Charles Lindsey

A Modern Approach to Regression with R

Stata Primer

March 17, 2009

1.1 Building Valid Models

Stata can be used to perform analysis in two ways. In the first method, we enter commands interactively at the command line (or window). After we press *ENTER*, the entered command is executed. This method can be useful when users are first learning Stata, because they can see precisely what each command does.

Alternatively, we may enter commands into a separate document, and direct Stata to execute a portion of that document. This document should be saved with a ".do" file extension. To allow for the replication and adjustment of analysis at a later date, this is the recommended method.

Precisely how both methods are performed will depend on whether a windowed or command line version of Stata is used. In this primer, we assume that the reader executes each command separately (or at least carefully looks at the separate output of each command). It is not relevant whether they use a ".do" file or the command line

The user should ensure that Stata's current directory contains the "data" and "graphics" folders, the supplied ".ado" files, and the "scheme-ssccl.scheme" file.

There are certain commands that should be executed at the start of a new analysis session in Stata. This is the first one we use:

set version 10.0

This is the most important command, and the first that should be executed. It tells Stata that the following commands should be executed as if we were using the specified version of Stata (version 10 in this case). So, when we save our work and re-execute the same commands at a later date (and potentially a different version), they will behave as they did originally. All ".do" files should have this command at the beginning.

clear all

The next command we execute completely clears Stata's memory. Stata is very careful about maintaining the contents of memory, so that we do

not accidentally overwrite data, programs, etc. that we will still need. By executing this command, we tell Stata that we are certain that we no longer need anything in memory.

set scheme ssccl

This command changes the format of Stata's graphics to match the specified scheme. The "ssccl" scheme makes graphics looks similar to those in the text. As mentioned on the previous page, we assume that the "scheme-ssccl.scheme" file is located in Stata's current directory.

set more off

This is the final preliminary command that we execute. It is fully optional. It tells Stata that we want output to be printed to the screen all at once. If we did execute this command, Stata would print out some of the output and then wait for us to press *ENTER* to print more. The functionality that we disable with the command can be restored by re-executing it and replacing **off** with **on**.

1.2 Motivating Examples

insheet using data/FieldGoals2003to2006.csv, comma names

We begin our first analysis by reading in the data. We read the specified comma separated file from the data directory. Stata realizes that it has a header row since we specify **names**. Options for a Stata command are those arguments that are typed after the comma.

Now our current dataset contains the "FieldGoals2003to2006" data. It is often a good idea to check that we have the correct data with the following commands. This is especially true if we are unfamiliar with the data or reading it into Stata for the first time. For brevity, we will not execute these commands on each dataset we use here. These datasets and the methods we use to read them into Stata have been vigorously tested.

Our first data-checking command, **describe** enumerates the variables, their labels and formats. It also gives information about the memory used by the data and the data's observation count.

Contains o obs: vars: size:	data	76 10 3,572 (9	99.9% of :	memory free)	
variable	name	storage type	display format	value label	variable label
name yeart teamt fgat fgt teamt1 fgatm1 fgatm2 fgtm2		str20 int str3 byte float str3 byte float byte float	<pre>%20s %8.0g %9s %8.0g %9.0g %9s %8.0g %9.0g %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g</pre>		Name Yeart Teamt FGAt FGt Team(t-1) FGAtM1 FGtM1 FGAtM2 FGAtM2 FGTM2
Sorted by	:				

Note: dataset has changed since last saved

Note how we were able to abbreviate **describe**. Many Stata commands allow shortcut abbreviations. This information matches what we see in the original raw data in "FieldGoals2003to2006.csv"

l name yeart fgatm1 in 1/10

	+		+
	name	yeart	fgatm1
1.	Adam Vinatieri	2003	30
2.	Adam Vinatieri	2004	34
З.	Adam Vinatieri	2005	33
4.	Adam Vinatieri	2006	25
5.	David Akers	2003	34
6.	David Akers	2004	29
7.	David Akers	2005	32
8.	David Akers	2006	22
9.	Jason Elam	2003	36
10.	Jason Elam	2004	31
	+		+

Now we have used the **list** command to enumerate a few observations. This command lists the values of the variables *name*, *yeart*, and *fgatm1* in the first ten observations. One may specify other variables under the "list"

d

command and other observation ranges. We are only examining these three variables to be brief.

sum fgat fgtm1

Variable		Obs	Mean	Std. Dev.	Min	Max
fgat		76	25.57895	7.729188	11	42
fgtml		76	81.81447	7.142785	66.6	100

Our next data diagnostic, **summarize** gives us summary statistics for the specified variables. If we only had numeric variables in the data, it would be our primary data diagnostic.

Like the previous commands, the user may specify any variables he or she wishes. In addition, all three commands give results for every variable in the data if none are specified. This is a very handy shortcut.

tab name

Name		Freq.	Percent	Cum.
Adam Vinatieri	-+	4	5.26	5.26
David Akers	Ì	4	5.26	10.53
Jason Elam	1	4	5.26	15.79
Jason Hanson	1	4	5.26	21.05
Jay Feely	1	4	5.26	26.32
Jeff Reed	1	4	5.26	31.58
Jeff Wilkins	1	4	5.26	36.84
John Carney	1	4	5.26	42.11
John Hall	1	4	5.26	47.37
Kris Brown	1	4	5.26	52.63
Matt Stover	1	4	5.26	57.89
Mike Vanderjagt	1	4	5.26	63.16
Neil Rackers	1	4	5.26	68.42
Olindo Mare	1	4	5.26	73.68
Phil Dawson	1	4	5.26	78.95
Rian Lindell	1	4	5.26	84.21
Ryan Longwell	1	4	5.26	89.47
Sebastian Janikowski	1	4	5.26	94.74
Shayne Graham		4	5.26	100.00
Total		76	100.00	

The final diagnostic, **tabulate** displays tables for the specified variables. When two variables are specified, a contingency table is output. We now demonstrate.

	Ye	eart	
Name	2005	2006	Total
Adam Vinatieri	1	1	2
David Akers	1	1	2
Jason Elam	1	1	2
Jason Hanson	1	1	2
Jay Feely	1	1	2
Jeff Reed	1	1	2
Jeff Wilkins	1	1	2
John Carney	1	1	2
John Hall	1	1	2
Kris Brown	1	1	2
Matt Stover	1	1	2
Mike Vanderjagt	1	1	2
Neil Rackers	1	1	2
Olindo Mare	1	1	2
Phil Dawson	1	1	2
Rian Lindell	1	1	2
Ryan Longwell	1	1	2
Sebastian Janikowski	1	1	2
Shayne Graham	1	1	2
Total	, I 19	19	38

tab name year if year > 2004

We have abbreviated *yeart* as *year*. Stata has no problem with this, so long as the abbreviation is not ambiguous. In addition, in this command we specify an "if" condition. These conditions are similar to the "in" conditions that we used earlier, but they may be used more generally.

Now we have completed our data diagnostics.

label variable fgt "Field Goal Percentage in Year t" label variable fgtm1 "Field Goal Percentage in Year t1"

We next attach labels to the variables fgt and fgtml. These labels will show up when the variables are used in **d** (**describe**) and when the variables are used in graphics.

twoway scatter fgt fgtm1, title("Unadjusted Correlation=-.0139",span)

Fig. 1.1 A plot of field goal percentages in the current and previous year

This command draws a two-way scatter plot of the specified variables. The span option under **title** centers the title across the graphic window, as opposed to the horizontal axis's midpoint. There are many other options that customize the look of plots like these, as we will see later.

graph export graphics/f1p1.eps, replace

We next save the plot in ".eps" format in the "graphics" folder. The "replace" option ensures that the export overwrites any file with the same name that is already in the specified directory. Stata is very careful about maintaining the contents of your hard drive as well.

Now, to generate the p-values seen between figures 1.1 and 1.2, we need a numeric version of *name*.

encode name, generate(nn)

This command creates a new variable (nn). An observation's value of nn matches the order of that observation's *name* value.

l name nn in 1/10, nolabel

	+	+
	name	nn
1.	Adam Vinatieri	1
2.	Adam Vinatieri	1
3.	Adam Vinatieri	1
4.	Adam Vinatieri	1
5.	David Akers	2
6.	David Akers	2
7.	David Akers	2
8.	David Akers	2
9.	Jason Elam	3
10.	Jason Elam	3
	+	+

Now that we have a numeric version of *name* we can perform the needed Analysis of Variance.

anova fgt fgtm1 nn nn*fgtm1, class(nn)

Number of Root MSE	obs = 76 = 6.77302		R-squared = Adj R-squared =	0.6127 0.2355	
Source	Partial SS	df	MS	F	Prob > F
Model fgtm1 nn nn*fgtm1 Residual	2757.41968 385.628843 407.060335 417.752962 1743.20348	37 1 18 18 38	74.5248561 385.628843 22.614463 23.2084979 45.8737757	1.62 8.41 0.49 0.51	0.0706 0.0062 0.9452 0.9386
Total	4500.62315	75	60.0083087		

The first variable after **anova** (here fgt) is the response. The remaining single variables that are enumerated (fgtm1 and nn) are treatments. Interaction terms are represented by variables with "*" between them. Here there is one interaction term, fgtm1*nn. Categorical variables are put in the **class** option.

```
gen AdamVinatieri = name == "Adam Vinatieri"
gen DavidAkers = name == "David Akers"
gen JasonElam = name == "Jason Elam"
gen JasonHanson = name == "Jason Hanson"
gen JayFeely = name == "Jay Feely"
```

```
gen JeffReed = name == "Jeff Reed"
gen JeffWilkins = name == "Jeff Wilkins"
gen JohnCarney = name == "John Carney"
gen JohnHall = name == "John Hall"
gen KrisBrown = name == "Kris Brown"
gen MattStover = name == "Matt Stover"
gen MikeVanderjagt = name == "Mike Vanderjagt"
gen NeilRackers = name == "Neil Rackers"
gen OlindoMare = name == "Olindo Mare"
gen PhilDawson = name == "Phil Dawson"
gen RianLindell = name == "Rian Lindell"
gen SebastianJanikowski= name == "Sebastian Janikowski"
gen ShayneGraham = name == "Shayne Graham"
```

We next create dummy variables for each name. The **generate** command, which we abbreviate to **gen** is used. The "==" symbol represents equality in Boolean expressions. The "=" symbol represents value assignment.

We will now fit a linear regression of *fgt* on the dummies for each name and *fgtm1*. We will not actually put each name in the model because each dummy is completely determined if we know all the other dummy values. We arbitrarily choose to leave the *AdamVinatieri* dummy out of the model.

reg fgt DavidAkers JasonElam JasonHanson JayFeely JeffReed JeffWilkins JohnCarney JohnHall KrisBrown MattStover MikeVanderjagt NeilRackers OlindoMare PhilDawson RianLindell RyanLongwell SebastianJanikowski ShayneGraham fgtm1

Source		SS	df		MS		Number of obs	=	76 3 19
Model Residual	 	2339.66671 2160.95644	19 56	123. 38.5	.140353 5885078		Prob > F R-squared	=	0.0004
Total		4500.62315	75	60.0	083087		Root MSE	=	6.212
fgt		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
DavidAkers JasonElam JasonHanson JayFeely JeffReed JeffWilkins JohnCarney JohnHall KrisBrown MattStover		-4.646291 -3.016656 2.117216 -10.37368 -8.29555 2.310187 -5.977396 -8.486466 -13.35978 8.736286	4.40 4.42 4.39 4.45 4.39 4.39 4.41 4.45 4.51 4.40	0679 1734 4875 1412 9364 3088 5908 2791 8602 5966	-1.06 -0.68 0.48 -2.33 -1.89 0.53 -1.35 -1.91 -2.96 1.98	0.296 0.498 0.632 0.023 0.065 0.601 0.181 0.062 0.005 0.052	-13.46191 -11.87445 -6.686776 -19.29093 -17.10853 -6.490225 -14.82352 -17.40648 -22.41163 0899246	4 5 1 -1 2 -4	.169328 .841142 0.92121 .456436 5174357 11.1106 .868731 4335452 .307938 17.5625

1.2 Motivating Examples 9

MikeVander~t		4.895548	4.399364	1.11	0.271	-3.917437	13.70853
NeilRackers		-6.619994	4.398454	-1.51	0.138	-15.43116	2.191167
OlindoMare		-13.03646	4.45279	-2.93	0.005	-21.95647	-4.11645
PhilDawson		3.552401	4.393134	0.81	0.422	-5.248104	12.35291
RianLindell		-4.867393	4.424379	-1.10	0.276	-13.73049	3.995703
RyanLongwell		-2.231477	4.396953	-0.51	0.614	-11.03963	6.576678
SebastianJ~i		-3.976289	4.41256	-0.90	0.371	-12.81571	4.863131
ShayneGraham		2.135	4.393182	0.49	0.629	-6.665601	10.9356
fgtml		5037008	.1127613	-4.47	0.000	7295889	2778127
_cons	Ι	126.6872	10.00571	12.66	0.000	106.6433	146.731

This shows us the slopes of the lines in figure 1.2. We have to do a little bit of programming to draw it.

local a = "twoway scatter fgt fgtm1"

A local macro is basically a quick way to store and recall scalar values within Stata. Here we use a local macro to store a string value, which we will use later when we perform our plot. We will only use local Stata macros in this primer and the text, so we will drop the local qualifier in further discussion.

Next we use the **tokenize** command to make the macros named 1, ..., 18 refer to the player name variables.

```
tokenize "DavidAkers JasonElam JasonHanson JayFeely
JeffReed JeffWilkins JohnCarney JohnHall Kri-
sBrown MattStover MikeVanderjagt NeilRackers
OlindoMare PhilDawson RianLindell RyanLongwell
SebastianJanikowski ShayneGraham"
```

```
display "`1'"
DavidAkers
```

d `1'

storage display value variable name type format label variable label -----DavidAkers float %9.0g

After executing tokenize, we have told Stata to display the contents of macro I as a string. Then we used macro I as an alias for the player name variable *DavidAkers* in the **d** command. Note the `` around *I*. This is how macros are referenced within Stata.

Now that we have tokenized the player names, we will add plot commands to the macro a that direct Stata to plot the lines in figure 1.2. We overlay the plots with the "||" operator.

Each of the lines in figure 1.2 corresponds to a prediction of *fgt* for a particular player. The coefficients from our last regression provide the slopes and intercepts for each of these lines. There are several ways to access this information. Here we use the _b notation. After a regression involving the variable *varname*, _b[*varname*] contains the coefficient corresponding to variable *varname*. The intercept is stored in _b[_cons]

```
forvalues i = 1/18 {
local a `"`a' || function y=_b[_cons] + _b[``i''] +
_b[fgtm1]*x, range(66.6 100)"'
di "`a'"
}
local a `"`a' || function y =_b[_cons] + _b[fgtm1]*x,
range(66.6 100)"'
```

We loop through each of the 18 player name variables using the **forvalues** command. Alternatively, we could have used the **foreach** command and not used **tokenize**, but that would be less instructive.

At each iteration, we overlay a plot of the player name's prediction line using the "||" operator. The prediction plot is generated using the **twoway function** command. This command plots y = f(x) on the specified range. Here our range is 66.6 to 100 (recall that this is the range of fgtm1 in the data). For the nineteenth player *AdamVinatieri*, we only have the intercept and the fgtm1 slope term, so this plot is added to *a* outside of the loop.

Once our macro a contains all of the plots, we execute the plot command stored in a, with a few options. We suppress a legend, and adjust the margins of the plotting region slightly so that the graph will display correctly.

```
`a' legend(off) ytitle("Field Goal Percentage in Year
t") xtitle("Field Goal Percentage in Year t-1")
title("Slope of each line=-.504") xlabel(70(10)100)
graph export graphics/f1p2.eps, replace
```

1.2 Motivating Examples 11

Fig. 1.2 Allowing for different abilities across the 19 field goal kickers

Now we move to our second analysis.

clear insheet using data/circulation.txt, names

The **clear** command simply removes the current dataset from memory. It does not delete programs or other objects. First we read in the data. This time the raw data is tab separated. When neither the **delimit** nor the **comma** options are specified, **insheet** assumes the data is tab separated.

Feel free to examine the data vigorously, as we did in our first analysis. We will skip those data summary steps here for brevity. We generate figure 1.3 by using the **twoway scatter** command, with a few new options.

```
twoway scatter sunday weekday if tabloid == 0 || scat-
ter sunday weekday if tabloid == 1, le-
gend( title("Tabloid dummy variable",size("medium"))
label(1 "0") label(2 "1") cols(1) ring(0) position(11))
msymbol("th") xtitle("Weekday Circulation")
ytitle("Sunday Circulation") yla-
bel(500000(500000)1500000) xlabel(2e5(2e5)1e6)
graph export graphics/f1p3.eps, replace
```


Fig. 1.3 A plot of Sunday circulation against Weekday circulation

We overlay two scatter plots. The first one has marker symbol **o** and corresponds to publications that are not tabloids (**tabloid** == **0**). The second has a Δ symbol and corresponds to publications that are tabloids (**tabloid** == **1**). The marker symbol for the second plot is specified with **msymbol**("th").

We specify a legend for figure 1.3 as well.

legend(title("Tabloid dummy variable",size("medium"))
label(1 "0") label(2 "1") cols(1) ring(0) position(11))

The **title** and **label** legend options should be straightforward. We specify the number of columns in the legend to be 1 with **cols(1)**. With the **ring(0) position(11)** code, put the legend inside the plot (**ring(0)**) and at the 11^{th} clock hour position.

Next we use the function **ln()** to get the natural logarithms of *sunday* and *weekday*.

gen lnsunday = ln(sunday) gen lnweekday = ln(weekday)

Now we can generate figure 1.4, which is just a replication of figure 1.3, using the natural logarithms of the previously plotted variables.

1.2 Motivating Examples 13

```
twoway scatter lnsunday lnweekday if tabloid == 0 ||
scatter lnsunday lnweekday if tabloid == 1,
                                                     le-
gend( title("Tabloid dummy variable",size("medium"))
label(1 "0") label(2 "1") cols(1) ring(0) position(11))
msymbol("th") xtitle("log(Weekday Circulation)")
ytitle("log(Sunday Circulation)") ylabel(12(.5)14)
xlabel(11.5(.5)14)
```

graph export graphics/f1p4.eps, replace

Fig. 1.4 A plot of log(Sunday Circulation) against log(Weekday Circulation)

Our next dataset is comma separated, so we load it into Stata in the same way we did the first.

clear insheet using data/nyc.csv, names comma

To take a look at the variables cost, food, decor, service, in concert we will perform a matrix plot.

```
graph matrix cost food decor service,
diagonal ("Price" "Food" "Decor" "Ser-
vice",size("large")) xlabel(16(2)24, axis(2))
                                               xla-
bel(14(2)24, axis(4)) xlabel(20(10)60, axis(1)) xla-
bel(10(5)25, axis(3)) ylabel(14(2)24,axis(4))
```

```
ylabel(16(2)24,axis(2)) ylabel(10(5)25,axis(3)) yla-
bel(20(10)60, axis(1))
graph export graphics/f1p5.eps, replace
```


Fig. 1.5 A Matrix plot of Cost, Food, Décor and Service ratings

We put labels in the plot by the **diagonal** option. We specify that they are displayed as **large** (**size**("**large**")) so that they are easy to see. There are a variety of text sizes available in Stata. For example, we could have also specified "**medlarge**" or "**small**" in **size**().

The number labels on the axes are specified via **xlabel()** and **ylabel()**. The numbers in the **axis()** option refer to the ordering of the axis. For the horizontal axes, 1 is the furthest left and 4 is furthest right. For the vertical axes, 1 is topmost and 4 is the bottommost.

Next, we will draw a boxplot for figure 1.6.

```
gen eal = "East(1 = East of Fifth Avenue)"
graph box cost, over(east) over(eal) ytitle("price")
graph export graphics/f1p6.eps, replace
```

1.2 Motivating Examples 15

Fig. 1.6 Box plots of cost for the two levels of the dummy variable East

We draw two separate box plots by putting in the the **over(east)** option. So a separate box plot is drawn for each level of *east*. We have another **over()** option in the command, **over(eal)**. Stata draws a separate box plot for each level of all of the **over()** variables. In this case, *eal* has only one level (the string "**East(1 = East of Fifth Avenue)**"), so that level's value is displayed and a box plot is drawn for each level of *east*.

Next we load the Bordeaux wine data and examine a matrix plot for its continuous variables.

```
clear
insheet using data/Bordeaux.csv, comma names
graph matrix price parkerpoints coatespoints,
diagonal("Price" "ParkerPoints" "Coates-
Points",size("large"))
xlabel(0 2000 6000 10000,axis(1))
xlabel(88(2)100,axis(2)) xlabel(15(1)19,axis(3))
ylabel(0 2000 6000 10000,axis(1))
ylabel(88(2)100,axis(2)) ylabel(15(1)19,axis(3))
graph export graphics/flp7.eps, replace
```


Fig. 1.7 A Matrix plot of Price, ParkerPoints and CoatesPoints

This was fairly simple, the code was very similar to that used to make figure 1.5. Our next plot will be a bit more complicated.

set graphics off

First we tell Stata not to display any graphics until we say otherwise. Figure 1.8 is made out of several component plots that will be drawn separately and then appended together. We do not want to see any of thee intermediate plots.

```
gen eal = "P95andAbove"
graph box price, ytitle("Price")
ylabel(0 2000 6000 10000) over(p95) over(eal) name("a")
```

The first box plot is *price* at each level of p95. As before, we use an extra **over()** variable to serve as a horizontal label. We also give the graph a name ("a") so that we can recall it later for appending.

We perform similar commands to get plots for the other indicator variables under examination.

replace eal = "First Growth"
graph box price, ytitle("Price")

1.2 Motivating Examples 17

```
ylabel(0 2000 6000 10000) over(first) over(eal)
name("b")
replace eal = "Cult Wine"
graph box price, ytitle("Price") ylabel(0 2000 6000
10000) over(cult) over(eal) name("c")
replace eal = "Pomerol"
graph box price, ytitle("Price") ylabel(0 2000 6000
10000) over(pom) over(eal) name("d")
replace eal = "Vintage Superstar"
graph box price, ytitle("Price") ylabel(0 2000 6000
10000) over(vint) over(eal) name("e")
```

We use the **replace** command to change the values of a previously created variable. Note that this command may not be abbreviated. This is another way Stata prevents us from accidentally overwriting data.

```
set graphics on
graph combine a b c d e , rows(2)
graph export graphics/f1p8.eps, replace
graph drop a b c d e
```

We tell Stata to stop suppressing graphics with **set graphics on**, and then we combine the five graphs with **graph combine**. We tell Stata to put the graphs into two rows by specifying **rows()**. So that we may reuse their names at some later time, we drop the intermediate graphics with the last command, **graph drop a b c d e**.

Fig. 1.8 Box plots of Price against each of the dummy variables

Next we generate a matrix plot of the natural logarithms of the continuous variables.

```
gen lnprice = ln(price)
gen lnpark = ln(park)
gen lncoat = ln(coat)
graph matrix lnprice lnpark lncoat, diagon-
al("log(Price)" "log(ParkerPoints)"
"log(CoatesPoints)", size("medium"))
xlabel(5(1)9,axis(1)) xlabel(4.48(.04)4.60,axis(2))
xlabel(2.70(.1)2.90,axis(3)) ylabel(5(1)9,axis(1))
ylabel(4.48(.04)4.60,axis(2))
ylabel(2.70(.1)2.90,axis(3))
graph export graphics/f1p9.eps, replace
```


Fig. 1.9 Matrix plot of log(Price), log(ParkerPoints) and log(CoatesPoints)

Our final plot for the first chapter redraws figure 1.8, using log(price) instead of *price*. We use almost identical code. Note how we are able to reuse the graph names **a-e**. This is possible since we dropped the graphs that they were defined for.

```
set graphics off
replace eal = "P95andAbove"
graph box lnprice, ytitle("log(Price)") ylabel(5(1)9)
over(p95) over(eal) name("a")
replace eal = "First Growth"
graph box lnprice, ytitle("log(Price)") ylabel(5(1)9)
over(first) over(eal) name("b")
replace eal = "Cult Wine"
graph box lnprice, ytitle("log(Price)") ylabel(5(1)9)
over(cult) over(eal) name("c")
replace eal = "Pomerol"
graph box lnprice, ytitle("log(Price)") ylabel(5(1)9)
over(pom) over(eal) name("d")
replace eal = "Vintage Superstar"
graph box lnprice, ytitle("log(Price)") ylabel(5(1)9)
over(vint) over(eal) name("e")
set graphics on
graph combine a b c d e , rows(2)
graph export graphics/f1p10.eps, replace
```

20 1. Introduction graph drop a b c d e

Fig. 1.10 Box plots of log(Price) against each of the dummy variables

2. Simple linear regression

2.1 Introduction and least squares estimates

In this chapter we will learn how to do simple linear regression in Stata.

version 10.0 clear all set scheme ssccl set more off

We start by telling Stata the version our commands should work under, removing all previous objects from memory, and setting the scheme. For convenience I set more off as well.

```
insheet using data/production.txt, names
label variable runsize "Run Size"
label variable runtime "Run Time"
```

We bring in our first dataset and label two of its variables. Then we draw a scatterplot of the two.

```
twoway scatter runtime runsize, ylabel(160(20)240)
xlabel(50(50)350)
graph export graphics/f2p1.eps, replace
```

2 2. Simple linear regression

Fig. 2.1 A scatter plot of the production data

Now we perform a regression. As discussed in chapter 1, the response goes first, followed by the predictor(s).

reg runtime runsize

Source	I SS	df	MS		Number of obs	= 20
Model Residual	+ 12868.3742 4754.57581	1 1 18	12868.3742 264.1431		F(1, 18) Prob > F R-squared	= 48.72 = 0.0000 = 0.7302 = 0.7152
Total	17622.95	19 9	927.523684		Root MSE	= 16.252
runtime	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
runsize _cons	.2592431 149.7477	.03714 8.32815	42 6.98 51 17.98	0.000 0.000	.1812107 132.2509	.3372755 167.2445

We will see how this regression fits the data by using the **twoway lfit** command. We overlay an **lfit** with a scatter of **runsize** and **runtime**.

twoway scatter runtime runsize || lfit runtime runsize, ylabel(160(20)240) xlabel(50(50)350) ytitle("Run Time") xtitle("Run Size") legend(off) graph export graphics/f2p3.eps, replace

Fig. 2.3 A plot of the production data with the least squares line of best fit

The regression (least squares) line is shown in red.

2.2 Inferences about the slope of the regression line

display invttail(18,.05/2)
2.100922

We obtain the t-value on page 23 via the **invttail** function. This takes degrees of freedom of the desired T for the first argument (**18** here). The 1 minus the probability we want to obtain the T-value for is passed as the second argument (**.025** here).

We can easily obtain confidence intervals for the slope estimates of a regression that we have already estimated. We only need to retype **regress** and specify the confidence level of our intervals (in **level()**). Retyping the last estimation command (and potentially re-specifying the **level()** option) will redisplay the command's output. The **level()** option takes a number between 10 and 99.99. This specifies the percentage of the confidence intervals produced by the command.

reg, level(95)

4 2. Simple linear regression

2.3 Confidence intervals for the population regression line

We obtain confidence intervals for the regression line and predictions intervals through the user-written command **rlcipi**. The confidence intervals for the regression line at *runsize* 50, 100, 150, 200, 250, 300, 350 are

rlcipi , arg(50 100 150 200 250 300 350) level(95) len(7) prec(4)

	+			+
	fit	lwr	upr	i
1. 2. 3. 4.	162.7099 175.6720 188.6342 201.5963	148.6204 164.6568 179.9969 193.9600	176.7993 186.6872 197.2714 209.2327	
5. 6. 7.	214.5585 227.5206 240.4828	206.0455 216.7006 226.6220	223.0714 238.3407 254.3435	
	+			+

We specify the predictor arguments through the **arg**() option. The **len**() option tells **rlcipi** how many numbers to display. The **prec**() option tells **rlcipi** how many of the number should fall behind the decimal point.

The **rlcipi** program is an r-class command. So its results must be used immediately. Most Stata commands will clear the previous contents of $\mathbf{r}()$ when they execute. The **regress** command is an e-class, or estimation command. The $\mathbf{e}()$ results that it returns will stay around until another e-class program is executed.

There is only one argument returned by rlcipi the matrix r(result). We can examine its contents by the **matrix list** command.

matrix list r(result)

r(res	ult)[7,4]			
	runsize	fit	lwr	upr
r1	50	162.70985	148.62036	176.79935
r2	100	175.67201	164.6568	186.68723
r3	150	188.63417	179.99695	197.27139
r4	200	201.59633	193.96001	209.23265
r5	250	214.55849	206.04553	223.07144
r6	300	227.52063	216.70061	238.34065
r7	350	240.48279	226.62204	254.34354

2.4 Prediction intervals for the actual value of Y

Now we will use **rlcipi** to obtain the predictions and prediction intervals for the *runsize*'s 50, 100, 150, 200, 250, 300, 350. We need to supply the extra option **pred** so that **rlcipi** knows we no longer want confidence intervals.

rlcipi , pred arg(50 100 150 200 250 300 350) level(95) len(7) prec(4)

	+		+
	fit	lwr	upr
1. 2. 3.	162.7099 175.6720 188.6342	125.7720 139.7940 153.4135	199.6478 211.5500 223.8548
4. 5.	201.5963 214.5585	166.6077 179.3681	236.5850 249.7489
6. 7.	 227.5206 240.4828	191.7021 203.6315	263.3392 277.3340

2.5 Analysis of Variance

Now we will render figure 2.4. This will be a little complicated, but should not be daunting after our experiences in chapter 1.

clear set obs 101

First we clear the old data from memory and set the observation number. So we have 101 blank observations with no variables. Now we set our predictor x and response y.

```
gen x = _n - 51
set seed 12345678
gen yerror = invnorm(uniform())*5
gen y = 50 + x + yerror
```

The variable _n corresponds to the current observation. After we execute gen x = n - 51, the value of x at observation k is equal to k - 51.

In the second line, we seed the random number generator in Stata. This means that when all of our results will replicate perfectly whenever we reexecute our code and set the seed to 12345678.

6 2. Simple linear regression

Next we initialize the random error of our regression. The **uniform()** function gives a realization from a Uniform(0,1) random variable. The **in-vnorm()** function takes a number between 0 and 1, and returns the matching quantile from the Normal(0,1) distribution. It behaves similarly to **invttail()**. We scale the final value by 5 so that our errors will have sufficiently large variance.

The final line initializes y as a linear function of x and the error, *yerror*.

With our data generated, we single out a point to illustrate the point about the differences between the observed, fitted, and sample mean values.

gen showit = x == 20

We now have an indicator variable *showit*, which is turned on whenever x = 20. As a final step before graphing, we have to store the sample mean of y in a variable. This is easily accomplished using the **r(mean)** returned result from **summarize**.

sum y

Variable	Obs	Mean	Std. Dev	. Min	Max
у	101	50.042	30.19076	-3.002968	108.7595

gen ybar = r(mean)

Now we can graph figure 2.4 with three overlaid twoway plots.

```
twoway scatter y x if showit || lfit y x || line ybar
x, legend(cols(1) lab(2 "yhat") lab(3 "ybar") order(2
3) ring(0) position(11)) xlabel(-40(20)40) yla-
bel(0(20)100) ytitle("y") xtitle("x") lpattern("dash")
graph export graphics/f2p4.eps, replace
```

We used the **order()** option in the legend to tell Stata to remove the **showit** point from the legend. The **lpattern("dash")** option was used to make the *ybar* line dashed. Alternatively we could have made it dotted (**lpattern(dot)**) or even dashed and dotted (**lpattern(dash_dot)**).

2.5 Analysis of Variance 7

Fig. 2.4 $y_i - \overline{y} = (y_i - \widehat{y}_i) + (\widehat{y}_i - \overline{y})$

Now we generate the ANOVA and output on page 30. We went over how Stata's **anova** command works in chapter 1.

clear

insheet using data/production.txt, names anova runtime runsize, continuous(runsize)

	Number of obs Root MSE	= = 16	20 R-sq .2525 Adj	R-squared =	0.7302 0.7152
Source	Partial SS	df	MS	F	Prob > F
Model	12868.3742	1	12868.3742	48.72	0.0000
runsize	12868.3742	1	12868.3742	48.72	0.0000
Residual	4754.57581	18	264.1431		
Total	17622.95	19	927.523684		

8 2. Simple linear regression

2.6 Dummy Variable Regression

The final graphic for this chapter is taken from a new dataset. We will create another combined plot that involves box plots and an overlaid **two-way** plot.

clear
insheet using data/changeover_times.txt, names
set graphics off

As before, we first set graphics off. We do not want to see intermediate plots.

```
twoway scatter changeover new || lfit changeover new,
legend(off) xlabel(0(.2)1.0) ylabel(5(10)40)
xtitle("Dummy variable, new") ytitle("Change Over
Time") name("a")
```

Our first plot is two **twoway** plots overlaid on each other. We name it "a" for later combination.

```
gen eal = "Dummy variable, New"
graph box changeover, over(new) ytitle("Change Over
Time") over(eal) name("b") ylabel(5(10)40)
replace eal = "Method"
graph box changeover, over(method) ytitle("Change Over
Time") over(eal) name("c") ylabel(5(10)40)
```

The next two boxplots are made in a similar manner to figure 1.10.

```
set graphics on
graph combine a b c, rows(2)
graph export graphics/f2p5.eps, replace
```


Fig. 2.5 A scatter plot and box plots of the change-over time data

We end chapter 2 with the regression output on page 31 and the p-value output on page 32. This p-value is obtained by the **ttail** command.

reg changeover new

Source	SS	df	MS		Number of obs	= 120
Model Residual Total	290.0680 6736.923 +	56 1 61 118 67 119	290.068056 57.092573 59.0503501		F(1, 118) Prob > F R-squared Adj R-squared Root MSE	$\begin{array}{rcrr} = & 5.08 \\ = & 0.0260 \\ = & 0.0413 \\ = & 0.0332 \\ = & 7.556 \end{array}$
changeover	Coef	. Std.	Err. t	P> t	[95% Conf.	Interval]
new _cons	-3.17361 17.8611	1 1.407 1 .8904	971 -2.23 787 20.00	5 0.026 6 0.000	-5.961776 16.09772	3854461 19.6245

display 1-ttail(118,-2.254)

.013021

display 2*(1-ttail(118,-2.254)) .026042

3. Diagnostics and transformations for simple linear regression

3.1 Valid & Invalid Regression Models: Anscombe's four data sets

In this chapter we will learn how to do diagnostics for simple linear regression in Stata.

```
version 10.0
clear all
set scheme ssccl
set more off
```

We start by telling Stata the version our commands should work under, removing all previous objects from memory, and setting the scheme. For convenience I set more off as well.

```
infile case x1 x2 x3 x4 y1 y2 y3 y4 using da-
ta/anscombe.txt in 2/12
```

To read in the anscombe data, we use the **infile** command. This is an alternative command to **insheet**. We tell it to look for the variables *case*, x1, x2, x3, x4, y1, y2, y3, y4 in the second through twelfth lines of the raw data file. It ignores the whitespace characters separating the variable values.

```
set graphics off
forvalues i = 1/4 {
twoway scatter y`i' x`i' || lfit y`i' x`i', le-
gend(off) xtitle("x`i'") ytitle("y`i'") title("Data Set
`i'") xlabel(5(5)20) ylabel(4(2)14) range(0 20)
name("g`i'")
}
set graphics on
graph combine g1 g2 g3 g4, rows(2)
graph export graphics/f3p1.eps, replace
```

We use another combined **twoway** plot to generate figure 3.1. Recall our discussion of **forvalues** loops in chapter 1. Within the loop we use the i macro a number of times. We also used an additional option for the

2 3. Diagnostics and transformations for simple linear regression

twoway lfit command. The **range()** option specifies the first (0) and last (20) points for which the prediction line is drawn.

Fig. 3.1 Plots of Anscombe's 4 data sets

We use another forvalues loop to get the regression output on page 47.

```
forvalues i = 1/4 {
reg y`i' x`i'
}
                                      MS
                                                      Number of obs =
     Source |
                    SS
                             df
                                                                          11
                                                      F( 1,
Prob > F
                                                                 9) =
                                                                        17.99
                             ___
      Model |
               27.5100011
                              1
                                 27.5100011
                                                                    =
                                                                       0.0022
    Residual
               13.7626904
                              9
                                 1.52918783
                                                      R-squared
                                                                    =
                                                                       0.6665
                             ____
                                                      Adj R-squared =
                                                                       0.6295
        ____
                                   _____
      Total | 41.2726916
                             10 4.12726916
                                                      Root MSE
                                                                       1.2366
                                                                    =
                                                         _____
         y1
            Coef.
                           Std. Err.
                                          t
                                               P>|t|
                                                         [95% Conf. Interval]
                 .5000909
                            .1179055
                                        4.24
                                               0.002
                                                         .2333701
                                                                     .7668117
         x1
                                                                     5.544445
                3.000091
                           1.124747
                                        2.67
                                               0.026
                                                         .4557369
       _cons |
```

3.1 Valid & Invalid Regression Models: Anscombe's four data sets 3

Model Residual	SS +	ar 1 27.50 9 1.530	MS 000024 069933		Number of obs F(1, 9) Prob > F R-squared Adj R-squared	= 11 = 17.97 = 0.0022 = 0.6662 = 0.6292
Total	41.2762964	10 4.12			ROOT MSE	= 1.2372
y2	Coef.	Std. Err.	t 	P> t	[95% Conf.	Interval]
x2 	.5 3.000909	.1179638 1.125303	4.24 2.67	0.002	.2331475 .4552978	.7668526 5.54652
Source	SS +	df	MS		Number of obs	= 11 = 17 97
Model Residual	27.4700075 13.7561905	1 27.47 9 1.528	700075 346561		Prob > F R-squared	= 0.0022 = 0.6663 = 0.6292
Total	41.2261979	10 4.122	261979		Root MSE	= 1.2363
у3	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x3	.4997273	.1178777	4.24	0.002	.2330695	.7663851
cons	3.002455	1.124481	2.67	0.026	.4587014	5.546208
Source	3.002455 SS	1.124481 df	2.67 MS	0.026	.4587014 	5.546208 = 11 = 18.00
cons Source Model Residual	3.002455 SS 27.4900007 13.7424908	1.124481 df 1 27.49 9 1.526	2.67 MS 200007 594342	0.026	.4587014 Number of obs F(1, 9) Prob > F R-squared	5.546208 = 11 = 18.00 = 0.0022 = 0.6667
Source Model Residual Total	3.002455 SS 27.4900007 13.7424908 41.2324915	df 1 27.49 9 1.520 10 4.123	2.67 MS 300007 594342 324915	0.026	.4587014 Number of obs F(1, 9) Prob > F R-squared Adj R-squared Root MSE	5.546208 = 11 = 18.00 = 0.0022 = 0.6667 = 0.6297 = 1.2357
cons Source Model Residual Total	3.002455 SS 27.4900007 13.7424908 41.2324915 Coef.	1.124481 df 1 27.49 9 1.526 10 4.123 Std. Err.	2.67 MS 594342 324915 t	0.026 P> t	.4587014 Number of obs F(1, 9) Prob > F R-squared Adj R-squared Root MSE [95% Conf.	5.546208 = 11 = 18.00 = 0.0022 = 0.6667 = 0.6297 = 1.2357 Interval]

To draw figure 3.2 we will use another **forvalues** loop and graph combine of individual **twoway** plots. To get the residuals, we use the **predict** command. When used after an e-class or estimation command, **predict** creates new variables from the generated estimates. Generally, we give **predict** a new variable name (in this case y`i'resid where the macro *i* ranges from 1 to 4) and then a prediction option (here **residual**, which we abbreviate as **resid**). We need to re-estimate each regression, because Stata only keeps the results from the last estimated command (which would be **reg y4 x4** at this point).

We use the **qui** prefix in our regression to suppress their output. This is short for **quietly**. It can be used in front of any Stata command.

graph drop g1 g2 g3 g4

4 3. Diagnostics and transformations for simple linear regression

```
set graphics off
forvalues i = 1/4 {
  qui reg y`i' x`i'
  predict y`i'resid, resid
  twoway scatter y`i'resid x`i', ytitle("Residuals")
  xtitle("x`i'") xlabel(5(5)20) ylabel(-2(1)2)
  title("Data Set `i'") name("g`i'")
  }
  set graphics on
  graph combine g1 g2 g3 g4,rows(2)
  graph export graphics/f3p2.eps, replace
  graph drop g1 g2 g3 g4
```


Fig. 3.2 Residual plots for Anscombe's data sets

For figure 3.3, we must still do a graph combine, but we are only dealing with one of the x and y indices. So we no longer need a **forvalues** loop. To ensure the proper dimensions of our final plot, we use the **xsize()** options. Our graphics scheme has a default **xsize** and **ysize** of 5. By specifying a different value for these in the **xsize()** or **ysize()** options we change the dimensions of the plot.

set graphics off

3.2 Regression diagnostics: Tools for checking the validity of a model 5

```
twoway scatter y2 x2 || lfit y2 x2,legend(off)
xtitle("x2") ytitle("y2") xlabel(4(2)14) ylabel(3(1)10)
range(4 14) name("g1") xsize(2.5)
twoway scatter y2resid x2,legend(off) xtitle("x2")
ytitle("Residuals") xlabel(4(2)14) ylabel(-2(1)2) xs-
ize(2.5) name("g2")
set graphics on
graph combine g1 g2, rows(1) title("Data Set 2")
graph export graphics/f3p3.eps, replace
graph drop g1 g2
```


Fig. 3.3 Anscombe's data set 2

3.2 Regression diagnostics: Tools for checking the validity of a model

We begin by bringing in the Huber dataset.

clear
insheet using data/huber.txt, names

6 3. Diagnostics and transformations for simple linear regression

We will re-use the dimensions for figure 3.3 in our rendering of figure 3.7.

```
set graphics off
twoway scatter ybad x || lfit ybad x, legend(off)
ytitle("YBad") xtitle("x") ylabel(-10(5)0) xlabel(-
4(2)10) name("g1") xsize(2.5)
twoway scatter ygood x || lfit ygood x, legend(off)
ytitle("YGood") xtitle("x") ylabel(-10(5)0) xlabel(-
4(2)10) name("g2") ysize(2.5)
set graphics on
graph combine g1 g2, rows(1)
graph export graphics/f3p7.eps, replace
graph drop g1 g2
```


Fig. 3.7 Plots of YGood and YBad against x with the fitted regression lines

We will now produce the regression output on page 54. For the generation of the residuals, we will use the **predict** command again.

reg ybad x
3.2 Regression diagnostics: Tools for checking the validity of a model 7

Source	SS	df	MS		Number of obs	= 6
Model Residual	.862677705 9.61020606	1 .862 4 2.40	677705 255152		Prob > F R-squared Adi R-squared	= 0.30 = 0.5813 = 0.0824 = -0.1470
Total	10.4728838	5 2.09	457675		Root MSE	= 1.55
ybad	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x _cons	0814615 .0683333	.1359455 .6327916	-0.60 0.11	0.581 0.919	4589066 -1.688578	.2959835 1.825245

predict badres, resid

l ybad x badres

	+		
	ybad	х	badres
	1		
1.	2.48	-4	2.08582
2.	.73	-3	.4172821
З.	04	-2	2712564
4.	-1.44	-1	-1.589795
5.	-1.32	0	-1.388333
	1		1
6.	0	10	.746282
	+		+

reg ygood x

Source	SS	df	MS		Number of obs	= 6
Model Residual 	119.405132 .925744132 120.330876	1 119 4 .23 5 24.0	.405132 1436033 		F(1, 4) Prob > F R-squared Adj R-squared Root MSE	$\begin{array}{rcrcr} = & 515.93 \\ = & 0.0000 \\ = & 0.9923 \\ = & 0.9904 \\ = & .48108 \end{array}$
Adooq	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x _cons	9583846 -1.831667	.0421933 .1963993	-22.71 -9.33	0.000 0.001	-1.075532 -2.376958	8412371 -1.286375

predict goodres, resid l ygood x goodres

	+			1
	ygood	x	goodres	
1. 2. 3. 4. 5.	2.48 .73 04 -1.44 -1.32	-4 -3 -2 -1 0	.4781283 3134871 1251026 566718 .5116665	
6.	 -11.4 +	10	.0155129	

We call **predict** with the **leverage** option to obtain the leverage in table 3.3. Our last regression was *ygood* on x, so we can immediately predict from that model.

```
predict goodlevg, leverage
qui reg ybad x
predict badlevg, leverage
l x goodlevg badlevg
```

	+		+
	x	goodlevg	badlevg
	1		
1.	-4	.2897436	.2897436
2.	-3	.2358974	.2358974
3.	-2	.1974359	.1974359
4.	-1	.174359	.174359
5.	0	.1666667	.1666667
	1		
	1		
6.	10	.9358974	.9358974
	+		+

We obtain the quadratic regression results by creating a new variable x^2 and then adding it to the regression of *ybad* on *x*.

```
gen x^2 = x^2
reg ybad x x^2
```

Source	SS	df	MS		Number of obs	=	6
Model Residual Total	9.96968932 .50319445 10.4728838	2 4.98 3 .167 5 2.09	484466 731483 457675		F(2, 3) Prob > F R-squared Adj R-squared Root MSE	= = =	29.72 0.0105 0.9520 0.9199 .40955
ybad	Coef.	Std. Err.	t	P> t	[95% Conf.	Int	erval]
x x2 cons	6594534 .0834877 -1.740567	.0862738 .0113303 .2970196	-7.64 7.37 -5.86	0.005 0.005 0.010	9340153 .0474296 -2.685816	3 .1 7	848916 195458 953182

The quadratic curve of figure 3.8 is made using the **twoway function** command. Recall how we made figure 1.2 in chapter 1. We use a similar method here.

twoway scatter ybad x || function y=_b[_cons] + _b[x]*x
+ _b[x2]*(x^2), range(-4 10) ytitle("YBad") xtitle("x")
xlabel(-4(2)10) ylabel(-3(1)3) legend(off)
graph export graphics/f3p8.eps, replace

3.2 Regression diagnostics: Tools for checking the validity of a model 9

Fig. 3.8 Plot of YBad versus x with a quadratic model fit added.

Now we bring in the bonds data.

clear insheet using data/bonds.txt, names

We use an overlaid twoway plot to draw figure 3.9.

```
twoway scatter bidprice couponrate || lfit bidprice
couponrate, legend(off) xlabel(2(2)14) ylabel(85(5)120)
xtitle("Coupon Rate(%)") ytitle("Bid Price($)")
graph export graphics/f3p9.eps, replace
```


Fig. 3.9 A plot of the bonds data with the least squares line included

Now we perform the regression of *bidprice* on *couponrate*.

req	bidp	rice	couponrate
± cg	Drup	CC	couponituce

Source	SS	df	MS		Number of obs	= 35
Model Residual Total	1741.26347 575.341786 2316.60526	1 1 33 1 34 6	741.26347 7.4345996 8.1354487		F(1, 33) Prob > F R-squared Adj R-squared Root MSE	= 99.87 = 0.0000 = 0.7516 = 0.7441 = 4.1755
bidprice	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
couponrate _cons	3.066102 74.78656	.306803	5 9.99 7 26.46	0.000	2.441906 69.03568	3.690299 80.53744

To produce the enumeration in table 3.4, we will use the **predict** command again. We use an additional option this time, **rstandard**. This predicts the standardized residuals.

predict bidresid, resid predict bidresidsr, rstandard predict bidlevg,leverage l couponrate bidprice bidlevg bidresid bidresidsr

3.2 Regression diagnostics: Tools for checking the validity of a model 11

	+				+
	coupon~e	bidprice	bidlevg	bidresid	bidresi~r
1.	7	92.94	.0485037	-3.309273	8124993
2.	9	101.44	.0286048	9414769	2287735
3.	7	92.66	.0485037	-3.589271	8812452
4.	4.125	94.5	.152778	7.065769	1.838463
5.	13.125	118.94	.1239708	3.910851	1.000705
6.	8	96.75	.0331553	-2.565377	6248372
7.	8.75	100.88	.0287301	7349566	1786018
8.	12.625	117.25	.1026257	3.7539	.9490518
9.	9.5	103.34	.0303787	5745342	1397362
10.	10.125	106.25	.0363923	.4191556	.1022631
11.	11.625	113.19	.0680339	2.760005	.6847054
12.	8.625	99.44	.0290458	-1.791689	4354689
13.	3	94.5	.2178763	10.51513	2.847548
14.	10.5	108.31	.042025	1.329365	.3252828
15.	11.25	111.69	.0578458	2.409793	.5945834
16.	8.375	98.09	.0301835	-2.375169	5776221
17.	10.375	107.91	.0399787	1.312634	.3208464
18.	11.25	111.97	.0578458	2.689792	.6636692
19.	12.625	119.06	.1026257	5.563898	1.406651
20.	8.875	100.38	.0285831	-1.618219	3932136
21.	10.5	108.5	.042025	1.519367	.3717746
22.	8.625	99.25	.0290458	-1.981691	4816489
23.	9.5	103.63	.0303787	2845333	0692032
24.	11.5	114.03	.0644692	3.983264	.9862887
25.	8.875	100.38	.0285831	-1.618219	3932136
26.	7.375	92.06	.0414827	-5.339066	-1.306049
27.	7.25	90.88	.0436543	-6.135803	-1.50265
28.	8.625	98.41	.0290458	-2.821687	6858096
29.	8.5	97.75	.0295303	-3.098428	7532592
30.	8.875	99.88	.0285831	-2.118219	5147094
31.	8.125	95.16	.031996	-4.538636	-1.104793
32.	9	100.66	.0286048	-1.721476	4183087
33.	9.25	102.31	.0291543	8380074	2036886
34.	7	88	.0485037	-8.249275	-2.025379
35.	3.5	94.53	.1872566	9.012081	2.394101

We generate figure 3.10 using a **twoway scatter** plot and the **yline()** option. We label points in the graph with the label stored in *out* with the **mlabel(out)** option. For the specified numeric argument r, **yline()** draws a horizontal line at r on the plot. It also takes line options for specifying the color, pattern, etc. Here we specify that we want horizontal lines at 2 and - 2, both dashed.

```
gen out = string(_n) if bidresidsr < -2 | bidresidsr >
1.8
twoway scatter bidresidsr couponrate, mlabel(out)
yline(-2,lpattern(dash)) yline(2,lpattern(dash)) xla-
bel(2(2)14) ylabel(-2(1)3) xtitle("Coupon Rate (%)")
ytitle("Standardized Residuals") legend(off)
```


Fig. 3.10 Plot of standardized residuals with some case numbers displayed

In figure 3.11, we examine the linearity of couponrate and bidprice, sans flower bonds. The inlist function returns the value 1 if the first argument is not present in the remaining arguments. As we use it here, it results in the omission of cases 4, 13, and 35. These correspond to flower bonds.

```
twoway scatter bidprice couponrate if !in-
list(out,"4","13","35") || lfit bidprice couponrate if
!inlist(out,"4","13","35") , legend(off)
xlabel(2(2)14) ylabel(85(5)120) xtitle("Coupon Rate
(%)") ytitle("Bid Price ($)") title("Regular Bonds")
range(5.5 13.7)
graph export graphics/f3p11.eps, replace
```


Fig. 3.11 A plot of the bonds data with the 'flower' bonds removed

Now we re-perform the regression without the flower bond cases. Then we reinitialize the variable holding our standardized residuals. The **regress** command return the estimation result, **e(sample)**. This is an indicator function that identifies observations used in estimating the regression. We use it in **predict** to restrict our predictions to observations that were in the regression (non-flower bonds).

reg bidprice couponrate if !inlist(out,"4","13","35")

Source	SS	df	MS		Number of obs	= 32
Model Residual	2094.0753 31.4765168	1 209 30 1.04	94.0753 1921723		F(1, 30) Prob > F R-squared	= 1995.85 = 0.0000 = 0.9852
Total	2125.55182	31 68.5	5661878		Root MSE	= 1.0243
bidprice	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
couponrate cons	4.833839 57.29323	.1082004 1.035823	44.67 55.31	0.000	4.612865 55.17779	5.054814 59.40866

drop bidresidsr
predict bidresidsr if e(sample), rstandard

Figure 3.12 is drawn using the new standardized residuals. For the flower bonds, *bidresidsr* has the value . (missing). Observations with missing values for a plotted variable are automatically removed from the plot.

```
twoway scatter bidresidsr couponrate,
yline(-2,lpattern(dash)) yline(2,lpattern(dash))
xlabel(2(2)14) ylabel(-3(1)2) xtitle("Coupon Rate (%)")
ytitle("Standardized Residuals") legend(off)
title("Regular Bonds",span)
graph export graphics/f3p12.eps, replace
```


Fig. 3.12 Plot of standardized residuals with the 'flower' bonds removed

We can get Cook's distance from **predict** as well. We specify the option **cook** in this case. It is examined for the full regression.

```
qui reg bidprice couponrate predict bidcooks, cooks
```

To draw figure 3.13, we store the Cook's cutoff point in the macro *cutoff*, and then pass this into the **yline()** option. The variable *out* is readjusted to only flag flower bonds.

local cutoff = 4/(35-2)
replace out = "" if out == "34"

3.2 Regression diagnostics: Tools for checking the validity of a model 15

```
twoway scatter bidcooks couponrate,mlabel(out)
yline(`cutoff',lpattern(dash)) xlabel(2(2)14)
ylabel(0(.2)1) xtitle("Coupon Rate (%)") ytitle("Cook's
Distance") legend(off)
graph export graphics/f3p13.eps, replace
```


Fig. 3.13 A plot of Cook's distance against Coupon Rate

Our next plot uses the user-written program **plotlm**. After a regression, **plotlm** draws a residual's vs. fitted plot, normal quantile plot, scale location plot, and residuals vs. leverage. Points in these plots are color coded based on their Cook's distance value. We specify a non-parametric smoother for plotIm through the **smoother** option. Additional arguments for the smoother are passed in after the **smoother** option. We use the **lowess_ties_optim** with an alpha=2/3 value here. Details on the algorithm of this smoother can be found in chapter 6 of the text. The smoother program is another user-written program.

```
clear
insheet using data/production.txt, names
reg runtime runsize
local a = 2/3
plot_lm, smoother("lowess_ties_optim") f(`a')
graph export graphics/f3p14.eps, replace
```


Fig. 3.14 Diagnostic Plots from Stata

Now we will show diagnostics for constant error variance with the cleaning data. First we draw figure 3.15.

clear

```
insheet using data/cleaning.txt,names
twoway scatter room crew || lfit room crew,
xtitle("Number of Crews") ytitle("Number of Rooms
Cleaned") xlabel(2(2)16) ylabel(10(10)80) legend(off)
graph export graphics/f3p15.eps, replace
```


3.2 Regression diagnostics: Tools for checking the validity of a model 17

Fig. 3.15 Plot of the room cleaning data with the least squares line added

Next we show the regression output on page 72. We use **rlcipi** again to get the prediction intervals on the following page.

reg	room	crew
-----	------	------

Source	SS	df	MS		Number of obs	= 53
Model Residual 	16429.7323 2744.79602 19174.5283	1 164 51 53. 52 368	29.7323 8195299 .740929		F(1, 51) Prob > F R-squared Adj R-squared Root MSE	= 305.27 = 0.0000 = 0.8569 = 0.8540 = 7.3362
rooms	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
crews _cons	3.700893 1.784699	.2118172 2.09648	17.47 0.85	0.000	3.275653 -2.42416	4.126134 5.993558

rlcipi , pred arg(4 16) lev(95) len(7) prec(4)

	+.	fit	lwr	upr
1. 2.		16.5883 60.9990	1.5894 45.8103	31.5871 76.1877
	+.			

Figure 3.16 is generated through another call to **predict** with the **rstandard** option.

```
predict roomsr,rstandard
twoway scatter roomsr crews, xlabel(2(2)16)
ylabel(-2(1)2) xtitle("Number of Crews")
ytitle("Standardized Residuals")
graph export graphics/f3p16.eps, replace
```


Fig. 3.16 Plot of standardized residuals against x, number of cleaning crews

The scale-location plot in Figure 3.17 is obtained through a simple transformation of roomsr. The **sqrt** denotes the square root function. **abs** is the absolute value function.

```
gen saroomsr = sqrt(abs(roomsr))
twoway scatter saroomsr crew || lfit saroomsr crew,
xtitle("Number of Crews") ytitle("Square
Root(|Standardized Residuals|)") xlabel(2(2)16) yla-
bel(.2(.2)1.6) legend(off)
graph export graphics/f3p17.eps,replace
```


3.2 Regression diagnostics: Tools for checking the validity of a model 19

Fig. 3.17 A diagnostic plot aimed at detecting non-constant error variance

We use **plotIm** again to get figure 3.18.

```
local a = 2/3
plot_lm, smoother("lowess_ties_optim") f(`a')
graph export graphics/f3p18.eps, replace
```


Fig. 3.18 Diagnostic Plots from Stata

To draw figure 3.19, we use the **collapse** command. For each level of the by variable(s) (*crew*), **collapse** evaluate the statistic in parentheses on the argument variables (*rooms*). The dataset is changed so that there is one observation for each level of the by variable(s). The argument variables now have the statistic for their values.

We put **preserve** in front of our code to draw figure 3.19. This saves the current state of our data before we collapse it. When we execute **restore**, the data returns to the pre-collapsed state.

```
preserve
collapse (sd) rooms, by(crew)
twoway scatter rooms crews || lfit rooms crews, xla-
bel(2(2)16) ylabel(4(2)12) ytitle("Standard Devia-
tion(Rooms Cleaned)") xtitle("Number of Crews") le-
gend(off)
graph export graphics/f3p19.eps, replace
restore
```


Fig. 3.19 Plot of the standard deviation of Y against x

3.3 Transformations 21

3.3 Transformations

Now we examine how the square root transformation affects our model. The following gives the output on page 77.

```
gen sqrtcrews = sqrt(crews)
gen sqrtrooms = sqrt(rooms)
reg sqrtrooms sqrtcrews
```

Source	I SS	df	MS		Number of obs	= 53
Model Residual	145.620265 17.9938568	1 145 51 .35	5.620265 52820721		F(1, 51) Prob > F R-squared	= 412.73 = 0.0000 = 0.8900
Total	163.614122	52 3.1	4642542		Adj R-squared Root MSE	= 0.8879 = .59399
sqrtrooms	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
sqrtcrews _cons	1.901581 .2001234	.0936011 .2757541	20.32 0.73	0.000 0.471	1.713669 3534761	2.089493 .7537229

rlcipi, pred arg(2 4) lev(95) len(7) prec(4)

	+				+
	I	fit	lwr	upr	I
	1				•
1.	I.	4.0033	2.7899	5.2166	I
2.	Ι	7.8064	6.5823	9.0306	I
	+				+

Now we will draw figure 3.20. It requires another **graph combine** of **twoway** plots.

set graphics off

```
twoway scatter sqrtrooms sqrtcrews || lfit sqrtrooms
sqrtcrews, ytitle("Square Root(Number of Rooms
Cleaned)") xtitle("Square Root(Number of Crews)")
xlabel(1.5(.5)4.0) ylabel(3(1)9) legend(off) name(g1)
xsize(2.5)
predict srrooms, rstandard
twoway scatter srrooms sqrtcrew, xlabel(1.5(.5)4.0)
ylabel(-2(1)2) xtitle("Square Root(Number of Crews)")
ytitle("Standardized Residuals") name(g2) xsize(2.5)
```

```
set graphics on
graph combine g1 g2,
graph export graphics/f3p20.eps,replace
graph drop g1 g2
```


Fig. 3.20 Plots of the transformed data and the resulting standardized residuals

Figure 3.21 involves another call to plotlm.

```
local a = 2/3
plot_lm, smoother("lowess_ties_optim") f(`a')
graph export graphics/f3p21.eps, replace
```

3.3 Transformations 23

Fig. 3.21 Diagnostic Plots from Stata

Now we move to the Consolidated food data. Our first plot is a simple **twoway** overlaid plot.

```
clear
insheet using data/confood1.txt,names
twoway scatter sales price || lfit sales price ,
xtitle("Price") ytitle("Sales") xlabel(.6(.05).85) yla-
bel(0(1000)7000) legend(off)
graph export graphics/f3p22.eps, replace
```


Fig. 3.22 A scatter plot of sales against price

For figure 3.23, we draw the same plot using the natural logarithm of *price* and *sales*.

```
gen lnprice = ln(price)
gen lnsales = ln(sales)
//Figure 3.23
twoway scatter lnsales lnprice || lfit lnsales lnprice,
legend(off) ytitle("log(Sales)") xtitle("log(Price)")
ylabel(5(1)8) xlabel(-.5(.1)-.2)
graph export graphics/f3p23.eps, replace
```

3.3 Transformations 25

Fig. 3.23 A scatter plot of log(sales) against log(price)

Next we regress the log transformed variables and show that this is a valid model with figure 3.24.

reg lnsales lnprice

Source	I.	SS	df		MS		Number of obs	=	52
Model Residual Total	 +	16.4222018 8.05345237 24.4756542	1 50 51	16.4 .161 .479	222018 069047 914788		Prob > F R-squared Adj R-squared Root MSE		0.0000 0.6710 0.6644 .40133
lnsales		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
lnprice cons		-5.147688 4.802877	.5098	032 336	-10.10 27.53	0.000	-6.171658 4.452517	-4 5	.123718

predict salessr, rstandard

twoway scatter salessr lnprice, ytitle("Standardized Residuals") xtitle("log(Price)") xlabel(-.5(.1)-.2) ylabel(-2(1)3) graph export graphics/f3p24.eps,replace

Fig. 3.24 A scatter plot of log(sales) against log(price)

Now we move to the inverse response plot generated example. We start with a scatter plot the predictor *x* and response *y*.

clear

Fig. 3.25 A plot of Y vs x for the generated data (responsetransformation.txt)

We create and examine the residuals in figure 3.26.

reg y x

Source	SS	df	MS		Number of obs	=	250
Model Residual	61030.4198 8081.98903	1 248	61030.4198 32.5886655		Prob > F R-squared	=	0.0000
+- Total	69112.4088	249	277.559875		Root MSE	=	5.7086
у	Coef.	Std. E	rr. t	P> t	[95% Conf.	Ir	nterval]
x _cons	20.00778 -29.86234	.46233	74 43.28 18 -24.24	0.000 0.000	19.09717 -32.28846	2 -2	20.91839 27.43621

```
predict srf, rstandard
gen sqsrf = sqrt(abs(srf))
set graphics off
twoway scatter srf x, xtitle("x") ytitle("Standardized
Residuals") xlabel(1(1)4) ylabel(-1(1)5) name(g1) xs-
ize(2.5)
twoway scatter sqsrf x, xtitle("x") ytitle("Square
Root(Standardized Residuals)") xlabel(1(1)4) yla-
bel(0(1)2) name(g2) xsize(2.5)
set graphics on
graph combine g1 g2, rows(1)
graph drop g1 g2
graph export graphics/f3p26.eps, replace
```


Fig. 3.26 Diagnostic plots for model (3.2)

To generate figure 3.27, we need to use some new commands. The **kdens** command is a user-written extension of the **kdensity** built in Stata command. It draws the kernel density estimate for the specified variable. For the **bw** option we specify the Sheather-Jones bandwidth, **sjpi**. The other new command is **qnorm**. This simply draws a normal quantile plot for the input variable.

```
set graphics off
kdens y,bw(sjpi) ysize(3) xsize(5.5) name(g1)
graph box y, ysize(3) xsize(5.5) name(g2)
qnorm y, ysize(3) xsize(5.5) name(g3)
kdens x,bw(sjpi) ysize(3) xsize(5.5) name(g4)
graph box x, ysize(3) xsize(5.5) name(g5)
qnorm x, ysize(3) xsize(5.5) name(g6)
set graphics on
graph combine g1 g2 g3 g4 g5 g6, xsize(11) ysize(9)
rows(3)
graph export graphics/f3p27.eps, replace
graph drop g1 g2 g3 g4 g5 g6
```


Fig. 3.27 Box plots, normal QQ-plots and kernel density estimates of Y and x

Now we use the user-written program **irp** to draw the inverse response plot for the regression of y on x. We specify the optimum (abbreviated as opt) option so that **irp** will find the best scaled power transformation. Power that we would like to test are specified in the **try()** option.

irp y x, try(0 1) opt graph export graphics/f3p28.eps, replace

	+
	i
	I
9.86	I
	+
+	
16	
+	
+	
)	
	9.86 + 16 +)

Fig. 3.28 Inverse response plot for the generated data set

To draw figure 3.29, we use **irp** again. The RSS and lambda vectors are returned from **irp** via the matrix **r(tranres)**. We can plot these to generate figure 3.29. Since we do not care about the inverse response plot itself this time, we specify the **twoway** option **nodraw** at the end of the **irp** call.

The **draw_matrix** user-command is utilized for this purpose. It takes the names of the vertical and horizontal vectors that the user wishes to form a scatter plot (line plot) of as its options. Then the user specifies

whether they want a line plot (line) or scatter plot (scatter). Other options for twoway plots may follow afterward.

In the code we create vectors h and v to hold the coordinates from **r(tranres)**. We tell Stata to return rows 1 through 9 of the first column with the index: 1..9,1.

irp y x, try(-1 -0.5 -0.33 -0.25 0 0.25 0.33 0.5 1) nodraw

```
+-----+
| Response | y
           _____
    ---+-
| Fitted | 20.01*x + -29.86
  ------
                           _____
| Optimal Power | Not Calculated/Re-Calculated |
+-----
  Power | RSS(F|R) |
____
     -1 | 46673.88
    -.5 | 24090.74
    -.33 | 15264.24
-.25 | 11637.06
0 | 3583.806
     .25 | 440.0383
     .33 | 265.9846
     .5 | 880.1574
1 | 7136.883
matrix list r(tranres)
matrix b = r(trans)
matrix h = b[1..9,1]
matrix v = b[1..9,2]
draw matrix, x(h) y(v) line xtitle("lambda")
ytitle("RSS(lambda)")
graph export graphics/f3p29.eps, replace
```

3.3 Transformations 31

Fig. 3.29 A plot of RSS(λ) against λ for the generated data set

Now we move onto the Box-Cox transformation. We use the userwritten plot_bc command to render figure 3.30. It takes the response and predictor as its first arguments. Then the level, number of plotting points (**plotpts**), and plot window range (**window**) are passed as arguments in the options.

```
plot_bc y x, plotpts(100) window(.28 .388) ylabel(-
695(5)-665) name(g1) nodraw
plot_bc y x, plotpts(100) window(.325 .34) ylabel(-
664(.5)-663) name(g2) nodraw
graph combine g1 g2, xsize(10)
graph export graphics/f3p30.eps, replace
graph drop g1 g2
```


Fig. 3.30 Log-likelihood for the Box-Cox transformation method

Having thoroughly examined our choice of transformation, we transform the response and re-perform the regression. The following code gives the output on page 93.

gen yt = ; reg yt x	y^(1/3)					
Source	I SS	df	MS		Number of obs	= 250
Model Residual	151.377262 .66244092	1 151. 248 .002	.377262 2671133		F(1, 248) Prob > F R-squared Adi R-squared	= 566/1.56 = 0.0000 = 0.9956 = 0.9956
Total	152.039703	249 .610	0601216		Root MSE	= .05168
yt	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x cons	.9964514 .0089472	.0041858 .011152	238.06 0.80	0.000 0.423	.9882072 0130176	1.004696 .030912

predict ytresid, resid sum ytresid,det tabstat ytresid, stat(min p25 median p75 max)

variable	min	p25	p50	p75	max
ytresid	144265	0352042	002067	.0361598	.1610905

We used the **tabstat** command to display the quantiles of ytresid. The **tabstat** command will display the requested statistics in the **statistics** option for the specified variable.

Now we render figure 3.31. Rather than setting graphics off and then on, we use the **nodraw** option for each of our intermediate plots.

label variable yt "y ^ 1/3"
kdens yt,bw(sjpi) name(g1) nodraw
graph box yt, name(g2) nodraw
qnorm yt, name(g3) nodraw
twoway scatter yt x || lfit yt x, legend(off)
xtitle("x") ytitle("y ^ 1/3") name(g4) nodraw
graph combine g1 g2 g3 g4, xsize(10) ysize(10) rows(2)
graph export graphics/f3p31.eps, replace
graph drop g1 g2 g3 g4

Fig. 3.31 Box plots, normal QQ-plots and kernel density estimates of Y^{1/3}

Now we turn to our last dataset for the chapter: salarygov.txt. We use the **delimiter("")** option with **insheet** because the data is space separated.

clear
insheet using data/salarygov.txt,names delimiter(" ")

We draw figure 3.32 with the following code. We do not want to look at the regression output yet, but we need to perform the regression to get the standardized residuals. We stay blind to the regression's numeric results by using the **qui (quietly)** prefix. We use the **nodraw** option again, in place of **set graphics off**.

```
qui reg maxsalary score
predict stanres1, rstand
gen absrtsr1 = sqrt(abs(stanres1))
twoway scatter maxsalary score || lfit maxsalary score,
legend(off) nodraw xtitle("Score") ytitle("MaxSalary")
name(g1)
twoway scatter stanres1 score, legend(off) nodraw
xtitle("Score") ytitle("Standardized Residuals")
name(g2)
twoway scatter absrtsr1 score || lfit absrtsr1 score,
legend(off) nodraw xtitle("Score") ytitle("Square
Root(|Standardized Residuals|)") name(g3)
graph combine g1 g2 g3, xsize(10) ysize(10) rows(2)
graph export graphics/f3p32.eps, replace
graph drop g1 g2 g3
```


Fig. 3.32 Plots associated with a straight line model to the untransformed data

The following code draws figure 3.33. To get the appropriate dimensions we scaled down individual plots with the **ysize(3)** option.

```
set graphics off
kdens maxsalary, bw(sjpi) ysize(3) xsize(5.5) name(g1)
xtitle("MaxSalary") xlabel(2000(2000)8000)
graph box maxsalary, ysize(3) xsize(5.5) name(g2)
ytitle("MaxSalary") ylabel(2000 6000)
qnorm maxsalary, ysize(3) xsize(5.5) name(g3)
ytitle("MaxSalary") ylabel(2000 6000)
kdens score,bw(sjpi) ysize(3) xsize(5.5) name(g4)
xtitle("Score") xlabel(0(200)1000)
graph box score, ysize(3) xsize(5.5) name(g5)
ytitle("Score") ylabel(200(400)1000)
qnorm score, ysize(3) xsize(5.5) name(g6)
ytitle("Score") ylabel(200(400)1000)
set graphics on
graph combine g1 g2 g3 g4 g5 g6, xsize(11) ysize(9)
rows(3)
graph export graphics/f3p33.eps, replace
graph drop g1 g2 g3 g4 g5 g6
```


Fig. 3.33 Plots of the untransformed data

To obtain the Multivariate Box Cox output on page 96, we use the userwritten command **mboxcox**. This is an estimation command, and very

simple to use. Here we care about all the observations and are fine with 95% Wald tests, so we just enter the variable names as input.

mboxcox maxsalary score

Multivariate b	oxcox transfo	rmations		Numbe	er of obs =	495
Likelihood Rat	io Tests					
Test	Log Likelih	ood	Chi2	df	Prob	> Chi2
All powers -1 All powers 0 All powers 1	-5889.729 -5625.398 -5668.388		653.7529 125.0901 211.0704	2 2 2	0 0 0	
	Coef.	Std. Er	r. z	₽> z	[95% Conf.	Interval]
lambda maxsalary score	0972828 .5973573	.077041 .069134	1 -1.26 6 8.64	0.207 0.000	2482805 .461856	.0537149 .7328585

The z tests presented are equivalent for the Wald tests for the powers being 0. The **Chi2** column presents the LRT test statistics. To perform the Wald tests for the power's being 1, we use Stata's **test** command.

After estimation commands, Stata allows for simple testing of a variety of complex hypotheses. The **test** command Wald tests simple linear combinations of the estimated parameters. To test a single hypothesis on one parameter, say the transformation parameter of *maxsalary* was 1, we would execute

test maxsalary = 1

di sqrt(r(chi2))

14.24283

The **test** command returns the Chi-Squared test statistic value it found in r(chi2). Here we took the square root of it to obtain the negative of the Z-test statistic on page 96. In a similar way, we find the test statistic for the test that the transformation parameter of score is 1.

3.3 Transformations 37

test score = 1

(1) [lambda]score = 1 chi2(1) = 33.92 Prob > chi2 = 0.0000

di sqrt(r(chi2))

5.8240429

Next we produce figure 3.34. Here we examine the transformed data, under the powers suggested by **mboxcox**.

```
gen sqrtscore = sqrt(score)
gen lnmaxsalary = ln(maxsalary)
twoway scatter lnmaxsalary sqrtscore ||
lfit lnmaxsalary sqrtscore, xlabel(10(5)30)
ylabel(7.5(.5)9) ///
xtitle("Sqrt(Score)") ytitle("log(MaxSalary)")
legend(off)
graph export graphics/f3p34.eps, replace
```


Fig. 3.34 Plot of log(MaxSalary) and Sqrt(Score) with the least squares line added

Now we replicate the plot we produced in figure 3.33 under the transformed data.

```
kdens lnmaxsalary,bw(sjpi) ysize(3) xsize(5.5) name(g1)
xtitle("log(MaxSalary)") nodraw
graph box lnmaxsalary, ysize(3) xsize(5.5) name(g2)
ytitle("log(MaxSalary)") nodraw
qnorm lnmaxsalary, ysize(3) xsize(5.5) name(g3)
ytitle("log(MaxSalary)") nodraw
kdens sqrtscore, bw(sjpi) ysize(3) xsize(5.5) name(g4)
xtitle("Sqrt(Score)") nodraw
graph box sqrtscore, ysize(3) xsize(5.5) name(g5)
ytitle("Sqrt(Score)") nodraw
qnorm sqrtscore, ysize(3) xsize(5.5) name(g6)
ytitle("Sqrt(Score)") nodraw
graph combine g1 g2 g3 g4 g5 g6, xsize(11) ysize(9)
rows(3)
graph export graphics/f3p35.eps, replace
graph drop g1 g2 g3 g4 g5 g6
```


Fig. 3.35 Plots of the transformed data

We reproduce the regression diagnostic plots performed in figure 3.32, now under the new data.

3.3 Transformations 39

```
reg lnmaxsalary sqrtscore
predict stanres2, rstandard
gen absrtsr2 = sqrt(abs(stanres2))
twoway scatter stanres2 sqrtscore,
xtitle("Sqrt(Score)") xsize(2.5) ytitle("Standardized
Residuals") name(g1) nodraw
twoway scatter absrtsr2 sqrtscore || lfit absrtsr2
sqrtscore, xsize(2.5) lpattern(dash)
xtitle("Sqrt(Score)") ///
ytitle("Square Root(|Standardized Residuals|)")
name(g2) legend(off) nodraw
graph combine g1 g2, rows(1)
graph export graphics/f3p36.eps, replace
graph drop g1 g2
```


Fig. 3.36 Diagnostic plots from the model based on the transformed data

We transform the single variable score using **mboxcox** to obtain the output on page 99. Like the bivariate transformation, it is quite simple.

mboxcox score

test score = 1

```
( 1) [lambda]score = 1

chi2( 1) = 22.30

Prob > chi2 = 0.0000
```

di sqrt(r(chi2))

4.72207

For figure 3.37, we generate the inverse response plot of *maxsalary* on the transformed *score*.

irp maxsalary sqrtscore, try(0 1) opt

++
Response maxsalary
+
Fitted 238.2*sqrtscore + -2056
++
++
Optimal Power 1919252
++
++
Power RSS(F R)
1919252 8.34e+07
0 8.43e+07
1 1.19e+08
++
++

graph export graphics/f3p37.eps, replace

3.3 Transformations 41

Fig. 3.37 Inverse response plot based on model (3.6)

We round the optimal power from **irp** to the negative quarter power and examine the distribution of *maxsalary* under that power transformation in figure 3.38.

```
gen fourthmaxsalary = maxsalary^(-.25)
kdens fourthmaxsalary,bw(sjpi) name("g1")
xtitle("maxsalary^(-.25)") nodraw
graph box fourthmaxsalary, name("g2")
ytitle("maxsalary^(-.25)") nodraw
qnorm fourthmaxsalary, name("g3") ytitle("maxsalary^(-
.25)") nodraw
graph combine g1 g2 g3, xsize(10) ysize(10) rows(2)
graph export graphics/f3p38.eps, replace
graph drop g1 g2 g3
```


Fig. 3.38 Plots of the transformed MaxSalary variable

Our final plot for this chapter shows the regression diagnostic plots for the newly transformed *maxsalary* variable and transformed *score*.

```
qui reg fourthmaxsalary sqrtscore
predict stanres3, rstandard
gen absrtsr3 = sqrt(abs(stanres3))
twoway scatter fourthmaxsalary sqrtscore || lfit
fourthmaxsalary sqrtscore, lpattern(dash) legend(off)
///
nodraw xtitle("Sqrt(Score)") ytitle("MaxSalary^(-.25)")
name("q1")
twoway scatter stanres3 sqrtscore, legend(off) nodraw
xtitle("Sqrt(Score)") ytitle("Standardized Residuals")
name("g2")
twoway scatter absrtsr3 sqrtscore || lfit absrtsr3
sqrtscore, lpattern(dash) legend(off) nodraw
xtitle("Sqrt(Score)") ///
ytitle("Square Root(|Standardized Residuals|)")
name("g3")
graph combine g1 g2 g3, xsize(10) ysize(10) rows(2)
graph export graphics/f3p39.eps, replace
graph drop g1 g2 g3
```
3.3 Transformations 43

Fig. 3.39 Plots associated with the model found using approach (1)

4. Weighted Least Squares

4.1 Straight line regression based on WLS

In this chapter we learn how to do weighted least squares regression in Stata.

```
version 10.0
clear all
set scheme ssccl
set more off
```

We begin by telling Stata the version our commands should work under, removing all previous objects from memory, and setting the scheme. For convenience I set more off as well.

Our first analytical task is to match the output on page 117.

First we bring in the data with the **insheet** command and perform our regression. We assign weights to the observation with the **aweight** specification after our last predictor. An aweight is the inverse of the observations' variance. is the These specifications are always of the form **[aweight= *]**, where ***** is an expression in the data's variables. Here we used **1/stddev^2** (inverse of the variance) as the weighting expression.

insheet using data/cleaningwtd.txt,names reg rooms crew [aweight=1/(stddev^2)]

(sum of wgt is	1.9803e+00)					
Source	SS	df	MS		Number of obs	=	53
Model Residual	11409.2562 1270.57241	1 51	11409.2562 24.9131846		Prob > F R-squared	=	437.90 0.0000 0.8998
Total	12679.8286	52	243.842858		Root MSE	=	4.9913
rooms	Coef.	Std. E	rr. t	P> t	[95% Conf.	In	terval]
crews cons	3.825462	.17875 1.1157	98 21.40 83 0.73	0.000 0.471	3.466587 -1.430548	4 3	.184337 .049509

2 4. Weighted Least Squares

Stata does not have a standardized residual option for predict after a weighted regression. We make our own by standardizing the residuals that Stata does make for us with predict.

predict wmlresid, resid replace wmlresid = sqrt(1/stddev^2)*wmlresid tabstat wmlresid, stat(min p25 median p75 max)

p50 p75 p25 p50 variable | min max wmlresid | -1.431843 -.8201349 .0390917 .69029 2.010301

Stata does not form the standard error of predictions after weighted least squares regression. We only give the point estimate of prediction here. This is obtained through the **b** notation that we used previously.

```
di 4* b[crew] + b[ cons]
16.111329
di 16*_b[crew] + _b[_cons]
62.016873
```

We perform the regression on page 120 by using the nocons option after regress. This tells Stata to suppress the intercept from the fit model.

```
gen ynew = rooms/stddev
gen x1new = 1/stddev
gen x2new = crews/stddev
reg ynew x1new x2new, nocons
   Source
            99
                 df MS
```

Source	SS	df	MS		Number of obs	= 53
Model Residual + Total	1190.75038 47.4735637 1238.22395	2 5 51 53	23.362716		Prob > F R-squared Adj R-squared Root MSE	$\begin{array}{rcl} & 0.39.00\\ = & 0.0000\\ = & 0.9617\\ = & 0.9602\\ = & .96481 \end{array}$
ynew	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
x1new x2new	.8094806 3.825462	1.11578	33 0.73 98 21.40	0.471 0.000	-1.430547 3.466587	3.049509 4.184337

Stata can do prediction intervals under this model. We will generate them now to match the output on page 120.

First we preserve the our data, this create a copy of the current dataset that will be restored when we executed restore.

preserve

Next we clear the dataset from memory and replace it with the two observations we want to predict. The **set obs** command changes the total observation number as specified.

```
clear
set obs 2
gen x1new = 1/4.97 if _n == 1
replace x1new = 1/12 if _n == 2
gen x2new = 4*x1new if _n == 1
replace x2new = 16*x1new if _n == 2
```

Now we use the **predict** command to get our point estimates and standard errors. As mentioned before, the **xb** option tells predict to generate point estimates. The **stdf** option tells predict to generate the standard error for a prediction (**stdp** would generate the standard error for the regression line). The e(N) value is an estimation result returned by **regress**. It denotes the sample size.

```
predict fitted, xb
predict forese, stdf
gen lwr = fitted - forese*invttail(e(N)-2,(1-.95)/2)
gen upr = fitted + forese*invttail(e(N)-2,(1-.95)/2)
l fitted lwr upr
```

+				L
	fitted	lwr	upr	
1. 2.	3.241716 5.168073	1.283946 3.199678	5.199486 7.136467	

Finally, we use the **restore** command to return the data to the state we executed **preserve** at.

restore

5. Multiple Linear Regression

5.1 Polynomial regression

In this chapter we will learn how to do multiple linear regression in Stata. We start with polynomial regression.

```
version 10.0
clear all
set scheme ssccl
set more off
```

We start by telling Stata the version our commands should work under, removing all previous objects from memory, and setting the scheme. For convenience I set more off as well.

We bring in our first dataset with a simple insheet. Figure 5.1 is a simple **twoway** scatter plot.

```
insheet using data/profsalary.txt
twoway scatter salary experience , xtitle("Years of Ex-
perience") xlabel(0(5)35)
graph export graphics/f5p1.eps, replace
                  80
                  70
                  09
                            000
                          ٥٥
                  50
                        000
                  4
                                                  35
                          5
                              10 15 20 2
Years of Experience
                                          25
                                              30
```

Fig. 5.1 A plot of the professional salary data (prefsalary.txt)

2 5. Multiple Linear Regression

Next we regress *salary* on *experience*. To facilitate diagnostics, we create standardized residual values using **predict** with the **rstandard** option.

reg salary experience

Source	SS	df	MS		Number of obs	=	143
Model Residual	9962.92616 4789.04587	1 99 141 33	962.92616 3.9648643		Prob > F R-squared	=	0.0000
Total	14751.972	142 10	3.887127		Root MSE	=	5.8279
salary	Coef.	Std. Eri	t. t	P> t	[95% Conf.	Int	terval]
experience _cons	.8834452 48.50593	.0515823	3 17.13 7 44.58	0.000 0.000	.7814704 46.35484	• ! 5(9854199 0.65703

predict stanres1, rstandard

Figure 5.2 is another simple scatter plot.

```
twoway scatter stanres1 experience, xtitle("Years of
Experience") ytitle("Standardized Residuals") xla-
bel(0(5)35)
graph export graphics/f5p2.eps, replace
```


Fig. 5.2 A plot of the standardized residuals from a straight line regression model

5.1 Polynomial regression 3

Next we fit the quadratic regression of salary on experience. To draw figure 5.3 we will use the **twoway function** command again. Recall our rendering of figure 1.2 in chapter 1.

gen exp2 = experience^2 reg salary experience exp2

Source	SS	df	MS		Number of obs	=	143
Model Residual 	13640.7882 1111.18387 14751.972	2 6820 140 7.93 142 103.	.39408 702767 887127		F(2, 140) Prob > F R-squared Adj R-squared Root MSE	=	0.0000 0.9247 0.9236 2.8173
salary	Coef.	Std. Err.	t	P> t	[95% Conf.	Int	erval]
experience exp2 _cons	2.872275 0533161 34.7205	.0956966 .0024768 .8287239	30.01 -21.53 41.90	0.000 0.000 0.000	2.683077 0582128 33.08207	3. (36	061472)484193 5.35893

twoway scatter salary experience || function y= _b[_cons] + _b[experience]*x + _b[exp2]*(x^2), range(0 35) ytitle("Salary") xtitle("Years of Experience") legend(off) xlabel(0(5)35) graph export graphics/f5p3.eps,replace

Fig. 5.3 A plot of salary against experience with a quadratic fit added

4 5. Multiple Linear Regression

We use predict with the rstandard option to create new standardized residuals. It is necessary to either use a new variable name, or delete the old standardized residual variable. We opt for the former option. These residuals are then used to draw figure 5.4

```
predict stanres2, rstandard
twoway scatter stanres2 experience, xtitle("Years of
Experience") ytitle("Standardized Residuals") xla-
bel(0(5)35)
```


graph export graphics/f5p4.eps, replace

Fig. 5.4 A plot of the standardized residuals from a quadratic regression model

We produce the leverage values for the quadratic model by using the **predict** command again. This time we use the **leverage** option. The cutoff is shown by using the **yline()** option. A detailed description of this option is found in chapter 3 during the rendering of figure 3.10.

```
predict leverage2, leverage
local lvgcutoff = 6/_N
twoway scatter leverage2 experience, yline(`lvgcutoff',
lpattern("dash")) xtitle("Years of Experience")
ytitle("Leverage") xlabel(0(5)35) ylabel(0.01(.01).07)
legend(off) xlabel(0(5)35)
graph export graphics/f5p5.eps, replace
```


Fig. 5.5 A plot of leverage against x, years of experience

The regression output on page 129 is found by retyping **regress**. As discussed in chapter 2, retyping the last estimation command (and potentially re-specifying the **level()** option) will redisplay the command's output.

regress

Source	SS	df	MS		Number of obs	=	143 859 31
Model Residual	13640.7882 1111.18387	2 682 140 7.9	0.39408 3702767		Prob > F R-squared	=	0.0000
Total	14751.972	142 103	.887127		Root MSE	=	2.8173
salary	Coef.	Std. Err.	t	P> t	[95% Conf.	Int	terval]
experience exp2 _cons	2.872275 0533161 34.7205	.0956966 .0024768 .8287239	30.01 -21.53 41.90	0.000 0.000 0.000	2.683077 0582128 33.08207	3 (3(.061472 0484193 6.35893

To produce the prediction interval on page 129, we mimic what we did at the end of chapter 4. Here we create 1 observation and predict its point estimate and standard error using the **predict** command. The critical point for the confidence intervals is generated with **invttail**.

preserve

```
6 5. Multiple Linear Regression
clear
set obs 1
gen experience = 10
gen exp2 = 100
predict pred,xb
predict predse,stdf
gen lwr = pred - predse*invttail(e(N)-3,(1-.95)/2)
gen upr = pred + predse*invttail(e(N)-3,(1-.95)/2)
l pred lwr upr
```

	+		
	pred	lwr	upr
1.	58.11164	52.50481	63.71847
	+		

restore

We again use the **plot_lm** user-written program to generate figure 5.6.

```
plot_lm, smoother("lowess_ties_optim")
graph export graphics/f5p6.eps, replace
```


Fig. 5.6 Diagnostic Plots

Next we look at the New York restaurant data. The output on pages 138 and 139 is produced by the following code.

clear insheet using data/nyc.csv, names req cost food decor service east

Source		SS	df		MS		Number of obs	=	168 68 76
Model Residual	 	9054.99614 5366.52172	4 163	2263 32.9	3.74904 9234461		Prob > F R-squared	=	0.0000
Total	I	14421.5179	167	86.3	3563944		Root MSE	=	5.7379
cost		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
food decor service east _cons	 	1.53812 1.910087 0027275 2.06805 -24.0238	.3689 .2170 .3962 .9467 4.708	9512 0046 2321 7388 3359	4.17 8.80 -0.01 2.18 -5.10	0.000 0.000 0.995 0.030 0.000	.8095797 1.481585 7851371 .1985964 -33.32104	3 -1	2.26666 2.33859 7796821 .937504 4.72656

reg cost food decor east

Source		SS	df		MS		Number of obs	=	168
Model Residual	+- +-	9054.99458 5366.52328	3 164	3018 32.	3.33153 7227029		Prob > F R-squared	=	92.24 0.0000 0.6279 0.6211
Total	I	14421.5179	167	86.3	3563944		Root MSE	=	5.7204
cost		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
food decor east _cons	 	1.536346 1.909373 2.067013 -24.02688	.263 .190 .931 4.67	1763 0155 8139 2739	5.84 10.05 2.22 -5.14	0.000 0.000 0.028 0.000	1.016695 1.534181 .227114 -33.25336	2 2 3 -	.055996 .284565 .906912 14.8004

Now we move to the travel dataset example, starting with figure 5.7. We suppress the display of the scattered point by using the **msymbol(i)** option. In chapter 1 we used the **msymbol()** option to use triangles for points in figures 1.3 and 1.4. By passing in "i" as an argument to the option, our marker symbols are invisible. We place the label directly over the marker point by specifying **mlabposition(0)**.

```
clear
insheet using data/travel.txt,names
gen segA = "A" if c == 0
gen segC = "C" if c == 1
twoway scatter amount age, mlabel(segA) mlabcol(black)
msymbol(i) mlabposition(0) || scatter amount age, mla-
bel(segC) mlabcolor("red") msymbol(i) mlabposition(0)
ytitle("Amount Spent") xtitle("Age") xlabel(30(10)60)
ylabel(400(200)1400) legend(off)
graph export graphics/f5p7.eps, replace
```

8 5. Multiple Linear Regression

Fig. 5.7 A scatter plot of Amount Spent versus Age for segments A and C

The ANOVA output on page 141 is made using the **nestreg** command. This command has the syntax **nestreg:** command varlist₁ (varlist₂) ... (varlist_k). When executed, **nestreg** executes command for varlist₁, then for varlist₁ varlist₂, then for varlist₁ varlist₂ varlist₃, ..., then for varlist₁ varlist₂ varlist₃ ... varlist_k. The partial-F test statistics are computed at each level (varlist₁ ... varlist_t is compared to varlist₁ ... varlist_{t+1}). Now we will produce the output on pages 143-144.

gen agec = age*c reg amount age c agec

Source	SS	df	MS		Number of obs	= 925
Model Residual	50221964.6 2089377.07	3 1674 921 2268	10654.9 3.59616		Prob > F R-squared Adj R-squared	= 0.9601 = 0.9599
Total	52311341.7	924 5661	14.0062		Root MSE	= 47.63
amount	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age c agec _cons	-20.3175 -1821.234 40.44611 1814.544	.1877651 12.57363 .2723553 8.601059	-108.21 -144.85 148.50 210.97	0.000 0.000 0.000 0.000	-20.686 -1845.91 39.9116 1797.665	-19.94901 -1796.557 40.98062 1831.424

5.1 Polynomial regression 9

reg amount age

Source	SS	df	MS		Number of obs	= 925
Model Residual	152396.813 52158944.9 +	1 1523 923 5651	96.813 0.2328		Prob > F R-squared Adj R-squared	$\begin{array}{rcl} & & 2.70 \\ = & 0.1009 \\ = & 0.0029 \\ = & 0.0018 \end{array}$
Total	52311341.7	924 5661	4.0062		Root MSE	= 237.72
amount	Coef. +	Std. Err.	t	P> t	[95% Conf.	Interval]
age _cons	-1.114048 957.9103	.6783901 31.30557	-1.64 30.60	0.101 0.000	-2.445414 896.472	.217318 1019.349

nestreg: regress amount age (c agec)

Block 1: age

Source	SS	df	MS		Number of obs	= 925
+					F(1, 923)	= 2.70
Model	152396.813	1 1523	96.813		Prob > F	= 0.1009
Residual	52158944.9	923 5651	0.2328		R-squared	= 0.0029
+					Adj R-squared	= 0.0018
Total	52311341.7	924 5661	4.0062		Root MSE	= 237.72
amount	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
age	-1.114048	.6/83901	-1.64	0.101	-2.445414	.21/318
_cons	957.9103	31.30557	30.60	0.000	896.472	1019.349

Block 2: c agec

Source	SS	df	MS		Number of obs	= 925
Model Residual	50221964.6 2089377.07	3 167 921 226	40654.9 8.59616		Prob > F R-squared	= 0.0000 = 0.9601
Total	52311341.7	924 566	14.0062		Root MSE	= 0.9399 = 47.63
amount	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age c agec _cons	-20.3175 -1821.234 40.44611 1814.544	.1877651 12.57363 .2723553 8.601059	-108.21 -144.85 148.50 210.97	0.000 0.000 0.000 0.000 0.000	-20.686 -1845.91 39.9116 1797.665	-19.94901 -1796.557 40.98062 1831.424

+									+
T		L		Block	Residual				Change
I	Block	L	F	df	df	Pr >	F	R2	in R2
		+-							
I	1	L	2.70	1	923	0.10	09	0.0029	1
I	2	L	11035.36	2	921	0.00	00	0.9601	0.9571
+									+

For another cross term regression analysis, we return to the New York restaurant data. We proceed as before.

10 5. Multiple Linear Regression

```
clear
insheet using data/nyc.csv, names
gen foodeast = food*east
gen decoreast= decor*east
gen serviceeast = service*east
reg cost food decor service east foodeast decoreast
serviceeast
```

Source Model Residual	SS 9199.35155 5222 16631	df 7 1314	MS 4.19308		Number of obs F(7, 160) Prob > F B-squared	= 168 = 40.27 = 0.0000 = 0.6379
Total	14421.5179	167 86.3	3563944		Adj R-squared Root MSE	= 0.6220 = 5.713
cost	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
food decor service east foodeast decoreast serviceeast cons	1.006813 1.888096 .7438238 6.125308 1.20769 2500122 -1.271941 -26.99485	.5704141 .2984016 .6442722 10.2499 .7742712 .4570096 .8170598 8.467207	1.77 6.33 1.15 0.60 1.56 -0.55 -1.56 -3.19	0.079 0.000 0.250 0.551 0.121 0.585 0.122 0.002	1196991 1.298782 5285504 -14.11723 3214191 -1.152561 -2.885553 -43.71675	2.133324 2.47741 2.016198 26.36785 2.7368 .6525369 .3416721 -10.27295

reg cost food decor east

Source	I	SS	df		MS		Number of obs	=	168
Model Residual	 	9054.99458 5366.52328	3 164	301 32.	8.33153 7227029		Prob > F R-squared Adj R-squared	= = =	0.0000 0.6279 0.6211
Total		14421.5179	167	86.3	3563944		Root MSE	=	5.7204
cost		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
food decor east _cons	 	1.536346 1.909373 2.067013 -24.02688	.263 .1900 .9318 4.672	1763 0155 8139 2739	5.84 10.05 2.22 -5.14	0.000 0.000 0.028 0.000	1.016695 1.534181 .227114 -33.25336	2 2 3 -	.055996 .284565 .906912 14.8004

5.1 Polynomial regression 11

nestreg: reg cost (food decor east) (service foodeast decoreast serviceeast)

Block 1: food decor east

Source		SS	df		MS		Number of obs	=	168
Model Residual	 	9054.99458 5366.52328	3 164	301 32.	8.33153 7227029		Prob > F R-squared	=	0.0000
Total	İ	14421.5179	167	86.	3563944		Root MSE	=	5.7204
cost		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
food decor east _cons	 	1.536346 1.909373 2.067013 -24.02688	.2631 .1900 .9318 4.672	1763 0155 3139 2739	5.84 10.05 2.22 -5.14	0.000 0.000 0.028 0.000	1.016695 1.534181 .227114 -33.25336	2 2 3 -	.055996 .284565 .906912 14.8004

Block 2: service foodeast decoreast serviceeast

Source	SS	df	MS		Number of obs	= 168 = 40 27
Model Residual	9199.35155 5222.16631	7 1314 160 32.6	.19308 385394		Prob > F R-squared	= 0.0000 = 0.6379 = 0.6220
Total	14421.5179	167 86.3	563944		Root MSE	= 5.713
cost	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
food decor service foodeast decoreast serviceeast 	1.006813 1.888096 6.125308 .7438238 1.20769 2500122 -1.271941 -26.99485	.5704141 .2984016 10.2499 .6442722 .7742712 .4570096 .8170598 8.467207	1.77 6.33 0.60 1.15 1.56 -0.55 -1.56 -3.19	0.079 0.000 0.551 0.250 0.121 0.585 0.122 0.002	1196991 1.298782 -14.11723 5285504 3214191 -1.152561 -2.885553 -43.71675	2.133324 2.47741 26.36785 2.016198 2.7368 .6525369 .3416721 -10.27295

+								+
I		I		Block	Residual			Change
I	Block	I	F	df	df	Pr > F	R2	in R2
I		-+-						
I	1		92.24	3	164	0.0000	0.6279	1
I	2	I	1.11	4	160	0.3558	0.6379	0.0100
+								+

6.1 Regression diagnostics for multiple regression

In this chapter we will learn how to perform diagnostics and transformations for multiple linear regressions in Stata.

```
version 10.0
clear all
set scheme ssccl
set more off
```

We start by telling Stata the version our commands should work under, removing all previous objects from memory, and setting the scheme. For convenience, we **set more off** as well.

For our first analysis, we return to the restaurant data from previous chapters. Previously, in figure 1.5, we rendered a matrix plot of all continuous predictors and the response for model 6.8. For figure 6.1, we examine the matrix plot of just the continuous predictors. As before, the **graph matrix** command is used for this purpose.

```
insheet using data/nyc.csv, names
graph matrix food decor service, diagonal("Food" "De-
cor" "Service",size("large")) xlabel(16(2)24, axis(1))
xlabel(14(2)24, axis(3)) xlabel(10(5)25, axis(2)) yla-
bel(14(2)24,axis(3)) ylabel(16(2)24,axis(1)) yla-
bel(10(5)25,axis(2))
graph export graphics/f6pl.eps, replace
```


Fig. 6.1 Scatter plot matrix of the three continuous predictor variables

Next we examine plots of the standardized residuals versus each of the predictors. We generate these plots using the **predict** (with **rstandard** option) command and the **graph combine** command. Both commands have been used extensively in previous chapters. As to not be led on by the numerical results of the regression we suppress the output of **regress** with a **quietly** prefix.

```
qui reg cost food decor service east
predict stanres1, rstandard
label variable stanres1 "Standardized Residuals"
twoway scatter stanres1 food, name("g1") nodraw
twoway scatter stanres1 decor,name("g2") nodraw
twoway scatter stanres1 service, name("g3") nodraw
twoway scatter stanres1 service, name("g4") nodraw
graph combine g1 g2 g3 g4, rows(2) xsize(10) ysize(10)
graph export graphics/f6p2.eps, replace
graph drop g1 g2 g3 g4
```


Fig. 6.2 Plots of standardized residuals against each predictor variable

We produce the response versus fitted plot in figure 6.3 using **predict** with the **xb** option. The **twoway lfit** command is also used to overlay the regression line on the plot.

```
predict fitted, xb
label variable fitted "Fitted Values"
twoway scatter price fitted || lfit price fitted, xla-
bel(20(10)60) ytitle(Cost) ylabel(20(10)60)
ytitle("Price") legend(off)
graph export graphics/f6p3.eps,replace
```


Fig. 6.3 A plot of Cost against Fitted Values

Next we look at the generated example that violates condition 6.6. We bring in the data and use another graph matrix command to produce figure 6.4.

```
insheet using data/caution.txt,names clear delimit(" ")
graph matrix y x1 x2, diagonal("y" "x1"
"x2",size("large")) xlabel(0(.2)1, axis(1)) xlabel(-
1(.5)1, axis(2)) xlabel(-1(.5)1, axis(3)) yla-
bel(0(.2)1, axis(1)) ylabel(-1(.5)1, axis(2)) ylabel(-
1(.5)1, axis(3))
graph export graphics/f6p4.eps, replace
```


Fig. 6.4 Scatter plot matrix of the response and the two predictor variables

To produce the standardized residual plots in figure 6.5, we combine the tools (**predict** under **rstandard** and **xb** options, **graph combine**) that we have used this chapter.

```
qui reg y x1 x2
predict stanres1, rstandard
predict fitted, xb
label variable stanres1 "Standardized Residuals"
label variable fitted "Fitted Values"
twoway scatter stanres1 x1, name("g1") nodraw
twoway scatter stanres1 x2, name("g2") nodraw
twoway scatter stanres1 fitted, name("g3") nodraw
graph combine g1 g2 g3, rows(2) xsize(10) ysize(10)
graph export graphics/f6p5.eps, replace
graph drop g1 g2 g3
```


Fig. 6.5 Plots of standardized residuals against each predictor and the fitted values

Next we produce the response versus fitted plot. This code is very similar to that used to produce figure 6.3.

```
twoway scatter y fitted || lfit y fitted, xla-
bel(0.05(.05).35) ytitle("y") xtitle("Fitted Values")
legend(off)
graph export graphics/f6p6.eps, replace
```


Fig. 6.6 A plot of Y against Fitted Values

6.1 Regression diagnostics for multiple regression 7

Now we look at an example for which condition 6.7 does not hold. We begin with scatter plots of all combinations of the predictors and response. We use **twoway scatter** and **graph combine** to produce these plots.

insheet using data/nonlinearx.txt, clear twoway scatter y x1, name(g1) nodraw twoway scatter y x2, name(g2) nodraw twoway scatter x2 x1, name(g3) nodraw graph combine g1 g2 g3, rows(2) graph export graphics/f6p7.eps, replace graph drop g1 g2 g3

Fig. 6.7 A Scatter plots of the response and the two predictor variables

To render figure 6.8, we nearly duplicate the code we used to generate figure 6.5.

```
qui reg y x1 x2
predict fitted, xb
label variable stanres1 "Standardized Residuals"
label variable fitted "Fitted Values"
twoway scatter stanres1 x1, name("g1") nodraw
twoway scatter stanres1 x2, name("g2") nodraw
twoway scatter stanres1 fitted, name("g3") nodraw
graph combine g1 g2 g3, rows(2) xsize(10) ysize(10)
graph export graphics/f6p8.eps, replace
```

93

graph drop g1 g2 g3

Fig. 6.8 Plots of standardized residuals against each predictor and the fitted values

Now we will return to the New York restaurant data to create added variable plots. First we scatter the response with each predictor, for figure 6.9.

```
clear
```

```
twoway scatter cost food || lfit cost food, legend(off)
xtitle("Food") ytitle("Cost") name("g1") nodraw
twoway scatter cost decor|| lfit cost decor, le-
gend(off) xtitle("Decor") ytitle("Cost") name("g2") no-
draw
twoway scatter cost service || lfit cost service, le-
gend(off) xtitle("Service") ytitle("Cost") name("g3")
nodraw
twoway scatter cost east|| lfit cost east, legend(off)
xtitle("East") ytitle("Cost") name("g4") nodraw
graph combine g1 g2 g3 g4, xsize(10) ysize(10) rows(2)
graph export graphics/f6p9.eps, replace
graph drop g1 g2 g3 g4
```


Fig. 6.9 A scatter plot of Cost against each predictor

The **avplots** command produces added variable plots for every predictor in the model. The options after the mlabel() option are used to ensure that he vertical axis label appears correctly. We use the **mlabel()** option to flag the cases 117 and 168. Recall the marking of the flower bonds figure 3.10. If we only wanted to draw the added variable plot for a particular predictor **x** we would have used **avplot x**.

```
qui reg cost food decor service east
gen caselabel = string(_n) if inlist(_n,117,168)
avplots,mlabel(caselabel) recast(scatter) ytitle(,
orientation(vertical) ///
justification(left) margin(right)) caption(, justifica-
tion(left))
graph export graphics/f6p10.eps, replace
```


Fig. 6.10 Added-variable plots for the New York city restaurant data

6.2 Transformations

We move to the manufacturing defects data set to demonstrate multiple regression transformation techniques. We begin by using **graph matrix** to draw the matrix plot in figure 6.11.

```
clear
insheet using data/defects.txt, names
graph matrix defect temp dens rate, diagon-
al("Defective" "Temperature" "Density" "Rate",
size("medlarge")) xlabel(0(20)60, axis(1)) xla-
bel(1(.5)3,axis(2)) xlabel(20(4)32,axis(3)) xla-
bel(180(40)260, axis(4)) ylabel(0(20)60, axis(1)) yla-
bel(1(.5)3,axis(2)) ylabel(20(4)32,axis(3))
ylabel(180(40)260,axis(4))
graph export graphics/f6p11.eps, replace
```

6.2 Transformations 11

Fig. 6.11 A scatter plot matrix of the data in the file defects.txt

We now examine the standardized residual plots for the regression of *defective* on the other variables. Figure 6.12 is rendered.

```
qui reg defect temperature density rate
predict stanres1, rstandard
predict fitted, xb
label variable stanres1 "Standardized Residuals"
label variable fitted "Fitted Values
//Figure 6.12
twoway scatter stanres1 temperature, xlabel(1(.5)3)
name(g1) nodraw
twoway scatter stanres1 density, xlabel(20(2)32)
name(g2) nodraw
twoway scatter stanres1 rate , xlabel(180(20)280)
name(g3) nodraw
twoway scatter stanres1 fitted, xlabel(-10(10)50)
name(g4) nodraw
graph combine g1 g2 g3 g4, rows(2) xsize(10) ysize(10)
graph drop g1 g2 g3 g4
graph export graphics/f6p12.eps, replace
```


Fig. 6.12 Plots of the standardized residuals from model (6.14)

Now we plot the fitted values of the model versus our response. We use both a linear and quadratic fit curve. We use the **twoway qfit** command to get the quadratic curve. This command works like **lfit**. Alternatively we could have used the **twoway function** command to obtain the curve. This is what we did in the rendering of figure 3.8.

```
twoway scatter defective fitted || lfit defective fit-
ted, lpattern(dash) || qfit defective fitted, le-
gend(off) xlabel(-10(10)50) ylabel(0(10)60)
ytitle("Defective") xtitle("Fitted Values")
graph export graphics/f6p13.eps, replace
```

6.2 Transformations 13

Now we use the **irp** command to obtain the inverse response plot in figure 6.14. We used this command previously to draw figure 3.28. The only change to the use of **irp** in multiple regression is that more than one predictor is specified in the argument list.

irp defect temperature density rate, try(0 1) opt
graph export graphics/f6p14.eps, replace

Fig. 6.14 Inverse response plot for the data set defects.txt

Next we try a Box-Cox transformation. We use the **plot_bc** command to obtain the graphic in figure 6.15. The **plot_bc** command was previously used to generate figure 3.30. As with **irp**, the only difference in the multiple regression context is that more variable are specified in the argument list.

```
plot_bc defect temperature density rate, level(95)
plotpts(100) window(.3 .65) xlabel(.3(.05).65) ylabel(-
96(.5)-93)
```

```
-93
-93.5
   -94
-94.5
   -95
-95.5
   96-
               .3
                        .35
                                    .4
                                              45
                                                         .5
                                                                   .55
                                                                              .6
                                                                                        .65
                                               lambda
```

graph export graphics/f6p15.eps, replace

Fig. 6.15 Log-likelihood for the Box-Cox transformation method

Based on these results, we try the square root transformation for *defective*. We examine the linearity of the transformed defective with the other predictors in figure 6.16. We use simple **twoway scatter**'s and a **graph combine**.

```
gen sqrtdefect = sqrt(defect)
label variable sqrtdefect "Sqrt(Defective)"
twoway scatter sqrtdefect temperature, name("g1") no-
draw xlabel(1(.5)3) ylabel(2(2)8)
twoway scatter sqrtdefect density, name("g2") nodraw
xlabel(20(2)32) ylabel(2(2)8)
twoway scatter sqrtdefect rate, name("g3") nodraw xla-
bel(180(20)280) ylabel(2(2)8)
```

```
6.2 Transformations 15
```

```
graph combine g1 g2 g3, xsize(10) ysize(10) rows(2)
graph export graphics/f6p16.eps, replace
graph drop g1 g2 g3
```


Fig. 6.16 Plots of Y^{0.5} against each predictor

Now we refit our regression using the transformed response. Standardized residual plots are generated for the new model in figure 6.17.

```
qui reg sqrtdefect temp dens rate
predict stanrest, rstandard
drop fitted
predict fitted, xb
label variable fitted "Fitted Values"
twoway scatter stanrest temperature, name("g1") nodraw
xlabel(1(.5)3) ylabel(-2(1)2)
twoway scatter stanrest density, name("g2") nodraw xla-
bel(20(2)32) ylabel(-2(1)2)
twoway scatter stanrest rate, name("g3") nodraw xla-
bel(180(20)280) ylabel(-2(1)2)
twoway scatter stanrest fitted, name("g4") nodraw xla-
bel(0(2)8) ylabel(-2(1)2)
graph combine g1 g2 g3 g4, xsize(10) ysize(10) rows(2)
graph export graphics/f6p17.eps, replace
graph drop g1 g2 g3 g4
```


Fig. 6.17 Plots of the standardized residuals from model (6.15)

Next we use an overlaid **twoway** plot and the **lfit** command to render the response versus fitted plot.

```
twoway scatter sqrtdefect fitted || lfit sqrtdefect
fitted, xlabel(0(2)8) ylabel(2(2)8) legend(off)
ytitle("Sqrt(Defective)") xtitle("Fitted Values")
graph export graphics/f6p18.eps, replace
```


Fig. 6.18 A plot of Y^{0.5} against fitted values with a straight line added

We use the **plot_lm** command to produce the diagnostic plots in figure 6.19. This was previously used in chapter 3. There is no change to its syntax for multiple linear regression.

plot_lm, smoother("lowess_ties_optim")
graph export graphics/f6p19.eps, replace

Fig. 6.19 Diagnostic plots for model (6.15)

Now we look at the numeric output for the model and generate its added variable plots for figure 6.20. Recall that we only need to retype the estimation command (**regress**) to obtain the results form the last estimation.

regress

Source	SS	df	MS		Number of obs	= 30
Model Residual	138.710876 8.38014289	3 46 26 .3	.2369587 22313188		F(3, 20) Prob > F R-squared Adi R-squared	= 143.45 = 0.0000 = 0.9430 = 0.9365
Total	147.091019	29 5.	07210411		Root MSE	= .56773
sqrtdefect	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
temperature density rate cons	1.565164 2916638 .0128986 5.59297	.6622566 .1195359 .0104301 5.264009	2.36 -2.44 1.24 1.06	0.026 0.022 0.227 0.298	.2038756 5373734 0085408 -5.227355	2.926452 0459542 .034338 16.4133

```
avplots,rlopt(lcolor(red)) recast(scatter) ytitle(,
orientation(vertical) ///
justification(left) margin(right)) caption(, justifica-
tion(left))
```

graph export graphics/f6p20.eps, replace

Fig. 6.20 Added-variable plots for model (6.15)

Now we examine the magazine data and implement both transformation approaches upon it. First we draw a matrix plot of the data for figure 6.21.

clear

```
insheet using data/magazines.csv, names
graph matrix adrevenue adpages subrevenue newsrevenue,
diagonal("AdRevenue" "AdPages" "SubRevenue" "NewsReve-
nue",size("medsmall")) xlabel(500 2000 3500,axis(2))
ylabel(500 2000 3500, axis(2)) xlabel(0 100000 250000
,axis(4)) ylabel(0 100000 250000 ,axis(4)) xlabel(0
1000000, axis(1)) ylabel(0 1000000, axis(1))
graph export graphics/f6p21.eps, replace
```

6.2 Transformations 19

Fig. 6.21 A scatter plot matrix of the data in file magazines.csv

We implement approach 1 by using the **mboxcox** command on the predictor variables. To produce Wald tests for the individual powers being 1, we use the **test** command. This process was performed previously in chapter 3.

mboxcox adpages subrevenue newsrevenue

Multivariate b	Numb	er of obs	3 =	204			
Likelihood Rat	io Tests						
Test	Log Likeli	.hood C	hi2	df		Prob	> Chi2
All powers -1 All powers 0 All powers 1	-5898.438 -5041.789 -5588.491	1 6 1	719.912 .615636 100.019	3 3 3		0 .085: 0	21198
	Coef.	Std. Err	. Z	P> z	[95%	Conf.	Interval]
lambda adpages subrevenue newsrevenue	.1118738 008449 .0758937	.1014303 .045325 .0333314	1.10 -0.19 2.28	0.270 0.852 0.023	086 0972 .0105	5926 2844 5654	.3106736 .0803864 .141222

test adpages = 1

```
( 1) [lambda]adpages = 1
         chi2( 1) = 76.67
Prob > chi2 = 0.0000
```

di sqrt(r(chi2))

8.7560209

test subrevenue = 1

```
(1) [lambda]subrevenue = 1
          chi2( 1) = 495.03
Prob > chi2 = 0.0000
```

di sqrt(r(chi2))

22.249281

test newsrevenue = 1

(1) [lambda]newsrevenue = 1

chi2(1) = 768.67 Prob > chi2 = 0.0000

di sqrt(r(chi2))

27.724815

To get the suggested response transformation from approach 1, we use an inverse response plot. We use irp with adrevenue and the log transformed predictors for this purpose.

```
gen tadpages = ln(adpages)
gen tsubrevenue = ln(subrevenue)
gen tnewsrevenue = ln(newsrevenue)
irp adrevenue tadpages tsubrevenue tnewsrevenue, opt
try(0 1)
```

6.2 Transformations 21

+		•
Response adrevenue		ļ
Fitted 7.5e+04*tadpages + 5.0e+0	4*tsubrevenue + 1.1e+04*tnewsrevenu	
· · ·		Τ
Optimal Power .2308265		
++		
++ Power RSS(F R)		
.2308265 2.46e+11 0 2.79e+11		
I 5.22e+11 ++		

graph export graphics/f6p22.eps, replace

Fig. 6.22 Inverse Response Plot

Now we use approach 2 on the magazine data. We use one call of **mboxcox** and then use **test** to get the Wald tests for transformation powers being equal to 1.
mboxcox adrevenue adpages subrevenue newsrevenue

Multivariate boxcox transformations

Number of obs = 204

Likelihood Rat	io Tests						
Test	Log Likelih	ood Chi	2	df	Prob	> Chi2	
All powers -1 All powers 0 All powers 1	-8137.006 -7056.514 -7819.833	2174 13.8 1540	4.855 87021 0.509	4 4 4	0 .00772102 0		
 	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]	
lambda adrevenue adpages subrevenue newsrevenue	.1070636 .0883158 0152637 .0762534	.0393852 .0835884 .036206 .0330285	2.72 1.06 -0.42 2.31	0.007 0.291 0.673 0.021	.0298701 0755143 0862262 .0115188	.1842572 .252146 .0556988 .140988	

test adrevenue = 1

```
( 1) [lambda]adrevenue = 1
```

chi2(1) = 514.01 Prob > chi2 = 0.0000

di sqrt(r(chi2)) 22.671885

.

test adpages = 1

(1) [lambda]adpages = 1

chi2(1) = 118.96 Prob > chi2 = 0.0000

di sqrt(r(chi2))

10.906833

test subrevenue = 1

(1) [lambda]subrevenue = 1

chi2(1) = 786.31 Prob > chi2 = 0.0000

di sqrt(r(chi2)) 28.041304

6.2 Transformations 23

27.9682

Now we examine the linearity of all variables with another matrix plot. First we create a transformed version of *adrevenue*.

```
gen tadrevenue = ln(adrevenue)
graph matrix tadrevenue tadpages tsubrevenue tnewsreve-
nue, diagonal("log(AdRevenue)" "log(AdPages)"
"log(SubRevenue)" "log(NewRevenue)", size("small"))
graph export graphics/f6p23.eps, replace
```


Fig. 6.23 Scatter plot matrix of the log transformed data

We fit the transformed model and examine its standardized residual plots.

```
qui reg tadrevenue tadpages tsubrevenue tnewsrevenue
predict fitted, xb
predict stanres2, rstandard
twoway scatter stanres2 tadpages,
xtitle("log(AdPages)") ytitle("Standardized Residuals")
nodraw name(q1)
twoway scatter stanres2 tsubrevenue,
xtitle("log(SubRevenue)") ytitle("Standardized Resi-
duals") nodraw name(g2)
twoway scatter stanres2 tnewsrevenue,
xtitle("log(NewsRevenue)") ytitle("Standardized Resi-
duals") nodraw name(g3)
twoway scatter stanres2 fitted, xtitle("Fitted Values")
ytitle("Standardized Residuals") nodraw name(g4)
graph combine g1 g2 g3 g4, xsize(10) ysize(10) rows(2)
graph export graphics/f6p24.eps, replace
graph drop g1 g2 g3 g4
```


Fig. 6.24 Plots of the standardized residuals from model (6.16)

We examine the fitted versus response plot in the next figure.

```
twoway scatter tadrevenue fitted || lfit tadrevenue
fitted, xlabel(8(1)14) ylabel(8(1)13)
ytitle("log(AdRevenue)") xtitle("Fitted Values") le-
gend(off)
```


Now we check the remaining diagnostics in figure 6.26. This is accomplished through the **plot_lm** command.

```
plot_lm, smoother("lowess_ties_optim")
graph export graphics/f6p26.eps, replace
```


Fig. 6.26 Diagnostic plots for model (6.16)

We now display the numerical output of the transformed model regression and produce the added variable plots. As mentioned previously, we only need to type **regress** to obtain the output.

reg

Source		SS	df		MS		Number of obs		
Model Residual		199.960289 40.2023003	3 200	66.6 .201	534298 011502		Prob > F R-squared	=	0.0000
Total		240.16259	203	1.18	306694		Root MSE	=	.44834
tadrevenue		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
tadpages tsubrevenue tnewsrevenue cons		1.029179 .5584919 .0410867 -2.028943	.0556 .0315 .0241 .4140	5411 5945 1401 0692	18.50 17.68 1.70 -4.90	0.000 0.000 0.090 0.000	.9194603 .4961907 0065152 -2.845445	1 -1	.138897 .620793 0886885 .212442

```
avplots,rlopt(lcolor(red)) recast(scatter) ytitle(,
orientation(vertical) ///
justification(left) margin(right)) caption(, justifica-
tion(left))
```

graph export graphics/f6p27.eps, replace

Fig. 6.27 Added-variable plots for model (6.16)

Now we look at the newspaper circulation dataset that we originally used in chapter 1. Our first plot is actually a replication of figure 1.4.

```
clear
insheet using data/circulation.txt, names
gen lnweekday = ln(weekday)
gen lnsunday = ln(sunday)
//Figure 6.28
twoway scatter lnsunday lnweekday if tabl == 0,
mcol(black) || scatter lnsunday lnweekday if tabl == 1,
msym(th) mcol(red) ytitle("log(Sunday Circulation)")
xtitle("log(Weekday Circulation)") xlabel(11.5(.5)14.0)
ylabel(12.0(.5)14.0) legend( title("Tabloid dummy vari-
able",size("medium")) label(1 "0") label(2 "1") cols(1)
ring(0) position(11))
graph export graphics/f6p28.eps, replace
```


Fig. 6.28 A plot of log(Sunday Circulation) against log(Weekday Circulation)

Now we check the fit of the regression of log(*Sunday*) on the other variables. We begin with standardized residual plots in figure 6.29. The following code produces these plots.

```
qui reg lnsunday lnweekday tabloid
predict fitted,xb
predict stanres1,rstandard
```

```
twoway scatter stanres1 lnweekday, xlabel(11.5(.5)14.0)
xtitle("log(Sunday Circulation)") ytitle("Standardized
Residuals") nodraw name(g1)
twoway scatter stanres1 tabl, xlabel(0 1)
xtitle("Tabloid with a Serious Competitor")
ytitle("Standardized Residuals") nodraw name(g2)
twoway scatter stanres1 fitted, xtitle("Fitted Values")
ytitle("Standardized Residuals") nodraw name(g3)
graph combine g1 g2 g3
graph drop g1 g2 g3
graph export graphics/f6p29.eps, replace
```


Fig. 6.29 Plots of the standardized residuals from model (6.17)

We follow the standardized residual plots with a fitted versus response plot. As before, **twoway lfit** is used to draw the straight line.

```
twoway scatter lnsunday fitted || lfit lnsunday fitted,
xtitle("Fitted Values") ytitle("log(Sunday Circula-
tion)") legend(off)
graph export graphics/f6p30.eps, replace
```

6.2 Transformations 29

Fig. 6.30 Fitted Values

We now produce most of the remaining diagnostic plots for figure 6.31. This is done by using the **plot_lm** command again.

plot_lm , smoother("lowess_ties_optim")
graph export graphics/f6p31.eps, replace

Fig. 6.31 Diagnostic Plots for model (6.18)

The actual numeric output for the regression is produced by retyping **regress**. We do this and look at the added variable plots with the following code. To get the appropriate perspective ratio in our plots, we use two individual **avplot** commands. An **avplot** command requires the specification of the predictor for which the added variable plot will be generated, and the other standard options for the added variable plot. Here we give the plots only half the typical size on the horizontal (**xsize(2.5)**), and color the least squares line (**rlopt(lcolor(red)**)).

reg

Source	SS	df	MS		Number of obs	= 89 = 706 81
Model Residual	27.3883681 1.66621308	2 13.6 86 .019	941841 374571		Prob > F R-squared	= 0.0000 = 0.9427 = 0.9413
Total	29.0545812	88 .330	165696		Root MSE	= .13919
lnsunday	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnweekday tabloidwit~r cons	1.06133 5313724 4472997	.0284768 .0680038 .3513843	37.27 -7.81 -1.27	0.000 0.000 0.206	1.004719 6665595 -1.145828	1.11794 3961853 .2512291

avplot lnweekday, name(g1) rlopt(lcolor(red)) nodraw xsize(2.5) avplot tabl, name(g2) rlopt(lcolor(red)) nodraw xsize(2.5) graph combine g1 g2, xsize(5) rows(1) graph drop g1 g2 graph export graphics/f6p32.eps, replace

Fig. 6.32 Added-variable plots for model (6.18)

We produce the prediction intervals on page 188 with the following code. A similar procedure was used in chapter 5 before the production of figure 5.6. Here we use the estimation return result, **e**(**df_r**) to get the degrees of freedom for the residual sum of squares. The translation from the logarithmic scale is produced by the **exp()** function.

6.3 Graphical assessment of the mean function using marginal model plots

Here we will learn how to use marginal model plots in Stata. The userwritten command, **mmp** is used for this purpose. We begin with using the profsalary.txt data set.

clear insheet using data/profsalary.txt, names

To use the **mmp** command, first a regression must be fit. Then we type the **mmp** command with the appropriate options. Here we regress *salary* on *experience*.

In the first option, we must tell **mmp** the option that predict should use to estimate the mean of the response. Here, in multiple linear regression, it is the linear prediction, obtained through **predict**, **xb**. So the first option is specified as **mean(xb)**.

The next option, **smoother()** tells **mmp** what non-parametric smoother to use. This smoother must have a **generate()** option that takes a single new variable name as its argument. We use Stata's built in **lowess** smoother here. We give the 2/3 windowing argument to the smoother through the **lowess bwidth()** option. This is done by placing the option (in quotes) in the **smooptions() mmp** option.

The final option we provide to **mmp** is the **predictors** option flag. This indicates that we want a marginal model plot generated for each predictor. Here there is only one, *experience*.

With the proper options specified a marginal model plot will be generated, with the model line in red and the non-parametric fit line in blue.

```
qui reg salary experience
local alpha = 2/3
mmp, mean(xb) smoother(lowess) predictors smoop-
tions("bwidth(`alpha')")
graph export graphics/f6p33.eps, replace
```


Fig. 6.33 A plot of the professional salary data with straight line and loess fits

We check how the fit improves by the addition of a square term for experience. When we look at the marginal model plot, we only care about examining the linear term for experience. We specify **varlist(experience)** instead of **predictors** (which would tell **mmp** to show plots for both the linear and squared terms) for this purpose.

```
gen experience2 = experience^2
qui reg salary experience experience2
local alpha = 2/3
mmp, mean(xb) smoother(lowess) varlist(experience)
smooptions("bwidth(`alpha')")
graph export graphics/f6p34.eps, replace
```


Fig. 6.34 A plot of the professional salary data with quadratic and loess fits

Now we will return to manufacturing defects data and demonstrate the use of marginal model plots upon it. First we will use the **lowess** smoothing command outside of mmp, to produce figure 6.35. In addition to generating the smoothed estimates (via the **generate()** option), **lowess** can display a scatterplot of its predictor and response variables, overlaid with a curve for the smoothed estimates. We specify additional and typical **two-way** graph options to customize the appearance of the **lowess** plots.

```
clear
insheet using data/defects.txt, names
qui reg defective temperature density rate
local alpha = 2/3
```

```
lowess defective temperature, bwidth(`alpha') note("")
title("") xlabel(1(.5)3) ylabel(0(20)60)
xtitle("Temperature, x1") ytitle("Defective, Y")
name("g1") note("") nodraw xsize(2.5)
predict dhat,xb
lowess dhat temperature, bwidth(`alpha') note("")
title("") xlabel(1(.5)3) ylabel(-10(20)50)
xtitle("Temperature, x1") ytitle("Fitted") name("g2")
note("") nodraw xsize(2.5)
graph combine g1 g2, rows(1)
graph export graphics/f6p35.eps, replace
graph drop g1 g2
```


Fig. 6.35 Plots of Y and fitted against x1, Temperature

Now we examine the marginal model plot for *temperature*.

```
local alpha = 2/3
mmp, mean(xb) smoother(lowess) varlist(temperature)
smooptions("bwidth(`alpha')")
graph export graphics/f6p36.eps, replace
```


Fig. 6.36 A marginal mean plot for Defective and Temperature

In figure 6.37, we examine the marginal model plots for all of the predictors and the fitted values. We add the **linear** option to the **mmp** call so that the fitted value marginal model plot will be produced.

```
local alpha = 2/3
mmp, mean(xb) smoother(lowess) linear predictors smoop-
tions("bwidth(`alpha')")
graph export graphics/f6p37.eps, replace
```


Fig. 6.37 Marginal model plots for model (6.25)

Now we fit the corrected model that we found in section 6.2, by replacing defective with its square root. We re-examine the marginal model plots under this model for figure 6.38.

```
gen sqrtdefective = sqrt(defective)
qui reg sqrtdefective temperature density rate
local alpha = 2/3
mmp, mean(xb) smoother(lowess) linear predictors smoop-
tions("bwidth(`alpha')")
graph export graphics/f6p38.eps, replace
```


Fig. 6.38 Marginal model plots for model (6.26)

6.4 Multicollinearity

In this section we will learn how assess multicollinearity in Stata. We will use the data contained in bridge.txt. We start by making a matrix plot of the variable using **graph matrix**.

```
clear
insheet using data/bridge.txt, names
graph matrix time darea ccost dwgs length spans, di-
agonal("Time" "Darea" "CCost" "Dwgs" "Length" "Span")
```


graph export graphics/f6p39.eps, replace

Motivated by the non-constant variance suggested in the top row of the matrix plot, we try to transform all of the variables using a multivariate Box-Cox transformation. We generate the output on page 196 with **mboxcox** and subsequent **test** executions.

mboxcox time darea ccost dwgs length span

Multivariate bo	oxcox transfo	Numbe	er of obs =	45								
Likelihood Ratio Tests												
Test	Log Likelih	nood Chi	.2	df	Prob	> Chi2						
All powers -1 All powers 0 All powers 1	-677.7582 -612.878 -750.409	137 8.1 28	2.8823 21991 33.184	6 6 6	0 .229 0	30151						
	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]						
lambda time darea ccost dwgs length spans	1793942 1345817 1761851 2507585 1975282 3744174	.2000758 .0892885 .094233 .2401797 .1072546 .2593699	-0.90 -1.51 -1.87 -1.04 -1.84 -1.44	0.370 0.132 0.062 0.296 0.066 0.149	5715355 309584 3608784 721502 4077435 882773	.2127472 .0404206 .0085081 .2199851 .012687 .1339382						

```
test time =1
```

```
( 1) [lambda]time = 1
```

chi2(1) = 34.75 Prob > chi2 = 0.0000

di sqrt(r(chi2)) 5.8947368

test darea =1

```
( 1) [lambda]darea = 1

chi2( 1) = 161.47

Prob > chi2 = 0.0000
```

di sqrt(r(chi2)) 12.706915

test ccost =1

```
( 1) [lambda]ccost = 1
chi2( 1) = 155.79
Prob > chi2 = 0.0000
```

di sqrt(r(chi2)) 12.481672

test dwgs =1

```
( 1) [lambda]dwgs = 1

chi2( 1) = 27.12

Prob > chi2 = 0.0000
```

di sqrt(r(chi2)) 5.2075945

test length= 1

```
( 1) [lambda]length = 1
```

chi2(1) = 124.66 Prob > chi2 = 0.0000

di sqrt(r(chi2)) 11.165281

6.4 Multicollinearity 39

```
test span= 1
```

5.2990637

```
Spurred by these results, we use the natural logarithm transformation on
each of the variables. Then we re-generate the matrix plot for figure 6.40.
gen lntime = ln(time)
gen lndarea = ln(darea)
gen lnccost = ln(ccost)
gen lnlength = ln(length)
gen lnspans = ln(spans)
graph matrix lntime lndarea lnccost lndwgs lnlength
lnspans, diagonal("log(Time)" "log(DArea)" "log(CCost)"
"log(Dwgs)" "log(Length)" "log(Span)")
graph export graphics/f6p40.eps, replace
```


Fig. 6.40 Scatter plot matrix of the log transformed data

Now we fit the model predicting log(*time*) with the other log transformed variables. We examine the standardized residual plots for the model in figure 6.41.

```
qui reg Intime Indarea Inccost Indwgs Inlength Inspans
predict fitted, xb
predict stanres1, rstandard
twoway scatter stanres1 lndarea, name(g1)
ytitle("Standardized Residuals") xtitle("log(DArea)")
nodraw xsize(3.5)
twoway scatter stanres1 lnccost, name(g2)
ytitle("Standardized Residuals") xtitle("log(CCost)")
nodraw xsize(3.5)
twoway scatter stanres1 lndwgs , name(g3)
ytitle("Standardized Residuals") xtitle("log(Dwgs)")
nodraw xsize(3.5)
twoway scatter stanres1 lnlength , name(g4)
ytitle("Standardized Residuals") xtitle("log(Length)")
nodraw xsize(3.5)
twoway scatter stanres1 lnspans , name(g5)
ytitle("Standardized Residuals") xtitle("log(Spans)")
nodraw xsize(3.5)
twoway scatter stanres1 fitted, name(g6)
ytitle("Standardized Residuals") xtitle("Fitted Val-
ues") nodraw xsize(3.5)
graph combine g1 g2 g3 g4 g5 g6, xsize(10.5) ysize(10)
rows(2)
graph export graphics/f6p41.eps, replace
graph drop g1 g2 g3 g4 g5 g6
```


Fig. 6.41 Plots of the standardized residuals from model (6.28)

We follow these diagnostic plots with a response versus fitted plot in figure 6.42.

twoway scatter lntime fitted || lfit lntime fitted, legend(off) ytitle("log(Time)") xtitle("Fitted Values") graph export graphics/f6p42.eps, replace

We use **plot_lm** to generate further diagnostic plots. As before, we use the **lowess_ties_optim** smoother.

```
plot_lm, smoother("lowess_ties_optim")
graph export graphics/f6p43.eps, replace
```


Fig. 6.43 Diagnostic plots for model (6.28)

As a last diagnostic before examining the numeric output of the regression, we produce marginal model plots. We use **mmp** to produce one plot per predictor and for the fitted values.

```
local alpha = 2/3
mmp, mean(xb) smoother(lowess) linear predictors smoop-
tions("bwidth(`alpha')")
graph export graphics/f6p44.eps,replace
```


Fig. 6.44 Marginal model plots for model (6.28)

Now we examine the numeric output of the regression and produce the added variable plots.

regress

Source	SS	df	MS		Number of obs	= 45
Model Residual	13.3303983 3.84360283	5 2.6 39 .09	6607966 8553919		Prob > F R-squared	= 0.0000 = 0.7762
Total	17.1740011	44 .39	0318208		Root MSE	= 0.7475 = .31393
lntime	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lndarea lnccost lndwgs lnlength lnspans cons	0456443 .1960863 .8587948 0384353 .23119 2.2859	.1267496 .1444465 .2236177 .1548674 .1406819 .6192558	-0.36 1.36 3.84 -0.25 1.64 3.69	0.721 0.182 0.000 0.805 0.108 0.001	3020196 0960843 .4064852 3516842 0533659 1.033337	.2107309 .488257 1.311104 .2748135 .515746 3.538463

avplots, recast(scatter) rlopts(lcolor(red)) xsize(15)
ysize(10)
graph export graphics/f6p45.eps, replace

Fig. 6.45 Added-variable plots for model (6.28)

To check for multicollinearity, we use the **vif** and **correlation** commands. The **vif** command is typed without arguments, and provides variance inflation factors for each predictor in the regression. The **correlation** is typed with the potentially correlated variables of interest.

corr Indarea Inccost Indwgs Inlength Inspans

(obs=45)						
		lndarea	lnccost	lndwgs	lnlength	lnspans
lndarea lnccost lndwgs lnlength lnspans	 	1.0000 0.9092 0.8012 0.8842 0.7815	1.0000 0.8315 0.8905 0.7751	1.0000 0.7523 0.6297	1.0000 0.8585	1.0000

vif

Variable	VIF	1/VIF
lnccost lnlength lndarea lnspans lndwgs	8.48 8.01 7.16 3.88 3.41	0.117876 0.124779 0.139575 0.257838 0.293350
Mean VIF	6.19	

6.5 Case Study: Effect of wine critics' ratings on prices of Bordeaux wines

In this final section of chapter 6, we will apply all the diagnostics we learned so far by answering the questions posed in section 1.1.4. First, we generate the graphic in figure 6.46 using graph box and the standardized residuals and fitted values from the regression of model 6.29.

```
clear
insheet using data/Bordeaux.csv, comma names
gen lnprice = ln(price)
gen lnparkerpoints = ln(park)
gen lncoatespoints = ln(coat)
qui reg Inprice Inpark Incoat p95 first cult pom vint
predict stanres, rstandard
predict fitted, xb
set graphics off
twoway scatter stanres lnpark, ylabel(-2 0 2)
ytitle("Standardized Residuals")
xtitle("log(ParkerPoints)") name("a1")
twoway scatter stanres lncoat, ylabel(-2 0 2)
ytitle("Standardized Residuals")
xtitle("log(CoatesPoints)") name("a2")
gen eal = "P95andAbove"
graph box stanres, ytitle("Standardized Residuals")
ylabel(-2 0 2) over(p95) over(eal) name("a")
replace eal = "FirstGrowth"
graph box stanres, ytitle ("Standardized Residuals")
ylabel(-2 0 2) over(first) over(eal) name("b")
replace eal = "CultWine"
graph box stanres, ytitle("Standardized Residuals")
ylabel(-2 0 2) over(cult) over(eal) name("c")
replace eal = "Pomerol"
graph box stanres, ytitle("Standardized Residuals")
ylabel(-2 0 2) over(pom) over(eal) name("d")
replace eal = "Vintage"
graph box stanres, ytitle("Standardized Residuals")
ylabel(-2 0 2) over(vint) over(eal) name("e")
twoway scatter stanres fitted, ylabel(-2 0 2)
ytitle("Standardized Residuals") xtitle("Fitted")
name("z")
set graphics on
graph combine al a2 a b c d e z, rows(3) xsize(15) ys-
ize(15)
```

6.5 Case Study: Effect of wine critics' ratings on prices of Bordeaux wines 45

graph drop al a2 a b c d e z graph export graphics/f6p46.eps, replace Standardized Residuals 2 ~ 2 Ņ 0 1 4.6 2.7 2.8 2.9 3 log(CoatesPoints) 4.55 P95andAbove nts) Standardized Residuals Standardized Residuals 2 0 2 0 0 0 Ņ Ņ Ņ 0 0 FirstGrowth CultWine Pomerol Standardized Residuals \$ 0 Ņ \$ 0 Vintage

Fig. 6.46 Plots of the standardized residuals from model (M1)

```
In figure 6.47 we produce the response versus fitted plot for model M1.
twoway scatter lnprice fitted || lfit lnprice fitted,
legend(off) ytitle("log(Price)") xtitle("Fitted Val-
ues")
```

```
graph export graphics/f6p47.eps, replace
```


Fig. 6.47 A plot of log(Price) against fitted values with a straight line added

Next we use **plot_lm** to check out diagnostics related to leverage, outliers, constant variance, and normality.

plot_lm, smoother(lowess_ties_optim)
graph export graphics/f6p48.eps, replace

Fig. 6.48 Diagnostic plots for model (6.29)

In figure 6.49, we use **mmp** to generate marginal model plots for all the continuous predictors. Note that we do not have to specify which variable are continuous. The **mmp** command is smart enough to figure that out itself.

```
local alpha = 2/3
mmp, mean(xb) smoother(lowess) linear predictors smoop-
tions("bwidth(`alpha')")
graph export graphics/f6p49.eps,replace
```


6.5 Case Study: Effect of wine critics' ratings on prices of Bordeaux wines 47

Fig. 6.49 Marginal model plots for model (6.29)

Next we give the numeric output of the regression and the added variable plots of the model. Here we do separate added variable plots using **avplot** and combine them together with **graph combine**. The automatically generated footnotes of each of the added variable plots are too long to be displayed properly, so we suppress them with the **note("")** option. The relevant cases are also labeled in the log(*CoatesPoints*) and log(*ParketPoints*) plots.

regress

Source		SS	df		MS		Number of obs	=	72
	-+-						F(7, 64)	=	117.55
Model		68.3910539	7	9.77	015055		Prob > F	=	0.0000
Residual		5.31948451	64	.083	116946		R-squared	=	0.9278
	-+-						Adj R-squared	=	0.9199
Total		73.7105384	71	1.0	381766		Root MSE	=	.2883
		Coof			 +	DN +	IQE% Conf	 T m	
Inprice	 	COEL.		BII.	L	P/ L	[95% CONT.	111	Lervalj
lnparkerpo~s	1	11.58862	2.067	62.9	5.60	0.000	7.458059	1.	5.71919
lncoatespo~s	i	1 620529	611	545	2 65	0 010	3988271	_	2 84223
n95andabove	i	1005535	1369	712	0 73	0 466	- 1730778		3741849
firstgrowth	i	8697022	1252	432	6 94	0 000	6195001	1	119904
cultwine	i	1.35317	.1456	939	9.29	0.000	1.062113	1	.644227
nomerol	i	5364354	0936	601	5 7 3	0 000	3493279		7235429
vintagesup~r	ì	6158951	220	672	2 79	0 007	175052	1	056738
cons	ì	-51 14157	8 985	568	-5 69	0 000	-69 09231	-3	3 19084
	1	01.1110/	0.000		5.05	0.000	00.00201	5	5.19004

set graphics off

```
gen labelcase = string(_n) if inlist(_n,44,61,53)
avplot lnpark , mlabel(labelcase) rlopt(lcolor(red))
note("") name(a) xsize(2.5)
avplot lncoat , mlabel(labelcase) rlopt(lcolor(red))
note("") name(b) xsize(2.5)
avplot p95 , rlopt(lcolor(red)) note("") name(c) xs-
ize(2.5)
avplot first , rlopt(lcolor(red)) note("") name(d) xs-
ize(2.5)
avplot cult , rlopt(lcolor(red)) note("") name(e) xs-
ize(2.5)
avplot pom , rlopt(lcolor(red)) note("") name(f) xs-
ize(2.5)
avplot vint, rlopt(lcolor(red)) note("") name(g) xs-
ize(2.5)
set graphics on
graph combine a b c d e f g, rows(2) xsize(10) ys-
ize(10)
graph drop a b c d e f g
graph export graphics/f6p50.eps,replace
```


Fig. 6.50 Added-variable plots for model (6.29)

Seeing some redundancy among the predictors, we check the vif of the predictors.

vif

Variable	VIF	1/VIF
lnparkerpo~s p95andabove firstgrowth lncoatespo~s cultwine vintagesup~r pomerol	5.83 4.01 1.63 1.41 1.19 1.14 1.12	0.171670 0.249203 0.615350 0.709214 0.841578 0.877808 0.889442
Mean VIF	2.33	

We drop out *p95andabove* and refit the model.

Source		SS	df		MS		Number of obs	=	72 138 03
Model Residual	 	68.3462592 5.36427914	6 65	11	.3910432 32527371		Prob > F R-squared	=	0.0000
Total	I	73.7105384	71	1	.0381766		Root MSE	=	.28728
lnprice		Coef.	Std.	Err	. t	P> t	[95% Conf.	In	terval]
<pre>lnparkerpo~s lncoatespo~s firstgrowth cultwine pomerol vintagesup~rcons</pre>		12.78433 1.604464 .8614884 1.33601 .5361863 .5946953 -56.47549	1.269 .6089 .1242 .1432 .0933 .2179 5.267	9147 9819 2992 2956 3267 9971 7977	10.07 2.63 6.93 9.32 5.75 2.73 -10.72	$\begin{array}{c} 0.000\\ 0.011\\ 0.000\\ 0.000\\ 0.000\\ 0.008\\ 0.008\\ 0.000 \end{array}$	10.24967 .3882433 .6132457 1.049829 .3498 .1593251 -66.99637	1 2 1 1 1 -4	5.31899 .820685 .109731 .622191 7225726 .030065 5.95461

req	Inprice	lnpark	lncoat	first	cult	pom	vint
- 5		T .				T -	-

Using **nestreg**, we perform the partial F-test to validate the removal of *p95andabove*.

nestreg: reg lnprice (lnpark lncoat first cult pom
vint) (p95)

Block 1: lnparkerpoints lncoatespoints firstgrowth cultwine pomerol vintage-superstar $% \left[{\left[{{{\left[{{{c_{\rm{s}}}} \right]}_{\rm{s}}} \right]_{\rm{s}}} \right]_{\rm{s}}} \right]$

	Sourc	e		SS	df		MS		Number of ob:	5 =	72
	Mode Residua	el 1	68.3 5.36	462592 427914	6 65	6 11.3910432 65 .082527371		F(6, 65 Prob > F R-squared) = = =	138.03 0.0000 0.9272	
	Tota	1	73.7	105384	71	1.0	0381766		Adj R-square Root MSE	= b =	0.9205 .28728
	lnpric	e		Coef.	Std.	Err.	t	P> t	[95% Conf	. Ir	nterval]
lng	parkerpo~	s	12.	78433	1.26	9147	10.07	0.000	10.24967	-	15.31899
lno	coatespo~	s	1.6	04464	.608	9819	2.63	0.011	.3882433	2	2.820685
fi	irstgrowt	h	.86	14884	.124	2992	6.93	0.000	.6132457	1	L.109731
	cultwin	ne	1.	33601	.143	2956	9.32	0.000	1.049829	1	1.622191
	pomero) l	.53	61863	.093	3267	5.75	0.000	.3498		.7225726
vir	ntagesup~	r	.59	46953	.217	9971	2.73	0.008	.1593251	1	L.030065
	_con	ıs	-56.	47549	5.26	7977	-10.72	0.000	-66.99637	- 4	45.95461
Blo	ock 2:p	95a	andabov	e							
	Sourc	e		SS	df		MS		Number of ob:	5 =) =	72 117 55
	Mode	י וי	68 3	910539	7	9 7	7015055		Prob > F		0 0000
	Residua		5.31	948451	64	.08	3116946		R-squared	=	0.9278
		+							Adi R-square		0.9199
	Tota	1	73.7	105384	71	1.0	0381766		Root MSE	=	.2883
	lnpric	e		Coef.	Std.	Err.	t	P> t	[95% Conf	. Ir	nterval]
lng	parkerpo~	s	11.	58862	2.06	7629	5.60	0.000	7.458059	1	L5.71919
lno	coatespo~	s	1.6	20529	.61	1545	2.65	0.010	.3988271		2.84223
fi	irstgrowt	h	.86	97022	.125	2432	6.94	0.000	.6195001	1	L.119904
	cultwin	ne	1.	35317	.145	6939	9.29	0.000	1.062113	1	1.644227
	pomerc) I	.53	64354	.093	6601	5.73	0.000	.3493279		.7235429
vir	ntagesup~	r	.61	58951	.22	0672	2.79	0.007	.175052	1	L.056738
p	95andabov	re	.10	05535	.136	9712	0.73	0.466	1730778		.3741849
	_con	ıs	-51.	14157	8.98	5568	-5.69	0.000	-69.09231	-3	33.19084
	+ 			Block	Resi	dual			+ Change		
	Block		F	df		df	Pr > F	R2	in R2		
	1	1	38.03	6		65	0.0000	0.9272			
	2		0.54	1		64	U.4656	0.9278	0.0006		

Our final act in this example is to show how to enumerate outlying wines for part (f) of the questions in section 1.1.4. The **nestreg** command left us with estimation results from the last regression it performed (which included *p95andabove*). So we regress again to obtain model 6.30, which no longer contains *p95andabove*. Then we predict the standardized residuals and list the outliers.

qui regress lnprice lnpark lncoat first cult pom vint

6.6 Pitfalls of Observational Studies due to Omitted Variables 51

```
predict stanresred, rstandard
1 wine stanresred if stanresred \geq 2
         -----+
            wine stanre~d|
58. | Tertre-Roteboeuf
                 2.502637
67. |
           Le Pin
                  2.607988
   +-----
1 wine stanresred if stanresred <= -2
            wine stanres~d |
    _____
                  -----
61. | La Fleur-Petrus
                 -2.560013 |
```

6.6 Pitfalls of Observational Studies due to Omitted Variables

We bring in the stork and baby data, and render figure 6.51. This is done with two **twoway** plots that are overlaid. We use **twoway scatter** and **lfit** to draw the plots.

```
insheet using data/storks.txt, names clear
twoway scatter babies storks || lfit babies storks,
xtitle("Number of storks") ytitle("Number of babies")
legend(off)
graph export graphics/f6p51.eps, replace
```


Fig. 6.51 A plot of two variables from the fictitious data on storks

We regress babies on storks, yielding the following output:

regress babies storks

Source	SS	df	MS		Number of obs	= 54
Model Residual	3292.68293 1544.81707	1 32 52 21	292.68293 9.7080206		F(1, 52) Prob > F R-squared	= 110.83 = 0.0000 = 0.6807 = 0.6745
Total	4837.5	53 93	1.2735849		Root MSE	= 5.4505
babies	Coef.	Std. Er:	r. t	P> t	[95% Conf.	Interval]
storks _cons	3.658537 4.329268	.347511	6 10.53 9 1.80	3 0.000 6 0.068	2.961204 3312264	4.35587 8.989763

Next we render our final figure for the chapter. In a matrix plot, Figure 6.52 shows the linear relationships of each of the variables. So that we can draw the linear fit lines, we use overlaid **twoway** plots and **graph combine**.

```
twoway scatter babies storks || lfit babies storks,
xtitle("Number of Storks") ytitle("Number of Babies")
legend(off) nodraw name(a)
twoway scatter babies women || lfit babies women,
xtitle("Number of Women") ytitle("Number of Babies")
legend(off) nodraw name(b)
twoway scatter women storks || lfit women storks,
xtitle("Number of Storks") ytitle("Number of Women")
legend(off) nodraw name(c)
graph combine a b c, rows(2) xsize(10)
graph export graphics/f6p52.eps, replace
```


Fig. 6.52 A plot of all three variables from the fictitious data on storks

The regression of *babies* on *storks* and *women* ends the example and the chapter.

Source	SS	df	MS		Number of obs	= 54
Model Residual Total	3937.5 900 4	2 19 51 17.64 53 91.2	968.75 170588 735849		Prob > F R-squared Adj R-squared Root MSE	$\begin{array}{rcl} & - & -111.36 \\ = & 0.0000 \\ = & 0.8140 \\ = & 0.8067 \\ = & 4.2008 \end{array}$
babies	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
storks women _cons	1.68e-14 5 10	.6618516 .8271569 2.020958	0.00 6.04 4.95	1.000 0.000 0.000	-1.328723 3.339413 5.942757	1.328723 6.660587 14.05724

regress babies stork women

7. Variable Selection

7.2 Deciding on the collection of potential subsets of predictor variables

In this chapter we will learn how to do variable selection for multiple linear regression in Stata.

```
version 10.0
clear all
set scheme ssccl
set more off
```

After our preliminary startup code, we return to the bridge data from chapter 6. We reproduce the regression on page 234 with the following code.

```
insheet using data/bridge.txt, names
gen lntime = ln(time)
gen lndarea = ln(darea)
gen lnccost = ln(ccost)
gen lndwgs = ln(dwgs)
gen lnlength = ln(length)
gen lnspans = ln(span)
reg lntime lndarea lnccost lndwgs lnlength lnspans
```

Source		SS	df		MS		Number of obs	=	45
Model	-+- 	13.3303983	5	2.6	6607966		F(5, 39) Prob > F	=	27.05 0.0000
Residual		3.84360283	39	.09	8553919		R-squared	=	0.7762
Total	i	17.1740011	44	.39	0318208		Root MSE	=	.31393
lntime		Coef.	Std.	Err.	t	P> t	[95% Conf.	Ir	terval]
lndarea lnccost lndwgs lnlength lnspans cons		0456443 .1960863 .8587948 0384353 .23119 2.2859	.126 .144 .223 .154 .140 .619	7496 4465 6177 8674 6819 2558	-0.36 1.36 3.84 -0.25 1.64 3.69	6 0.721 5 0.182 4 0.000 5 0.805 4 0.108 9 0.001	3020196 0960843 .4064852 3516842 0533659 1.033337	1 3	2107309 .488257 .311104 2748135 .515746 3.538463

The optimal subsets output on the following page: in table 7.1 and figure 7.1, is generated using the **vselect** user written command. The **vselect** command provides all the variable selection tools that you will need. We will describe it fully by the end of the chapter. At this point, to do best-

2 7. Variable Selection

subset regression with the Furnival-Wilson Leaps-And-Bounds algorithm, you specify the variables of your regression, and the **best** option. Upon execution, it outputs the information criteria for the best model of each subset size and returns the results for later use. The **r(best)** macros contain the predictors for each of the optimal models. The **r(info)** matrix contains the information criteria for each of the models.

vselect lntime lndarea lnccost lndwgs lnlength lnspans, best

Actual Regressions 9 Possible Regressions 32

	RSS	R2ADJ	AIC	AICC	BIC
1.	4.99750868	.70224004	-94.897533	-94.312168	-91.284208
2.	4.048848699	.75301906	-102.37035	-101.37035	-96.950359
з.	3.869251215	.75821784	-102.41207	-100.87361	-95.185417
4.	3.849673205	.75342726	-100.64034	-98.429814	-91.607028
5.	3.843602829	.74750366	-98.711355	-95.684328	-87.87138
	.				

return list

macros:

r(best5)	:	"	<pre>lndwgs lnspans lnccost lndarea lnlength"</pre>
r(best4)	:	"	lndwgs lnspans lnccost lndarea"
r(best3)	:	"	lndwgs lnspans lnccost"
r(best2)	:	"	lndwgs lnspans"
r(best1)	:	"	lndwgs"

matrices:

r(info) : 5 x 5

matrix list r(info)

r(info)[5,5]									
	RSS	R2ADJ	AIC	AICC	BIC				
r1	4.9975087	.70224004	-94.897533	-94.312168	-91.284208				
r2	4.0488487	.75301906	-102.37035	-101.37035	-96.950359				
r3	3.8692512	.75821784	-102.41207	-100.87361	-95.185417				
r4	3.8496732	.75342726	-100.64034	-98.429814	-91.607028				
r5	3.8436028	.74750366	-98.711355	-95.684328	-87.87138				

To draw figure 7.1, we first store the **r(best)** macros as regular macros using a **forvalues** loop. We do this so they will not be erased with a successive command. All r-class results are overwritten when a new r or e-class command is executed. To be safe, assume any Stata command is an r or e-class command until you find out otherwise.

The **subinstr** function is used to replace the variable names in the macros, so that they conform to those used in figure 7.1. As used here, this function takes strings as its first three arguments, and a "." for the third argument. It will return the first string, with all occurrences of the second string replaced by the third string.

```
forvalues i = 1/5 {
local best`i' "`r(best`i')'"
local best`i' subinstr("`best`i''","lndarea","lDA",.)
local best`i' subinstr("`best`i''","lnccost","lC",.)
local best`i' subinstr("`best`i''","lndwgs","lgD",.)
local best`i' subinstr("`best`i''","lnlength","lL",.)
local best`i' subinstr("`best`i''","lnspans","lS",.)
}
```

Next we store **r(info)** in a matrix, then store the columns of that matrix as variables in our dataset. The **svmat** command, with the **names(col)** performs this function. The added variable names have the same names as the matrix column labels.

Since we need to label the points in figure 7.1, it will be somewhat cumbersome to use the user-written **draw_matrix** command here. The reader may recall that this command was used several times in chapter 3.

```
matrix A = r(info)
svmat A, names(col)
```

Next we store the **best`i'** macros in the string variable *best*.

```
gen best = ""
forvalues i = 1/5 {
replace best = "`best`i''" if _n == `i'
}
```

Now we can finally render figure 7.1, using the new variable best as a label for the added *R2ADJ* variable. The **text()** option is used to draw a textbox in the plot. We specify y coordinate .72 and x coordinate 4 for the center of the box. Rows of text are specified as strings. Finally, we specify that the textbox has a visible border (via the **box** option) and that our text size should be medium large size (via the **size(medlarge)** option).

```
twoway scatter R2ADJ case if case <= 5, xlabel(1(1)5)
xtitle("Subset Size") ytitle("Adjusted R-Squared")
name(g1) nodraw
twoway scatter R2ADJ case if case <= 5, mlabel(best)
mlabsize(small) mlabposition(9) xlabel(1(1)5)
xtitle("Subset Size") ytitle("Adjusted R-Squared")
name(g2) nodraw text(.72 4 "lDA : logDArea" "lC : logC-</pre>
```

```
4 7. Variable Selection
Cost" "lgD : logDwgs" "lL : logLength" "lS : logSpans",
box size(medlarge))
graph combine g1 g2, xsize(10) rows(1)
graph export graphics/f7p1.eps, replace
graph drop g1 g2
```


Figure 7.1 Plots of R^2_{adj} against subset size for the best subset of each size

Now that we have seen the optimal models, we must decide between them. The choice was narrowed to the optimal two and three predictor models on page 236. Then the optimal two predictor model was chosen. We reproduce the regression output on page 236 with two executions of **regress**.

reg lntime lndwg lnsp

Source	SS	df	MS		Number of obs	= 45
Model Residual 	13.1251524 4.0488487 17.1740011	2 6.56 42 .096 44 .390	257622 401159 318208		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.7642 = 0.7530 = .31049
lntime	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lndwgs lnspans _cons	1.041632 .2853049 2.661732	.1541992 .0909484 .2687132	6.76 3.14 9.91	0.000 0.003 0.000	.7304454 .1017636 2.119447	1.352819 .4688462 3.204017
Source	SS	df	MS		Number of obs	= 45
---------------------------------------	---	--	------------------------------	----------------------------------	--	---
Model Residual	13.3047499 3.86925122	3 4.43 41 .094	491664 371981		Prob > F R-squared	= 40.99 = 0.0000 = 0.7747 = 0.7582
Total	17.1740011	44 .390	318208		Root MSE	= .3072
lntime	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lndwgs lnspans lnccost _cons	.8355863 .1962899 .148275 2.331693	.2135074 .1107299 .1074829 .3576636	3.91 1.77 1.38 6.52	0.000 0.084 0.175 0.000	.4043994 0273336 0687911 1.609377	1.266773 .4199134 .365341 3.05401

reg lntime lndw lnsp lncc

Next we will use the **vselect** command to do stepwise selection. We perform the backward elimination based on AIC on page 237 below. We merely change the **vselect** options from **best** to **backward aic**. If we wanted to use a different information criterion, say BIC, we would have typed backward **bic** instead.

vselect lntime lndarea lnccost lndwgs lnlength lnspans, backward aic

Stage	0	reg	lnt	ime	lndarea	lnccost	lndwgs	lnlength	lnspans	:	INFO	-98.71	135
INFO INFO INFO INFO INFO	-1 -98 -8 -10	L00.5 3.633 36.27 00.64 7.698	562 374 769 103 342	::	r r r r r	emove emove emove emove emove	lndarea lnccost lndwgs lnlength lnspans	a 5 1 5					
Stage	1	reg	lnt	ime	lndarea	lnccost	lndwgs	lnspans	: INFO	-10	0.640)3	
INFO INFO INFO INFO	-10 -10 -88 -99)2.41)0.57 3.260 9.101	L21 768)35 L03	::	r r r	emove emove emove emove	lndarea lnccost lndwgs lnspans	1 5 5					
Stage	2	reg	lnt	ime	lnccost	lndwgs	lnspans	3 : INFO ·	-102.412	1			
INFO INFO INFO	-1(-9(-1()2.37).128)1.08	703 345 388	:	r r r	emove emove emove	lnccost lndwgs lnspans	 5 3					

To obtain the forward selection output on page 238, we change **backward** to **forward** and rerun **vselect**.

6 7. Variable Selection

vselect lntime lndarea lnccost lndwgs lnlength lnspans, forward aic

Stage 0 reg lntime	: INFO -41	.34696	
INFO -80.51394 :	add	lndarea	
INFO -90.1038 :	add	lnccost	
INFO -94.89753 :	add	lndwgs	
INFO -78.70414 :	add	lnlength	
INFO -71.27418 :	add	lnspans	
Stage 1 reg lntime	lndwgs : IN	FO -94.897	53
INFO -97.39861 :	add	lndarea	
INFO -101.0888 :	add	lnccost	
INFO -99.3662 :	add	lnlength	
INFO -102.3703 :	add	lnspans	
Stage 2 reg lntime	lndwgs lnsp	ans : INFO	-102.3703
INFO -100.5768 :	add	lndarea	
INFO -102.4121 :	add	lnccost	
INFO -100.5588 :	add	lnlength	
Stage 3 reg lntime	lndwgs lnsp	ans lnccos	t : INFO -102.4121
INFO -100.6403 :	add	lndarea	
INFO -100.562 :	add	lnlength	

7.3 Assessing the predictive ability of regression models

We now turn to the prostate cancer training data. We begin by bringing in the data and producing the matrix plot on page 240. The **graph matrix** command is used for this purpose. We use the default options here.

insheet using data/prostateTraining.txt, clear names
graph matrix lpsa lcavol lweight age lbph svi lcp gleason pgg45
graph export graphics/f7p2.eps, replace

		2024		40 60 80		0 .5 1	6	789	
	lpsa		and the second	19				.	6 4 2 0
4· 2· 0·	194 .	Icavol					1. A. A. A.		
			lweight	\$	Ś		S are		5 4 3 2
80 · 60 ·	÷.			age					
-0					lbph				2
1. .5.	60088844 O		608360 C		B	svi			······································
0.		1. 					lcp	•	-2 -0 -0
9. 8. 7.	**************************************	• • • • • • •		• • • • •		•	•	gleason	0 00 ⁻²
0									pgg45 -50
	0 2 4 6		2 3 4 5		2 0 2		2 0 2		0 50 100

7.3 Assessing the predictive ability of regression models 7

Figure 7.2 Scatter plot matrix of the response variable and each of the predictors

Next we produce the standardized residual plots in figure 7.3. This procedure should be second nature after reading chapter 6. As before, we **quietly regress** so that the numerical output does not bias our assumption checking.

```
qui reg lpsa lcavol lweight age lbph svi lcp gleason
pgg45
predict stanres, rstandard
predict zefit, xb
label variable stanres "Standardized Residuals"
label variable zefit "Fitted Values"
twoway scatter stanres lcavol, name(g1) nodraw
twoway scatter stanres lweight,name(g2) nodraw
twoway scatter stanres age, name(g3) nodraw
twoway scatter stanres lbph, name(g4) nodraw
twoway scatter stanres svi, name(q5) nodraw
twoway scatter stanres lcp, name(g6) nodraw
twoway scatter stanres gleason, name(g7) nodraw
twoway scatter stanres pgg45, name(g8) nodraw
twoway scatter stanres zefit, name(g9) nodraw
graph combine g1 g2 g3 g4 g5 g6 g7 g8 g9, xsize(15) ys-
ize(15) rows(3)
graph export graphics/f7p3.eps, replace
graph drop g1 g2 g3 g4 g5 g6 g7 g8 g9
```

8 7. Variable Selection

Figure 7.3 Plots of the standardized residuals from model (7.5)

We examine the fitted versus response plot below.

Figure 7.4 A plot of lpsa against fitted values with a straight line added

7.3 Assessing the predictive ability of regression models 9

We use **plot_lm** to produce more diagnostics next.

plot_lm, smoother("lowess_ties_optim")
graph export graphics/f7p5.eps, replace

Figure 7.5 Diagnostic plots for model (7.5)

We use the **mmp** command to produce the marginal model plots in figure 7.6. Details on this command are found in chapter 6.

```
local alpha = 2/3
mmp, mean(xb) smoother(lowess) linear predictors smoop-
tions("bwidth(`alpha')")
graph export graphics/f7p6.eps, replace
```

10 7. Variable Selection

Figure 7.6 Marginal model plots for model (7.5)

With the marginal model plots completed, we finally look at the numeric output of our regression. Since the regression of interest was the last estimation command that Stata performed, we reproduce the results by merely retyping the name of the command.

regress

Source Model Residual Total	SS 66.8550609 29.4263849 96.2814458	df 8 8.35 58 .507 66 1.45	MS 6688261 351463 6880978		Number of obs F(8, 58) Prob > F R-squared Adj R-squared Root MSE	= 67 = 16.47 = 0.0000 = 0.6944 = 0.6522 = .71229
lpsa	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lcavol weight age lbph svi lcp gleason pgg45 	.5765432 .61402 019001 .1448481 .7372086 2063242 0295029 .0094652 .42917	.1074379 .2232159 .0136119 .0704567 .2985551 .1105163 .2011361 .0054465 1.553588	5.37 2.75 -1.40 2.06 2.47 -1.87 -0.15 1.74 0.28	0.000 0.008 0.168 0.044 0.017 0.067 0.884 0.088 0.783	.3614828 .1672048 0462483 .0038137 .1395857 4275466 4321205 0014372 -2.680675	.7916036 1.060835 .0082462 .2858825 1.334831 .0148981 .3731147 .0203675 3.539015

We next check the added variable plots. Case 45 is labeled in the **lweight** added variable plot. 7.3 Assessing the predictive ability of regression models 11

```
set graphics off
gen labelcase = "45" if n == 45
avplot lcavol , rlopt(lcolor(red)) note("") name(a) xs-
ize(4)
avplot lweight , mlabel(labelcase) rlopt(lcolor(red))
note("") name(b) xsize(4)
avplot age , rlopt(lcolor(red)) note("") name(c) xs-
ize(4)
avplot lbph , rlopt(lcolor(red)) note("") name(d) xs-
ize(4)
avplot svi , rlopt(lcolor(red)) note("") name(e) xs-
ize(4)
avplot lcp , rlopt(lcolor(red)) note("") name(f) xs-
ize(4)
avplot gleason , rlopt(lcolor(red)) note("") name(g)
xsize(4)
avplot pgg45 , rlopt(lcolor(red)) note("") name(h) xs-
ize(4)
set graphics on
graph combine a b c d e f g h, rows(2) xsize(16) ys-
ize(10)
graph drop a b c d e f g h
graph export graphics/f7p7.eps,replace
```


Figure 7.7 Added-variable plots for model (7.5)

Finally, we check the variance inflation factors of the predictors. The **vif** command is used for this.

12 7. Variable Selection

vif

Variable	V	IF :	1/VIF
pgg45 lcp gleason lcavol svi lweight lbph age	3. 3. 2. 2. 2. 1. 1.	31 0.3 12 0.3 64 0.3 32 0.4 05 0.4 47 0.6 38 0.7 36 0.7	01815 20775 78146 31314 88923 79212 22842 37135
Mean VIF	2.	21	

To produce the graphic in figure 7.8, we will use a similar methodology to what we used to render figure 7.1. First we produce the optimal subset table output in table 7.2. Prior to the execution of **vselect**, we initialize an observation storage variable, *case* which we will use for labeling of points in figure 7.8.

gen case = _n vselect lpsa lcavol lweight age lbph svi lcp gleason pgg45, best

Actual Regressions 26 Possible Regressions 256

	RSS	R2ADJ	AIC	AICC	BIC
1.	44.52858245	.53040134	-23.373609	-22.992657	-18.964224
2.	37.09184509	.60271717	-33.616797	-32.971636	-27.002719
З.	34.90774879	.62017581	-35.682914	-34.699307	-26.864143
4.	32.81499477	.63718772	-37.825072	-36.425072	-26.801609
5.	32.06944753	.6396181	-37.364852	-35.466547	-24.136696
6.	30.53977846	.65108795	-38.639392	-36.156634	-23.206544
7.	29.43730073	.65798331	-39.102811	-35.944916	-21.46527
8.	29.42638486	.65221548	-37.127661	-33.199089	-17.285427

return list

macros:

r(best8) : " lcavol lweight svi lbph lcp pgg45 age gleason"
r(best7) : " lcavol lweight svi lbph lcp pgg45 age"
r(best6) : " lcavol lweight svi lbph lcp pgg45"
r(best5) : " lcavol lweight svi lbph pgg45"
r(best4) : " lcavol lweight svi lbph"
r(best3) : " lcavol lweight svi"
r(best2) : " lcavol lweight"
r(best1) : " lcavol lweight"

matrices:

r(info) : 8 x 5

matrix list r(info)

r(in:	fo)[8,5]				
	RSS	R2ADJ	AIC	AICC	BIC
r1	44.528582	.53040134	-23.373609	-22.992657	-18.964224
r2	37.091845	.60271717	-33.616797	-32.971636	-27.002719
r3	34.907749	.62017581	-35.682914	-34.699307	-26.864143
r4	32.814995	.63718772	-37.825072	-36.425072	-26.801609
r5	32.069448	.6396181	-37.364852	-35.466547	-24.136696
r6	30.539778	.65108795	-38.639392	-36.156634	-23.206544
r7	29.437301	.65798331	-39.102811	-35.944916	-21.46527
r8	29.426385	.65221548	-37.127661	-33.199089	-17.285427

Now we intermediately store the contents of the r(best) macros in local macros and r(info) in a new matrix. Once this is done we write them to the dataset as variable values.

```
forvalues i = 1/8 {
local best`i' "`r(best`i')'"
local best`i' = subinstr("`best`i''","lpsa","",.)
local best`i' = subinstr("`best`i''","lcavol","lcv",.)
local best`i' = subinstr("`best`i''","lweight","lw",.)
local best`i' = subinstr("`best`i''","age","a",.)
local best`i' = subinstr("`best`i''","lbph","lb",.)
local best`i' = subinstr("`best`i''","svi","s",.)
local best`i' = subinstr("`best`i''","gleason","g",.)
local best`i' = subinstr("`best`i''","pgg45","p",.)
local best`i' = subinstr("`best`i''","svi","s",.)
}
matrix A = r(info)
svmat A, names(col)
gen best = ""
forvalues i = 1/8 {
replace best = "`best`i''" if _n == `i'
}
```

We render figure 7.8 using the newly stored data. The **textbox()** option is used again. This time the text size is specified to be **medium**, rather than **medium** large.

twoway scatter R2ADJ case if case <= 8, mlabel(best)
mlabposition(9) xlabel(1(1)8) xtitle("Subset Size")
ytitle("Adjusted R-Squared") name(g1) text(.57 4 "lcv:
lcavol" "lw: lweight" "a: age" "lb: lbph" "s: svi"
"lcp: lcp" "g: gleason" "p: pgg45", box size(medium))
nodraw</pre>

14 7. Variable Selection

twoway scatter R2ADJ case if 4 <= case & case <= 8 , mlabel(best) mlabsize(small) mlabposition(12) xlabel(4(1)8) xtitle("Subset Size") ytitle("Adjusted R-Squared") name(g2) nodraw text(.64 7 "lcv: lcavol" "lw: lweight" "a: age" "lb: lbph" "s: svi" "lcp: lcp" "g: gleason" "p: pgg45", box size(medium))

graph combine g1 g2, xsize(10) rows(1)
graph export graphics/f7p8.eps, replace

Figure 7.8 Plots of R^2_{adj} against subset size for the best subset of each size

Guided by these results, we fit the best 2,4, and 7 predictor models. Below is the regression output on pages 246.

reg lpsa lcavol lweight

Source	SS	df	MS		Number of obs	= 67
Model Residual 	59.1896007 37.0918451 96.2814458	2 29. 64 .5 66 1.4	5948003 7956008 5880978		Prob > F R-squared Adj R-squared Root MSE	$\begin{array}{r} = & 0.100 \\ = & 0.0000 \\ = & 0.6148 \\ = & 0.6027 \\ = & .76129 \end{array}$
lpsa	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lcavol lweight _cons	.6276074 .7383752 -1.04944	.0790609 .2061271 .7290351	7.94 3.58 -1.44	0.000 0.001 0.155	.4696651 .3265889 -2.505855	.7855497 1.150161 .4069753

Source		SS	df		MS		Number of obs	=	67
	+-						F(4, 62)	=	29.98
Model		63.466451	4	15.	8666128		Prob > F	=	0.0000
Residual		32.8149948	62	.52	9274109		R-squared	=	0.6592
	+-						Adj R-squared	=	0.6372
Total		96.2814458	66	1.4	5880978		Root MSE	=	.72751
lpsa		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	.+-								
lcavol		.5055209	.0925	633	5.46	0.000	.3204895	•	6905523
lweight		.5388292	.2207	126	2.44	0.018	.097631		9800275
svi		.6718486	.2732	279	2.46	0.017	.1256737	1	.218023
lbph	1	.1400111	.0704	115	1.99	0.051	0007395		2807617
_cons	I.	3259214	.7799	767	-0.42	0.677	-1.885073		1.23323

reg lpsa lcavol lweight svi lbph

reg lpsa lcavol lweight svi lbph pgg45 lcp age

Source Model Residual	 += 	SS 66.8441451 29.4373007	df 7 59	9.54	MS 916358 989373		Number of obs F(7, 59) Prob > F R-squared		67 19.14 0.0000 0.6943
Total		96.2814458	66	1.45	880978		Root MSE	=	.70635
lpsa		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
lcavol lweight svi lbph pgq45 lcp age _cons		.5739304 .6192089 .7417812 .1444265 .008945 205417 0194799 .2590616	.1050 .2185 .2944 .0698 .0040 .1094 .0131 1.02	688 598 506 118 994 242 046 517	5.46 2.83 2.52 2.07 2.18 -1.88 -1.49 0.25	0.000 0.006 0.014 0.043 0.033 0.065 0.142 0.801	.3636883 .1818716 .1525868 .0047333 .0007421 4243744 0457022 -1.792299	1 2	7841725 .056546 .330976 2841196 0171479 0135404 0067424 .310422

We check these results with the test dataset.

insheet using data/prostateTest.txt, clear names reg lpsa lcavol lweight

Source	SS	df	MS		Number of obs	= 30
Model Residual	17.4518828 14.0374147	2 8.725 27 .5199	94139 04247		F(2, 27) Prob > F R-squared Adj R-squared	$= 16.78 \\ = 0.0000 \\ = 0.5542 \\ = 0.5212$
Total	31.4892975	29 1.085	83784		Root MSE	= .72104
lpsa	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lcavol lweight _cons	.7477861 .196832 .7353919	.1294237 .2473404 .9572177	5.78 0.80 0.77	0.000 0.433 0.449	.4822307 3106685 -1.228657	1.013342 .7043325 2.69944

16 7. Variable Selection

reg lpsa lcavol lweight svi lbph

Source	SS	df	MS		Number of obs	= 30
Model Residual	21.1063211 10.3829764	4 5.27 25 .415	658027 319055		Prob > F R-squared	= 0.0000 = 0.6703 = 0.6175
Total	31.4892975	29 1.08	583784		Root MSE	= .64445
lpsa	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lcavol lweight svi	.5955512 .2621476 .9505119	.1265537 .2449201 .3221422	4.71 1.07 2.95	0.000 0.295 0.007	.3349089 2422747 .2870475	.8561935 .76657 1.613976

reg lpsa lcavol lweight svi lbph pgg45 lcp age

Source		SS	df		MS		Number of obs	=	30
Model Residual	 	21.9370338 9.55226371	7 22	3.13 .434	3386196 193805		Prob > F R-squared	=	0.0002
Total		31.4892975	29	1.08	3583784		Root MSE	=	.65893
lpsa		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
lcavol lweight svi lbph pg45 lcp age cons	 	.4812366 .3136008 .6192782 090696 .0013163 .1808501 0049577 .8733292	.165 .257 .423 .121 .006 .166 .022 1.49	8806 1116 1085 3678 3702 9698 2199 0194	2.90 1.22 1.46 -0.75 0.21 1.08 -0.22 0.59	0.008 0.235 0.157 0.463 0.838 0.290 0.826 0.564	.1372212 2196159 2581952 3423974 0118947 165424 0510389 -2.217144	1	8252519 8468176 .496752 1610055 0145274 5271243 0411235 .963802

Our models behave poorly on the test data. We return to the training data and investigate how things change based on case 45. We did not drop the graphs produced for figure 7.8, so we will re-use graph g1 to render figure 7.9. We produce the other plot in figure 7.9 using the same methodology as used to create graph g1.

insheet using data/prostateTraining.txt, clear names

drop if _n == 45
gen case = _n

vselect lpsa lcavol lweight age lbph svi lcp gleason pgg45, best

Actual Regressions 29 Possible Regressions 256

	RSS	R2ADJ	AIC	AICC	BIC
1.	41.26760901	.56348984	-26.992071	-26.604974	-22.612762
2.	35.7359951	.61600077	-34.490755	-33.835018	-27.921791
з.	31.90366754	.6516515	-39.977629	-38.977629	-31.21901
4.	30.64398981	.65992047	-40.636401	-39.212672	-29.688127
5.	29.65849554	.66537153	-40.793805	-38.86277	-27.655876
6.	28.26275516	.67571452	-41.975252	-39.448936	-26.647669
7.	26.67677209	.68863463	-43.78686	-40.572574	-26.269622
8.	26.67369515	.68320863	-41.794473	-37.794473	-22.08758

return list

macros:

r(best8) : " lcavol lbph svi lcp lweight pgg45 age gleason"
r(best7) : " lcavol lbph svi lcp lweight pgg45 age"
r(best6) : " lcavol lbph svi lcp lweight pgg45"
r(best5) : " lcavol lbph svi lcp pgg45"
r(best4) : " lcavol lbph svi lweight"
r(best3) : " lcavol lbph svi"
r(best2) : " lcavol lbph"
r(best1) : " lcavol"

matrices:

r(info) : 8 x 5

matrix list r(info)

r(info)[8,5] RSS R2ADT ATC ATCC BIC .56348984 -26.992071 41.267609 -26.604974 -22.612762 r1 .61600077 -34.490755 -33.835018 -27.921791 35.735995 r2 31.903668 .6516515 -39.977629 -38.977629 -31.21901 r3 30.64399 r4 .65992047 -40.636401 -39.212672 -29.688127 r5 29.658496 .66537153 -40.793805 -38.86277 -27.655876 .67571452 -41.975252 -39.448936 -26.647669 r6 28.262755 .68863463 -43.78686 -40.572574 -26.269622 .68320863 -41.794473 -37.794473 -22.08758 26.676772 r7 26.673695 r8

forvalues i = 1/8 {

local best`i' "`r(best`i')'"
local best`i' = subinstr("`best`i''","lpsa","",.)
local best`i' = subinstr("`best`i''","lcavol","lcv",.)
local best`i' = subinstr("`best`i''","lweight","lw",.)
local best`i' = subinstr("`best`i''","age","a",.)
local best`i' = subinstr("`best`i''","svi","s",.)
local best`i' = subinstr("`best`i''","gleason","g",.)
local best`i' = subinstr("`best`i''","svi","s",.)
local best`i' = subinstr("`best`i''","svi","s",.)

```
18 7. Variable Selection
}
matrix A = r(info)
svmat A, names(col)
gen best = ""
forvalues i = 1/8 {
replace best = "`best`i''" if _n == `i'
}
```

```
twoway scatter R2ADJ case if case <= 8, mlabel(best)
mlabposition(9) xlabel(1(1)8) xtitle("Subset Size")
ytitle("Adjusted R-Squared") name(g3) text(.57 4 "lcv:
lcavol" "lw: lweight" "a: age" "lb: lbph" "s: svi"
"lcp: lcp" "g: gleason" "p: pgg45", box size(medium))
nodraw
graph combine g1 g3, xsize(10) rows(1) title("With Case
45 Without
Case 45", span)</pre>
```

graph export graphics/f7p9.eps, replace

Figure 7.9 Plots of R^2_{adj} against subset size with and without case 45.

We load the combined training and test dataset to render figure 7.10. This is accomplished with a four times overlaid **twoway** plot. There is a scatter plot for each of the test and training data groups, and an **lfit** for each group as well.

insheet using data/prostateAlldata.txt, names clear twoway scatter lpsa lweight if train == "F", msymbol("th") mcolor(black) || lfit lpsa lweight if train == "F",lcolor(black) || scatter lpsa lweight if train

```
== "T", mcolor(red) msymbol(plus) || lfit lpsa lweight
if train == "T", lcolor(red) lpattern(dash)
xtitle(lweight) ytitle(lpsa) legend(title("Data Set")
order(3 1) label(3 "Training") label(1 "Test") cols(1)
ring(0) position(4))
graph export graphics/f7p10.eps, replace
```

```
\frac{5}{2}
```

Figure 7.10 Plot of lpsa against lweight for both the training and test data sets.

For the final figure in this section, we regress using the full model on the test data, and then render one of the added variable plots. We do not change datasets to do this, but use the **if** conditional option so that only the test data is used. To find the ninth case of the test data, we sort on *train* and the original *case*, the *order* variable contains the sequence of the observation within its data group (test or training).

```
qui reg lpsa lcavol lweight age lbph svi lcp gleason
pgg45 if train == "F"
sort train case
by train: gen order = _n
gen labcase = "9" if order == 9 & train == "F"
avplot lweight, rlopt(lcolor(red)) mlabel(labcase)
mlabpos(9)
graph export graphics/f7pl1.eps, replace
```

20 7. Variable Selection

Figure 7.11 Added variable plot for the predictor lweight for the test data

8.1 Logistic regression based on a single predictor

In this chapter we will learn how to do logistic regression using Stata. We begin as usual, clearing everything from memory and setting the scheme and other Stata parameters.

```
set more off
clear all
version 10.0
set scheme ssccl
```

We bring in our first dataset (MichelinFood) and do a simple **twoway** scatter to render figure 8.1.

```
insheet using data/MichelinFood.txt, names
twoway scatter prop food, xtitle("Zagat Food Rating")
ytitle("Sample Proportion")
graph export graphics/f8p1.eps, replace
```


Figure 8.1 Plot of the sample proportion of "successes" against food ratings

Now we will run our first logistic regression, the output of which is on page 267. We use the **binreg** command. This is one of the commands for fitting logistic regression in Stata, and the only one to return the model's deviance. There is another command, **logit** which is useful for performing binary logistic regression. We will discuss logit later.

To get the null deviance we run **binreg** first on our response, with no predictors specified. Then we obtain the actual residual deviance with the second run of **binreg**. The **binreg** command takes the same "*response predictors*" type of variable list that **regress** does. Additionally, the number of trials is specified using the **n()** option. We specify this option with the newly generated variable *tot*. The **nolog** option is used to suppress the history of the calculation details.

```
gen tot = inmichelin + notinmichelin
qui binreg inmichelin, n(tot) nolog
di e(deviance)
61.427039
di e(df)
13
binreg inmichelin food, n(tot) nolog

    Optimization
    : MQL Fisher scoring
    No. of obs

    Optimization
    : MQL Fisher scoring
    Residual df

    (IRLS EIM)
    Scale param

    Deviance
    = 11.36843021
    (1/df) Devi

    Pearson
    = 11.00000000
    (1/df) Devi

                                                                                   =
=
                                                                                                 14
                                                              Residual df = 12
Scale parameter = 1
(1/df) Deviance = .9473692
(1/df) Pearson = .9999413
            (IRLS EIM)
= 11.36843021
= 11.9992959
Variance function: V(u) = u^{*}(1-u/tot)
                                                               [Binomial]
Link function : g(u) = ln(u/(tot-u))
                                                               [Logit]
                                                                 BIC
                                                                                     = -20.30026
  | EIM
inmichelin | Coef. Std. Err. z P>|z| [95% Conf. Interval]
  -----
food | .5012367 .0876756 5.72 0.000 .3293956 .6730778
_cons | -10.84154 1.862358 -5.82 0.000 -14.49169 -7.191385
```

Now we will use a **twoway scatter** overlaid with a **twoway function** to plot figure 8.2. We use the **_b[]** notation to get the coefficient estimates, as we have in the past with linear regressions.

twoway scatter prop food || function y=1/(1 + exp(-(_b[_cons] + _b[food]*x))),range(15 28) legend(off) xtitle("Zagat Food Rating") ytitle("Probability of Inclusion in the Michelin Guide") xlabel(16(2)28) graph export graphics/f8p2.eps, replace

Figure 8.2 Logistic regression fit to the data in Figure 8.1.

We will use the **predict** command to create the output in Table 8.2. After **binreg**, the predict command does not have an option that will directly give probabilities. We use the **xb** option to get the linear predictor values, and then use some elementary algebra to get our results.

```
predict logitpred, xb
gen thetapred = 1/(1 + exp(-logitpred))
gen oddspred = exp(logitpred)
1 food thetapred oddspred if food != .
      food
             thetap~d
                       oddspred
 1.
        15
             .0347909
                        .0360449
 2.
        16
               .05616
                        .0595016
             .0894381
 з.
        17
                        .0982229
             .1395204
                        .1621427
 4.
        18
 5.
        19
             .2111442
                        .2676589
  6.
        20
             .3064422
                        .4418409
 7.
        21
             .4217561
                        .729374
                       1.204023
             .5462841
 8.
        22
        23
 9.
             .7664085
10.
        24
                        3.280977
11.
        25
             .8441423
                        5.416111
12.
        26
             .8994035
                        8.940707
             .9365441
13.
        27
                        14.75898
14.
        28
             .9605733
                       24.36355
                           ____
```

To produce the p-values on page 272 we use the **chi2** function. We save the deviance result (**e(deviance**)) from the last model in a macro, and then rerun the null model with **binreg** to get the null deviance.

```
di 1-chi2(e(df),e(deviance))
.49763566
local rdev = e(deviance)
local rdevdf = e(df)
qui binreg inmichelin, n(tot)
di 1-chi2(`e(df)' - `rdevdf',`e(deviance)'-`rdev')
1.492e-12
```

We obtain the Pearson X^2 statistic by creating and summing the squared pearson residuals. These residuals are generated by predict with the **pearson** option. The collapse **command** is used to create the sum. This command takes as first argument a parenthesized univariate statistic. Here it is **(sum)**. The dataset is then "collapsed" down to a single observation. The input variables now hold the value of that statistic when it is calculated using all of their observations. We display the result using the array indexing method for accessing variable values.

First we must rerun the full model with **binreg** so that our stored estimation results no longer refer to the null model. We use the **preserve** and **restore** commands to maintain our original data.

```
qui binreg inmichelin food, n(tot)
preserve
predict res,pearson
replace res = res*res
collapse (sum) res
di "Pearson's X^2 = " res[1]
Pearson's X^2 = 11.999487
Restore
```

The residuals in table 8.3 are generated using the **predict** command with the expected option. We reuse the linear predictor variable *logitpred* and the probability predictor variable *thetapred* that we created earlier.

```
predict pearres, pearson
predict devres, deviance
predict respres, response
gen response = inmichelin/tot
l food response thetapred respres pearres devres
```

8.1 Logistic regression based on a single predictor 5

	food	response	thetap~d	respres	pearres	devres
1. 2. 3. 4. 5.	15 16 17 18 19	0 0 .1333333 .2777778	.0347909 .05616 .0894381 .1395204 .2111442	0347909 05616 7155046 0928067 1.199404	1898551 2439295 8864444 0691583 .6926929	2661223 3399959 -1.224375 0695953 .6695397
6. 7. 8. 9. 10.	20 21 22 23 24	.2424242 .5769231 .3333333 .6666667 .8571429	.3064422 .4217561 .5462841 .665278 .7664085	-2.112593 4.034342 -2.555409 .0249959 .6351406	7977068 1.602138 -1.481728 .012485 .5673645	8154815 1.588942 -1.484969 .0124893 .5993447
11. 12. 13. 14.	25 26 27 28	.9166667 .5 .8571429 1	.8441423 .8994035 .9365441 .9605733	.8702918 7988071 5558087 .1577066	.6926317 -1.877839 8617399 .4051909	.749074 -1.42574 7482618 .5672738

We create the standardized versions of the pearson and deviance residuals by recalling **predict** with the **standardized** option. We draw figure 8.3 using these new variables and a combined **twoway scatter**. **predict pearstanres**, **pearson standardized predict devstanres**, **deviance standardized twoway scatter devstan food**, **xtitle("Food Rating") ytitle("Standardized Deviance Residuals") name(g1) nodraw xlabel(16(2)28) xsize(3) twoway scatter pearstan food**, **xtitle("Food Rating") ytitle("Standardized Pearson Residuals") name(g2) nodraw xlabel(16(2)28) xsize(3) graph combine g1 g2, xsize(6) ysize(5) graph export graphics/f8p3.eps, replace graph drop g1 g2**

Figure 8.3 Plots of standardized residuals against Food Rating

8.2 Binary logistic regression

Now we will do binary logistic regression in Stata. The **logit** command will be used. We begin by bringing in the MichelinNY restaurant data and drawing a simple **twoway scatter**.

```
clear
insheet using data/MichelinNY.csv, names
twoway scatter inmich food , xtitle("Food Rating")
ytitle("In Michelin Guide? (0=No, 1=Yes)") jitter(3)
xlabel(16(2)28)
graph export graphics/f8p4.eps, replace
```


Figure 8.4 Plot of y_i versus food rating

To draw figure 8.5, we will use the **graph box** command. This command has been used extensively in previous chapters. See the last plot in chapter 1 (figure 1.10) for an explanation.

```
gen eal = "In Michelin Guide? (0=No, 1=Yes)"
graph box food, ytitle("Food Rating") ylabel(16(2)28)
over(inmich) over(eal)
graph export graphics/f8p5.eps, replace
```


Figure 8.5 Box plots of Food Ratings

Now we will fit the binary logistic model predicting the inmichelin using food rating. We use the **logit** command for this, which here simply takes variable argument like **regress**. To get the deviance values, we reuse **binreg**. Note how Stata automatically gives the difference of deviance test in the **logit** output.

logit inmichelin food, nolog

Logistic regres		Numbe LR ch Prob	r of obs i2(1) > chi2	= =	164 50.06 0.0000		
Log likelihood = -87.865103				Pseud	o R2	=	0.2217
inmichelin	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
food _cons	.5012367 -10.84154	.0876765 1.862375	5.72 -5.82	0.000 0.000	.3293	939	.6730794 -7.191351

```
//Null Deviance
gen tot = 1
qui binreg inmichelin, n(tot)
di e(deviance)
225.78881
di e(df)
163
local ndev = e(deviance)
//Residual Deviance
```

```
qui binreg inmichelin food, n(tot)
di e(deviance)
175.73021
di e(df)
162
//difference of deviance
local dd = `ndev' - e(deviance)
di dd
50.058608
```

Now we examine the residuals of a binary logistic regression by rendering figure 8.6 As before, we will use **predict** after the **binreg** command. The predict options following **logit** differ slightly from those following **binreg**.

```
predict pearstanres, pearson standardized
predict devstanres, deviance standardized
twoway scatter devstanres food, xtitle("Food Rating")
ytitle("Standardized
                                    Residuals")
                        Deviance
                                                   xla-
bel(16(2)28) nodraw name(g1) ylabel(-4(2)4) xsize(3)
twoway scatter pearstanres food, xtitle("Food Rating")
ytitle("Standardized
                                    Residuals")
                                                   xla-
                        Pearson
bel(16(2)28) nodraw name(g2) ylabel(-4(2)4) xsize(3)
graph combine g1 g2, xsize(6)
graph export graphics/f8p6.eps, replace
graph drop g1 g2
```


Figure 8.6 Plots of standardized residuals for the binary data in Table 8.4

We draw figure 8.7 using the **lowess_ties_optim** smoothing command. This provides a variation on the lowess smoothing provided by Stata's **lowess** command. Details can be found by executing the command **help lowess_ties_optim** which will bring up the Stata help file. Here we tell the command to store the predictor plot points in *inmit2* and the smoothed estimates in *food2*. We use the standard windowing parameter of α =2/3 and allow for one extra fitting iteration to optimize the fit beyond the original estimates.

```
gen inmit2 = .
gen food2 = .
local a = 2/3
lowess_ties_optim inmichelin food, store(inmit2 food2)
frac(`a') iter(1)
twoway scatter inmich food,jitter(3) || function y=1/(1
+ exp(-(_b[_cons] + _b[food]*x))), range(15 28) || line
inmit2 food2, sort lpattern(dash) legend(off)
xtitle("Food Rating") ytitle("In Michelin guide?
(0=No,1=Yes)") xlabel(16(2)28)
graph export graphics/f8p7.eps, replace
```


Figure 8.8 is produced by graph combine and multiple graph boxes.

```
replace eal = "In Michelin Guide? (0=No, 1=Yes)"
```

```
graph box food, ytitle("Food Rating") over(inmich)
over(eal) nodraw name(a)
graph box decor, ytitle("Decor Rating") over(inmich)
over(eal) nodraw name(b)
graph box service, ytitle("Service Rating")
over(inmich) over(eal) nodraw name(c)
graph box cost, ytitle("price") over(inmich) over(eal)
nodraw name(d)
graph combine a b c d, rows(2)
graph drop a b c d
graph export graphics/f8p8.eps, replace
```


To produce Figure 8.9, we use the lowess_ties_optim command again. First we add the natural logarithm of *cost* to the predictors and refit the model. Since we use a **logit** instead of a **binreg** command, we can predict the estimated probabilities with the **pr** option for **predict**.

```
gen lncost = ln(cost)
qui logit inmichelin food decor service cost lncost
replace inmit2 = .
replace food2 = .
lowess_ties_optim inmichelin food, store(inmit2 food2)
frac(`a') iter(1)
```

```
8.2 Binary logistic regression 11
```

```
twoway scatter inmichelin food || line inmit2
food2,sort xlabel(16(2)28) xtitle("Food Rating, x1")
ytitle("Y, In Michelin Guide (0=No,1=Yes)") legend(off)
nodraw name(g1)
predict yhat,pr
replace inmit2 = .
replace food2 = .
lowess_ties_optim yhat food, store(inmit2 food2)
frac(`a') iter(1)
twoway scatter yhat food || line inmit2 food2, sort
xlabel(16(2)28) xtitle("Food Rating, x1")
ytitle("Prediction") legend(off) nodraw name(g2)
graph combine g1 g2, xsize(10)
graph export graphics/f8p9.eps, replace
graph drop g1 g2
```


Figure 8.9 Plots of Y and Predicted against x1, Food Rating

Now we will draw marginal model plots for logistic regression. We discussed the **mmp** command in chapter 6. The only difference in our use here is that the mean function argument is now **pr** rather than **xb**.

```
local a = 2/3
mmp, mean(pr) smoother(lowess) smoopt("bwidth(`a')")
pred lin
graph export graphics/f8p10.eps, replace
```


Figure 8.10 Marginal model plots for model (8.2)

Not satisfied with the marginal model plots, we investigate adding terms to the model. We check the relationship of the *service* and *décor* with *inmichelin* in figure 8.11. We specify different plot symbols using the **msymbol()** option and the colors using the **lcolor()** and **mcolor()** options.

```
twoway scatter service decor if inmich == 0, msym-
bol(oh) mcolor(black) || lfit service decor if in-
mich==0, lcolor(black) || scatter service decor if in-
mich == 1, msymbol(th) mcolor(red) || lfit service
decor if inmich == 1, lcolor(red) legend(cols(1) or-
der(1 3) title("In Michelin Guide") label(1 "No") la-
bel(3 "Yes") ring(0) position(11)) xtitle("Decor Rat-
ing") ytitle("Service Rating")
graph export graphics/f8p11.eps, replace
```


Figure 8.11 Scatter Plot of Service & Décor with different slopes for y

Now we add a *décor* and *service* to our model and rerun **logit**. We rerun the marginal model plots using **mmp** to draw figure 8.12. Here we must use the **varlist()** option of **mmp** to draw a plot for each predict but the cross term.

```
gen servdecor = service*decor
qui logit inmichelin food decor service cost lncost
servdecor
local a = 2/3
mmp, mean(pr) smoother(lowess) smoopt("bwidth(`a')")
varlist(food decor service cost lncost) lin
graph export graphics/f8p12.eps, replace
```


Figure 8.12 Marginal model plots for model (8.4)

To test whether our new model is appropriate, we use the **analysis_of_deviance** user-written command. This is a very straightforward command. We supply the response variable after the command name, then we record the predictors under the reduced model in the **reduced()** option. The **full()** option records the predictors under the full model.

analysis_deviance inmichelin, reduced(food decor service cost lncost) full(food decor service cost lncost servdecor)

Analysis	s of	Deviance	Table				
Reduced Full	 	food dec food dec	or service co or service co	st ln st ln	cost cost servd	ecor	
Model	R	esid. Df	Resid. Dev.	Df	Deviance	P(> chi2)	
Reduced Full		158 157	136.431 129.82	1	6.611	.0101374	

Now, satisfied that our new model with the cross term is a better explanatory model, we will examine its leverage values. First we refit the model under the **binreg** command so that we can get standardized deviance residuals. We produce these using **predict** as we have in previously analysis. We specify the **hat** option in predict to get the leverage values. To calculate the leverage cutoff point, we use the estimation results stored by **binreg**. The number of observations used in the logistic regression are stored in e(N). The number of coefficients (including the intercept) are stored in e(k).

```
qui binreg inmichelin food decor service cost lncost
servdecor, n(tot)
predict hvalues, hat
predict stanresdeviance, deviance standardized
local lvgcutoff = 2*e(k)/e(N)
gen zelabel = restaur if inlist(restaurant,"Alain Du-
casse", "Arabelle", "per se")
twoway scatter stanresdev hvalues, mlabel(zelabel)
mlabposition(3) mlabsize(tiny) xlabel(0(.1).8)
xline(`lvgcutoff') ytitle("Standardized Deviance Resi-
duals") xtitle("Leverage Values")
graph export graphics/f8p13.eps, replace
```


Figure 8.13 A plot of leverage against standardized deviance residuals for (8.4)

Now we provide the numeric output of our new model. As before, we use the **logit** command in conjunction with **binreg** (for the deviances).

//Logistic Output logit inmichelin food decor service cost lncost servdecor, nolog

Logistic regre	Numbe	Number of obs =					
	LR chi2(6) =			95.97			
				Prob	> chi2	=	0.0000
Log likelihood	d = -64.91008	5		Pseud	o R2	=	0.4250
inmichelin	Coef.	Std. Err.	Z	P> z	[95%]	Conf.	Interval]
+							
food	.6699594	.1827638	3.67	0.000	.3117	489	1.02817
decor	1.297884	.4929856	2.63	0.008	.3316	505	2.264118
service	.9197071	.4882945	1.88	0.060	0373	324	1.876747
cost	0745644	.0441645	-1.69	0.091	1611	252	.0119964
lncost	10.96399	3.228449	3.40	0.001	4.636	347	17.29164
servdecor	0655088	.0251228	-2.61	0.009	1147	485	0162691
_cons	-70.85308	15.45783	-4.58	0.000	-101.1	499	-40.55629
//>	•						
//NULL dev	/lance						

```
qui binreg inmichelin, n(tot)
di e(deviance)
225.78881
di e(df)
163
//Residual deviance
qui binreg inmichelin food decor service cost lncost
fooddecor servdecor servfood food2
di e(deviance)
129.82017
di e(df)
157
```

Next we examine the effect that *cost* has on the model (separate from *log(cost)*. We perform an analysis of deviance using the **analy-sis_of_deviance** command.

analysis_deviance inmichelin, reduced(food decor service lncost servdecor) full(food decor service cost lncost servdecor)

Analysis	C	of Deviance	e Table					
Reduced Full	 	food dec food dec	cor service ln cor service co	cost s st lno	servdecor cost servd	ecor		
Model	I	Resid. Df	Resid. Dev.	Df	Deviance	P(> chi2)		
Reduced Full		158 157	131.229 129.82	1	1.409	.235291	-	

We find insufficient evidence to leave *cost* in the model. Removing it, we get the following numeric output from **logit** and **binreg**.

```
//Logistic Output
logit inmichelin food decor service lncost servdecor,
nolog
```

Logistic regre	ssion = -65.61437	9		Numbe LR ch Prob Pseud	r of obs = i2(5) = > chi2 = o R2 =	164 94.56 0.0000 0.4188
inmichelin	Coef.	Std. Err.	Z	₽> z	[95% Conf	. Interval]
food decor	.6427389 1.505968	.1782505 .4788323	3.61 3.15 2.39	0.000 0.002	.2933743 .5674742 2038198	.9921035 2.444463 2.04885
lncost servdecor _cons	7.298268 0761323 -63.76436	1.810616 .0244825 14.09846	4.03 -3.11 -4.52	0.000 0.002 0.000	3.749525 1241172 -91.39683	10.84701 0281474 -36.1319

```
//Null deviance
qui binreg inmichelin, n(tot)
di e(deviance)
225.78881
di e(df)
163
//Residual deviance
qui binreg inmichelin food decor service lncost servde-
cor
di e(deviance)
131.22876
di e(df)
158
```

Now we render the marginal model plots for the new model. This provides figure 8.14. We re-run the **logit** command on the new model so that **predict** will support the **pr** option. This allows us to specify the **mean()** option to **mmp** as **pr**. Alternatively, we could directly run mmp after our last **binreg** command and specify the option **mean(mu)** when we execute **mmp**.

```
qui logit inmichelin food decor service lncost servde-
cor
local a = 2/3
mmp, mean(pr) smoother(lowess) smoopt("bwidth(`a')")
varlist(food decor service lncost) lin
graph export graphics/f8p14.eps, replace
```


Figure 8.14 Marginal model plots for model (8.5)

To further check the fit of model 8.5, we redraw the leverage plot. This yield figure 8.15.

```
drop hvalues stanresdeviance zelabel
qui binreg inmichelin food decor service lncost servde-
cor
predict hvalues, hat
predict stanresdeviance, deviance standardized
local lvgcutoff = 2*e(k)/e(N)
gen zelabel = restaur if inlist(restaur,"Park Terrace
Bistro","Paradou","Odeon","Gavroche","Le Bilbo-
quet","Arabelle","Terrace in the Sky","Café du So-
leil","Atelier")
twoway scatter stanresdev hvalues, mlabel(zelabel)
mlabposition(3) mlabsize(tiny) xline(`lvgcutoff')
ytitle("Standardized Deviance Residuals")
xtitle("Leverage Values")
graph export graphics/f8p15.eps, replace
```


Figure 8.15 A plot of leverage against standardized deviance residuals for (8.5)

We use the **mu** option for **predict** that was mentioned earlier to produce the estimated probabilities in table 8.5. Using this option in **predict** after **binreg** results in the storage of number trials*estimated probability in the argument variable.

```
predict estp, mu
l estp inmichelin rest food decor service cost if
abs(estp - inmichelin)> .85
```

+							
	estp	inmich~n	restaurantname	food	decor	service	cost
14	.9705719	0	Atelier	27	25	27	95
37	.9342504	0	Café du Soleil	23	23	17	44
69	.1245172	1	Gavroche	19	15	17	42
133	.1025108	1	Odeon	18	17	17	42
135	.0812678	1	Paradou	19	17	18	38
138	.0720739	1	Park Terrace Bistro	21	20	20	33
160	.9221796	0	Terrace in the Sky	23	25	21	62
+							

9. Serially Correlated Errors

9.1 Autocorrelation

In this chapter we will learn how to do deal with autocorrelated errors when doing multiple linear regression in Stata. We begin with our normal startup code.

```
set more off
clear all
version 10.0
set scheme ssccl
```

Now we bring in the confood2.txt data. Figure 9.1 is rendered using a simple overlaid **twoway scatter** plot. We specify that triangular symbols should be used for no promotion weeks by passing the "th" argument to the **msymbol()** option. We specify that "+" signs should be used for promotion weeks by using the **msymbol()** option with argument "plus".

```
insheet using data/confood2.txt, names
gen lnprice = ln(price)
gen lnsales = ln(sales)
twoway scatter lnsales lnprice if promo == 0,msymbol(th) || scatter lnsales lnprice if promo == 1,
msymbol(plus) legend(title("Promotion") label(1 "No")
label(2 "Yes") cols(1) ring(0) position(2))
xtitle("log(Price[t])") ytitle("log(Sales[t])")
graph export graphics/f9p1.eps, replace
```


Figure 9.1 A scatter plot of log(Salest) against log(Pricet)

Stata has very powerful time series capabilities. In the interest of brevity we will only discuss what we absolutely need to know to perform the analysis in this chapter.

To render figure 9.2, a time series plot, we first tell Stata what our time variable is. This is done with the **tsset** command.

tsset week

Now we use the **twoway tsline** command to draw figure 9.2. To show the individual points, we overlay this plot with two scatter plots, one for promotion and one for non-promotion weeks. The **tsline** command takes a single variable, and plots the time series plot for that variable using the time variable that has been set with **tsset**.

```
tsline lnsales || scatter lnsales week if promo == 0,
msymbol(th) || scatter lnsales week if promo == 1,
msymbol(plus) xtitle("Week, t") ytitle("log(Sales[t])")
legend(title("Promotion") order(2 3) label(2 "No") la-
bel(3 "Yes") cols(1) ring(0) position(11))
graph export graphics/f9p2.eps, replace
```

9.1 Autocorrelation 3

Figure 9.2 A time series plot of log(Sales_t)

Next we generate the lag of Insales. This is done using the **L**. operator. This is one of the powerful time series operators that are present in Stata. It can nearly be used as freely as an addition or multiplication sign in expressions.

gen laglnsales = L.lnsales

Now it is trivial to draw figure 9.3. We use a simple **twoway scatter** plot.

```
twoway scatter lnsales laglnsales, xtitle("log(Sales[t-
1])") ytitle("log(Sales)")
graph export graphics/f9p3.eps, replace
```

4 9. Serially Correlated Errors

Figure 9.3 Plot of log(Sales) in week t against log(Sales) in week t-1

Drawing the autocorrelation plot in figure 9.4 is a bit more challenging. Stata has its own autocorrelation plot function, **ac**. We will use **ac** in our method, but not for drawing. Our version of an autocorrelation plot is slightly different from Stata's default.

We use the ac command on *lnsales*, storing the estimates of the first 17 autocorrelations in the new variable *lnsalesAC*. To suppress the plot, we use the **nodraw** option.

ac lnsales, lag(17) nodraw generate(lnsalesAC)

For observations 1 through 17, the ith observation of *lnsalesAC* stores the ith lagged autocorrelation of *lnsalesAC*. We store the zeroth lagged autocorrelation in the eighteenth observation. The variable *lnsales* is perfectly correlated with itself, unsurprisingly.

We use the **twoway pcspike** command to draw the autocorrelation plot. This draws line segments from (*lnsalesAC*, *lag*) to (*zero*, *lag*) for every non-missing observation of all four of the specified variables. We augment the plot with horizontal lines at the cutoff points 2/sqrt(total observations).

9.1 Autocorrelation 5

```
gen lag = _n if _n < 18
gen zero = 0
local top = 2/sqrt(_N)
local bot = -2/sqrt(_N)
replace lag = 0 if _n == 18
replace lnsalesAC = 1 if lag == 0
twoway pcspike lnsalesAC lag zero lag ,
yline(`top',lpattern(dash) lcolor(red))
yline(`bot',lpattern(dash) lcolor(red)) xtitle("Lag")
ytitle("ACF") xlabel(0 5 10 15) ylabel(-0.4(.2)1.0)
title("Series log(Sales)")
graph export graphics/f9p4.eps, replace</pre>
```


Figure 9.4 Autocorrelation function for log(Sales)

Next we regress *lnsales* on *lnprice*, *week*, and *promotion*, without consideration of the clearly present first order autocorrelation of *lnsales*. We draw the standardized residual plots using **twoway scatter** and **graph combine**. A line is added to the second plot by overlaying a **twoway line** plot.

```
qui reg lnsales lnprice week promotion
predict stanres1, rstandard
predict fitted, xb
```

```
twoway scatter stanres1 lnprice, name(g1)
ytitle("Standardized Residuals")
xtitle("log(Price[t])") nodraw
twoway scatter stanres1 week || line stanres1 week,
name(g2) ytitle("Standardized Residuals") xtitle("Week,
t") nodraw legend(off)
twoway scatter stanres1 promo, name(g3)
ytitle("Standardized Residuals") xtitle("Promotion")
nodraw
twoway scatter stanres1 fitted, name(g4)
ytitle("Standardized Residuals") xtitle("Fitted Val-
ues") nodraw
graph combine g1 g2 g3 g4, rows(2) xsize(10) ysize(10)
graph export graphics/f9p5.eps, replace
graph drop g1 g2 g3 g4
```


Figure 9.5 Plots of standardized residuals from LS fit of model (9.2)

Now we will look at the autocorrelation plot of the standardized residuals from this model. We use the same method we used to get figure 9.4. Some of the components have already been created through drawing figure 9.4. The *top* and *bottom* macros should already be there, etc. We will reuse these components and not recreate them.

9.2 Using generalized least squares when the errors are AR(1) 7

```
ac stanres1, lag(17) nodraw generate(stanres1AC)
replace lag = 0 if _n == 18
replace stanres1AC = 1 if lag == 0
```

```
twoway pcspike stanres1AC lag zero lag ,
yline(`top',lpattern(dash) lcolor(red))
yline(`bot',lpattern(dash) lcolor(red)) xtitle("Lag")
ytitle("ACF") xlabel(0 5 10 15) ylabel(-0.4(.2)1.0)
title("Series Standardized Residuals")
graph export graphics/f9p6.eps, replace
```


Figure 9.6 Autocorrelation function of the standardized residuals from model (9.2)

9.2 Using generalized least squares when the errors are AR(1)

Now we will try to we properly regress *lnsales* on *lnprice*, *week*, and *promotion*. We use Stata's **arima** command to do this. Specification of the number of autoregressive terms in **arima** is done in the first argument of the **arima()** option.

arima lnsales lnprice week promotion, arima(1,0,0) vce(oim) nolog

ARIMA regressi	ion						
Sample: 1 - 5	52			Number o	of obs	=	52
Log likelihood = 2.731141				Wald ch: Prob > d	i2(4) chi2	=	256.70 0.0000
 lnsales	Coef.	OIM Std. Err.	z	P> z	[95% (Conf.	Interval]
lnsales	l						
lnprice	-4.327392	.5437387	-7.96	0.000	-5.393	101	-3.261684
week	.0125172	.0044879	2.79	0.005	.00372	211	.0213134
promotion	.5846497	.1620834	3.61	0.000	.2669	721	.9023273
_cons	4.675667	.2295752	20.37	0.000	4.225	707	5.125626
ARMA	 						
ar L1.	.5503593	.115195	4.78	0.000	.3245	813	.7761372
/sigma	.2287948	.0224387	10.20	0.000	.1848	156	.2727739

Now we look at the autocorrelation of the residuals from this model. To obtain them we use the **predict** command with options **residual** and **structural**. Once they are obtained we generated their autocorrelations using the **ac** command a plot them as before.

predict glsresid, resid structur

```
ac glsresid, lag(17) nodraw generate(glsresidAC)
replace lag = 0 if _n == 18
replace glsresidAC = 1 if lag == 0
```

```
twoway pcspike glsresidAC lag zero lag ,
yline(`top',lpattern(dash) lcolor(red))
yline(`bot',lpattern(dash) lcolor(red)) xtitle("Lag")
ytitle("ACF") xlabel(0 5 10 15) ylabel(-0.4(.2)1.0)
title("Series GLS Residuals")
graph export graphics/f9p7.eps, replace
```


9.2 Using generalized least squares when the errors are AR(1) 9

Figure 9.7 Autocorrelation function of the gls residuals from model (9.2)

Now we will show how to transform the data so that we can fit a least squares linear regression and get similar results to model 9.2

We began by creating the transformation variables.

```
gen lnsales_star = .
gen lnprice_star = .
gen promo_star = .
gen week_star = .
gen cons_star = .
```

Next we will enter the Mata environment. This is done by the **mata** command. Mata is a very powerful part of Stata that can be used for matrix calculations and general imperative programming. We will be terse in our explanations of Mata commands here. To go into further detail would require a more general, and much longer discussion of Mata.

```
mata
xstar = st_data(.,("lnprice","promotion","week"))
```

The first command after entering mata stores the variables *lnprice*, *promotion*, and *week* in the matrix *xstar*.

xstar = (J(rows(xstar),1,1),xstar)

The next command adds an intercept column to the *xstar* matrix.

```
rho = J(rows(xstar), rows(xstar), .5504)
```

With this command we create a matrix of the same dimensions as *xstar*. We store the autocorrelation coefficient in each element of this matrix *rho*.

```
sigma = range(1,rows(xstar),1)
```

We use the range command to get a column vector with element *i* being equal to *i*. The new vector *sigma* stores the range from 1 to then number of rows in *xstar*.

```
sigma = J(rows(xstar),rows(xstar),1) :* sigma
```

We use the elementwise multiplication operator ":*" to create *sigma* as a new matrix, with the elements in each row being equal to their row indices.

```
sigma = sigma - sigma'
```

Next we subtract the transpose of *sigma* from itself.

```
sigma = abs(sigma)
```

Then we replace the elements of sigma by their absolute values.

sigma = rho :^ sigma

Finally we replace sigma by *rho* raised to the powers contained in *sig-ma*. We use the elementwise exponentiation operator for this, ": $^{"}$."

sm = cholesky(sigma)

We store the cholesky decomposition factor of *sigma* in the matrix *sm*.

smi = qrinv(sm)

In *smi*, we store the inverse of *sm*.

9.2 Using generalized least squares when the errors are AR(1) 11

xstar = smi * xstar

We transform *xstar* by replacing it with the matrix multiplication of *smi* left multiplied to *xstar*.

```
ystar = st_data(.,"lnsales")
```

We store the *lnsales* variable in the matrix ystar.

```
ystar = smi * ystar
```

We transform ystar by multiplying it on the left by smi.

```
st_store((1,rows(xstar)),"cons_star", xstar[,1])
st_store((1,rows(xstar)),"lnprice_star",xstar[,2])
st_store((1,rows(xstar)),"promo_star",xstar[,3])
st_store((1,rows(xstar)),"week_star",xstar[,4])
st_store((1,rows(xstar)),"lnsales_star",ystar[,1])
end
```

Finally we store the transformed data matrices in Stata, using the transformed variables we initialized earlier. We use the end command to leave Mata and return to Stata.

Now we re-perform our regression on the transformed data. We use the **noconstant** option to not fit a constant in the model.

reg lnsales_star cons_star lnprice_star promo_star week star, noconstant

Source	1	SS	df		MS		Number of obs	= 52
Model Residual		685.306289 3.90503499	4 48	171.	.326572 L354896		Prob > F R-squared	= 0.0000 = 0.9943 = 0.9939
Total		689.211324	52	13.2	2540639		Root MSE	= .28523
lnsales_star		Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
cons_star lnprice_star promo_star week_star	 	4.675661 -4.327413 .5846418 .0125172	.2383 .5625 .1671 .0046	796 651 111 696	19.61 -7.69 3.50 2.68	0.000 0.000 0.001 0.010	4.196366 -5.458526 .2486424 .0031284	5.154955 -3.1963 .9206411 .021906

We generate figure 9.8 using simple **twoway scatter** plots and a **graph combine** command. The first point is labeled using the **mlabel** option.

```
gen case = "1" if n == 1
twoway scatter insales star cons star, mlabel(case)
                 xtitle("Intercept*")
mlabposition(6)
ytitle("log(Sales)*") name(g1) nodraw
twoway scatter insales star inprice star, mlabel(case)
mlabposition(6)
                  xtitle("log(Price) *")
ytitle("log(Sales)*") name(g2) nodraw
twoway scatter lnsales_star promo_star, mlabel(case)
                  xtitle("Promotion*")
mlabposition(6)
ytitle("log(Sales)*") name(g3) nodraw
twoway scatter lnsales_star week_star, mlabel(case)
mlabposition(6) xtitle("Week*") ytitle("log(Sales)*")
name(q4) nodraw
graph combine g1 g2 g3 g4, xsize(10) ysize(10)
graph export graphics/f9p8.eps, replace
graph drop g1 g2 g3 g4
```


Figure 9.8 Plots of the transformed variables from model (9.6)

Next we check the autocorrelation of the standardized residuals from our new model.

predict tlsrst, rstandard ac tlsrst, lag(17) nodraw generate(tlsrstAC) replace lag = 0 if _n == 18 replace tlsrstAC = 1 if lag == 0

```
twoway pcspike tlsrstAC lag zero lag ,
yline(`top',lpattern(dash) lcolor(red))
yline(`bot',lpattern(dash) lcolor(red)) xtitle("Lag")
ytitle("ACF") xlabel(0 5 10 15) ylabel(-0.4(.2)1.0)
title("Series Standardized LS Residuals")
graph export graphics/f9p9.eps, replace
```


Figure 9.9 Autocorrelation function of the standardized residuals from model (9.6)

Seeing no indication of autocorrelation in our model's errors, we examine the standardized residual plots with the following code.

```
drop fitted
predict fitted, xb

replace case = ""
replace case = "38" if _n == 38
replace case = "30" if _n == 30

twoway scatter tlsrst lnprice, xtitle("log(Price[t])")
name(g1) nodraw
twoway scatter tlsrst week,mlab(case) mlabpos(3) ||
line tlsrst week,xtitle("Week, t") ytitle("Standardized
LS Residuals") name(g2) nodraw legend(off)
```

twoway scatter tlsrst promotion, xtitle("Promotion")
ytitle("Standardized LS Residuals") name(g3) nodraw
twoway scatter tlsrst fitted, xtitle("Fitted")
ytitle("Standardized LS Residuals") name(g4) nodraw
graph combine g1 g2 g3 g4, xsize(10) ysize(10)
graph export graphics/f9p10.eps, replace
graph drop g1 g2 g3 g4

Figure 9.10 Plots of standardized LS residuals from model (9.6)

Finally, we use **plot_Im** to examine further diagnostics on the model.

plot_lm, smoother("lowess_ties_optim")
graph export graphics/f9p11.eps, replace

9.3 Case Study 15

Figure 9.11 Diagnostic plots for model (9.6)

9.3 Case Study

We begin the case study by reading the data into Stata and rendering a matrix plot of the regression variables. We use the **graph matrix** command. The **diagonal** option is used to label the plot.

```
insheet using data/BayArea.txt, names clear
graph matrix interestrate loansclosed vacancyindex,
diagonal("InterestRate" "LoansClosed" "VacancyIndex")
graph export graphics/f9p12.eps, replace
```


Figure 9.12 Scatter plot matrix of the interest rate data

Now we regress *interestrate* on the other two variables, ignoring any temporal correlation. We use the standardized residuals to render the plots in figure 9.13. The **graph combine** command is used to put all of the component plots together. We draw the autocorrelation plot using the method we have previously detailed (first setting the time variable using **tsset**). We use the **twoway qfit** command to draw the quadratic curves in the leftside plots. This works similarly to the **twoway lfit** command.

```
qui regress interestrate loansclosed vacancyindex
predict rfit,xb
predict stanres,rstandard
twoway scatter stanres loansclosed || qfit stanres
loansclosed, ytitle("Standardized Residuals") name(a)
twoway scatter stanres vacancyindex || qfit stanres
loansclosed, ytitle("Standardized Residuals") name(b)
twoway scatter stanres rfit || qfit stanres
loansclosed, ytitle("Standardized Residuals")
```

```
tsset month
gen lag = _n if _n < 13
ac stanres, lag(13) nodraw generate(srAC)
replace lag = 0 if _n == 13</pre>
```

xtitle("Fitted Values") name(c)

9.3 Case Study 17

```
replace srAC = 1 if lag == 0
gen zero = 0
local top = 2/sqrt(_N)
local bot = -2/sqrt(_N)
```

```
twoway pcspike srAC lag zero lag ,
yline(`top',lpattern(dash) lcolor(red))
yline(`bot',lpattern(dash) lcolor(red)) xtitle("Lag")
ytitle("ACF") xlabel(0(2)12) ylabel(-0.5(.5)1.0)
title("Standardized LS Residuals") name(d)
graph combine a b c d, rows(2)
graph export graphics/f9p13.eps, replace
```


Figure 9.13 Plots of standardized residuals from the LS fit of model (9.7)

Now we fit an arima model with one autoregressive lag.

arima interestrate loansclosed

ma(1,0,0)	vce(oim)	nolog					
ARIMA regressi	ion						
Sample: 1 - 1	19			Number	of obs	=	19
Log likelihood = 22.65417			Wald cl Prob >	hi2(3) chi2	=	456.56 0.0000	
interestrate	Coef.	OIM Std. Err.	Z	P> z	[95% C	Conf.	Interval]
interestrate loansclosed vacancyindex _cons	0034322 076333 7.122967	.0011851 .1350797 .4140665	-2.90 -0.57 17.20	0.004 0.572 0.000	0057 34108 6.3114	755 843 112	0011094 .1884184 7.934523
ARMA ar L1.	.9572082	.0565669	16.92	0.000	.84633	391	1.068077
/sigma	.0688024	.0114042	6.03	0.000	.04645	05	.0911543

vacancyindex, ari-

Now we'll transform the original data to remove the temporal correlation as we did at the end of the last section. Then we will refit the Ordinary least square regression.

```
gen interestrate star = .
gen loansclosed star = .
gen vacancyindex star = .
gen month_star = .
gen cons_star = .
mata
xstar =
st_data(.,("loansclosed","vacancyindex","month"))
xstar = (J(rows(xstar),1,1),xstar)
rho = J(rows(xstar), rows(xstar), .9572082)
sigma = range(1,rows(xstar),1)
sigma
sigma = J(rows(xstar),rows(xstar),1) :* sigma
sigma
sigma = sigma - sigma'
sigma = abs(sigma)
sigma = rho :^ sigma
sm = cholesky(sigma)
smi = qrinv(sm)
xstar = smi * xstar
ystar = st data(.,"interestrate")
ystar = smi * ystar
```

9.3 Case Study 19

```
st_store((1,rows(xstar)),"cons_star", xstar[,1])
st_store((1,rows(xstar)),"loansclosed_star",xstar[,2])
st_store((1,rows(xstar)),"vacancyindex_star",xstar[,3])
st_store((1,rows(xstar)),"month_star",xstar[,4])
st_store((1,rows(xstar)),"interestrate_star",ystar[,1])
end
```

```
reg interestrate_star loansclosed_star vacancyin-
dex_star cons_star, noconstant
```

Source	SS	df	MS		Number of obs	= 19
Model Residual	62.390269 1.0738843	4 3 2 5 16 .	0.7967565 067117772		Prob > F R-squared Adj R-squared	$\begin{array}{rcl} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$
Total	63.464153	7 19 3	.34021862		Root MSE	= .25907
interestra~r	Coef.	Std. Er:	r. t	P> t	[95% Conf.	Interval]
loansclose~r vacancyind~r cons_star	0034322 0763411 7.122993	.00119 .130784 .418204	4 -2.87 1 -0.58 6 17.03	0.011 0.568 0.000	0059634 353591 6.236438	000901 .2009089 8.009547

We see that the coefficient estimates are identical to that of our arima. Now we will plot the transformed variables using **twoway scatter** and a **graph combine** command call. This produces figure 9.14.

```
gen case = "1" if n == 1
```

```
twoway scatter interestrate_star cons_star, mla-
bel(case) mlabposition(6) xtitle("Intercept*")
ytitle("InterestRate*") name(g1) nodraw
twoway scatter interestrate_star loansclosed_star, mla-
bel(case) mlabposition(6) xtitle("LoansClosed*")
ytitle("InterestRate*") name(g2) nodraw
twoway scatter interestrate star vacancyindex star,
mlabel(case) mlabposition(6)
                              xtitle("VacancyIndex*")
ytitle("InterestRate*") name(g3) nodraw
twoway scatter vacancyindex star loansclosed star,
mlabel(case) mlabposition(6) xtitle("LoansClosed*")
ytitle("VacancyIndex*") name(g4) nodraw
graph combine g1 g2 g3 g4, xsize(10) ysize(10)
graph export graphics/f9p14.eps, replace
graph drop g1 g2 g3 g4
```


Figure 9.14 Plots of the transformed variables from model (9.7)

Now we reproduce figure 9.13 using the transformed variables. This produces figure 9.15.

```
predict trfit, xb
predict tstanres, rstandard
twoway scatter tstanres loansclosed star, mlabel(case)
xtitle("LoansClosed*") ytitle("Standardized Residuals")
name(a) legend(off) nodraw
twoway scatter tstanres vacancyindex star, mlabel(case)
xtitle("VacancyIndex*") ytitle("Standardized Resi-
duals") name(b) legend(off) nodraw
twoway scatter tstanres trfit, mlabel(case)
xtitle("Fitted Values*") ytitle("Standardized Resi-
duals") xtitle("Fitted Values") name(c) legend(off) no-
draw
ac tstanres, lag(13) nodraw generate(tsrAC)
replace tsrAC = 1 if lag == 0
twoway pcspike tsrAC lag zero lag ,
yline(`top',lpattern(dash) lcolor(red))
yline(`bot',lpattern(dash) lcolor(red)) xtitle("Lag")
```

ytitle("ACF") xlabel(0(2)12) ylabel(-0.5(.5)1.0)

```
9.3 Case Study 21
```

```
title("Standardized LS Residuals") legend(off) name(d)
nodraw
graph combine d a b c, rows(2)
graph export graphics/f9p15.eps, replace
graph drop a b c d
```


Figure 9.15 Plots of standardized LS residuals from model (9.6)

10. Mixed Models

10.1 Random effects

In this chapter we will learn how to do fit mixed models using Stata. We begin as normally, clearing everything from memory and setting the scheme and other Stata parameters.

```
set more off
clear all
version 10.0
set scheme ssccl
```

We start by bringing in the Orthodont.txt data. We will have to do a little data manipulation before we can analyze it. We use the **list** command with the **clean** option to examine the data format.

```
insheet using data/Orthodont.txt, names delim(" ")
1, clean
```

	subject	dist8	dist10	dist12	dist14
1.	M01	26	25	29	31
2.	M02	21.5	22.5	23	26.5
з.	M03	23	22.5	24	27.5
4.	M04	25.5	27.5	26.5	27
5.	M05	20	23.5	22.5	26
6.	M0 6	24.5	25.5	27	28.5
7.	M07	22	22	24.5	26.5
8.	M08	24	21.5	24.5	25.5
9.	M0 9	23	20.5	31	26
10.	M10	27.5	28	31	31.5
11.	M11	23	23	23.5	25
12.	M12	21.5	23.5	24	28
13.	M13	17	24.5	26	29.5
14.	M14	22.5	25.5	25.5	26
15.	M15	23	24.5	26	30
16.	M16	22	21.5	23.5	25
17.	F01	21	20	21.5	23
18.	F02	21	21.5	24	25.5
19.	F03	20.5	24	24.5	26
20.	F04	23.5	24.5	25	26.5
21.	F05	21.5	23	22.5	23.5
22.	F06	20	21	21	22.5
23.	F07	21.5	22.5	23	25
24.	F08	23	23	23.5	24
25.	F09	20	21	22	21.5
26.	F10	16.5	19	19	19.5
27.	F11	24.5	25	28	28

It will be necessary to sort in descending order by the average value of distance within subject for some of our graphics in this section. We will compute this distance and then create an ordering variable based on its 2 10. Mixed Models

negative value. For ties, we will sort by subject in descending lexicographic order. The **gsort** command allows for descending sorts by placing a negative sign for the variables that should impose a descending sort order.

```
gen davg = (dist8 + dist10 + dist12 + dist14)/4
gsort -davg -subject
l subject davg, clean
```

	subject	davg
1.	M10	29.5
2.	M01	27.75
3.	M04	26.625
4.	M06	26.375
5.	F11	26.375
6.	M15	25.875
7.	M09	25.125
8.	M14	24.875
9.	F04	24.875
10.	M13	24.25
11.	M12	24.25
12.	M03	24.25
13.	M08	23.875
14.	M07	23.75
15.	F03	23.75
16.	M11	23.625
17.	M02	23.375
18.	F08	23.375
19.	M16	23
20.	M05	23
21.	F07	23
22.	F02	23
23.	F05	22.625
24.	F01	21.375
25.	F09	21.125
26.	F06	21.125
27.	F10	18.5

The data is now sorted in descending order based on the average distance within subject. We use the **label define** command to create a set of labels that can be attached to the values of a variable (by the **label values** command) that has the same sort order as *davg*. We call this variable *nusubject*. When the data is sorted by *nusubject* and Stata lists *nusubject*, it will display the subject names as listed above.

The label define command takes a name as its first argument, then a sequence of consecutive integer and label pairs. We use /// at the end of the line, so that Stata knows that the command spills onto the next line

```
label define svals 1 "M10" 2 "M01" 3 "M04" ///
4 "M06" 5 "F11" 6 "M15" 7 "M09" ///
8 "M14" 9 "F04" 10 "M13" 11 "M12" ///
12 "M03" 13 "M08" 14 "M07" 15 "F03" ///
16 "M11" 17 "M02" 18 "F08" 19 "M16" ///
```

```
20 "M05" 21 "F07" 22 "F02" 23 "F05" ///
24 "F01" 25 "F09" 26 "F06" 27 "F10"
```

The label values command takes the variable name upon which the values are to be applied and then the names of the values definition.

```
gen nusubject = n
label values nusubject svals
sort nusubject
l nusubject subject, clean
       nusubj~t
                  subject
                      M10
  1.
            M10
  2.
            M01
                       M01
  З.
            M04
                      M04
  4.
            M06
                      M06
  5.
            F11
                       F11
  6.
            M1.5
                      M1.5
  7.
            M0 9
                      M0 9
  8.
            M14
                      M14
  9.
            F04
                       F04
10.
            M13
                      M13
11.
            M12
                      M12
12.
            M0 3
                      M03
            M08
                      M08
 13.
14.
            M07
                       M07
            F03
                       F03
15.
16.
            M1 1
                       M1 1
            M02
                      M02
17.
18.
            F08
                       F08
19.
            M16
                      M16
 20.
            M05
                       M05
21.
            F07
                       F07
22.
            F02
                       F02
23.
            F05
                       F05
24.
            F01
                       F01
25.
            F09
                       F09
26.
            F06
                       F06
27.
            F10
                       F10
```

The sex of the subject is clearly identified with the first character of the *subject* variable. We create a dummy variable, *female* which will identify the sex of a subject. The **substr** function that we use takes a substring from the first argument index, of length the second argument index.

gen female = substr(subject,1,1) == "F"

Within each observation, there are four sub-observations taken at different ages. We use the **reshape long** command to turn this **wide** data setup into a **long** data setup. The first argument to reshape is the stub name, the prefixing variable name for the variables that contain the sub-observation values. The index variables for the master observations are given in the i() option. The j() option stores what will become the sub-observation index, which will be *age*.

4 10. Mixed Models

We demonstrate the effect of the reshaping by listing all of the variables again. For brevity, we list only the first twenty observations. The **sepby()** option allows us to draw lines between different subject values.

```
qui reshape long dist, i(subject) j(age)
l subject age dist if _n <= 20 , sepby(subject)</pre>
```

	+			+
	subject	age	dist	
1.	F01	8	21	
2.	F01	10	20	
3.	F01	12	21.5	
4.	F01	14	23	
5. 6. 7. 8.	F02 F02 F02 F02 F02	8 10 12 14	21 21.5 24 25.5	
9.	F03	8	20.5	
10.	F03	10	24	
11.	F03	12	24.5	
12.	F03	14	26	
13.	F04	8	23.5	
14.	F04	10	24.5	
15.	F04	12	25	
16.	F04	14	26.5	
17.	F05	8	21.5	
18.	F05	10	23	
19.	F05	12	22.5	
20.	F05	14	23.5	

Now that we have adjusted our data, we will begin our analysis by drawing figure 10.1. We create a new subject identifier *femalesubject* that is missing for all males. Then we use an overlaid **twoway** plot with the **by()** option. This option allows for the plot to be repeated on the separate data matching each non-missing value of the argument variable (*femalesubject*).

```
gen femalesubject = nusubject if female
label values femalesubject svals
label variable dist "Distance"
twoway line dist age, sort || scatter dist age,
by(femalesubject, rows(2) legend(off) note(""))
graph export graphics/f10p1.eps, replace
```

10.1 Random effects 5

Figure 10.1 Plot of Distance against Age for each female

To produce the correlations on page 334, we must make the data wide format again. This is simply done with the **reshape wide** command. The arguments for this command are similar to those of **reshape long**. After the data is reformatted, we run the correlation command for female observations on all variables that begin with the *dist* prefix.

```
qui reshape wide dist, i(subject) j(age)
corr dist* if female
(obs=11)
                dist8
                       dist10
                                dist12
                                        dist14
 ____
      ____
      dist8
               1.0000
     dist10
               0.8301
                        1.0000
                       0.8954
               0.8623
                                1.0000
     dist12
                                        1.0000
     dist14
               0.8414
                       0.8794
                                0.9484
```

To render figure 10.2, we use the graph matrix command.

```
graph matrix dist14 dist12 dist10 dist8 if female, di-
agonal("DistFAge14" "DistFAge12" "DistFAge10" "Dis-
tFAge8")
graph export graphics/f10p2.eps, replace
```

6 10. Mixed Models

Figure 10.2 Scatter plot matrix of the Distance measurements for female subjects

Now we return the data to its normal long form and run our first mixed model regression. We use the **xtmixed** command. As in chapters and 8 and 9, we are not interested in the log of the optimization algorithm. The option nolog suppresses the log output.

Our first arguments to xtmixed are the response variable and any fixed effects predictors. We specify the random effects after the "||" separator. When no predictors follow the ":", the random effect only affects the intercept of the model and none of the fixed predictor slopes.

xtmixed dist age || subject: if female, nolog

Mixed-effects REML regression Group variable: subject	Number of obs Number of grou	= ps =	44 11
	Obs per group:	min = avg = max =	4 4.0 4
Log restricted-likelihood = -70.609162	Wald chi2(1) Prob > chi2	=	83.15 0.0000
dist Coef. Std. Err. z	P> z [95%	Conf.	Interval]
age .4795455 .0525898 9.12 cons 17.37273 .858742 20.23	0.000 .376 0.000 15.6	4713 8962	.5826196 19.05583
Random-effects Parameters Estimate Std	. Err. [95%	Conf.	Interval]
subject: Identity sd(_cons) 2.06847 .47	90561 1.31	3747	3.256769
sd(Residual) .7800331 .09	75041 .610	5382	.9965824
LR test vs. linear regression: chibar2(01) =	52.00 Prob >=	chibar2	2 = 0.0000

This output matches that on page 337.

To draw figure 10.3, we will use the **by()** option and **twoway** overlaid plots again. First we obtain the fitted values using **predict** with the **fitted** option. If we were to use the **xb** option, we would only get the predicted values for the fixed effects of the model. We use **lfit** to draw the least squares fit lines for each graph in the range of 16 to 28 (specified using the **range** option).

```
predict fitdist, fitted
label variable dist "Distance"
label variable fitdist "Fitted values"
twoway lfit dist fitdist, range(16 28)
ytitle("Distance") xtitle("Fitted Values") || scatter
dist fitdist, xlabel(18(2)26) by(femalesubject, rows(4)
legend(off) note(""))
graph export graphics/f10p3.eps, replace
```

8 10. Mixed Models

Figure 10.3 Scatter plots of distance against fitted distance from model 10.1

Now we produce the coefficient estimates in table 10.3. The estimate of the random intercept within each subject is the average value of (*distance* - $\beta_1 * age$). We obtain the fixed intercept values by fitting the fixed effects model with subject being a factor. This last model is fit by running regress with dummy variables for subject (as we did with the football players in chapter 1).

First we will produce the random intercept. We use preserve in the beginning because we are going to **collapse** the observations with the statistic **mean**. We use the tempfile command to create a temporary dataset name. Then we save the random intercept observations as this temporary dataset.

```
preserve
keep if female
gen randint = fitdist - _b[age]*age
collapse (mean) randint, by(subject)
bysort subject: assert _n == 1
```

10.1 Random effects 9

1 subject randint

	+
subject	randint
F01	16.1437
F02	17.71291
F03	18.43716
F04	19.52353
F05	17.35078
F06	15.90228
F07	17.71291
F08	18.07503
F09	15.90228
F10	13.3674
F11	20.97204
	+
ile a	
`a'	
-	
re	
	subject F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 F11 ile a `a' re

Now we will compute the fixed intercepts. We begin by performing a simple linear regression with dummies for each female subject (female subject 11 being the base case).

```
preserve
```

```
gen f1 = subject == "F01"
gen f2 = subject == "F02"
gen f3 = subject == "F03"
gen f4 = subject == "F04"
gen f5 = subject == "F05"
gen f6 = subject == "F06"
gen f7 = subject == "F07"
gen f8 = subject == "F08"
gen f9 = subject == "F09"
gen f10 = subject == "F10"
qui reg dist age f1-f10 if female
```

The coefficients from the regression are stored in the row vector $\mathbf{e}(\mathbf{b})$. We extract the non-age coefficients, storing them in the column vector *coef*. We save the coef vector to the data using the **svmat** command. It is recorded as the variable *fixint*. Finally, to get the intercept estimates, we add the base case intercept to each of the dummy variable coefficients.

matrix coef = e(b)
matrix coef = coef[1,2..12]

```
10 10. Mixed Models
```

	subject	fixint
1. 2. 3. 4.	 F01 F02 F03 F04	16.1 17.725 18.475 19.6
5.	F05 	17.35
6. 7. 8. 9. 10.	F06 F07 F08 F09 F10	15.85 17.725 18.1 15.85 13.225
11.	F11 	21.1

Now we will produce table 10.3 using the merge command. Merge is used to bring together two datasets by adding the variables from one (not the observations) to the other dataset. Here we "merge" on the *subject* variable. This variable serves as a key to matching observations between the two datasets. Both datasets should be sorted by the matching key variable.

Our description of merge is very short here. There are much more complicated ways to merge and situations where it is an essential data analysis tool.

First we merge the fixed and random intercept estimate data together. Then we merge the combined data with the regular data so that we can sort using nusubject. The system variable _m is 3 for observations that are matched together in the merge

```
bysort subject: assert _n == 1
merge subject using `a'
gen randMfix = randint - fixint
```

```
10.1 Random effects 11
```

```
keep subject randint fixint randMfix
bysort subject: assert n == 1
tempfile a
save `a'
restore
preserve
bysort subject: keep if _n == 1
merge subject using `a'
sort nusubject
l subject randint fixint randMfix if _m == 3
        +----+
        | subject randint fixint randMfix |
        |-----|

      5.
      F11
      20.97204
      21.1
      -.127964

      9.
      F04
      19.52353
      19.6
      -.0764656

      15.
      F03
      18.43716
      18.475
      -.0378437

      18.
      F08
      18.07503
      18.1
      -.0249691

      21.
      F07
      17.71291
      17.725
      -.0120945

      22. |
      F02
      17.71291
      17.725
      -.0120945 |

      23. |
      F05
      17.35078
      17.35
      .0007801 |

      24. |
      F01
      16.1437
      16.1
      .0436954 |

        25.
        F09
        15.90228
        15.85
        .0522776

        26.
        F06
        15.90228
        15.85
        .0522776

                                                            -----|
                 ____
                           _____
        1 -
  27. | F10 13.3674 13.225 .1423988 |
        +-----+
```

restore

Now we will examine the male portion of the data. The following code produces figure 10.4

```
gen malesubject = nusubject if !female
label values malesubject svals
label variable dist "Distance"
twoway line dist age, sort || scatter dist age,
by(malesubject, rows(2) legend(off) note(""))
graph export graphics/f10p4.eps, replace
```

12 10. Mixed Models

Figure 10.4 Plot of Distance against Age for each male subject

As before, to look at the correlations and figure 10.5, we must reshape the data. Once we finish rendering figure 10.5, we return the data to its natural form. So that the reshape does not have any trouble, we eliminate additional age-level observation variables that we created earlier.

```
drop fit*
qui reshape wide dist, i(subject) j(age)
corr dist* if !female
 (obs=16)
              dist8
                    dist10
                            dist12
                                   dist14
          I
_____+
             _____
     dist8 |
             1.0000
             0.4374
                     1.0000
    dist10
             0.5579
                            1.0000
    dist12
                    0.3873
                                   1.0000
    dist14 |
             0.3152
                    0.6309
                            0.5860
graph matrix dist14 dist12 dist10 dist8 if !female, di-
agonal("DistFAge14" "DistFAge12" "DistFAge10" "Dis-
tFAge8")
graph export graphics/f10p5.eps, replace
```

10.1 Random effects 13

qui reshape long dist, i(subject) j(age)

Now we run the mixed effects model for males.

xtmixed dist age || subject: if !female, nolog

Mixed-effects REML regression Group variable: subject	Number of ob Number of gr	s = oups =	64 16
	Obs per grou	p: min = avg = max =	4 4.0 4
Log restricted-likelihood = -136.72402	Wald chi2(1) Prob > chi2	=	69.90 0.0000
dist Coef. Std. Err. z	P> z [9	5% Conf.	Interval]
age .784375 .0938154 8.36 _cons 16.34062 1.12872 14.48	0.000 .6 0.000 14	005003 .12837	.9682497 18.55288
Random-effects Parameters Estimate Std	. Err. [9	5% Conf.	Interval]
subject: Identity sd(_cons) 1.625019 .37	84422	1.0295	2.565017
	30952 1.	371053	2.054204
LR test vs. linear regression: chibar2(01) =	16.66 Prob >	= chibar2	2 = 0.0000

14 10. Mixed Models

Finally, we redraw figure 10.3 for the males as figure 10.6.

```
predict fitdist, fitted
label variable dist "Distance"
label variable fitdist "Fitted values"
twoway lfit dist fitdist, range(20 30)
ytitle("Distance") xtitle("Fitted Values") || scatter
dist fitdist, xlabel(22(4)30) by(malesubject, rows(4)
legend(off) note(""))
graph export graphics/f10p6.eps, replace
```


Figure 10.6 Plots of Distance against Age for males with fits from model (10.1)

Now we will analyze both males and females together. Stata does not have the capabilities to fit the sex clustered variance model in 10.5. So we will just fit the 10.6 model. Versions of the graphics and output exclusive to model 10.5 will be done for 10.6. We will add an "A" to the end of the figure number to indicate that it is under the alternative model to 10.5.

gen femXag	ge = femal	.e*age				
xtmixed di	.st age fe	male fe	mXage	sub	ject:, no	log
Mixed-effects	REML regressi	on		Number	of obs =	108
Group variable	: subject			Number Obs pe	of groups =	= 27 = 4
				opp be	avg =	4.0
					max =	- 4
				Wald c	:hi2(3) =	138.05
Log restricted	l-likelihood =	-216.87862	2	Prob >	chi2 =	0.0000
dist	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
+ age	.784375	.0775011	10.12	0.000	.6324756	.9362744
female	1.032102	1.537421	0.67	0.502	-1.981187	4.045392
femXage	3048295	.1214209	-2.51	0.012	5428101	066849
	16.34062	.9813122	16.65	0.000	14.41/29	18.26396
Random-effec	ts Parameters	Estin	nate Sto	l. Err.	[95% Conf.	Interval]
subject: Ident	ity					
	sd(_cons) 1.810	.2 .2	295019	1.320995	2.497083
	sd(Residual) 1.386	5382 .11	02946	1.186219	1.62032
LR test vs. li	.near regressi	on: chibar2	2(01) =	49.80	Prob >= chibar	2 = 0.0000

We will skip figure 10.7, since it compares model 10.5 and 10.6. We generate figure 10.8A by using the **predict** command with the **reffects** option. This produces the empirical bayes residuals or random effects for the model. There is more complicated syntax in the case where we have multiple random effects. We draw the qq-plot using the **qnorm** command. We use the indicator variable *first* to flag the first observation within subject. The random effect will be identical within subject, so there is only need to plot one of the intra-subject observations.

```
predict reff, reffects
by subject: gen first = _n == 1
qnorm reff if first, ytitle("Random Effects")
graph export graphics/f10p8A.eps, replace
```

16 10. Mixed Models

Figure 10.8A Normal q-q plot of the estimated random effects from model (10.6)

Now we will draw an alternative version of figure 10.9. We produce the marginal residuals by subtracting the fixed fitted values (obtained via **predict** with the **xb** option) from *distance*. The conditional residuals are produced by calling **predict** with the **residuals** option. Then we reshape the data to wide again, we preserve and keep only the variables we care about so that the reshape is not complicated. We only care about analyzing a few of the subject/age level variables. All those variables that vary by subject and age must be specified in the reshape. So we drop those that we do not need so that we do not have an excessively long reshape command.

```
predict fitfix,xb
gen ares = dist - fitfix
predict res, residuals
keep ares res subject age
qui reshape wide ares res, i(subject) j(age)
```

Now we look at the correlations among the marginal residuals for model 10.6.
```
(obs=27)
                 ares8
                         ares10
                                 ares12
                                          ares14
 ____+
                                          _____
                 _____
                         _____
                                 _____
      ares8
                1.0000
            1
                0.5596
                         1.0000
     ares10
                0.6600
                         0.5599
                                 1.0000
     ares12
     ares14
                0.5223
                         0.7182
                                 0.7277
                                          1.0000
```

corr ares*

Then we draw the matrix plot of the marginal residuals for model 10.6.

```
graph matrix ares14 ares12 ares10 ares8, diagon-
al("Age14" "Age12" "Age13" "Age14")
graph export graphics/f10p9A.eps, replace
```


Figure 10.9A Scatter plot matrix of the marginal residuals from model (10.6)

Now we look at the correlations among the conditional residuals for model 10.6.

corr res* (obs=27)

res8 res12 res10 res14 res8 1.0000 res10 -0.3261 1.0000 1.0000 -0.0654 res12 res14 -0.5604 0.0055 -0.1286 1.0000 -0.6003

18 10. Mixed Models

Then we draw the matrix plot of the conditional residuals for model 10.6. Afterward, we **restore** the data.

```
graph matrix res14 res12 res10 res8, diagonal("Age14
Age12 Age13 Age14")
graph export graphics/f10p10A.eps, replace
restore
```


Figure 10.10A Scatter plot matrix of the conditional residuals from model (10.6)

Now we will produce figure 10.10.

```
predict zefit, fitted
twoway scatter res zefit if female == 0, xla-
bel(20(5)30) ylabel(-4(2)4) name(male) xsize(3) nodraw
twoway scatter res zefit if female, xlabel(20(5)30)
ylabel(-4(2)4) name(female) xsize(3) nodraw
graph combine male female, xsize(6)
graph export graphics/f10p10.eps, replace
graph drop male female
```


Figure 10.10 Plots of conditional residuals vs fitted values from model (10.6)

We will skip figure 10.11 since it only pertains to model 10.5. For figure 10.12, we will create the Cholesky residuals and then draw the boxplot for model 10.6.

We use mata to create the Cholesky residuals. As in chapter 9, for reasons of brevity we will be terse in our explanation of the mata code.

The estimates of the random effect and error term standard deviations are stored in the matrix e(b). In the matrix their natural logarithms are recorded. We exponentiate and square them to get the variance estimates we need. The _b[] notation is used to access the parameter values.

```
matrix list e(b)
e(b)[1,6]
        dist:
                  dist:
                             dist:
                                              lns1_1_1:
                                                         lnsig_e:
                                       dist:
                 female
                          femXage
                                       cons
                                                  cons
         age
                                                            cons
                                             .59675423
                                                        .32669741
      .784375
              1.0321023 -.30482955
                                  16.340625
y1
scalar varsubject = (exp(_b[lns1_1_1:_cons]))^2
scalar varerror = (exp(_b[lnsig_e:_cons]))^2
```

Next we create the marginal residuals which will be transformed to create the cholesky residuals. The *cholres* variable is created so that we can fill it in within mata.

```
20 10. Mixed Models
gen cholres = .
predict fixfit, xb
replace res = dist - fixfit
```

We enter mata with the **mata** command. Then we store the scalar variance estimates in mata scalars using the st_numscalar command.

```
mata
varsubject = st_numscalar("varsubject")
varerror = st numscalar("varerror")
```

The estimated variance matrix (**estvar**) is generated using scalar multiplication and elementwise addition (:+). Then the inverse of its cholesky decomposition is stored in **smi**.

```
estvar = varerror*I(st_numscalar("e(N)")) :+ varsubject
sm = cholesky(estvar)
smi = qrinv(estvar)
```

Finally, the marginal residuals are brought into mata and stored in the *xstar* vector. The cholesky residuals are then stored in the variable *cholres*.

```
xstar = st_data(.,("res"))
cholres = smi*xstar
st_store((1,rows(cholres)),"cholres",cholres[,1])
end
```

Now that the cholesky residuals are stored in Stata, we draw the boxplot for figure 10.12.

```
gen eal = "Sex"
label define sexvals 0 "Male" 1 "Female"
label values female sexvals
label variable cholres "Cholesky residuals from model
(10.5)"
graph box cholres, over(female) over(eal)
graph export graphics/f10p12.eps, replace
```


Figure 10.12 Box plots of the Cholesky residuals from models (10.6)

10.2 Models with covariance structures which vary over time

We begin by bringing in the pig data. The pig data is an example dataset provided by Stata itself. We can use the **webuse** command to load the data.

webuse pig, clear

Now we will draw figure 10.13. We use an overlaid **twoway scatter** plot (with the **connect(L)** option to draw the lines) for this. To deal with so many pigs (48), we use a **forvalues** loop and a local macro to build up our command before execution. Note that we do not use an "=" sign assignment when we build up *graphmac*. Doing so would truncate the size of the macro.

```
local graphmac "twoway scatter weight week if id==1,
connect(L)"
forvalues i = 2/48 {
local graphmac "`graphmac' || scatter weight week if
id==`i', connect(L) "
}
```

22 10. Mixed Models

`graphmac', legend(off) ytitle(weight) xtitle(time)
graph export graphics/f10p13.eps, replace

Figure 10.13 Plot of pig weights over time

To produce the following correlations and the matrix plot in figure 10.14. We must reshape the data. We did this extensively in the last section so we'll be brief in explanation here. Our master observation index is id, and *week* is the stub variable for the sub-observations.

Once the reshaping is complete, we use the correlate command and graph matrix draw figure 10.14 and give the intra-week correlations.

qui reshape wide weight, i(id) j(week) correlate weight*

(obs=48)

<pre>weight1 1.0000 weight2 0.9156 1.0000 weight3 0.8015 0.9118 1.0000 weight4 0.7958 0.9084 0.9582 1.0000 weight5 0.7494 0.8809 0.9280 0.9621 1.0000 weight5 0.7051 0.8353 0.9058 0.9327 0.9219 1.0000 weight7 0.6551 0.7759 0.8435 0.8681 0.8546 0.9633 1.0000 weight8 0.6255 0.7133 0.8167 0.8293 0.8104 0.9280 0.9586 1.0000 weight9 0.5581 0.6638 0.7689 0.7856 0.7856 0.8893 0.9170 0.9695 1.000</pre>	1	weight1	weight2	weight3	weight4	weight5	weight6	weight7	weight8	weight9
<pre>weight2 0.9156 1.0000 weight3 0.8015 0.9118 1.0000 weight4 0.7958 0.9084 0.9582 1.0000 weight5 0.7494 0.8809 0.9280 0.9621 1.0000 weight6 0.7051 0.8353 0.9058 0.9327 0.9219 1.0000 weight7 0.6551 0.7759 0.8435 0.8681 0.8546 0.9633 1.0000 weight8 0.6255 0.7133 0.8167 0.8293 0.8104 0.9280 0.9586 1.0000 weight9 0.5581 0.6638 0.7689 0.7856 0.7856 0.8893 0.9170 0.9695 1.000</pre>	weight1	1.0000								
weight3 0.8015 0.9118 1.0000 weight4 0.7958 0.9084 0.9582 1.0000 weight5 0.7494 0.809 0.9280 0.9621 1.0000 weight6 0.7051 0.8353 0.9058 0.9327 0.9219 1.0000 weight7 0.6551 0.7759 0.8435 0.8681 0.8546 0.9633 1.0000 weight8 0.6255 0.7133 0.8167 0.8293 0.8104 0.9280 0.9586 1.0000 weight9 0.5581 0.6638 0.7856 0.7856 0.8893 0.9170 0.9695 1.000	weight2	0.9156	1.0000							
<pre>weight4 0.7558 0.9084 0.5582 1.0000 weight5 0.7494 0.8809 0.9280 0.9621 1.0000 weight6 0.7051 0.8353 0.9058 0.9327 0.9219 1.0000 weight7 0.6551 0.7759 0.8435 0.8681 0.8546 0.9633 1.0000 weight8 0.6255 0.7133 0.8167 0.8293 0.8104 0.9280 0.9586 1.0000 weight9 0.5581 0.6638 0.7689 0.7856 0.7856 0.8893 0.9170 0.9695 1.000</pre>	weight3	0.8015	0.9118	1.0000						
weight5 0.7494 0.8809 0.9280 0.9621 1.0000 weight6 0.7051 0.8353 0.9058 0.9327 0.9219 1.0000 weight7 0.6551 0.7759 0.8435 0.8681 0.8546 0.9633 1.0000 weight8 0.6255 0.7133 0.8167 0.8293 0.8104 0.9280 0.9586 1.0000 weight9 0.5581 0.6638 0.7689 0.7856 0.7856 0.8893 0.9170 0.9695 1.0000	weight4	0.7958	0.9084	0.9582	1.0000					
weight6 0.7051 0.8353 0.9058 0.9327 0.9219 1.0000 weight7 0.6551 0.7759 0.8435 0.8681 0.8546 0.9633 1.0000 weight8 0.6255 0.7133 0.8167 0.8293 0.8104 0.9280 0.9586 1.0000 weight9 0.5581 0.6638 0.7689 0.7856 0.7863 0.9170 0.9695 1.000	weight5	0.7494	0.8809	0.9280	0.9621	1.0000				
weight7 0.6551 0.7759 0.8435 0.8681 0.8546 0.9633 1.0000 weight8 0.6255 0.7133 0.8167 0.8293 0.8104 0.9280 0.9586 1.0000 weight9 0.5581 0.6638 0.7689 0.7856 0.7856 0.8893 0.9170 0.9695 1.000	weight6	0.7051	0.8353	0.9058	0.9327	0.9219	1.0000			
weight8 0.6255 0.7133 0.8167 0.8293 0.8104 0.9280 0.9586 1.0000 weight9 0.5581 0.6638 0.7689 0.7856 0.7856 0.8893 0.9170 0.9695 1.000	weight7	0.6551	0.7759	0.8435	0.8681	0.8546	0.9633	1.0000		
weight9 0.5581 0.6638 0.7689 0.7856 0.7856 0.8893 0.9170 0.9695 1.000	weight8	0.6255	0.7133	0.8167	0.8293	0.8104	0.9280	0.9586	1.0000	
	weight9	0.5581	0.6638	0.7689	0.7856	0.7856	0.8893	0.9170	0.9695	1.0000

10.2 Models with covariance structures which vary over time 23

graph matrix weight*, diagonal("T1" "T2" "T3" "T4" "T5" "T6" "T7" "T8" "T9", size(huge)) graph export graphics/f10p14.eps, replace

Figure 10.14 Scatter plot matrix of the pig weights at weeks 1 to 9

The remaining models of the chapter can unfortunately not be fit using Stata. The **xtmixed** command that we have used throughout this chapter forces an additive error term into the model in addition to the random effects of time. Therefore all of the parameters in our model cannot be identified.

A.1 Kernel Density Estimation

In this chapter we will learn how to do draw the graphics in the Appendix using Stata.

First we clear everything from memory and set the scheme and other Stata parameters.

```
version 10.0
clear all
set more off
set scheme ssccl
```

Now we will start work on drawing the first figure, A.1. We bring in the bimodal.txt document using the **insheet** command and then list the contents with **list** (abbreviated to \mathbf{l}).

- ·	1 1.277001
3.	-1.01972
4.	-1.01655
5.	7642005
6.	7547988
7.	650272
8.	6291661
9.	5232639
10.	3544043
11.	.4398519
12.	.7137376
13.	.9099341
14.	.9579163 j
15.	1.078116
16.	1.149384
17.	1.152666
18.	1.177325
19.	1.341342
20.	1.866101
	++

We have twenty observations on the variable x. We will store the number of observations _N in the local macro n. The bandwidth is stored in the macro h.

local n = Nlocal h = .25

To draw the kernel density estimates, we need a dense set of plot points within the support of x. We use the **set obs** command to make our current dataset have 601 observations. We make the variable xx equally spaced between -3 and 3.

```
set obs 601
gen xx = -300
replace xx = xx + _n - 1
replace xx = xx/100
```

The twenty individual kernel functions that are summed together to form the kernel density estimate will be stored in the variables $y1, \ldots, y20$. The actual kernel density estimate will be stored in the variable *ysum*. Each of the individual kernel functions will be graphed in *twoway line* plots versus *xx*. We build up the local macro *graphmac* to be used in this overlaying.

```
gen ysum = 0
local graphmac "line y1 xx"
local i = 1
gen y`i' = (1/(`h'*sqrt(2*_pi)))*exp(-0.5*((xx-
x[`i'])/`h')^2)
replace ysum = y`i'/`n' + ysum
replace y`i' = y`i'/`n'
forvalues i = 2/`n' {
gen y`i' = (1/(`h'*sqrt(2*_pi)))*exp(-0.5*((xx-
x[`i'])/`h')^2)
replace ysum = y`i'/`n' + ysum
replace y`i' = y`i'/`n'
local graphmac "`graphmac' || line y`i' xx"
}
```

Now we will create a *truedensity* variable that holds the true density estimate at each xx value. To draw the vertical lines in the figure, we create the *top* and *zero* variables and use them in the **pcspike** command as we did

previously. This command was last used in chapter 9. Finally we perform the graphing.

```
gen truedensity = 0.5*(3/(sqrt(2*_pi)))*exp(-
0.5*((xx+1)/(1/3))^2) + ///
0.5*(3/(sqrt(2*_pi)))*exp(-0.5*((xx-1)/(1/3))^2)
gen top = 1/(`n'*`h'*sqrt(2*_pi))
gen zero = 0
twoway `graphmac' ///
|| line ysum xx ///
|| line truedensity xx, lpattern(dash) ///
|| pcspike top x zero x, xlabel(-3(1)3) yla-
bel(0(0.05)0.65) ///
ytitle("Estimated & True Densities") legend(off)
xtitle("x")
graph export graphics/fAPPp1.eps, replace
```


Figure A.1 True density (dashed curve) and estimated density with h=0.25 (solid curve)

To draw figure A.2, we re-run the previous code changing the bandwidth value stored in h. For simplicity the code was directly reproduced.

insheet using data/bimodal.txt, clear local n = _N local h = .6

```
set obs 601
gen xx = -300
replace xx = xx + n - 1
replace xx = xx/100
gen ysum = 0
local graphmac "line y1 xx"
local i = 1
gen y`i' = (1/(`h'*sqrt(2*_pi)))*exp(-0.5*((xx-
x[`i'])/`h')^2)
replace ysum = y`i'/`n' + ysum
replace y`i' = y`i'/`n'
forvalues i = 2/n' \{
gen y`i' = (1/(`h'*sqrt(2* pi)))*exp(-0.5*((xx-
x[`i'])/`h')^2)
replace ysum = y`i'/`n' + ysum
replace y`i' = y`i'/`n'
local graphmac "`graphmac' || line y`i' xx"
}
gen truedensity = 0.5*(3/(sqrt(2*_pi)))*exp(-
0.5*((xx+1)/(1/3))^2) + ///
0.5*(3/(sqrt(2*_pi)))*exp(-0.5*((xx-1)/(1/3))^2)
gen top = 1/(n'*h'*sqrt(2* pi))
gen zero = 0
twoway `graphmac' ///
|| line ysum xx ///
|| line truedensity xx, lpattern(dash) ///
|| pcspike top x zero x, xlabel(-3(1)3) yla-
bel(0(0.05)0.65) ///
ytitle("Estimated & True Densities") xtitle("x") le-
gend(off)
graph export graphics/fAPPp2.eps, replace
```


Figure A.2 True density (dashed curve) and estimated density with h=0.6 (solid curve)

A.2 Nonparametric regression for a single predictor

To draw figure A.3, we first bring in the curve.txt data, then initialize the bandwidth h (which must be done manually, Stata has no RWS bandwidth selection at present) and observation count n.

```
insheet using data/curve.txt,clear
local n = N
local h = 0.026
```

Next we create the m function on the data x using the variable m. The center of the weight function is specified in the variable xI. The weight function itself is stored in yy. Our estimate of the m function is obtained through the **lpoly** command (where the degree is specified as 1).

```
gen m = 15 + 15*x*cos(4*_pi*x)
gen x1 = .5
gen yy = (1/(`h'*sqrt(2*_pi)))*exp(-0.5*((x1-x)/`h')^2)
twoway scatter y x, msymbol(plus) ///
|| line yy x,lpattern(dash) ///
```

```
|| line m x, lpattern(dash) ///
|| lpoly y x,bwidth(`h') degree(1) ytitle("Estimated &
True Curves") ///
xtitle("x") legend(off)
graph export graphics/fAPPp3.eps, replace
```


Figure A.3 True curve (dashed) and estimated curve with *h*=0.026 (solid)

We draw figure A.4 with a similar methodology. We specify the different bandwidths in the local macros *hlo* and *hhi*. The graph combine command is used to put the two plots together.

```
local hlo = `h'/5
local hhi = `h'*5
line m x ,lpattern(dash) ///
|| scatter y x, msymbol(plus) ///
|| lpoly y x,bwidth(`hlo') degree(1) ysize(1.5) name(a)
nodraw legend(off) ///
ytitle("Estimated & True Curves") xtitle("x")
line m x ,lpattern(dash) ///
|| scatter y x, msymbol(plus) ///
|| lpoly y x,bwidth(`hhi') degree(1) ysize(1.5) name(b)
nodraw legend(off) ///
ytitle("Estimated & True Curves") xtitle("x")
```

```
graph combine a b, rows(2)
```


graph export graphics/fAPPp4.eps, replace
graph drop a b

Figure A.4 True curve (dashed) and estimated curves (solid) with h=0.005 (upper panel) and h=0.132 (lower panel)

To draw figure A.5 we use Stata's **lowess** command, specifying the bandwidth via the local macro a.

```
local a = 1/3
lowess y x, bwidth(`a') addplot(line m
x,lpattern(dash)) xtitle(x) ///
ytitle("Estimated & True Curves") legend(off)
graph export graphics/fAPPp5.eps, replace
```


Figure A.5 True curve (dashed) and estimated curve (solid) with span = 1/3

To draw figure A.6, we use the **lowess** command and **graph combine** again. The **nodraw** option suppresses the display of the first graph until it can be displayed together with the second.

```
local a = 2/3
lowess y x, bwidth(`a') nodraw addplot(line m
x,lpattern(dash)) ///
xtitle(x) ytitle("Estimated & True Curves") name(a) ys-
ize(2.5) legend(off)
local a = .05
lowess y x, bwidth(`a') nodraw addplot(line m
x,lpattern(dash)) ///
xtitle(x) ytitle("Estimated & True Curves") name(b) ys-
ize(2.5) legend(off)
graph combine a b, rows(2)
graph export graphics/fAPPp6.eps, replace
graph drop a b
```


Figure A.6 True curve (dashed) and estimated curves (solid) with span = 2/3 (upper panel) and span = 0.05 (lower panel)

Rendering of figure A.7 is not currently possible within Stata. There are too many knots for the **xtmixed** command, at least for the simple and straightforward parameterization that we seek.

We can render figure A.8 using a simple and straightforward invocation of **xtmixed**. First we generate the knots and splines, then fit the model.

```
sum x
local max = r(max)
local min = r(min)
forvalues i = 1/6 {
gen knot`i' = `min' + `i'*.15
}
assert knot5 < `max' - .15 & knot6 > `max' - .15
drop knot6
forvalues i = 1/5 {
gen spline`i' = x - knot`i' if x > knot`i'
replace spline`i' = 0 if x <= knot`i'
}</pre>
```

<pre>xtmixed y x all: spline*,nocons</pre>									
Mixed-effects REML regression	Number of obs = 150								
Group variable: _all	Number of groups = 1								
	Obs per group: min = 150								
	avg = 150.0								
	max = 150								
	Wald chi2(1) = 3.06								
Log restricted-likelihood = -338.05281	Prob > chi2 = 0.0803								
y Coef. Std. Err. z	P> z [95% Conf. Interval]								
x -11.50101 6.576112 -1.75	0.080 -24.38995 1.387931								
_cons 16.2/2// .//58464 20.9/	0.000 14.75213 17.7934								
Random-effects Parameters Estimate S	td. Err. [95% Conf. Interval]								
++									
_all: Independent									
sd(spline1) 18.01 1	9.13494 2.244629 144.505								
sd(spline2) 107.4536 7	7.00785 26.37531 437.7683								
sd(spline3) 113.2374 8	0.90255 27.91566 459.3371								
sd(spline4) 86.21135 6	1.95893 21.07742 352.6237								
sd(splines) 249.5502 1	16.6897 62.29874 999.6238								
sd(Residual) 2.120979 .	1255171 1.888701 2.381823								
LR test vs. linear regression: chi2(5)	= 311.58 Prob > chi2 = 0.0000								

Note: LR test is conservative and provided only for reference.

We now produce fitted values using the predict command and create an overlay graph.

predict fit2, fitted line m x ,lpattern(dash) /// || scatter y x, msymbol(plus) /// || line fit2 x, legend(off) ytitle("Estimated & True Curves") xtitle("x") graph export graphics/fAPPp8.wmf, replace

A.2 Nonparametric regression for a single predictor 11

Figure A.8 True curve (dashed) and estimated curve (solid) with knots 0.15 apart