously.

https://github.com

12 � Machine Learning, Animated

1.4.2 Issue Commands in Jupyter Notebook

You can issue certain commands in Jupyter Notebook without going to the Anaconda
prompt (in Windows) or a terminal (in Mac or Linux).
For example, if you want to pip install the matplotlib library in the virtual environ-
ment MLA, you can do it in two different ways. The first way is to open the Anaconda
prompt (in Windows) or a terminal (in Mac or Linux) and issuing the following two
lines of commands:
conda activate MLA

pip install matplotlib==3.5.2

The second way, a shortcut, is to enter the following line of code in a cell:

[3]: !pip install matplotlib==3.5.2

Run the above cell will install the matplotlib library on your computer. Note that
since you have opened the Jupyter Notebook in the MLA virtual environment, you
have installed the matplotlib library in the MLA virtual environment, not in the base
Python environment.
Make sure you put an exclamation mark (!) in front of the code in the cell. This tells
Python to use the cell as a shortcut to the command line.

Not All Commands Can Be Executed in a Jupyter Notebook Cell

Not all commands can be executed in a Jupyter Notebook cell. For example, you
cannot conda install a package by issuing commands in a Jupyter Notebook cell. As
a matter of fact, you cannot execute any Conda command in a Jupyter Notebook
cell.

1.5 FILE SYSTEM FOR THE BOOK

First, make sure that you have a subfolder /mla in your computer’s /Desktop folder.
We’ll use the folder /mla to contain all files for this book. We’ll use a subfolder /utils
within the /mla folder for all local packages that we use for this book. We’ll use
another subfolder /files to contain other files such as graphs and videos. Within the
/files directory, we create a sub-directory for each chapter such as /ch01, /ch02, and
so on.

Installing Anaconda and Jupyter Notebook � 13

Python Modules, Packages, and Libraries

Python modules, packages, and libraries differ slightly. A Python module is a
single file with the .py extension. In contrast, a Python package is a collection of
Python modules contained in a single directory. The directory must have a file
named __init__.py to distinguish it from a directory that happens to have .py
extension files in it. A Python library is a collection of Python packages. We’ll use
the terms modules, packages, and libraries loosely and sometimes interchangeably.

Next, open a Jupyter notebook in the MLA virtual environment by following instruc-
tions earlier in this chapter. Save it as ch01.ipynb in the folder /Desktop/mla/. Enter
the following lines of code in it and run the cell:

[4]: import os

os.makedirs("utils", exist_ok=True)
os.makedirs("files/ch01", exist_ok=True)

The makedirs() method in the os library creates a directory on your computer. The
exist_ok=True option tells Python not to return an error message if such a directory
already exists. Download the file __init__.py from the book’s GitHub repository
https://github.com/markhliu/MLA and save it in the folder /Desktop/mla/utils/ on
your computer.
With that, you are all set up. You’ll learn how to create pictures and animations in
Python in the next chapter.

1.6 GLOSSARY

• Activate A Virtual Environment: Go into the subdirectory for a virtual
environment so that you can write programs using packages within the virtual
environment.

• Anaconda: An open-source software distribution, package, and environment
manager.

• Anaconda Navigator: An app in Windows, Mac, or Linux that you can install
on your computer to manage virtual environments, packages, and programs
using a user interface.

• Anaconda Prompt: An app for the Windows operating system that you
can install on your computer to manage virtual environments, packages, and
programs via command lines.

• Conda Install: Installing packages for Python on your computer. The pack-
ages are provided by Anaconda and can be written in either Python, C, C++,
or R.

https://github.com

14 � Machine Learning, Animated

• IDE: An integrated development environment. A comprehensive application
for computer programming software development. It usually provides a source
code editor, a complier, and a debugger.

• Pip Install: Installing packages on your computer from the Python Package
Index. Only packages written in Python can be installed.

• Virtual Environment: An isolated environment on your computer to contain
all needed files for a project.

1.7 EXERCISES

1.1 Install Anaconda on your computer. Open the Anaconda Navigator app on your
computer.

1.2 Create a new virtual environment and name it MLA.
1.3 Activate the virtual environment MLA you just created in Exercise 2. Then

deactivate the virtual environment and go to the base environment using the
two methods discussed in this chapter.

1.4 Install Jupyter Notebook in the virtual environment MLA.
1.5 Download the file tmp.ipynb from the book’s GitHub repository

https://github.com/markhliu/MLA/blob/main/files/tmp.ipynb. Open the
Jupyter Notebook app on your computer, and open the file tmp.ipynb in the
Jupyter Notebook app.

1.6 Continue the previous exercise, in a new cell in Jupyter Notebook, write a line
of Python code so that the output is a message “Machine Learning is fun!”

1.7 Continue the previous exercise, put the command !pip install matplotlib==3.5.2
in a new cell in Jupyter Notebook, run the code in the cell and see what happens.

1.8 Continue the previous exercise, put the command !conda install yt in a new cell
in Jupyter Notebook, run the code in the cell and see what happens. Hint: you
should get an error message because you cannot run any Conda command in a
Jupyter Notebook cell.

1.9 Use the makedirs() method from the os library to create a folder named mla
on your computer’s desktop. Then create two subfolders utils and files inside
the mla folder. Make sure you put the exist_ok=True option in the makedirs()
method so that Python won’t return an error message if such a directory already
exists.

https://github.com

References
Andrej Karpathy. Blog: http://karpathy.github.io/2016/05/31/rl/, 2016.
Richard Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press, 1961.
Ian Goodfellow Yoshua Bengio and Aaron Courville. Deep Learning. The MIT Press, 2016.
Saheli Roy Choudhury. bit.ly/43QnZWB. CNBC, 2016.
Martin Coulter and Greg Bensiger. Alphabet shares dive after google ai chatbot bard flubs answer in ad:
bit.ly/4602vc2, 2023.
DeepMind. Blog: deepmind.com/blog/deep-reinforcement-learning, 2016.
History.com Editors. https://www.history.com/this-day-in-history/deep-blue-defeats-garry-kasparov-in-chess-
match. HISTORY, 2009.
Richard Feynman. The Meaning of It All: Thoughts of a Citizen-Scientist. Basic Books, 2015 Reprint.
Y.W. Teh G.E. Hinton, S. Osindero. A fast learning algorithm for deep belief nets. Neural Computation, 2006.
Hado Hasselt. Double q-learning. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems, volume 23. Curran Associates, Inc., 2010.
Institutional Investor. CFA Institute Makes Biggest Single Package of Changes in Its History: bit.ly/42AyFb4,
2023.
Jocob Chapman and Mathias Lechner. Deep Q-Learning for Atari Breakout:
https://keras.io/examples/rl/deep_q_network_breakout/, 2020.
Leaders. https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-
but-data. The Economist, 2017.
Mark Liu. Make Python Talk: Build Apps with Voice Control and Speech Recognition. No Starch Press, 2021.
Scott MacFarland. https://www.huffpost.com/entry/if-a-picture-video-production_b_4996655/. The Huffington
Post, 2014.
Bernard Marr. https://www.forbes.com/sites/bernardmarr/2018/12/31/the-most-amazing-artificial-intelligence-
milestones-so-far/?sh=6698f5c37753. Forbes, 2018.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, February 2015.
OpenAI. https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html, 2018.
Max Pumperla and Kevin Ferguson. Deep Learning and the Game of Go. Manning, 2019.
Barry Schwartz. The Paradox of Choice: Why More Is Less. Harper Perennial, 2005.
Eric Seigel. Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die. Wiley, 2015.
Charles Severance. Python for Everyone: Exploring Data in Python 3. 2016.
Daniel J. Siegel. The Developing Mind: Toward a Neurobiology of Interpersonal Experience. The Guilford
Press, 1999.
J.F. Gusella T. Green, S.F. Heinemann. Molecular neurobiology and genetics: Investigation of neural function
and dysfunction. Neuron, 1998.
The Data Team. econ.st/43PiYOb. The Economist, 2018.
The CFA Institute. Hands-On Learning: evolve.cfainstitute.org/practical-skills-modules.html, 2023.

